Algebraische Zahlentheorie 2 — Übungsblatt 1

Sommersemester 2018

Prof. Dr. G. Böckle Dr. A. Conti

Besprechung: Di 24.04.2018 in den Übungen

Sei K ein globaler Körper und $L \supset K$ eine endliche Galoiserweiterung mit Gruppe $G = \operatorname{Gal}(L/K)$. Für eine Stelle w von L mit Einschränkung v nach K bezeichne $D_w = D_{w/v} = D_{w,L/K} \subset G$ die Zerlegungsgruppe an w. Ist v eine nichtarchimedische Stelle, so bezeichnen k_v und l_w die Restklassenkörper von K and v bzw. von L an w, und $f(w,v) = [l_w:k_v]$ ist der Trägheitsindex von w/v. Die Körper k_v und l_w sind endlich und $\operatorname{Gal}(l_w/k_v)$ besitzt den kanonischen Erzeuger

$$\sigma_{w/v}: l_w \to l_w, \alpha \mapsto \alpha^{\#k_v}.$$

Ist ferner w/v unverzweigt, so wurde in der Vorlesung ein kanonischer Isomorphismus

$$r_{w/v} \colon D_{w/v} \to \operatorname{Gal}(l_w/k_v)$$

angegeben,¹ und man definiert das Artinsymbol oder den Frobeniusautomorphismus an w als

Frob_{w,L/K} :=
$$(w, L/K) := r_{w/v}^{-1}(\sigma_{w/v})$$
.

In der Vorlesung hatten wir bereits gezeigt: Für die (transitive) Operation von Gal(L/K) auf den Stellen über v gilt:

$$\forall g \in Gal(L/K): g \operatorname{Frob}_{w,L/K} g^{-1} = \operatorname{Frob}_{gw,L/K};$$

die Stelle v zerfällt vollständig in L/K genau dann, wenn Frob $_w$ = id.

- **1. Aufgabe** (1+(2+2+1)=6 **Punkte**): Seien M, M' Zwischenkörper von $L \supset K$, und seien u, u' die Stelle von M bzw. M' unter w, und m_u bzw. $m'_{u'}$ die entsprechenden Restklassenkörper.
 - (a) Erläutern Sie die Definition der Zerlegungsgruppe von L/K an w und die Bedeutung davon, dass v bzw. w in L/K unverzweigt ist. Beschreiben Sie die Situation in Termen von Primidealen, sofern v nicht-archimedisch ist und sofern ein Dedekindring $R \subset K$ gegeben ist, für welchen gelten: K = Quot(R) und R ist im Bewertungsring zu v enthalten.
 - (b) Sei w unverzweigt in L/K. Beweisen Sie die folgenden Aussagen:
 - (i) Die Gruppe $D_{w/u}$ ist eine Untergruppe von $D_{w/v}$, man hat eine kanonische Identifikation von m_u als Unterkörper von l_w und unter dieser gelten

$$r_{w/u} = r_{w/v}|_{D_{w/u}}, \quad \sigma_{w/u} = \sigma_{w/v}^{f(u/v)}, \quad \text{sowie} \quad (w, L/M) = (w, L/F)^{f(u/v)}.$$

(ii) Ist M normal über K, so ist $D_{w/v}\operatorname{Gal}(L/M)/\operatorname{Gal}(L/M) \to D_{w,v}/D_{w/u}, \sigma \mapsto \sigma|_M$ ein Isomorphismus und man hat eine Abbildung kurzer exakter Sequenzen

$$0 \longrightarrow D_{w,u} \longrightarrow D_{w,v} \longrightarrow D_{u,v} \longrightarrow 0$$

$$\downarrow^{r_{w/u}} \qquad \qquad \downarrow^{r_{w/v}} \qquad \qquad \downarrow^{r_{u/v}}$$

$$0 \longrightarrow \operatorname{Gal}(l_w/m_u) \longrightarrow \operatorname{Gal}(l_w/k_v) \longrightarrow \operatorname{Gal}(m_u/k_v) \longrightarrow 0,$$

und es gilt $(u, M/K) = (w, L/K)|_M$.

¹Das Symbol $r_{w/v}$ wurde in der Vorlesung nicht eingeführt. Statt (w, L/K) schrieben wir $\left[\frac{\mathfrak{P}}{L/K}\right]$, sofern w zu \mathfrak{P} korrespondiert.

