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Introduction

Let C' be a smooth projective curve over a finite field & with a marked
point oo and let A be the ring of regular functions on C' \ {oo}. Further-
more, let Co, be the completion of an algebraic closure of the function
field K of C' at a place above oco. In this situation Goss attaches a global
L-function to any family of Drinfeld- A-modules via an infinite Euler prod-
uct on the domain So, := C} X Z,, cf. [11]. As in the classical situation,
it converges on some ‘half plane’ of So.. A similar procedure yields for
any closed point v of C and any family .# of A-motives a global L-
function L(*)(_#, s), which converges on a half plane of a suitably defined
domain S, [12], § 8.

The theme of the current article is to derive some consequences for
such global L-functions from the theory of crystals over function fields,
introduced by R. Pink and the current author in [2]. This theory en-
compasses A-motives as defined by Anderson, [1] — indeed any family
of A-motives on a scheme X is represented by an A-crystal on X. Fur-
thermore, for any compactifiable morphism f: Y — X, there is a functor
‘direct image with compact support’ from A-crystals on Y to A-crystals
on X, at least in the derived context. For such f a trace formula is given
in [2] for L-functions of crystals. It is this trace formula and the relations
between Goss’ global L-functions and L-functions of A-crystals which we
will mainly exploit.

Slightly generalizing Goss’ definition, we obtain for any A-scheme X of
finite type over k, any A-crystal .7 on X and any closed point v of C' a v-
adic L-function L(")(.7, s) as an Euler product which converges on some
half plane of S, cf. Definition 2.8. Our principal goal is to prove that any
such function has a meromorphic, essentially algebraic continuation to all
of Sy, in the sense of [12], §8. Along the way, we will prove some interesting
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results on special values of v-adic L-functions at negative integers —n.
Namely they can be written as a quotient of polynomials whose degrees
grow logarithmically in n. Furthermore, we will obtain a criterion for such
an L-function to be entire, generalizing [22]. In particular, all these results
apply to the v-adic L-function of any family v of Drinfeld- A-modules with
everywhere good reduction.

The existence of such a meromorphic continuation was conjectured
by Goss in [11], and some special cases were treated by him in [10]. For
A = klt], the conjecture was completely solved by Taguchi and Wan,
cf. [21]. The first general proof was sketched to us by Goss and evolved
during a stay of the present author at the Ohio State University. It is
based on some v-adic measure theory where at a crucial point our results
on special values of L-functions at negative integers are needed.

In this article we present two proofs of the above conjecture: An alge-
braic one that is again based on our analysis of special values at negative
integers, and an analytic one which uses the results in [21]. Our first proof
is similar to that sketched to us by Goss. However it completely avoids
any kind of measure theory and only uses a basic p-adic interpolation
procedure of certain special values.

Our second proof, which is independent of our results on special values,
takes place in the framework of [21], and is therefore analytic in nature. It
also yields results for a-meromorphic v-adic ¢-sheaves over an A-scheme
X, cf. loc. cit., which appear not to be accessible from a purely algebraic
viewpoint.

There are further conjectures by Goss, cf. [14], on v-adic L-functions
attached to families of A-motives with everywhere good reduction, which
can be viewed as analogues of the generalized Riemann hypothesis for
number fields, and are concerned with the zeroes of v-adic L-functions.
Whether the cohomological methods used here will eventually contribute
to these conjectures seems unclear at the moment. A major obstacle is
that the cohomological theory of crystals possesses no duality and only
the first three of the usual six functors Rfi, f*,®, fs, f', Hom are avail-
able. Another problem is that Rfi does not preserve purity of weights.
Therefore, while we can express special values of v-adic values at negative
integers via an endomorphism acting on a cohomology module, we have
no control over the v-adic valuations of the eigenvalues of this action.

Independently of [2], in recent work, [6,7], M. Emerton and M. Kisin
developed a theory that has features dual to the theory of crystals over
function fields. It seems conceivable that one could also use their formal-
ism to obtain the results proven here.

We outline the content of this article: Section 1 reviews some basic
results of the theory of crystals over function fields including the main
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properties of the L-function L(’¢,T) of a general crystal . The follow-

ing section is dedicated to the definition of v-adic L-functions L(*) (.7, 5)
for an A-scheme X and a crystal .7~ on X, and it discusses various of
its properties. Along the way, we recall Goss v-adic exponentiation, we
introduce twisting of L-functions by characters and we rephrase Goss’
definition of meromorphy and entireness. As a first application of the co-
homological theory of [2], we reduce Goss’ conjecture to the case where
.7 is a @-sheaf (in the terminology of [21], Sect. 1) on the base Spec A,
cf. Corollary 2.23.

In the subsequent section, we study the L-function of Drinfeld-Hayes
modules, which are the generalization of the Carlitz module to rings A
other than k[t]. This is motivated by the work of Taguchi and Wan in [21],
where they show for A = k[t] and j € N, that L®")(.7, (2, —j)) can be
expressed in terms of the L-function of the crystal .7 ® %7, where 7 is
the crystal attached to the Carlitz module. Let h™ denote the narrow class
number of A. Then for general A, we can relate in a similar manner the
value H, 5,+(2) = LW (7 (2,—2jh1)) to the L-function of the crystal
.7 twisted by the j-fold tensor power of a suitable rank one ¢-sheaf &7,
cf. Theorem 3.8.

In Section 4, we give our first proof of Goss’ conjecture for general
A, which will be of a purely algebraic nature: Using the cohomological
methods of [2], we show that for a crystal .7~ on Spec A and any closed
point v of C, the functions H, 5;;,+(z) are polynomials in A[z~!] whose
degrees grow like O(log j), cf. Corollary 4.6. Some simple estimates will
then allow us to construct a continuous function on Z, with values in
the Fréchet space of entire functions on P'(C,) . {0}, which interpolates
the polynomials H, oi,+(z) € A[z7'] at —2h*j. Goss’ conjecture is an
immediate consequence, cf. Corollary 4.16.

Concerning entireness of global L-functions, we prove the following
generalization of [22]: Suppose X is an affine equi-dimensional Cohen-
Macaulay scheme of dimension e, with a structure morphism to Spec A,
and .7 is a crystal which can be represented by a ¢-sheaf. Then for
any place v of C, the function L") (.7, s)(_l)%l extends to an entire,
essentially algebraic function on S, cf. Theorem 4.17. We end Section 4
by applying our methods to obtain results on Euler factors at places of
bad reductions and on trivial zeros of L-functions.

For the second, the analytic proof, we construct in Section 5 a uni-
formly overconvergent family of v-adic rank one ¢-sheaves which interpo-
lates the tensor powers of the 7-sheaf &7 above, cf. Theorem 5.11. This
is suggested by our computations of global L-functions attached to -
sheaves constructed from Drinfeld-Hayes modules. The approach in [21],
together with some of the infrastructure developed in this article shows
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that for any a-meromorphic v-adic p-sheaf over an A-scheme X, the re-
sulting v-adic L-function converges on a half plane ‘of radius ¢—% around
00, For e = 0o one obtains a second proof of Goss’ conjecture.

Acknowledgments: It is a great pleasure to thank D. Goss for some
discussions during a stay of mine at the Ohio State University in spring of
1999, where he stressed the importance of obtaining logarithmic bounds
and explained his ideas about the relation of measures and global L-
functions, and furthermore for his continuing interest in this project.
Many thanks also to R. Pink for various comments and suggestions to
improve the original manuscript, and to F. Gardeyn for some helpful dis-
cussions related to his work.

Notation

e Let p denote the characteristic of the finite field k£ and ¢ its order.

e By X, Y etc., we denote schemes of finite type over k. Their absolute
Frobenius endomorphism with respect to k is denoted by ox, oy, etc.
When it seems redundant, the subscripts are often omitted. For x € X
denote by k, its residue field.

e For a field L we denote by L*P and L*# a separable, respectively
algebraic closure.

e We fix a smooth projective curve C' over k and a closed point co on
it.

e The ring of regular functions on C \ {oc} is denoted by A, its fraction
field by K, and its set of maximal ideals by Max(A).

e For I a non-zero ideal of A, let deg(I) := dimy A/I denote its degree.

e For a closed point v of C, the maximal order in the completion K, of
K at v will be A,, its residue field k,, and we set d, = [k, : k] and
qv = card(ky).

e If v is a finite place, p, will denote the maximal ideal of A correspond-
ing to v, and if p = p,, we also write k, for k, and d, for d,.

e By |.|, we denote the norm on K, which takes the value g, ! on any
uniformizing parameter of K, and by v, : K, — Z the corresponding
valuation.

e By C, we denote the topological closure of an algebraic closure of K,,.
We fix an embedding ¢,: A — K, — C,.

e For any place v of K, let A(v) be the ring of regular functions on
C ~ {o0,v}.

e An A-scheme X will be a scheme over Spec A. If f: X — Spec A is
the corresponding morphism of schemes, we define X (v) C X to be
f~Y(Spec A(v)) and denote by f(v): X (v) — Spec A(v) the restriction
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of f. For p € Max(A), we denote by X, — Speck, the pullback of
X — Spec A along Spec kp, — Spec A.

e For any ring R of characteristic p, let R{7} denote the non-commuta-
tive ring of polynomials over R in the indeterminate 7 subject to the
non-commutation rule 7r = r4r.

1. Crystals and their L-functions

In this section, we recall various parts from the theory of crystals over
function fields as developed in [2]. Except for Theorem 1.38, Corollary 1.47
and the discussion of the Frobenius twist, which is a useful tool when
studying L-functions, all results are from [2].

Throughout this section, B will denote a regular noetherian ring. In
the applications we will specialize B to regular rings constructed from A
or k.

1.1. Basic Notions

Definition 1.1 A coherent T-sheaf over B on a scheme X is a pair .7 :=
(.7, 7) consisting of a coherent sheaf .7 on X x Spec B and an ©“x ® B-
linear homomorphism

(o0 x id)*7 — 7.

We often simply speak of 7-sheaves on X. The sheaf underlying a 7-sheaf
7 will always be denoted .7 . When the need arises to indicate on which
sheaf 7 acts, we write 7 = 7.

On any affine chart Spec R C X a 7-sheaf over B corresponds to a
finitely generated R ® B-module M together with a ¢ ® id-linear homo-
morphism 7: M — M. We will occasionally use the notation (M, 7) and
call it a 7-module. Equivalently M may be regarded as a R{7}® B-module
which is finitely generated over R ® B.

By Coh, (X, B) we denote the category whose objects are the coherent
T-sheaves on X over B, and whose morphisms are those sheaf homomor-
phisms which are compatible with 7. Clearly this is an abelian B-linear
category.

