Algebraische Zahlentheorie 2 — Übungsblatt 6

Sommersemester 2018

Prof. Dr. G. Böckle Dr. A. Conti

Besprechung: Di 05.06.2018 in den Übungen

- **14.** Aufgabe (1+2 Punkte, Kohomologie endlicher zyklischer Gruppen): Sei zunächst G eine endliche zyklische Gruppe der Ordnung n. Sei $\sigma \in G$ ein Erzeuger, sei N_G wie üblich $\sum_{g \in G} g \in \mathbb{Z}[G]$. Zeigen Sie:
 - (a) Der Komplex $P^{\bullet} = P_G^{\bullet}$ definiert als

$$\cdots \mathbb{Z}[G] \xrightarrow{N_G} \mathbb{Z}[G] \xrightarrow{1-\sigma} \mathbb{Z}[G] \xrightarrow{N_G} \mathbb{Z}[G] \xrightarrow{1-\sigma} \mathbb{Z}[G] \to 0$$

ist eine projektive Auflösung von \mathbb{Z} als $\mathbb{Z}[G]$ -modul. (Der angegebene Komplex ist formal definiert durch $P^i=0$ für i>0, $P^i=\mathbb{Z}[G]$ für $i\le 0$, $d^i=N_G$ für i<0 gerade, $d^i=(1-\sigma)$ für i<0 gerade und $d^i=0$ für $i\ge 0$; die Augmentationsabbildung ist die übliche.)

(b) Geben Sie einen expliziten Ausdruck für den Komplex Q für die Tatekohomologie an, der aus Zusammenfügen von P^{\bullet} und $(P^{\bullet})^*$ entsteht, und zeigen Sie, für jeden G-Modul A,

$$\hat{H}^i(G,A) \cong \hat{H}^0(G,A) \cong A^G/N_GA$$
, falls $i \in \mathbb{Z}$ gerade, $H^i(G,A) = \hat{H}^{-1}(G,A) = (\ker N_G : A \to A, a \mapsto N_Ga)/I_GA$, falls $i \in \mathbb{Z}$ ungerade.

Für die folgenden Aufgaben, definieren wir eine Kategorie von Gruppe-Modul-Paaren. Die Objekte sind Paare (G,A) bestehend aus einer Gruppe G und einem G-Modul A. Morphismen $(G,A) \to (G',A')$ sind Paare von Morphismen $\rho\colon G' \to G$ (von Gruppen) und Morphismen $\lambda\colon A\to A'$ von abelschen Gruppen, so dass $g'\lambda(a)=\lambda(\rho(g')a)$ für alle $a\in A$ und $g'\in G'$ gilt. In der Vorlesung wurde gezeigt, dass jeder Morphismus von Gruppe-Modulpaaren Abbildungen $H^i(\rho,\lambda)\colon H^i(G,A)\to H^i(G',A')$ auf der Kohomologie definiert.

- **15. Aufgabe (1+1+2 Punkte, Kohomologie und Gruppe-Modul-Paare):** Zeigen Sie die folgenden Aussagen:
 - (a) Die Abbildung $H^i(\rho, \lambda)$ wird induziert von $\phi^i : C^i(G, A) \to C^i(G', A'), f \mapsto \phi^i(f)$ mit $\phi^i(f)'(g'_1, \dots, g'_i) = (\lambda \circ f)(\rho(g'_1), \dots \rho(g'_i));$ insbesondere ist $(\phi^i)_{i \in \mathbb{Z}}$ ein Morphismus in $Ch^*(\mathbb{Z})$.
 - (b) Seien (ρ, λ) : $(G, A) \to (G', A')$ und (ρ', λ') : $(G', A') \to (G'', A'')$ Morphismen von Gruppe-Modulpaaren. Sei (ρ'', λ'') : $(G, A) \to (G'', A'')$ deren Verkettung. Dann gilt

$$H^{i}(\rho^{\prime\prime},\lambda^{\prime\prime})=H^{i}(\rho^{\prime},\lambda^{\prime})\circ H^{i}(\rho,\lambda).$$

- (c) Sei (ρ, λ) das Paar zur kanonischen Inklusion $\rho: H \to G$ einer Untergruppe und $\lambda = \mathrm{id}_A$. Sei $\iota: A \to \mathrm{Coind}_H^G A$ wie in Aufgabe 13(b) und $s_A \colon H^i(G, \mathrm{Coind}_H^G A) \to H^i(H, A)$ der Isomorphismus aus dem Shapiro Lemma. Dann ist $H^i(\rho, \lambda)$ gleich der Verkettung von $H^i(G, \iota)$ mit s_A . **Hinweis:** Berechnen Sie die Kohomologie mir der Standardauflösung und schreiben Sie den Isomorphismus aus dem Shapiro Lemma explizit hin.
- **16. Aufgabe (1+1+1+1 Punkte, Konjugation auf Kohomologiegruppen):** Sei G eine Gruppe, N eine Untergruppe von G und A ein G-Modul. Für $g \in G$, war in der Vorlesung eine Abbildung $g^*: H^i(N,A) \to H^i(gNg^{-1},A)$ definiert (sie ist von g-Konjugation $gNg^{-1} \to N$ und $A \to A$, $a \mapsto g.a$ durch Funtorialität induziert). Zeigen Sie folgende Aussagen:
 - (a) Für alle $g_1, g_2 \in G$ hat man $(g_1g_2)^* = g_1^* \circ g_2^*$ (erläutern Sie auch die Bedeutung des Ausdrucks auf der rechten Seite.)