(iii) Gilt L = MM' und sind M, M' normal über K, so ist die Abbildung

$$\iota \colon \operatorname{Gal}(L/K) \to \operatorname{Gal}(M/K) \times \operatorname{Gal}(M'/K), \sigma \mapsto (\sigma|_{M}, \sigma|_{M'})$$

injektiv und es gilt $\iota((w, L/K)) = ((u, M/K), (u', M'/K)).$

Die folgende Aufgabe will die Bedeutung von Frobeniuselementen im Zusammenhang mit dem Dichtesatz von Čebotarev zeigen. Sei \mathcal{P}_K die Menge aller Stelle von K und

$$\Sigma := \{v \in \mathcal{P}_K \mid v \text{ verzweigt in } L/K, \text{ oder } v \text{ ist archimedisch}\}.$$

Verwenden Sie ohne Beweis folgende abgeschwächte Form des Dichtesatzes von Čebotarev: **Satz:** Für jede nicht-leere unter Konjugation abgeschlossene Teilmenge $C \subset G$ gilt

$$\#\{v \in \mathcal{P}_K \setminus \Sigma \mid \exists w \in \mathcal{P}_L \text{ "uber } v : \operatorname{Frob}_{w,L/K} \in C\} = \infty.$$

Insbesondere gibt es unendlich viele $v \in \mathcal{P}_K \setminus \Sigma$, welche in L/K vollständig zerfallen, d.h. mit $\operatorname{Frob}_{w,L/K} = \operatorname{id}$.

- 2. Aufgabe (2+2=4 Punkte): Beweisen Sie die folgenden Aussagen:
 - (a) Sei zunächst $K = \mathbb{Q}$ und $L = \mathbb{Q}(\zeta_n)$ für ein $n \ge 3$ und $\zeta_n = \exp(2\pi i/n)$. Wir identifizieren $G = \operatorname{Gal}(L/K)$ mit $(\mathbb{Z}/n\mathbb{Z})^{\times}$ vermöge der Abbildung $(\mathbb{Z}/n\mathbb{Z})^{\times} \to G$, $a \mapsto \sigma_a$, wobei σ_a derjenige Automorphismus von L ist, so dass $\sigma_a(\zeta_n) = \zeta_n^a$ gilt. Für eine Primzahl q bezeichnen wir mit q auch die Stelle zu q. Dann gelten:
 - (i) Für eine Primzahl $q \nmid n$ und w eine Stelle über q gilt Frob_{w,L/K} = σ_q .
 - (ii) Die Menge {q ist Primzahl | $q \equiv a \pmod{n}$ } ist für jedes $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ unendlich.
 - (b) Seien *L*, *K*, *M*, *M'* wie in Aufgabe 1(b)(iii). Dann sind äquivalent:
 - (i) *M* ein Unterkörper von *M'*
 - (ii) Für alle $u \in \mathcal{P}_M$ und $u' \in \mathcal{P}_{M'}$ mit derselben Einschränkung $v \in \mathcal{P}_K \setminus \Sigma$ gilt:

ord(Frob_{u,M/L}) ist ein Teiler von ord(Frob_{u',M'/L}).

Hinweis zu (i) \Rightarrow **(ii)**: gilt $M \neq M'$ so ist MM' eine echte Erweiterung von M'.

- **3. Aufgabe (1+1+1+1+2=6 Punkte):** Sei *G* eine Hausdorff topologische Gruppe und sei *U* eine Umgebungsbasis der Eins bestehend aus offenen Mengen. Beweisen Sie die folgenden Aussagen:
 - (a) Zu jeder offenen Umgebung U von e, existiert eine offene Umgebung V von e mit $V \cdot V \subset U$ und $V = V^{-1}$; ist U zusätzlich abgeschlossen, so kann man V offen abgeschlossen wählen.
 - (b) Für jede kompakte Teilmenge $M \subset G$ gilt $M = \bigcap_{U \in \mathfrak{U}} M \cdot U$.
 - (c) Sei G kompakt, sei M eine offen abgeschlossene Umgebung der Eins und seien alle $U \in \mathfrak{U}$ offen abgeschlossen. Dann existiert ein $V \in \mathfrak{U}$ mit $M \cdot V = M$. **Hinweis:** $G \setminus M$ ist kompakt.
 - (d) Gelte $U = U^{-1}$ für alle $U \in \mathfrak{U}$ (OE nach (b)). Seien M, V, \mathfrak{U} wie in (c) und sei $H = \langle V \rangle$ die von V erzeugte Untergruppe von G. Dann gelten: H ist offen und $H \subset M$.
 - (e) Sei G kompakt. Dann ist G total unzusammenhängend genau dann, wenn e eine Umgebungsbasis auf offenen normalen Untergruppen besitzt. **Hinweis:** Nutzen Sie, ohne Beweis, folgende Aussage: Ist X ein kompakter Hausdorffraum, so ist X total unzusammenhängend genau dann, wenn jedes $X \in X$ eine Umgebungsbasis aus offenen abgeschlossenen Teilmengen von X besitzt.

Die Übungsblätter sowie weitere Informationen zur Vorlesung Algebraische Zahlentheorie 2 finden Sie unter

http://www.iwr.uni-heidelberg.de/~Gebhard.Boeckle/azt2-ss2018/