There will be one instance when the base field k£ we work over will
be an issue. To indicate the ground field &k in the nomenclature, we will
speak of coherent T-sheaves on X over B relative to k.
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For a 7-sheaf .7, we define the iterates 7" of 7 by setting inductively
7 :=id and 7! := 70 (0 x id)*7™. They are @y ® B-linear homomor-
phisms

T —

(0" x id)*7 > 7

Definition 1.2 A 7-sheaf .7~ is called nilpotent if and only if 77+ van-
ishes for some n > 0.

A homomorphism of T-sheaves is called a nil-isomorphism if and only
if both its kernel and cokernel are nilpotent.

It is shown in [2], Chap. 2, that the nil-isomorphisms form a saturated
multiplicative system, denoted by .7, of Coh, (X, B). One can thus make
the following definition.

Definition 1.3 The category Crys(X, B) of B-crystals on X is the lo-
calization of Coh, (X, B) with respect ..

We call a 7-sheaf .7~ (locally) free, if its underlying sheaf .7 is (locally)
free. We call a crystal (locally) free, if it may be represented by a (locally)
free 7-sheaf. Because of the following rather trivial result, for crystals over
an affine base these notions are equivalent.

Lemma 1.4 Suppose that X = Spec R is affine and .7 is a T-sheaf on
X. If 7 is locally free, then the crystal associated to .7 can be represented
by a T-sheaf whose underlying module is free over R ® B.

ProOOF: This is essentially Trick (2.2) of [21]: Suppose that .7 is repre-
sented by the 7-module (P, 7p), where P is projective and finitely gener-
ated over R® B. Choose any finitely generated projective module @) over
R ® B such that P& @ is free, and define 79 = 0. Then (P® Q,7p ® 70)
represents .7 and has an underlying module which is free. m

Remark 1.5 An algebraic ¢-sheaf in the terminology of [21] is a locally
free T-sheaf in our terminology.

Example 1.6 (a) An A-motive on X of rank r is a pair (./Z,ch ,)
where .# € Coh,(X, A) is locally free of rank r and ch ,: X — Spec A
is a morphism of schemes such that the following conditions hold:

(i) The sheaf Coker((c x id)*.# - .#) vanishes on the complement of
the graph of ch , inside X x Spec A.
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(ii) For every geometric point iz: £ < X, such that z is the spectrum of
an algebraically closed field, the 7-sheaf %7 is a Drinfeld-Anderson
A-motive of rank r in the sense of [20], Def. 5.1.

The pair (_#,ch ,) is also referred to as a family of A-motives on X of
rank r, ch , is called the characteristic of .#. In the terminology of [1],
condition (ii) can be expressed as follows. Choose ¢ € A non-constant, so
that k[t] — A is finite flat of rank 7’. Then i%.# is a t-motive of rank rr’
which admits multiplication by A.

Note that if X is reduced, then it is neither necessary to specify the
map ch_,, nor to require condition (i), as in this case condition (ii) implies
that the projection pry: X xSpec A — X induces an isomorphism between
the reduced induced subscheme attached to the support of Coker((o x
id)*.# 5 .#) and X. Thus one can define ch , : X — SpecA as the
inverse of this isomorphism composed with pry: X x Spec A — Spec A.
This defines the unique ch , which satisfies (i).

(b) For a line bundle & on X, denote by Endy_y s, () the set of
endomorphisms of & as a k-vector space scheme on X. A Drinfeld-A-
module (¢, &) of rank 7 on X is then defined as follows: 1 is a ring map
A — Endy_y s () subject to the condition that for all points i: z — X
the induced map

Vet A — Endy_vgp (") Z ko {7} :a— Yp(a) = Z ai(a)r!
=0

satisfies a;(a) = 0 for i > rdeg(a) and ;. geg(a)(@) € Kj.

To define the A-motive (.7 (¢),7) on X of rank r attached to (¢, &),
we denote by 7/ € Endj_ysp.(G4) the Frobenius on G, relative to X.
Define

A () == Homy_y o5 (77, Gq).

This is naturally a quasi-coherent sheaf of “x-modules. The action of
a € A is defined as right composition with ¢ (a), and the action of 7 as
left composition with 7/. This defines an 7y ® A-linear map 7: .7 (¢)) —
(o xid).7 (v), i.e., it makes (.7 (1), ) into a 7-sheaf .7 (1)). The sheaf
# (1) is in fact locally free of rank r on X x Spec A, cf. [5].

We define chy: X — Spec A as the scheme map corresponding to the
ring map

A — Endx (Lie(&)) = I'(X, @x)

induced from 1, where Lie(~”) is the tangent space to & along the zero
section. The pair (.# (1), chy) is an A-motive of rank 7. The verification
of condition (ii) is given in [1], (0.2), (0.3), (0.4). The verification of (i) is
an easy consequence.



8 Gebhard Bockle

In the special case where A = k[t], X = Spec R and v is of standard
form, cf. [4], §5, the above can be made more explicit. Here 1 is simply a
ring homomorphism

rdeg(a)

i A-R{t}ia—¢a)= Y aila),

i=0
where . geg(q)(a) is a unit in R for all a € A. Let M(3)) be the module
underlying .7 (¢). Then M (v)) = R{r} where R acts by multiplication
on the left, a € A acts via multiplication on the right with the element
¥(a), and 7 acts by multiplication on the left. As the leading coefficient
of ¥(t) is a unit in R, the module M (7)) is free over R ®@ A = RJ[t] with
basis 7°,...,7""!. The map chy is induced from the ring map A — R :
a — ap(a).

1.2. Functors

In [2] various functors were constructed on crystals, namely pullback of
T-sheaves, tensor product, extension by zero and direct image with com-
pact support. We will discuss them in this order. For details, we refer to
Sections 3 and 5 of loc. cit. To describe these functors, we fix a morphism
f:Y — X of finite type, an open immersion j: U — X and a closed
complement i: Z — X of j. Also let .7 be the ideal sheaf of Z.

A word on notation: For n € N, we write ./" for the n-th power
of .7. For line bundles & we usually write ~®" to denote their n-th
power and &1 to denote their inverse. By pr;: X x Spec B — X, the
projection onto the first factor is denoted. For a sheaf . on X x Spec B,
we abbreviate by .7".7 the subsheaf pri(.7").7 of .7 .

Definition 1.7 For any t-sheaf .7 on X over B we let f*.7 denote the
T-sheaf on'Y over B consisting of the sheaf (f xid)*.7 and the composite
homomorphism

(0 x id)*(f x id)* 7 —L T (f i),

(f xid)*(o x id)*.7

This defines a B-linear functor f*: Coh,(X, B) — Coh,(Y, B) which
induces a functor f*: Crys(X, B) — Crys(Y, B) on crystals.

By C*(Crys(X, B)) and C~(Crys(X, B)) we denote the category of
bounded, respectively bounded above complexes of crystals on X over A.
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The corresponding derived categories are denoted D?(Crys(X, B)) and
D~ (Crys(X, B)), respectively.

Theorem 1.8 (Pullback) On crystals, the functor f* is ezact and the
left derived functors L*f* wvanish for i > 0. Hence there is an induced
exact functor

f*: D’(Crys(X, B)) — D®(Crys(Y, B)).
For later applications, we quote the following simple lemma.

Lemma 1.9 The natural transformation 7: 0.7 — .7 on Coh,(X, B)
between the functors % and id induces an natural isomorphism between
the same functors considered on Crys(X, B).

Definition 1.10 For 7-sheaves .7 and ‘¢ on X over B, we let .7 ® ¢
denote the T-sheaf on X over B consisting of the sheaf

72 - «
= ®~/'/X><SpecB g

and the composite homomorphism

(o xid)* (7 @ ©) .
(0 xid)y7) @ (o x id)* %)

This defines a bifunctor Coh, (X, B) x Coh (X, B) — Coh,(X, B),
which is B-bilinear. Passing to crystals, it induces a B-bilinear bifunctor

®: Crys(X, B) x Crys(X, B) — Crys(X, B).

Definition 1.11 We let 1x p denote the B-crystal on X consisting of
the structure sheaf “x xspec B and the natural isomorphism

(U X id)*&:}(XSpecB - &:’XXSpecB-

The crystal 1y p is the neutral object for the tensor product in the
category Crys(X, B).

Definition 1.12 A B-crystal is called of pullback type if it can be rep-
resented by a T-sheaf .7 such that there exists a coherent sheaf .7 on X
for which .7~ = pr}. 7.
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By Lemma 1.4, any locally free crystal over an affine base X is of pullback

type.
An important property of crystals of pullback type is given by the
following theorem.

Theorem 1.13 If .7 is of pullback type, the functor ¢ w— ¢ @ .7 is
exact.

One can show that every complex in C~(Crys(X, B)) has a resolution
by a complex all of whose objects are of pullback type. Thus standard
methods in homological algebra show the following:

Theorem 1.14 (Tensor product) The functor & gives rise to a left
derived functor

<§L§>: D™ (Crys(X, B)) x D™ (Crys(X,B)) — D™ (Crys(X, B)).

Because we assumed B to be regular, the previous result can be ex-
tended to the derived category of bounded complexes. We need the fol-
lowing definition.

Definition 1.15 We say that a compler (7*) in D°(Crys(X, B)) is
of bounded Tor-dimension if there exists n € Z such that for any ¢
in Crys(X, B), considered as a complex concentrated in degree zero, the

L
compler (.7_*) ® ¢ is evact in degrees less or equal to n.

The regularity of B yields the following result, which may be obtained
as a consequence of Proposition 1.32 below.

Theorem 1.16 Every complex in D?(Crys(X, B)) is of bounded Tor-di-

L
mension. Therefore the bifunctor ® restricts to a bifunctor
L
®: Db(Crys(X, B)) x D’(Crys(X, B)) — D®(Crys(X, B)).
Definition 1.17 Consider a homomorphism h: B — B’ of regular k-
algebras. For any T-sheaf .7~ on X over B we let .7 ®p B’ denote the

T-sheaf on X over B’ consisting of the sheaf .7 ®@p B’ := (id x h)*.7 and
the composite homomorphism

(o x id)*(id x h)*7 22250 (id x )7

(idxh)*7
(id x h)*(o x id)*.7



Global L-functions over function fields 11

This defines a B-linear functor _ ®p B’: Coh,(X, B) — Coh.(X, B)
which induces a functor _ ®p B’ : Crys(X,B) — Crys(X,B’) on
crystals. To indicate h, we sometimes write ®% B

Because B is regular, one obtains the following theorem:

Theorem 1.18 (Change of Coefficients) The functor __ ®p B’ is of
finite Tor-dimension on sheaves, therefore it induces an exact functor

_ ®p B': D’(Crys(X, B)) — D(Crys(X, B')).