- (b) Ist $0 \to A' \to A \to A'' \to 0$ eine exakte Sequenz in Mod_G , so gilt $\partial^i_{gHg^{-1}} \circ g^* = g^* \circ \partial^i_H$ für die Verbindungshomomorphismen $\partial^i_H \colon H^i(H,A'') \to H^{i+1}(H,A')$.
- (c) Ist N ein Normalteiler, so definiert $g \to \operatorname{Aut}(H^i(N,A))$, $g \mapsto g^*$ eine Gruppenwirkung von G auf $H^i(G,A)$, und für diese gilt g^* = id für alle $g \in N$. **Hinweis:** Dimensionsverschiebung.
- (d) Konjugation kommutiert mit Restriktion: für Untergruppen $K \subset H$ von G gibt es ein kommutatives Diagramm

$$H^{i}(H,A) \xrightarrow{\text{Res}} H^{i}(K,A)$$

$$\downarrow g^{*} \qquad \qquad \downarrow g^{*}$$

$$H^{i}(gHg^{-1},A) \xrightarrow{\text{Res}} H^{i}(gKg^{-1},A).$$

Insbesondere ist für Normalteiler $N \subset G$ das Bild der Restriktion $H^1(G,A) \to H^1(N,A)$ im \mathbb{Z} -Untermodul $H^1(N,A)^{G/A}$ enthälten.

- **17. Aufgabe (2+1+1+1 Punkte, Inflations-Restriktions-Sequenz):** Sei G eine Gruppe und N ein Normalteiler von G. Für $k \ge 0$ hat man Abbildungen Inf : $H^k(G/N, A^N) \to H^k(G, A)$ (Inflation, induziert von $G \to G/N$ und $A^N \hookrightarrow A$) und Res : $H^k(G, A) \to H^k(N, A)^{G/N}$ (Restriktion, wie in 16(d) konstruiert). Zeigen Sie:
 - (a) Die Sequenz

$$0 \to H^1(G/N, A^N) \xrightarrow{\text{Inf}} H^1(G, A) \xrightarrow{\text{Res}} H^1(N, A)^{G/N}$$

ist exakt. Hinweis: Verwenden Sie die expliziten Beschreibungen aus 15(a).

Für (b)-(d) nehmen wir $H^i(N, A) = 0$ für i = 1, ..., n - 1 an.

- (b) Betrachten sie die kurze exakte Sequenz $0 \to A \to \operatorname{Coind}_1^G A \to A^* \to 0$. Für $i = 1, \ldots, n-1$ sind die Verbindungshomomorphismen $H^{i-1}(G/N, (A^*)^N)^{G/N} \to H^i(G/N, A^N)^{G/N}$, $H^{i-1}(G,A^*) \to H^i(G,A)$ und $H^{i-1}(N,A^*) \to H^i(N,A)$ bijektiv. **Hinweis:** Für die erste Aussage, erhält man durch den Funktor der N-Invarianten eine kurze exakte sequenz $0 \to A^N \to (\operatorname{Coind}^G A)^N \to (A^*)^N \to 0$. Man wende dann $H^{\bullet}(G/N,\cdot)$ an und verwende ($\operatorname{Coind}^G A)^N = \operatorname{Coind}^{G/N} A$.
- (c) Für alle $i \in \{2, ..., n-1\}$ ist die folgende Sequenz exakt

$$0 \to H^{i-1}(G/N, (A^*)^N) \to H^{i-1}(G, A^*) \to H^{i-1}(N, A^*)^{G/N} = 0$$
 (1)

Hinweis: Für i = 2 folgt dies aus (a). Für i > 2 argumentiert man mit Induktion.

(d) Die folgende Sequenz ist exakt:

$$0 \to H^n(G/N, A^N) \to H^n(G, A) \to H^n(N, A)^{G/N}$$
(2)

Hinweis: Man konstruiere ein kommutatives Diagramm mit Zeilen (1) und (2), und verwende die Isomorphismen aus (b) als vertikalen Abbildungen.

Bemerkung: Man kann die exakte Sequenz in (1) erweitern zu einer exakten Sequenz

$$0 \to H^1(G/N, A^N) \to H^1(G, A) \to H^1(N, A)^{G/N} \to H^2(G/N, A^N) \to H^2(G, A).$$

Die Übungsblätter sowie weitere Informationen zur Vorlesung Algebraische Zahlentheorie 2 finden Sie unter

http://www.iwr.uni-heidelberg.de/~Gebhard.Boeckle/AZT2-SS2018/