Quadratic forms

Talk 6: Forms over Q, & the Hasse
principle

1

o Talk 1 & 2.

Recap of previous talks

A quadratic form
f(xl,...,xn) = ZZ]’:I aijxizj(aij S k?)
is said to regular if d(f) := det(a;;) # 0
and hence lies in k*/(k*)2. It is more-
over called isotropic if it admits a non-
trivial solution in k™.

For two regular quadratic forms
f(@1, . 0), 8(Y1, o Um), if f(z) — g(y)
is isotropic, then there is a b # 0, rep-
resented by both f, g.

(Witt;s lemma) If fi(£)7gi(y)(i:172)>
are quadratic forms(f; regular) s.t.
fi(@)+91(y) ~k f2(z)+92(y) and fi(z)

~k f2(z). Then g1 ~ go.

Talk 3. Here we learnt about the field
of p—adic numbers Q,(p a prime). It
is the completion of Q w.r.t. the non-
Archimedean valuation |.|,. The unit
ball(which is also a ring) Z,, := {|z|, <
1} is called the ring of p—adic integers.

Talk 4. Here we studied Hensel’s
lemma which gives sufficient conditions
to lift a solution of f(T') € Z,[T] over
F, ~ Z,/pZ, to Z,. Moreover if
f(1,...,T,,) € Z[T1, ..., T,] has a solu-
tion in each Z/p"Z(¥n > 0), then it
has a solution in Z.

Talk 5. For p, a prime number or
oo, the Hilbert morm residue symbol,

(%) (@b eqp).

1, P(a,b)

is isotropic;

-1, otherwise

where P(a,b) = aX? + bY? — 722 It
satisfies among many other properties,

(M) (M) = (%ﬁ’b) Also we have the

P P
product formula

b
I (5)-
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2 Equivalence
over Q,

of forms

We can give a purely arithmetic characteri-
zation of equivalent regular quadratic forms
over Qp(p a prime number).

Definition 2.1. The form f(z) over Q, be
equivalent to a diagonal form a;x? +..., a, 2

1. n(f) := n is the rank of the form f.
2. d(f) is the class of determinant
det(f) € Qp/(Q})*.

3. c(f) = Hi<j (%)

All the three numbers defined above are in-
variant under the equivalence of forms.

Theorem 2.2. o For two reg-
ular quadratic forms f1, f2
over  Qp, (n(f1),d(f1),c(f1)) =

(n(f2),d(f2),c(f2)) <= fi1~q, fo.

o Analogously, for a form over Qy =
R, the pair (n(f),s(f)) determine the
equivalence class of f, where s(f) is the
number of negative coefficients in a di-
agonalization of f.




3 Hasse principle

Also known as the local-global principle, this
is a philosophical statement of the form

Hasse principle. A property or theorem P
holds true over Q <= the property or theo-
rem P holds true over Q, and over Qo = R.

This principle first formulated in its present
day form by Helmut Hasse(1898-1979) in the
context of H. Minkowski’s(1864-1909) theo-
rem on existence of integral solutions of a
form over Z from its solutions in each residue
ring Z/NZ.

Theorem 3.1 (Strong Hasse principle). A
(regular) quadratic form on n—wvariables over
Q s isotropic <= it is isotropic over all
Q, (p a prime) and over R.

Consequently, we obtain

Corollary 3.2 (Weak Hasse principle). If
two reqular quadratic forms f ~qg g <<=

[ ~aq, 9 Yp(including p = 00).

4 Counterexample(s)

When one goes beyond the setup of degree
2 homogeneous forms, one encounters a lot
of counterexamples to the Hasse principle.

o (Lind-Reichardt(1940’s)) They (inde-
pendently) showed that the equation
X4 —17Y* = Z?W? has local solu-
tions(i.e. in all @, and R) but it has
no solution in Q.

o(Selmer(1951)) The equation F(X,Y, Z) :=
3X3 4+ 4Y3 + 5Z3 has solutions in each
Qp(inc. p = 0o0) but no solution in Q.

We'll focus our attention on the counterex-
ample of Selmer(cf. [Con, §2]). We’ll use
Hensel’s lemma to show that it has solution
in each Qp(inc. R). Showing that it has no
solution in Q requires techniques from the
theory of elliptic curves and goes well beyond
our scope(cf. [Cas2, pg.86-87])°.

Example 4.1. e (in Q3) Setting
(X,Z2) = (0,-1), F(0,Y,-1) =
4Y3 — 5 has a solution ¥ = 2 in
Z/3Z.  Using Hensel’'s lemma lift
to B € Zs(using |f(2)|s < [f'(2)[3).
(0,8,—1) is a solution.

o (in Qs) Setting (Y,Z) = (0,1), the
equation g(X) := 3X3 + 5 has a so-
lution X = 2 in Z/5Z which is a cube
there(exercise!), so it can be lifted us-
ing Hensel’s lemma.

o (in Qp,p # 3,5) Here one separately
analyzes

— 3 mod p is a cube, then X3 + 3
has a root in Z/pZ, hence can be
lifted to Z,,.

— 3 mod p is not a cube, then p =
1( mod 3) and any a € (Z/pZ)*
can be written b3, 33 or 9b3. One
chooses a = 5 and uses Hensel’s
lemma.

e (in R) Obvious.

%One can alternately prove it using the arithmetic
of cubic field extensions cf. [Con, §3]
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