Before continuing our discussion of functors, we will consider an im-
portant example of changing coefficients. Let o : B — B denote the
absolute Frobenius on B relative to k.

Definition 1.19 For.7 € Coh,(X, B) we define .7 — .7 (9 := F QR
B and call it the Frobenius twist of .7 . Analogously, we define this op-
eration for B-crystals over X.

Remark 1.20 Suppose that (.Z,ch ,) is an A-motive on X of rank
r. We leave it as an easy exercise to check that (.7 (‘1),0 Aoch,) and
(oﬁ(j@, ch ,) are also A-motives on X of rank 7. As .7 (@ and Uj(ﬂ(‘”
are nil-isomorphic, this shows that nil-isomorphic 7-sheaves can have dif-
ferent characteristics. Furthermore it shows that an A-motive and its
Frobenius twist will in general have different characteristics.

Because B is regular, the map op is flat and one obtains:

Proposition 1.21 The endofunctor .7 — i(q) 18 exact on the cate-
gories Coh, (X, B) and Crys(X, B).

The functor J}Xspec g a priori defined on sheaves of “x xspec p-mod-
ules, extends by functoriality to a functor on the categories Coh, (X, B)
and Crys(X, B), which we again denote by the same symbol. This is an
operation simultaneously on the base and on coefficients which is functo-
rially isomorphic to (¢ __) ®77 B. For a coherent sheaf .7 on a variety
Z, we denote by Sym™ .7 its n-th symmetric power.

Lemma 1.22 Let Z be any scheme over k. There exists a unique natural
transformation v from the functor .7~ — 0,5 to.7 — Sym?.7 on co-
herent sheaves on Z which has the following description on M = I'(V,.7)
for an affine open V= SpecS C Z:

S%@s M — Sym?M :s@m— s(m-m-m-...-m).

q
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Suppose now that Z = X x Spec B. By functoriality, v extends to a
natural transformation v~ between the functors .7~ O;(XSpeC g7 and
7+ Sym?.7 on Coh,(X,B). This induces a natural transformation,
also denoted by 7y, between the corresponding functors on B-crystals on X.

If .7 is a locally free T-sheaf of rank one, then v~ is an isomorphism
between o, g 00 p-7_ and 7 ¥~ Sym?, 7,

The simple if lengthy proof of the lemma is left to the reader.

Proposition 1.23 If .7 is a locally free T-sheaf of rank one, then .7 (0
and .7 %1 are naturally isomorphic as crystals.

PrOOF: By Lemma 1.9, one has the isomorphism of crystals

T 7 ()

g§(£(q) o ) I

As remarked above, 0%.7~ (@ and (0x xSpec B)*-7_ are isomorphic. Finally,
by the previous lemma the latter crystal is isomorphic to .7 ®9 via the
natural transformation v,-. m

We now resume our discussion of functors.

Definition 1.24 Suppose that f is proper. For any coherent T-sheaf .7~
on'Y we let f..7  denote the T-sheaf on X consisting of the sheaf (f %
id)«.7 and the composite homomorphism

(0 id)*(f % i) 7 — 2" = (f x id)s. 7.

base change
(led)*T s

(f x id)«(o x id)*.7

As before, this induces a B-linear functor f,: Crys(Y, B) — Crys(X, B),
and one can show that it is right adjoint to f*.

Theorem 1.25 (Direct image) Suppose f is proper. Then there exists
a natural functor

Rf,: D*(Crys(Y, B)) — D’(Crys(X, B)).
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Let 4 be a finite affine cover of Y. We use the notation Cg(.7*) for
the total complex associated to the bicomplex obtained from (.7 *) by
applying the usual Cech resolution with respect to { to each object. Note
that in general Cg(.7"*) is no longer in D?(Crys(Y, B)). It is a complex
of quasi-coherent sheaves carrying a o X id-linear operation 7.

Using (7 *) — f*ég(i'), in [2], Chap. 5, the functor Rf, is con-
structed as a derived functor between suitably defined derived categories
which are naturally isomorphic to D’(Crys(Y, B)) and D*(Crys(X, B)),
respectively. To give the precise definitions is beyond the scope of this
article. As a consequence of this, one can show the following which is of
prime importance in order to compute the i-th cohomology R'f.(.7*)
of Rf.(.7°).

Proposition 1.26 There is an isomorphism
RIf(7%) = (R (7°), R for ey,

where le*(t/*') is the i-th hypercohomology for quasi-coherent sheaves
and where R f,7( ) is the endomorphism on it induced from 7.

The following theorem exhibits a rigidity of crystals which does not
hold for sheaves or 7-sheaves.

Theorem 1.27 Suppose f is finite, radicial and surjective. Then the
functors

*

Crys(X, B) Crys(Y, B)

*

are mutually inverse equivalences of categories.

In particular, the above applies to ox: X — X and to the closed immer-
sion X,eq — X, where X,¢q denotes the induced reduced subscheme of a
given scheme X.

The operation extension by zero, while ill-behaved on coherent sheaves,
is a good operation on crystals:

Theorem 1.28 (Extension by zero) There exists a functor
ji: Crys(U, B) — Crys(X, B),
which is uniquely characterized by the following properties:

(a) j*5 = idgrysw,p) ond
(b) i*ji = 0.
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Note that the above theorem also gives a criterion for a 7-sheaf to rep-
resent the extension by zero of a given crystal. Passing to the derived
category, one obtains:

Theorem 1.29 There exists a functorial distinguished triangle
gt —id — it — i1,

Important for the existence of 5.7 in the proof of Theorem 1.28 is
the following lemma:

Lemma 1.30 Let.7 be in Crys(U, B) and suppose that 7 is a coherent
extension of .7~ to X x Spec B. Then j.7_ can be represented by a T-sheaf
whose underlying sheaf is 7.7 for any n >> 0.

As any coherent sheaf on U has a coherent extension to X, the following
is an immediate consequence.

Corollary 1.31 If .7 is of pullback type, then so is ji.7.

We use the theory as developed so far to derive a result on the repre-
sentability of complexes by complexes of pullbacks. We find this interest-
ing, as being of pullback type is a property that is essentially preserved
under all our functors, and as crystals of pullback type have fibers which
are free crystals.

By D®(Crys(X, B))p, C D?(Crys(X, B)) we denote the triangulated
subcategory generated by bounded complexes all of whose objects are of
pullback type. Using the regularity of B, we will show the following;:

Proposition 1.32 The inclusion D*(Crys(X, B))p, — D?(Crys(X, B))
1 an equivalence of categories.

We first need an auxiliary result. Suppose X = Spec R is a regular
affine scheme of finite type over k. Then R ® B is regular (combine [17],
Thm. 30.2, Thm. 30.3, § 28, Lem. 1, to see that B is smooth over k).
Therefore any module over R ® B admits a finite projective resolution.
The following lemma from [2] is a simple consequence.

Lemma 1.33 Let X = Spec R be affine and regular. Given any complex
(.7 *) € D’(Crys(X, B)), there exists a complez (¢*) € D*(Crys(X, B))
whose objects are locally free, and hence of pullback type, and which is
quasi-isomorphic to (.7*).
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PROOF of Proposition 1.32: It suffices to prove that the inclusion is es-
sentially surjective, and so let (.7*) be in D®(Crys(X, B)). By Theo-
rem 1.27, we may assume that X is reduced. Let @ = Xg C X| C Xy C
... C X, = X be an increasing sequence of closed subsets of X such that
X;~ X;_1 is regular and affine. By Corollary 1.31 the functor ji preserves
crystals of pullback type, and it is clear that i, has the same property. Re-
peatedly applying Theorem 1.29 to X; \ X;—1 — X; « X;_1, we may as-
sume that X is regular and affine. Thus we need to show that for X regular
affine the complex (.7*) is in the essential image of D*(Crys(X, B))pp.
This follows from the previous lemma. n

Finally we come to the definition of the functor Rf), which computes
the direct image with compact support. By a result of Nagata, cf. [19],
any morphism f between (separated) schemes of finite type over a field
can be compactified. This means that there exists a commuting diagram

y -y
1|4
f
X.
such that j is an open immersion and f is proper.

Definition 1.34 In the above situation we define
Rfi := Rf. 0 j, : D’(Crys(Y, B)) — D*(Crys(X, B)).

It can be shown that, in a suitable sense, Definition 1.34 is indepen-
dent of the chosen compactification. (For this one considers the set of
all compactifications as a direct filtered system and establishes various
compatibilities for the transition morphism, cf. [18], VI.3.)

We write R'fi for R f, o 7. In the special case where f:Y — Speck
is the structure morphism, we also write H.(Y, (.7*)) for R'fy(.7"*), re-
spectively Hi(Y,.7) for R'f,.7 , where we regard .7~ as a complex con-
centrated in degree zero.

Concerning the effect of R f, on pullbacks, we have the following propo-
sition.

Proposition 1.35 Suppose .7 € Crys(Y, B) is of pullback type. Then
the crystals R f.7 are of pullback type.
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PROOF: Choose a compactification f = fj where j is an open immersion
and f is proper. By Corollary 1.31, the crystal ji.7 is of pullback type.
Using Cech resolutions to compute the higher direct images R'f,, cf.
Proposition 1.26, the assertion follows. n

The following results describe compatibilities of image with compact
support, pullback and tensor product:

Theorem 1.36 (Base Change) Let (.7 *) € D?(Crys(Y, B)) and sup-
pose we are given the following pullback square:

Y/LY

)

X’ T‘ X.
Then there is a functorial isomorphism g*Rfi(.7*) = Rf{¢* (7).

Theorem 1.37 (Projection Formula) There exists a natural isomor-
phism of functors

RA()&_ = RA( S ()
D’(Crys(Y, B)) x D’(Crys(X, B)) — D’(Crys(X, B)).

1.8. The functor Rfi on affine Cohen-Macaulay varieties

The following result will play an essential role for our main result on
entireness of L-functions.

Theorem 1.38 Let X be an affine Cohen-Macaulay variety of dimension
e with structure morphism gx : X — Speck. Suppose .7~ € Crys(X, B) is
locally free. Let j: X — X be any compactification and represent j1.7 by
some locally free T-sheaf .7 . Then Rgx1.7 is represented by the complex
H¢(X,.7 )[e] € D*(Crys(Speck, B)), which is concentrated in degree e.

