Talk 6: Forms over \mathbb{Q}_p & the Hasse principle

1 Recap of previous talks

• Talk 1 & 2. A quadratic form $\mathbf{f}(x_1, ..., x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j (a_{ij} \in k)$ is said to *regular* if $d(\mathbf{f}) := det(a_{ij}) \neq 0$ and hence lies in $k^*/(k^*)^2$. It is moreover called *isotropic* if it admits a non-trivial solution in k^n .

For two regular quadratic forms $\mathbf{f}(x_1, ..., x_n), \mathbf{g}(y_1, ..., y_m)$, if $\mathbf{f}(\underline{x}) - \mathbf{g}(\underline{y})$ is isotropic, then there is a $b \neq 0$, represented by both \mathbf{f}, \mathbf{g} .

(Witt's lemma) If $f_i(\underline{x}), g_i(\underline{y})(i=1,2)$, are quadratic forms $(f_i \text{ regular})$ s.t. $f_1(\underline{x})+g_1(\underline{y}) \sim_k f_2(\underline{x})+g_2(\underline{y})$ and $f_1(\underline{x})$ $\sim_k f_2(\underline{x})$. Then $g_1 \sim_k g_2$.

- Talk 3. Here we learnt about the field of p-adic numbers $\mathbb{Q}_p(p \text{ a prime})$. It is the completion of \mathbb{Q} w.r.t. the non-Archimedean valuation $|.|_p$. The *unit ball*(which is also a ring) $\mathbb{Z}_p := \{|x|_p \leq 1\}$ is called the ring of p-adic integers.
- Talk 4. Here we studied *Hensel's* lemma which gives sufficient conditions to lift a solution of $f(T) \in \mathbb{Z}_p[T]$ over $\mathbb{F}_p \simeq \mathbb{Z}_p/p\mathbb{Z}_p$ to \mathbb{Z}_p . Moreover if $f(T_1, ..., T_n) \in \mathbb{Z}[T_1, ..., T_n]$ has a solution in each $\mathbb{Z}/p^n\mathbb{Z}(\forall n > 0)$, then it has a solution in \mathbb{Z} .
- Talk 5. For p, a prime number or ∞ , the *Hilbert norm residue symbol*, $\left(\frac{a,b}{p}\right)(a,b\in\mathbb{Q}_p^*),$

$$\left(\frac{a,b}{p}\right) = \begin{cases} 1, & P(a,b) \\ \text{is isotropic;} \\ -1, & \text{otherwise} \end{cases}$$

where $P(a,b) = aX^2 + bY^2 - Z^2$ It satisfies among many other properties, $\left(\frac{a_1,b}{p}\right)\left(\frac{a_2,b}{p}\right) = \left(\frac{a_1a_2,b}{p}\right)$. Also we have the product formula

$$\prod_{p \in \text{primes} \cup \infty} \left(\frac{a, b}{p}\right) = 1$$

2 Equivalence of forms over \mathbb{Q}_p

We can give a purely arithmetic characterization of equivalent regular quadratic forms over $\mathbb{Q}_p(p \text{ a prime number})$.

Definition 2.1. The form $f(\underline{x})$ over \mathbb{Q}_p be equivalent to a diagonal form $a_1x_1^2 + ..., a_nx_n^2$.

- 1. n(f) := n is the rank of the form f.
- 2. d(f) is the class of determinant $det(f) \in \mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$.

3.
$$c(f) := \prod_{i < j} \left(\frac{a_i, a_j}{p}\right)$$

All the three numbers defined above are invariant under the equivalence of forms.

- **Theorem 2.2.** For two regular quadratic forms f_1, f_2 over \mathbb{Q}_p , $(n(f_1), d(f_1), c(f_1)) =$ $(n(f_2), d(f_2), c(f_2)) \iff f_1 \sim_{\mathbb{Q}_p} f_2.$
 - Analogously, for a form over Q_∞ = R, the pair (n(f), s(f)) determine the equivalence class of f, where s(f) is the number of negative coefficients in a di-agonalization of f.

