
Quadratic forms

Talk 6: Forms over Qp & the Hasse
principle

1 Recap of previous talks
• Talk 1 & 2. A quadratic form

f(x1, ..., xn) =
∑n

i,j=1 aijxixj(aij ∈ k)
is said to regular if d(f) := det(aij) ̸= 0
and hence lies in k∗/(k∗)2. It is more-
over called isotropic if it admits a non-
trivial solution in kn.
For two regular quadratic forms
f(x1, ..., xn), g(y1, ..., ym), if f(x) − g(y)
is isotropic, then there is a b ̸= 0, rep-
resented by both f, g.
(Witt’s lemma) If fi(x), gi(y)(i=1,2),
are quadratic forms(fi regular) s.t.
f1(x)+g1(y) ∼k f2(x)+g2(y) and f1(x)
∼k f2(x). Then g1 ∼k g2.

• Talk 3. Here we learnt about the field
of p−adic numbers Qp(p a prime). It
is the completion of Q w.r.t. the non-
Archimedean valuation |.|p. The unit
ball(which is also a ring) Zp := {|x|p ≤
1} is called the ring of p−adic integers.

• Talk 4. Here we studied Hensel’s
lemma which gives sufficient conditions
to lift a solution of f(T ) ∈ Zp[T ] over
Fp ≃ Zp/pZp to Zp. Moreover if
f(T1, ..., Tn) ∈ Z[T1, ..., Tn] has a solu-
tion in each Z/pnZ(∀n > 0), then it
has a solution in Z.

• Talk 5. For p, a prime number or
∞, the Hilbert norm residue symbol,(
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where P (a, b) = aX2 + bY 2 − Z2 It
satisfies among many other properties,(
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2 Equivalence of forms
over Qp

We can give a purely arithmetic characteri-
zation of equivalent regular quadratic forms
over Qp(p a prime number).

Definition 2.1. The form f(x) over Qp be
equivalent to a diagonal form a1x2

1+..., anx2
n.

1. n(f) := n is the rank of the form f .

2. d(f) is the class of determinant
det(f) ∈ Q∗

p/(Q∗
p)2.

3. c(f) :=
∏

i<j

(
ai,aj

p

)
All the three numbers defined above are in-
variant under the equivalence of forms.

Theorem 2.2. • For two reg-
ular quadratic forms f1, f2
over Qp, (n(f1), d(f1), c(f1)) =
(n(f2), d(f2), c(f2)) ⇐⇒ f1 ∼Qp

f2.

• Analogously, for a form over Q∞ =
R, the pair (n(f), s(f)) determine the
equivalence class of f , where s(f) is the
number of negative coefficients in a di-
agonalization of f .
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3 Hasse principle
Also known as the local-global principle, this
is a philosophical statement of the form
Hasse principle. A property or theorem P
holds true over Q ⇐⇒ the property or theo-
rem P holds true over Qp and over Q∞ = R.

This principle first formulated in its present
day form by Helmut Hasse(1898-1979) in the
context of H. Minkowski’s(1864-1909) theo-
rem on existence of integral solutions of a
form over Z from its solutions in each residue
ring Z/NZ.

Theorem 3.1 (Strong Hasse principle). A
(regular) quadratic form on n−variables over
Q is isotropic ⇐⇒ it is isotropic over all
Qp (p a prime) and over R.

Consequently, we obtain

Corollary 3.2 (Weak Hasse principle). If
two regular quadratic forms f ∼Q g ⇐⇒
f ∼Qp

g ∀p(including p = ∞).

4 Counterexample(s)
When one goes beyond the setup of degree
2 homogeneous forms, one encounters a lot
of counterexamples to the Hasse principle.

• (Lind-Reichardt(1940’s)) They (inde-
pendently) showed that the equation
X4 − 17Y 4 = Z2W 2 has local solu-
tions(i.e. in all Qp and R) but it has
no solution in Q.

•(Selmer(1951)) The equation F (X, Y, Z) :=
3X3 + 4Y 3 + 5Z3 has solutions in each
Qp(inc. p = ∞) but no solution in Q.

We’ll focus our attention on the counterex-
ample of Selmer(cf. [Con, §2]). We’ll use
Hensel’s lemma to show that it has solution
in each Qp(inc. R). Showing that it has no
solution in Q requires techniques from the
theory of elliptic curves and goes well beyond
our scope(cf. [Cas2, pg.86-87])a.

Example 4.1. • (in Q3) Setting
(X, Z) = (0, −1), F (0, Y, −1) =
4Y 3 − 5 has a solution Y = 2 in
Z/3Z. Using Hensel’s lemma lift
to β ∈ Z3(using |f(2)|3 < |f ′(2)|23).
(0, β, −1) is a solution.

• (in Q5) Setting (Y, Z) = (0, 1), the
equation g(X) := 3X3 + 5 has a so-
lution X = 2 in Z/5Z which is a cube
there(exercise!), so it can be lifted us-
ing Hensel’s lemma.

• (in Qp, p ̸= 3, 5) Here one separately
analyzes

– 3 mod p is a cube, then X3 + 3
has a root in Z/pZ, hence can be
lifted to Zp.

– 3 mod p is not a cube, then p ≡
1( mod 3) and any a ∈ (Z/pZ)∗

can be written b3, 3b3 or 9b3. One
chooses a = 5 and uses Hensel’s
lemma.

• (in R) Obvious.
aOne can alternately prove it using the arithmetic

of cubic field extensions cf. [Con, §3]
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