Before giving the proof of the above theorem, we want to explain
the main obstacle that has to be overcome in the proof. Suppose X has
a compactification j : X — X, such that X is projective and Cohen-
Macaulay and such that X \ X is a divisor D. We may represent .7 by
a free 7-sheaf on X, cf. Lemma 1.4, and thus represent 5.7 by a 7-sheaf
.7 with underlying sheaf #x(—nD) ® B for some n > 0, Lemma 1.30.
As @x(—D) is the inverse of an ample line bundle on X, Serre duality
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for X, cf. [15], Thm. IIL.7.6, implies that H*(X,.7 ) = 0 for i # e. The
theorem now follows from Proposition 1.26.

In general such a compactification may not exist - at least we do
not know this. The main point of the proof given below is to use the
nilpotency of 5.7 on X \. X for any compactification X of X, in order to
show that the singularities of X on the complement of X are irrelevant
when computing the absolute cohomology of the crystal Rgx:.7 .

PROOF: We choose a closed immersion i : X — AN for some N and
regard A"V as the complement of a hyperplane in PV . By the remark below
Definition 1.34, it suffices to prove the theorem for the compactification
X < X, where X is the closure of X in PV. We depict the situation in
the following diagram

HAN

Il

X*>]P’N

Let R denote the coordinate ring of X and S that of AV and let
(M, 7) be a projective 7-module on R® B representing .7 . Lemma 1.33 in
combination with Lemma 1.4 shows that one can find a resolution (¢’ 0)i<0
of i,.7 in D~ (Coh, (A", B)) by free T-sheaves, so that I'(AN, %) =
S9mi @ B for some m; € Ny.

Our next aim is to describe an extension by zero for j/: AN < PN of
this resolution. For simplicity, we write ¢ instead of @~ . By an inductive
procedure based on Lemma 1.30 and starting at ¢ = 0, one can construct
a complex (7*) of T-sheaves which represents the complex Ji¢* in such
a way that the underlying sheaf in degree i is given by ' (—n;)®™ where
0 <ng<n_i1<n_g<... Considered as a complex of crystals, it is a
resolution of j{i,.7 . Note that any twist of this complex by a power of
”(—1) yields a complex of T-sheaves with the same property.

Let g denote the structure morphism of PV, By [15], Thm. IIL5.1, for
| > 0 we have R'g,(—1) = 0 if i # N. Thus Rgx..7. = Rg.(j{ ") is
represented by (HN (PN, <%));<o. We claim that the latter complex has
cohomology only in degree e when regarded as a complex of crystals. The
claim yields the desired result, as by Proposition 1.26 we have R°gx).7 =
H¢(X,5.7"). We now prove the claim:

For each [, define the complex (M});ez of free B-modules as

. — HY PN, o (—ni_1 1)1y — HN (PN, 7 (—n;—1)®™) — .

The natural inclusion @' (—n; —1 —1) — (—n; — 1) induces a morphism
of complexes f;: (M} ;) — (M;) which is epimorphic on objects. The
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modules M, li carry a B-linear operation Tli which is compatible with the
differentials and the maps f;. Considered as T7-modules f; is degreewise a
nil-isomorphism, so that all these complexes are isomorphic as complexes
of crystals.

By Serre duality, disregarding the T-operation, the complex (M) is
dual to the complex (N;) defined as:

. — Hom(ﬁ?(—ni—l)eami, (7‘> — Hom(ﬁi’(—ni_l—l)eami’l, Cfﬁ) — ...

Simply dualizing the operations Taris We obtain endomorphisms compat-

ible with the differentials. The direct limit of the (V) for [ — oo is the
complex Homg(S®™*, S) whose cohomology is Exty(M, S). The module
M is finitely generated and projective over the Cohen-Macaulay ring R.
In the following paragraph we will show that Exts (R, S) = 0 fori # N —e.
Hence Ext%(M,S) = 0 for i # N — e, by the projectivity of M over R.
The proof of the above claim is now a consequence of Lemma 1.39 below.

To see that Ext4(M,S) = 0 for i # N — e, it suffices to show that
this holds after localizing at any maximal ideal m of S which lies in
the image of Spec R — SpecS. For such an m we need to show that
Extiqm (Rm, Sm) = 0 for i # N — e. The ring Ry, has depth e, and thus by
[17], Thm. 17.1, all Ext-modules vanish for ¢ < N — e. By the theorem of
Auslander-Buchsbaum, cf. [15], Prop. I11.6.12A, the projective dimension
of R over S is N —e. This implies that all Ext-modules vanish for ¢ > N —e,
cf. [15], Prop. II1.10.A, and the proof is completed. m

Lemma 1.39 Suppose for each | we are given complexes (M;) of free,
finitely generated B-modules concentrated in negative degrees:

. i—1 . 3 .
...—>M;718—>M;i>MZ+1—>...

We assume that the M, l" carry B-linear endomorphisms Tli which are com-
patible with the differentials. Furthermore, we assume that there are maps
of complexes fi: (Mp, ;) — (M) which are epimorphisms on objects, com-
patible with the operation of the 7/, and such that 7/ _, acts nilpotently on
the kernel of M}, , — Mj.

Define (N}) := Homp((M; *), B) as the dual complex of M. Corre-
spondingly define maps g; dual to f; and endomorphisms k; on N} dual
to /. Clearly the maps g; are degreewise monomorphisms, and the maps
Ky act nilpotently on Coker(N; — N/ ).

If the cohomology of lim(NN}') is concentrated in degree e, then for all
i # —e and all , there exists an integer n;; such that (7})"t(Ker d}) C
Im a;'“, i.e., the operator induced by 7j on H'(M}) is nilpotent.
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PrOOF: We fix [ > 0 and ¢ # —e. As direct limits commute with taking
cohomology, we have lim H “(N?) = 0. Thus for each [, there exists an
I' > [ such that the map H*(N;) — H'(N}) is zero. As the M; are free
B-modules, this morphism is dual to H*(Mp) — H*(M;), which therefore
must be zero, too.

We now consider the following diagram:

0 Ker(M}, — M;}) M} Mj 0
|9 |9 Jo
0——> Ker(Ml’Ll"!‘l N Mli+1) . Mli/-f-l Mli-‘rl 0.

Let = be in Ker 8li C Mli. Because Ml”, — Mli is surjective, we can find
y € M}, that maps onto z. Hence 8}, (y) lies in the kernel of M;,'H — Mli'H.
Because Tl",H acts nilpotently on this kernel, we can find n € N, which
depends on i and I, such that (') annihilates this kernel. By the
compatibility of 7 with the differentials it follows that ¢ := (7},)"(y) € M},
lies in the kernel of 9},. Using square brackets for cohomology classes, the
class [y'] maps to [(7})"z| = (77)"[=]. By our choice of I, it follows that
(1/)"[x] = 0, and hence that (7/)" annihilates [z]. Since H*(N}) is finitely
generated, it is therefore annihilated by a power of 7/. m

1.4. L-functions of T-sheaves

Let E be the fraction field of B. Let X denote the set of closed points
of X and for x € XY, let d, denote its degree.

Definition 1.40 We define the local L-factor L(x,.7,T) of a crystal .7~
at a closed point x of X via

L(z,7,T)"" = det(id — T7].7, @ E) € E[T),

where .7, is any T-sheaf representing the fiber of the crystal .7 at x and
where the determinant is taken over E.

Remark 1.41 The above definition is independent of the choice of the
.7 .. Furthermore, one can show that L(z,.7,7T)~! is also represented
by

det (id — T% 7% |7, @p E) € k, ® E[T%],
kzQF

where the determinant is computed over the ring k, ® E. It follows that
L(z,.7,T)"' € E[T%]. Based on the fact that, as a regular ring, B is
normal, it is shown in [2] that L(x,.7,T)~! € B[T%].
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The local L-factor of (.(7*) € C*(Crys(X, B)) at z € X, is defined as

Liz, (7),T) =[] L(a, 2", 1)V € 1+ T B[[T%]).
1E€EL
The number of points in X° whose degree is below any given constant
is finite. Thus for any crystal .7~ on X, the product [] .o L(z,.7,T)
converges to an element in 1 4+ T'B[[T]] and we can make the following
definition.

Definition 1.42 For (.7 *) € C*(Crys(X, B)) we define the L-function
of (Z*)on X as

L%, (7),7) = [] Ele, (7),T) € 1+ TBIT]].
z€X0

Unless we want to stress the base scheme X, we often write L((.7*),T)
for L(X,(7°),T).

Proposition 1.43 The above definition induces a function
L:D’(Crys(X,B)) — 1+ TBJ[[T]|
which satisfies the following properties:

(a) I{l (7°) — (¢°) — (£*) — (Z°)[1] is a distinguished triangle,
then
L((Z*),T) - L(£*), T) - L"), T) = 1.

(b) For a bounded complex (.7 *) in Crys(X, B), denote by H*(.7*) the
complex consisting of the cohomology groups of (.7_*) with zero differ-

entials. Then
L((Z*),T) = L(H* (%), T).

Remark 1.44 It is also possible to define L-functions of crystals via
‘projective resolutions’: Assume first that .7 is a crystal which is rep-
resented by a 7-sheaf of pullback type. Then the fiber above any closed
point z € X is free, finitely generated over k, ® B. Define

L(z,7,T)" = det(id — T'7|.7%) € 1 + T% B[T%)

and denote by L'(X,.7,T) the corresponding global L-function. It is
rather trivial to note L = L'.

Let now .# be any crystal. Using Proposition 1.32, which ultimately
rests on the use of projective resolutions, every crystal .7 regarded as
an element of K{(Crys(X, B)) can be written as a finite sum ) n;[¢;]
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with n; € Z where the ¢'; are of pullback type and we write ['] for the
element in K{(Crys(X, B)) represented by . As an L-function should
factor via K{)(Crys(X, B)), one defines L'(.7_,T) := [[, L'(¢";, T)™, and
checks (on stalks) that this is independent of the chosen representatives.
Using the above proposition it easily follows that L = L.

The central result on L-functions in [2] is the following.
Theorem 1.45 Let f: Y — X be a morphism between schemes of finite
type. Then for (.7*) € D*(Crys(Y, B)) one has
L(Y,(7*),T) = L(X,Rfi(7*),T).

In the case of the structure morphism Y — Spec k the above implies:

Corollary 1.46 For (.7 *) € D*(Crys(Y, B)), the series

i

L(Y, (Z%),T) = [ ] L(Spec k, HL(Y, (7)), )Y

is a rational function of T.

The following is a rather general criterion for an L-function to be
a polynomial (or the inverse of such), and not just a rational function.
Namely, the above corollary and Theorem 1.38 yield.

Corollary 1.47 Let X be a Cohen-Macaulay variety over k of dimen-
sion e. For any locally free crystal .7~ in Crys(X, B), the L-function
L(X,.7, )"V lies in B[T).

We conclude this section by studying the effect of the Frobenius twist
on L-functions.