3 Hasse principle

Also known as the *local-global principle*, this is a philosophical statement of the form

Hasse principle. A property or theorem Pholds true over $\mathbb{Q} \iff$ the property or theorem P holds true over \mathbb{Q}_p and over $\mathbb{Q}_{\infty} = \mathbb{R}$.

This principle first formulated in its present day form by Helmut Hasse(1898-1979) in the context of H. Minkowski's(1864-1909) theorem on existence of integral solutions of a form over \mathbb{Z} from its solutions in each residue ring $\mathbb{Z}/N\mathbb{Z}$.

Theorem 3.1 (Strong Hasse principle). A (regular) quadratic form on n-variables over \mathbb{Q} is isotropic \iff it is isotropic over all \mathbb{Q}_p (p a prime) and over \mathbb{R} .

Consequently, we obtain

Corollary 3.2 (Weak Hasse principle). If two regular quadratic forms $f \sim_{\mathbb{Q}} g \iff$ $f \sim_{\mathbb{Q}_p} g \forall p (including p = \infty).$

4 Counterexample(s)

When one goes beyond the setup of degree 2 homogeneous forms, one encounters a lot of counterexamples to the Hasse principle.

• (Lind-Reichardt(1940's)) They (independently) showed that the equation $X^4 - 17Y^4 = Z^2W^2$ has local solutions(i.e. in all \mathbb{Q}_p and \mathbb{R}) but it has no solution in \mathbb{Q} .

•(Selmer(1951)) The equation $F(X, Y, Z) := 3X^3 + 4Y^3 + 5Z^3$ has solutions in each $\mathbb{Q}_p(\text{inc. } p = \infty)$ but no solution in \mathbb{Q} .

We'll focus our attention on the counterexample of Selmer(cf. [Con, §2]). We'll use Hensel's lemma to show that it has solution in each $\mathbb{Q}_p(\text{inc. }\mathbb{R})$. Showing that it has no solution in \mathbb{Q} requires techniques from the theory of *elliptic curves* and goes well beyond our scope(cf. [Cas2, pg.86-87])^{*a*}.

- **Example 4.1.** (in \mathbb{Q}_3) Setting (X, Z) = (0, -1), F(0, Y, -1) = $4Y^3 - 5$ has a solution Y = 2 in $\mathbb{Z}/3\mathbb{Z}$. Using Hensel's lemma lift to $\beta \in \mathbb{Z}_3$ (using $|f(2)|_3 < |f'(2)|_3^2$). $(0, \beta, -1)$ is a solution.
 - (in \mathbb{Q}_5) Setting (Y, Z) = (0, 1), the equation $g(X) := 3X^3 + 5$ has a solution X = 2 in $\mathbb{Z}/5\mathbb{Z}$ which is a cube there(exercise!), so it can be lifted using Hensel's lemma.
 - (in $\mathbb{Q}_p, p \neq 3, 5$) Here one separately analyzes
 - 3 mod p is a cube, then $X^3 + 3$ has a root in $\mathbb{Z}/p\mathbb{Z}$, hence can be lifted to \mathbb{Z}_p .
 - 3 mod p is not a cube, then $p \equiv 1 \pmod{3}$ and any $a \in (\mathbb{Z}/p\mathbb{Z})^*$ can be written $b^3, 3b^3$ or $9b^3$. One chooses a = 5 and uses Hensel's lemma.
 - $(in \mathbb{R})$ Obvious.

References

[Con]	Keith	Conrad:	Selmer's	example.
-------	-------	---------	----------	----------

- [Cas1] J.W.S. Cassels: Rational quadratic forms.
- [Cas2] J.W.S. Cassels: Lectures on elliptic curves.

 $[^]a \rm One$ can alternately prove it using the arithmetic of cubic field extensions cf. [Con, §3]