Lemma 1.48 One has L(.7,T)? = L(.79, T9) for any crystal .7 on X .

PRrROOF: Clearly it suffices to prove the above pointwise for any = € X°.
Thus we may assume that X is the spectrum of a finite field extension
k' of k. Also we may change coefficients and assume that B is a field E.
Then .7 corresponds to a finitely generated &’ ® E-module M with a
o x id-linear operation 7. Write

Lz, M, T)" ! = det(1 = T7[M) =1+ T +...a,T" € B[T].

Because Frobenius on k' and on F commute, one has L(zl:,i(q),T)*1 =
1+ a{T +...alT™ € E[T], and the assertion follows readily. m
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2. Global L-functions

For the remainder of this article, we fix an A-scheme X. Let f: X —
Spec A denote the structure morphism to Spec A and gx : X — Speck
the structure morphism to Spec k. If X = Spec A we usually assume that
it is an A-scheme via the identity.

Given a complex (.7*) in D’(Crys(X, A)) and a closed point v of
C, we will define a v-adic L-function L®)((.7*),s). Our treatment will
follow closely that of [12], Chap. 8. As a first result, we show that any
such L-function can be expressed as the v-adic L-function of a complex
(Z*) € D’(Crys(Spec A, A)) all of whose objects are locally free crystals.
We conclude this section by recasting Goss’ definition of entireness and
meromorphy, cf. [12], § 8, in a slightly different form.

The main example to keep in mind is that of an A-motive (.#,ch ,)
of rank 7 on X. The map f will then be ch , and the crystal we consider
is the one represented by .7 . B

2.1. Ezxponentiation of ideals

We first consider the place co. Let Wy, := Z), and S := C5, X Wo. An
element s € Sy will have components (z,w). One defines an addition by
(z1,w1) + (22, w2) = (21 - 22, w1 + we). The exponentiation map will be a
map

{fractional ideals of A} x Soo — C5_ : (I,s) — I?,

which is bilinear if we use multiplication on ideals, addition on S, and
multiplication on C7_.

We choose a uniformizing parameter m,, of A.,. For some technical
reasons, cf. Remark 2.26, we assume that there exists an n > 0 such
that 77, € K. To obtain 7, one first chooses an element a € A whose
valuation —m < 0 at oo is not divisible by p. For this one may use the

theorem of Riemann-Roch. Let 7/ be any uniformizer of Aw. Then a!~9=

1 m(goo—1)

is the product of a 1-unit u of A, with 7 . As m(goo —1) is prime

mi@2=1) for some 1-unit u’ of Asg. We now take

to p, we can write u = u
Too 1= u/ L.

Via this choice we identify Ko, with koo ((7s0)). An element a € K* is
called positive if under the map K* — K = koo((7x0))*, the element a is
mapped to an expression 75 + an+17rgo+1 + an+27rgo+2 ..., where a; € koo
and n = ve(a). Let PT be the set of fractional ideals of A which are
principal and have a positive generator. This is a subgroup of finite index
of the set .J of all fractional ideals of A. The class field H™ corresponding

to P71 is the narrow Hilbert class field of K, i.e., it is the maximal abelian
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extension of K which is unramified outside oo, and such that all places of
H™ above oo are tamely ramified of order dividing (geo — 1)/(q — 1) and
have residue field k.

For any R-valued field F', we denote by Uy (F') its 1-units. If @ € K is
positive, we define (a) := a/ng"(“) € U1(Kw). Note that for any I € P*
there exists a unique positive generator a;. Based on the fact that U; (Cy)
is uniquely divisible, the following is shown in [12], Prop. 8.2.4:

Proposition 2.1 The map
()Pt - Ui(Kso) : I — {ay)

extends to a unique homomorphism {__): J — U1(Cs).

Definition 2.2 For I € J, s = (z,w) € Ss define I := 28I (1),

Note that this exponentiation depends on the choice of the uniformizing
parameter moo.

To obtain an exponentiation by Z, we make the following definition:
Let m, be a dso-th root of 74, and define

$7: % — Soc 1 j > 85 1= (7, 7).

Thus for j € Z and I € J, we have I*7 € Cs. In particular, for I € pPr
the element 7% is the unique positive generator of I7.

We now follow Goss, [12], §8, to obtain an exponentiation for the finite
places of K. Define V := K (I : I € J). This is a finite extension of K.
For a fixed place v # oo, we choose an extension § = 3,: V — C, of
Ly K — C,, and set K, g := K,(V) C C, with ring of integers A, 3.
Unless we want to stress it explicitly, we drop the subscript v at .

It follows that if a is positive in A, then (((a)*!) = a € K, 3. Based on
this, one can show that for any fractional ideal I prime to p,,, the element
B(I°) is in A7 5. We can write any a € Ay ;5 as a = uy,0(a)uy,1(a) where
Uyp,1(a) is a one-unit and wu,o(a) is a root of unity. Let ¢, 3 denote the
cardinality of the residue field of A, s.

Definition 2.3 We let W, := Z, x Z/(qvg — 1) and S, := C; x Wy,
which is a group under the obvious addition. Elements are denoted by
s = (z,w,y). The v-adic exponentiation map is defined as

{fractional ideals of A prime to p,} x S, — C; :
(1,5) = 298D, o (BI°)) Yy 1 (BI*))".
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As before, this map is bilinear if we use multiplication on ideals, addition
on S, and multiplication on C;. We caution the reader that the kind of
exponentiation we use, i.e., v-adic or with respect to oo, is only indicated
by giving the domain of the exponent. Note that the definition of the
v-adic exponentiation depends on the choice of the uniformizer 7, as
well as on the choice of embedding g,.

Definition 2.4 For j € Z, we define
Sp2: L— Sy ] Sei = (1,74,7).

To have a more uniform notation, we also write s = (z,w, y) for s € S,
where we identify S, with Soc X Z/Z, and use s« ; for s;. For v # oo the
image of Z under j — s, ; is dense in 1 x Z, X Z/(qy 3 — 1).

With the above definitions in place, the following is trivial:

Proposition 2.5 For any place v # oo, j € Z and fractional ideal
which is prime to p,, one has

By(I5) = [*3 € C,.

One can also define an exponentiation for any place v # oo in an
analogous way to Goss’ definition for oo, i.e., with exponents in C, X Z,,.
This is the viewpoint taken in [21]. One simply obtains the restriction
of the exponentiation defined here to the subgroup C; x Z, x {0} of S,,.
An advantage of Goss’ definition is explained by the previous proposition
which says that for ideals I prime to v, the element ‘I7’ for j € Z is
independent of the place v.

The following two results explain how to recover Goss’ definition of
exponentiation of ideals from that given in [21]. From loc. cit., §10, we
quote:

Proposition 2.6 For fived y € Z./(qy 5 — 1), the map I — 100V defines
a character Xy, : J — kj which via class field theory corresponds to a
character, also denoted by xu,y, of Gal(K*P/K), which is at most ramified
at v and oo. In particular, one has [*W¥) = I(z,w,O)wa(I)'

To relate the above characters to crystals, we introduce some nota-
tion. By class field theory, there are only finitely many characters y :
Gal(K®?/K) — k) which are unramified outside v, co. We define G, :=
Gal(K*?/K)/(NnKer(x)) where the intersection is over all such x. Thus
G, is the Galois group of some finite abelian extension of K. We define
Gy := Hom(G,, k*), so that the characters in G,, are in bijection with the
above characters of the absolute Galois group.
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The following is a special case of [16], Prop. 4.1.1, recast in our termi-
nology:

Theorem 2.7 Let k be a finite extension of k and vy, ..., v, finite places
of C. Then there is a bijection between

— continuous characters x : Gal(K*P/K) — k* which are unramified
outside 00, v1,...,v, € C, and ~

— locally free T-sheaves .# € Coh,(Spec A\ {puy,,---,Pv, }, k) of rank
one on which T is an isomorphism.

Given a character x, the corresponding T-sheaf, denoted by .# ., is unique-
ly determined by the condition

L(p, 7, T)™" =1 — x(Frob,)T%
for allp € Max(A) ~ {Poys---,Pu, |-

In particular, for any x € G, we obtain a corresponding locally free 7-
sheaf .7, on Spec A(v) over k,.

2.2. The definition of global L-functions

For x € X, let p, be its image in Max(A) (this uses that X is of finite
type over k). Recall from the discussion after Definition 1.40 that for
.7 € Crys(X,A) and x € X% one has L(x,.7,T)"! € A[T%] c A[T%=].

Definition 2.8 Let (.7*) € D®(Crys(X, A)). If for s € S, the product

H Lz, (Z°),T) paps —p
zeX (v)°

converges, we denote it by LW (X, (.7*),s) and call it the value of the
v-adic L-function of (.7*) at s.

We write gg;’)(s) for LW (X, 1y 4,5), and call it the value at s of the
(-function of X over A.

Unless we want to emphasize the base scheme X, we write L(U)((£°), s)
for LW (X, (.7*),s). The following proposition collects some basic prop-
erties of v-adic L-functions.

Proposition 2.9 (a) If X is the finite disjoint union of locally closed
subsets X;, then LW(X,(7*),s) = [1, LW (X;,(7*),s) provided the
terms on the right are convergent products.
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(b) For the product in the above definition to converge for a fized s, it
1s sufficient that, for this s, the product converges for each individual .7 *.
(¢) For X = Spec A one has

o= T a-pn

peMax(A(v))

(d) Leti: Xiea — X be the closed immersion of the induced re-
duced subscheme of X and define froq == foi: Xieqa — Spec A. Then
L)X, (7*),5) = L) (Xyeq, i*(.7*), 5) on the domain of convergence.

Ignoring for now the problem of convergence of the above product,
cf. Theorem 2.16, we give an alternative description of L()((.7*), s). For
p € Max(A), let iy : Xp; — X be the pullback map corresponding to
Spec ky — Spec A. Viewing X, as a scheme over k, we obtain the map

T

Crys(X,A) — Crys(Xy, A) : 7 — 7 ==y,

Theorem 1.45 implies that for each p € Max(A)

L(Xp, (73),T) = ] L= T) € 14 T% A[[T%]]
.Z'EXO

is a rational function. We call it the local L-factor of (.7 *) at p. In the case
where .7 is attached to a Drinfeld-module, rationality was first proved
n [21]. The following formula is immediate.

Proposition 2.10 On the domain of convergence of LW ((.7*),s), the

product
H L((;/?;),T)‘po =p—s
peMax(A(v))

converges, and both expressions take the same value.

Having attached a crystal to any Drinfeld-A-module (¢, &) and to
any A-motive (.#,ch ,) on X, say each of rank r, we need to compare
the v-adic L-function attached to these objects as defined by Goss, cf.
[12], Ch. 8, [13], § 3, with our definition for the associated crystals. Let
[ be chy, respectively ch , and .7 the crystal represented by .7 (v),
respectively .#Z, cf. Example 1.6.

Fix a closed point x € X. For a place v/ of A different from v and
Pz, let Ty () be the v'-adic Tate-module of 1, respectively .7 at x, [12],
Def. 4.10.9 and p. 154. This is a free A,»-module of rank r which carries
an action by Gal(k3®/k,) = Z. Let Frob, be the Frobenius element of
Gal(ky? /k,). The following is essentially shown in [12], Prop. 5.6.9.
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Proposition 2.11 Let v be any place of K. With the above notation, one
has

det(1 — T9% 7% |.57,) = det(1 — T%Frob,|T, (z)) Vz e X°.

In particular L(x, .7, T)lepz:p;s = det(1 — p,*Frob,|T, (x))~! for all
s€ 8, e X0).

Let L(¢/X,s), respectively L(.# /X, s) be the L-functions as defined by
Goss, cf. [12], p. 256, [13], Rem. 3.14. These are also defined as infinite
products over the points of X% The above lemma immediately implies
the following, where by writing an equality of L-functions we mean that
the respective infinite products have the same domain of convergence and
that on this domain their values agree.

Corollary 2.12 Let v be any place of K.

(a) For any Drinfeld-A-module (¢, <) on X of fized rank, and with f =
chy, one has

LOX, 2 (¢),s) = L (/X 5),

(b) For any A-motive (.#,ch ,) on X of fived rank, and with f = ch_,,
one has

LY(X, 7,s)=LW(7/X,s).

This is a non-empty statement, as it is shown in [12] and [13] that the
functions L") (1)/ X, s) and L(")(.# /X, s) have a large domain of conver-
gence. Alternatively, one can appeal to Theorem 2.16 below.

2.3. A half plane of convergence

For ¢ € R>p, let D}(c) := {z € C, : |z|, > ¢} be the punctured disc
around the infinite point oo, of P}(C,) of radius c. Furthermore, let
Dy(c) := D(c) U {ooy}, Di(c) := {2 € C, : |2|p, > ¢} and Dy(c) :=
Dy, (c) U{ooy}.

Definition 2.13 A subset D}(c) x W, of S, with ¢ > 0 is called a half
plane.

Before proving that the Euler product representing L) (X, (.7*), s)
converges on some half plane, we need some auxiliary results for v = oco.
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Lemma 2.14 Let X = Spec R be affine. Assume that (.7, T) is a T-sheaf
with . % = ’???TXSpeC - Let 7 = ,7)?;0. Then there exists an extension

7i(ox xido)*.7 — .7 @ Co(—moo)

of T for a suitable m € N.

PROOF: After fixing a basis for the free sheaf .7, we may represent
(7 ,7) as a T-module (R ® A", (0 X idgpec4)) for a unique choice of
matrix a € M,(R ® A). We may view the entries of o as elements of
R ® K. As there are only finitely many of them, one can find m € N
such that all entries are in R ® 73" As. The lemma follows easily. n

Proposition 2.15 Given (.7*) € D*(Crys(X, A)), there exists m € N
such that

Vo e X0 L(z,(7°), Tr2) € 1+ T% A [[T*]).

PROOF: By Proposition 2.9(a), we may decompose the scheme X, as in
the proof of Proposition 1.32, into a finite disjoint union of locally closed
affine schemes which are regular under their reduced subscheme structure.
If we prove the proposition on each such subscheme, the general assertion
follows because there is only a finite number of such subschemes. Hence,
using Theorem 1.27, we assume that X is affine and regular.

Using Lemmas 1.4 and 1.33, we may assume that all .7 ¢ are repre-
sented by free T-sheaves. Because (.7 *) is bounded, there is only a finite
number of non-zero .7 ¢, and so we may assume that (.7 *) is concentrated
in degree zero and that .70 is represented by a free 7-sheaf .7 as in the
previous lemma.

The lemma provides us with an extension

7i(ox xide)*7 — .7 @y Co(—moo).

Therefore 77 defines an Ayo-crystal .7 o on X. From the definition of
the L-function of crystals, it follows that

L(z,.7 0o, T) = L(z,. 7, T7) € 1 + T% A [[T]],

independently of z, by comparing the two expressions over Ko [[T]]. n
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Theorem 2.16 For each v € C and each (.7*) € D*(Crys(X, A)) the
Euler product defining LW ((.7*),s) is convergent on some half plane
Di(c) x Wy, of S, and the convergence is uniform on D}(c') x W, for
any c > c.

PROOF: As in the proof of the previous proposition, we may assume that
(.7*) is concentrated in degree zero and .7 = .7 Y.

Suppose first that v # oo. We claim that we may take D}(1) x W, as
a half plane of convergence. For z € X° write L(x,.7,T) = 1 + a1 T% +
agT? + ... As L(x,.7,T) € A[[T]], all a; satisfy |a;|, < 1. If |2], > 1

in s = (z,w,y), then |p;*%|, = |z];d“ < 1. Therefore we compute

1= L, 7, T) gty _pelo = laaps "™ + agpa /% 4], < |2, %,

(1)
Recall that an infinite product H;il(l +b;) converges in C,, if and only
if for any r > 0, the number of b; with |b;|, > r is finite. As X is of finite
type over k, for any n € N the number of z € X such that d, < n is
finite. This together with the estimate (1) proves the convergence of the
product for L(")(_7, 5). The assertion on uniform convergence is left as
an easy exercise.

Let now v = oo. Then the local L-factors L(x,.7 ,T) are no longer
in Ay[[T]]. However, if we choose m as in the previous proposition, then
the function L(x,.7, T7™) lies in Ax[[T]] for all z € X°. Proceeding as
above, it follows that D} (q) x W is a half plane of convergence. n

Remark 2.17 Let us fix a place v of K. As in Definition 2.8, one may
define a v-adic L-function for any complex in D?(Crys(X (v),C,)). By
results analogous to Lemma 2.14 and Proposition 2.15, one can show that
the Euler product representing such an L-function is convergent on a half
plane of S,. If the coefficients are in the ring of integers of C,, the half
plane contains D}(1) x W,,, and there is no need to refer to the above two
results.

Thus, one may define a v-adic L-function for any complex in the de-
rived category D?(Crys(X (v), B)) where B is a subring of Cx.

2.4. On the ground field k
Let k' be the constant field of K which clearly contains k. Via the struc-

ture map f: X — Spec A composed with Spec A — Spec k’, we see that
X is naturally a variety over k' and not just over k.
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Proposition 2.18 Given a 7-sheaf .7 on X over A relative to k (cf.
remarks after Definition 1.1), there exists a T-sheaf 7' on X over A
relative to k', such that for any place v of C' the v-adic L-functions of .7~
and .7 agree.

Based on this proposition, we will from Section 3 on assume that & is the
field of constants of K, i.e., that C is geometrically irreducible over k.

PROOF: Let d = [k’ : k]. Then Speck’ @ A is the disjoint union of d
copies of Spec A. Let e be an idempotent of A’ := k' ®; A which projects
onto precisely one of these copies. By ¢’ the absolute Frobenius of X with
respect to k' is denoted, i.e., o/ = o¢.

Via x ® A = Ox ®p A, we regard .7 as a sheaf over X Xgpec i
Spec A’. Furthermore, the d-th iterate of 7 gives us an “x ® A’-linear

endomorphism
’ c vk o TE —
(0’ X ld) S — T

Because 7% is A’-linear, multiplication with the idempotent 1®e of 7y @y
A’ commutes with 7%, and we set

T = ((1 & e)L‘V, (1 ® e)Tilr)

It remains to verify that .7’ satisfies the assertion of the proposition.
Obviously, X has the same closed points as a variety over k or over k'.
Thus it suffices to check that .7 and .7’ have the same local factors in
the definition of the respective v-adic L-functions. Hence we may assume
that X = Speck, for some finite extension k, of k’. We may also work
with K instead of A and K’ := k' ®; K instead of A’ as coefficients.
So let M be a k,; ®; K-module representing .7 and 7 : M — M the
corresponding ¢ ® id-linear endomorphism. Analogously one defines M’,
7 for 7.

If 7 is nilpotent, then M as well as M’ have trivial v-adic L-functions.
For arbitrary 7, consider the decreasing sequence of submodules 7/% (M),
[ € N, of M. Because k, ®; K is artinian, this sequence will become
stationary. As the kernel of M — 7! (M) is nilpotent, we may, by the
above, assume that 7 is an isomorphism. Furthermore if p denotes the
image of Speck, — Spec A, we will assume that p # p, as otherwise
again both v-adic L-functions will be trivial.

Write K/ = K1 x...x K4 where all K; are isomorphic to K and where o
acts on K’ by cyclically permuting the K;. Correspondingly we write M =
Mi x...x My, and we assume that e is the idempotent that is the identity
on K7 and zero on the other K;. Relative to k, the local L-function of the
7-module M, written Ly(x, M,T), is given as the inverse of dety, g, k(1 —
T 7| M), where the determinant is taken over the ring k, ®; K. As 7%



Global L-functions over function fields 31

fixes all the components M; and as 7 maps M; isomorphically to M;, 1, it
follows that Ly(z, M, T)"" = dety,q,, i, (1 — T%7%|My). Therefore the

v-adic L-function L,(f) (M, s) relative to k satisfies

ngv)(M, s)~t = kz%f,tm(l — psde/dy s 1),

Relative to k' we compute the corresponding data for M’ = M; and
T = T| A, - We use d!. and d’ to denote the degrees of x, respectively p
over k', and write subscnpts k' at the L-functions to indicate that we
work over k’. We find that Ly (z, M',T) ™ = dety,,, K, (1 — Tder'% | M)
and hence

LOM s = det (1— p—sdeldy 1 M.
)T = det (1 pe /B )

Since d,/dy, = d./dy and Tﬁ(j[l = 7/%  the assertion follows. m

2.5. Twisting L-functions by characters

Let k be a finite extension of k and choose an embedding into the k-
field C,.

Definition 2.19 For (.7*) € D’(Crys(X, A)) and x: Gal(K*P/K) —
k* a character which is unramified outside v, 00, we define

EOE)9) = T L6 (25, T i oo, o
zeX (v)0

to be the twist of the v-adic L-function of (.7_*) by .

In the following discussion, we fix v, k and X. By going through the
proof of Theorem 2.16, it is simple to see that L;U) has a half plane of
convergence. However the proposition below will give us a more intrinsic
way to see this.

Define A := Ak as a ring inside C,. Note that k— Aand A— A are
obviously flat. Via change of coefficients, _ ®; A, we may view the crystal
#  from Theorem 2.7 as a locally free crystal in Crys(Spec A(v), A), and
f(v)*.# as alocally free crystal of Crys(X (v), A). Furthermore, the re-
striction ( *)ix () of (Z*) to X (v) is an element of D*(Crys(X (v), A)).

By Remark 2.17, the v-adic L-function of the A-crystal (.7~ *) X (v) é)
fw)*#, on X(v) is defined and represented by an Euler product on
some half plane of S,. The characterization of .#, given in Theorem 2.7
combined with Definitions 2.8 and 2.19 yields the following result.
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L
Proposition 2.20 Whenever L(U)((i')p((u) ® f(v)*Ay,s) converges,

the Euler product of L&U)((Z'), s) converges and takes the same value.

We now specialize the above discussion to the characters x,, of GU,
defined in Proposition 2.6. The quoted proposition and Theorem 2.7 yield
the following, which except for the terminology is in [21], §10:

Proposition 2.21 For (.7*) € D*(Crys(X, A)) and s = (z,w,y) in a
suitable half plane one has

LW((70),8) = LY) (), (z,w,0))
L

= L(U)((i')p((v) & f(’U)*.,//XU’y7 (vavo))

2.6. Reduction to X = Spec A

Theorem 2.22 Let v be a place of K and fix (.7 *) € D*(Crys(X, A)).
If D}(c) x Wy, is a common half plane of convergence for the two v-adic L-
functions LW (X, (.7*),s) and L) (Spec A, Rfi(.7*), s), then they agree
on this half plane.

PRrROOF: According to Proposition 2.10, it suffices to show that

H L((Z;)’T)|po =p—s — H L((Rf!z.)P’T)|TdP =p—s"

peEMax(A(v)) peEMax(A(v))

By base change, Theorem 1.36, we have (Rfi.7*), = Rfi(.73). The result
now follows from the trace formula for L-functions of 7-sheaves, Theo-
rem 1.45. =m

Corollary 2.23 Let (.7*) be a complex in D*(Crys(X, A)). Then there
exists a complex (Z°*) € D?(Crys(Spec A, A)), all of whose objects are lo-
cally free with the following property: Let v be a place of K and D}(c)x W,
a half plane of convergence for the two v-adic L-functions LW (X, (.7*), s)
and L) (Spec A, (Z*),s). Then

LW(X,(7*),s) = LY (Spec 4, (£*), 5)-

on Dj(c) x Wy. One may furthermore assume that ('¢'*) is concentrated
in degrees zero and one.
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PROOF: By Theorem 2.22 we may replace the complex (.7*) by Rfi(.7*).
As Spec A is smooth and affine, by Theorem 2.16 and Lemma 1.33, we
may replace the latter complex by a bounded complex (<*) of locally free
A-crystals on Spec A. If desired, one can replace (2°*) by the complex

.— 00— @ZZL@QZ—W)%|

ieven iodd

2.7. Meromorphy

For ¢ > 0, let C**(D,(c)) denote the ring of power series f =Y < anz™"
over C, which converge for |z|, > c¢. This is a Banach space under
the norm ||f||c := sup,>q |an|vc™™. Similarly, for ¢ > 0 we denote by
C*(D,(c)) the ring of those power series that converge for |z|, > c.
Let {c;n} be any strictly decreasing sequence which converges to ¢. Then
C?*(Dy(c)) is a Fréchet space under the metric

. Sy =l
dlSt{cm}(fag)‘:ZQ m

m=1

This means C*"(D,(c)) is a complete linear metric space with respect to
disty,,.1- A sequence {g,, } C C*"(D,(c)) is a Cauchy-sequence if and only

if this holds with respect to all norms ||__||.,,. Different sequences {c,,}
will give equivalent metrics. If ¢ = 0, we will usually use the sequence
Cm =q, "

The following defines a metric dist,, on W,,. Let | |, be the valuation
on Z, such that |p| = p~! and define for y € Z/(q, g, — 1) the symbol &,
as zero if y = 0 and as 1 otherwise. For (w;,y;) € Wy, i = 1,2 we define

disty (w1, 21), (W2, 92)) = Oy —y, + w1 — walp.

By Theorem 2.16, the function z +— L") (.7, (z,w,y)) represents a
power series in z~! which is convergent on D} (c) for some ¢ > 0, inde-
pendently of (w,y) € W, and the coefficients of this power series vary
continuously in (w,y). If we set L) (.7, (coy, w,y)) := 1, we may regard
LW (.7, ) as a continuous function W, — C?*(D,(c)), where domain
and range are the metric spaces defined above.

Remark 2.24 The obvious restriction map C**(D,(c)) — C**(D,(c))
for ¢ < c is injective, as analytic functions are uniquely determined by
their power series expansion around oo. This shows that L(")(.7, ) is
uniquely determined, if we know its restriction W, — C*(D,(c)) for
some arbitrarily large c.
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Definition 2.25 (Goss) A continuous function f: W, — C**(D,(0)) is
called entire.

An entire function is called essentially algebraic, if there exists a finite
extension K of K such that for all j € Ny the functions f(—j,—j) lie in
K[z

The quotient of two entire functions is called meromorphic. The quo-
tient of two entire, essentially algebraic functions is called essentially al-
gebraic.

We say that LW (7, _): W, — C*(D,(c)) has an entire, respec-
tively meromorphic continuation to S, if there exists an entire, respec-

tively meromorphic function f whose restriction to D,(c) agrees with
LO(7, ).

Remark 2.24 shows that if L(")(.7,_ ) has an entire continuation f to
Sy, then the function f is unique. Thus often we will simply say that
LW(7, ) is entire, meromorphic, essentially algebraic, respectively.
The definition of entireness, meromorphy, essential algebraicity, respec-
tively, on any open (hence compact) subgroup of W, is analogous and left
to the reader.

Remark 2.26 In [12], Def. 8.5.12, one finds for v = oo the following
definition of essential algebraicity: f is essentially algebraic if there exists
a finite extension K of K such that for all j € Ny the functions f(—j, —7)

lie in K[z~ '7rl]. By our choice of 7, we know that 7 € K for some
n > 0. Therefore K is finite over K if and only if K[n,] is finite over
K. Hence we may work with the above uniform definition of essential
algebraicity for all places v.

For an L-function to be entire, we have the following simple criterion,
essentially in terms of the coefficients of its Taylor expansion near co,.

Proposition 2.27 Let L(.7,_): W, — C*(Dy(c)) be given for some
¢ > 0. Suppose we have a set M := {(wn,yn) : n € N} which is dense in
an open subgroup U of W, such that

(a) [[L(Z, (s wi,y1))|-m is finite for allm € N, and
(b) for each m € N, there ezists a constant Cp, > 0 such that

I[L(Z, (s wn,yn)) — L, (L wn’ayn’))Hq;m
<Cpn diStv((wna yn)> (wn’ayn’))'

Then LW (.7, ) is entire on U.
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PRrROOF: For fixed m the two conditions above mean that we have a uni-
formly continuous map from a dense subset of U to the metric space
C3(Dy(q;™)). By a simple argument from the theory of metric spaces,
this map has a unique continuous extension f,,: U — C*(D,(g,™)).

Independently of m, the maps f,, and L(.7, ) must agree when
restricted to D,(max{c, g, ™}). Thus by Remark 2.24, the functions f,,
patch, so that for each (w,y) € U, one obtains a function f(w,y) €
Ca1(D,(0)) which when restricted to D, (q;™) is fm(w,y). It remains to
show that f: U — C*(D,(0)) is continuous.

Let w,, be a sequence in U that converges to w. We need to show that
f(wy,) — f(w). By the definition of the metric dist g —my, it suffices to
show this convergence for all norms ||__[| -m, i.e., that fm(@n) — fm(w)
for each fixed m. This is clear from the construction of the f,,. m

We conclude our discussion of meromorphy by comparing the entire-
ness of .7 to that of its Frobenius twist .7 (9. For [ € Z and a power series

l
g=>_ apz~", we define g”l =Y af 27" Because C, is perfect, this also
makes sense if [ < 0. The map g — g"l is an isometric ring homomor-

phism from C*(D,(c)) to C**(D, (cql)). With respect to suitable Fréchet
metrics of the spaces involved, the analogous map from C**(D,(c)) to
Can(D,(c?)) is an isometry, too.

By Cont(__,_ ), we denote the set of continuous maps between topo-
logical spaces. For f € Cont(W,,C*(D,(c))), we define

FO W, — CN(Dy(e?) : (w,y) = (f(w,9))7
Thus we obtain a map
Cont(W,,, C**(Dy,(c))) — Cont(W,,, C**(D,(c?))),

and similarly Cont(W,, C**(D,(c))) — Cont(W,, C**(D,(c?))).

Lemma 2.28 Let f = L(7,_): W, — C*(Dy(c)) for some ¢ > 0.
Then

FO(w,y) = LZD, (_, qu,qy)): Wy — C(Dy(c?)).

PRrROOF: This is immediate from Definition 2.8 and Lemma 1.48. =m
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From the definition it is obvious, that £(@(w,y)(27) = (f(w,y)(z))d.
Combined with the previous lemma this shows:

Corollary 2.29 For any place v of K, there exists a constant ¢ € Ry
such that LW (.7, (z,w,y))? = LW (7D (29, qw, qy)) on D (c) x W,.

Proposition 2.30 If LW (.7 s) is entire, meromorphic, essentially
algebraic on DE(0) x ¢W,, then so is LW (.7, s) on DX(0) x W,,.

PrROOF: Let f € Cont(W,,C*(D,(c))) correspond to LM (.7, s) for
c sufficiently large, and g : W, — C®(D,(c9)) to LW (79 s). By
Lemma 2.28, we have f(9)(w,y) = g(quw, qy). Thus our assumptions imply
that f(@ is entire, respectively meromorphic on W,. Furthermore, if g is
essentially algebraic on qW,, then there exists a finite extension K of K
such that f(9(—j, —j) = g(—qj, —qj) lies in K[z~!] for all j € Np.

The operation h — h? " preserves C?(D,(0)) as well as its subspace
of polynomials, C,[z~!]. Moreover, if a polynomials p; belongs to K[z1],
then the polynomial pfl belongs to K9[z7!]. Because K is finitely

generated over k, the field K1/ is still a finite extension of K. Therefore
f, which is the composite

() 071
W, —L - can (D, (0)) 2=~ can(D,(0)),

has the desired property on W, whenever g has it on ¢W,. n

3. Drinfeld-Hayes modules

From now on, we will assume that & is the subfield of constants of K, i.e.,
that C is geometrically irreducible, cf. Proposition 2.18.

Let z := (k[0] ® k[t], (t — 0)(0 ® id)) denote the T-sheaf on Spec k[f]
over k[t] associated to the Carlitz module. Then for any j € N

Cé;)eck[ﬂ((z? 07 0) - SUJ) = L((L®J7 T)|T:z*17

independently of v. (That Cé?ec k0] (s) has a meromorphic continuation to
all of S, is shown in [12], Thm. 8.9.2.) This is at the base of the following

observation from [21],
LY(F,(2,0,0) = s0,j) = L(7 ® 2%, T)p— 1

for A = k[t] and any crystal .7, which relates special values of v-adic
L-functions to L-functions of 7-sheaves. In this section, we will discuss
similar results for general A.
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3.1. The L-function of the Drinfeld-Hayes crystal # 4

Let C1T(A) := J/PT denote the narrow class group of A and h* :=
card C1"(A) the narrow class number. By OT we denote the integral clo-
sure of A in H". As H"/K is unramified away from oo, the extension
O%1/A is everywhere unramified. Let & : SpecO" — Spec A be the cor-
responding covering map of schemes and G := Gal(H'/K) its Galois
group.

By [12], Prop. 7.2.20, every isomorphism class of rank one sign-norma-
lized Drinfeld-A-modules defined over K, can be realized by a Drinfeld-
A-module ¢ : A — O™{r}. (This is the first instance where we use
that k is the constant field of A, as otherwise there are no rank one
Drinfeld modules relative to 7.) Furthermore such a 1y has everywhere
good reduction. For ¢j; as above and v € G we define LZJ}Y{ as the composite
of ¢ with the endomorphism on O*{7} obtained by having  act on the
coefficients. Then {¢)}; : 7 € G} is a complete set of representatives of
isomorphism classes of rank one sign-normalized Drinfeld-Hayes modules,
loc. cit., Thm. 7.4.8.

Proposition 3.1 The sheaves .# (1};) are locally free of rank one over
O™. The T-sheaves &4 (Vi) and &2 (Y]};) are isomorphic for any v €
G.

PROOF: The first part is immediate from Example 1.6, and so we now
turn to the proof of the second. Applying &, simply means that we regard
Z (V) as a T-module over A® A. The action of 7 on O induces an A® A-
linear automorphism 5 on O*® A{7}, mapping r ® ar’ to v(r) ® at’.
As an O™{7} ® A-module, .Z () is isomorphic to the quotient of
OH{7}®A by the left ideal generated by {1y (a)®1—1®a : a € A}. Under
the action of 7, the latter set maps to {¢};(a) ®1—1®a: a € A}. Hence
7 induces an A ® A-linear isomorphism from &..7 (Yg) to &7 (Y);). n

From now on, we write # 4 for .#Z (¢Vg).

For p € Max(A) let Frob, € G := Gal(H'/K) denote the corre-
sponding Frobenius automorphism. Because G is abelian and O1/A is
unramified Froby, is well-defined for all p. For P € Max(O7), let Gy de-
note the corresponding decomposition subgroup of G, which is the sub-
group generated by Froby, where B is above p. As Gy only depends on
p, we sometimes use the notation Gy. Via the isomorphism G = CIT(A)
from class field theory, the element Frob, corresponds to the ideal class
[p] € CIT(A) of p. Let dy denote the degree of P over k, which is the
same as the order of [p].
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haS p one
1/( p?iA,j ) f—y I (psoo,] po)cardGsp'

PROOF: By its definition, L(%,# 4, T) " = det(1—T™ 7% (i3, 1) ®a
K). As is clear from Example 1.6(b), the pullback iy, 7" 4 is the crystal as-

sociated to 9y (mod B). Because the order of the class [p] is card G, we

. . dp card G
can choose a positive generator g in prd Gy g0 that Gp = T AEE (p)card Gop

and sign(gy) = 1. As ¢y (mod P) has supersingular reduction at p, and
as it is sign-normalized, we have

Y (gp) = % 4 asign(gp)) =7 (mod P),
for some a € Gal(kso/k). Thus 7 ® 1 = 1 ® g, on i 4, and we have
card Gy

LB, 2aD) " =1- (D)% @) "

Let G denote the group of characters of G with values in Z[(,+]. W
fix a prime ideal P of Z[(;,+] above P and let k denote the correspondmg
residue field. For a character y € G let X:G— k* denote its reduction
modulo P. We extend ¢, to a map A := kA — C,. The well-known and
simple observation

H (1 _ X(Fl"Obp)T) — (1 _ rpeard Gy )card G/ card Gy
x€G

now yields
Corollary 3.3 For any p € Max(A):

TTL0B, 224,7)"" = J] (1 — (Froby)ps=1T%).

PBlp xe@

The following result is now an immediate consequence of the definition
of L) and the above corollary:

Theorem 3.4 (Goss) There ezists a half plane of S, on which the v-
adic L-function LW (% 4, s) is given by

[ T1(- o)

peMax(A(v)) xe&
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8.2. Crystals constructed from #

We define the following T-sheaves over A on Spec A:
®2 .
= (W) @;=e(2Y).

Had we chosen .7 (¢};) instead of # 4, then Proposition 3.1 shows that
the resulting 7-sheaves are isomorphic and hence define the same crystal.
The proof of the following lemma is easy and left to the reader.

Lemma 3.5 Let .7, ¢ be T-sheaves on X over A and x € X°. Write

L(z, 2, 7)™ =T[1(1 — /T%) with oy € K*8. Suppose ¢ is locally

free of rank r. Then the following hold:

(a) The j-th exterior power Ajz of ¢ is a locally free T-sheaf of rank (;)
on X, and

L(a:,/ljz,T)*1 = H (1 —allaIQ...aledz).

1<hi<lz<...<lj<r

(b) If L(z, 7, T)" = [0, (1 — B T%) with B, € K¥8, then

L T S
Lz, 7@ ¢, 1) ' =Lx7®¢,T) " = H H (1 — B T%).
=1 m=1

(c) Suppose X = Spec A and ¢ has rank one. Let x = p € Max(A) and
write L(p, ¢, T) ™' =1— apT% . Then for s in a suitable half plane

L7 eog® )= [] L(ZT)
peMax(A(v))

|po :agp_s .

Lemma 3.6 For an abelian group H with character group H define xg =
erﬁ X- If H/2H has order two, let x o be the unique character on H
of order 2. Otherwise, let x o be trivial. Then xg = XH,0-

PROOF: We first consider the case where H is cyclic of order n. Then H
is also cyclic of order n. So let hg be a generator of H and xg of H such
that Xo(ho) = (. Then

n—1
- i (g)_{ 1n is odd
X(ho) = || & =G =
[t =11

L —1n is even
xeH

and the lemma follows.
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Next, if H = Hj x Hjy is the product of two subgroups, we write
correspondingly H=H 1 X H2 where the characters in H 1 are trivial on
Hs and vice versa. Then

_ _ card Hy  card Hy
XH = H X = H X1X2 = Xg,  XH, -
XeH X1€H1,x2€H2

It is clear how to extend the above formula to an m-fold product of cyclic
groups. The result follows easily. n

Applying the above lemmas to Corollary 3.3 implies the following:

Corollary 3.7 For any p € Max(A):

L(pvg(gjaT)il - (1 - psoo’th+po>7
L(pagja T)_l = H (1 - X(FrObp)psoo’dep)‘

xe@G

Corollary 3.8 Let (.7 *) be in D*(Crys(X, A)). For s = (z,w,y) in a
suitable half plane of S, one has

(a)
L .
LO(Z) @ f* 2, s) = LY((Z). 5 = suajnt)s

(b)

L(U)((Z.) H L(U 7. |X v) ® f( ) XJ>S - Sv,j)'
xGG

PROOF: By Theorem 2.22, we may apply Rfi to the crystals whose L-
functions we want to compare. Using Theorem 1.37 (the projection for-
mula), we may assume that X = Spec A and f = id. Furthermore we may
assume that (.7_*) is a 7-sheaf concentrated in degree zero. Then the pre-
vious corollary, Lemma 3.5 and Proposition 2.20 imply both assertions of
the corollary. m
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4. An algebraic proof of Goss’ conjecture

Let gx(v) : X(v) — Speck be the structure morphism. The following
result is an immediate consequence of Definition 2.8, and the trace formula
for 7-sheaves, Theorem 1.45.

Proposition 4.1 For (7 *) € DY Crys(X,A)), v a place of K and
|2]y > 1:

L(v) (X7 (l.)7 (27 0, 0)) = L(X(U)7 (Z.)a T)|T:z*1
= L(Speck, Rgx () (-7*), T)jp=z1-

In particular, the special value of L) ‘at zero’ can be expressed as the
L-function of a 7-sheaf and is therefore a rational function in the variable
271 over A.

Using the results of the previous section, we will obtain a similar pre-
sentation for the special values of global L-functions at all negative in-
tegers. This will allow us to derive some congruence properties, which
in turn will show that all v-adic L-functions of crystals on arbitrary A-

schemes (of finite type) have a meromorphic continuation to all of S,,.

We remind the reader that from Section 3 on, we have assumed that
C' is geometrically irreducible over k.

4.1. Special values at negative integers

Throughout this subsection, we assume that X = Spec A and that .7 is
a locally free crystal on X of rank r. Thus for a place v of K we have
X (v) = Spec A(v). The open immersion X (v) — C will be denoted j,. By
C/K, we denote the base change of the curve C defined over k to K. For
a coherent sheaf <" on C/K, we abbreviate h'(¢") := dim H(C/K, <)
and define its Euler-Poincaré characteristic x(¢') := h%(¢) — h'(%).

Definition 4.2 For j € Ny, we define H, j(2) := LW)(.7, (2,0,0) — 5, ;)
and call it the special value of L) (.7, s) at —j.

As a consequence of Proposition 4.1, Corollary 3.8(a) and Theorem 1.38
we have:

Proposition 4.3 Suppose z] is a locally free T-sheaf in Coh,(C, K)
representing jv!((Z@)@@])p((v)) ®a4 K. Then for j € Ny the special value
H, op+;(2) is a polynomial in Alz"'] of degree at most RU(.T ;).
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Because (.7 ®@.2%7 )| X(v)®a K is alocally free crystal on the affine regular
scheme Spec A(v) ® K, by Lemma 1.4 it may be represented by a free
finite rank 7-sheaf. Using Lemma 1.30 it is easy to construct a locally free
representative .7 of jn((Z® %®j)|x(v)) @4 K.

To construct representatives .7 j with good bounds on hY (T j), we
will need to control h°(X,.7 ® ") where .7 is a fixed locally free sheaf on
C/K and 7 varies over the locally free sheaves of some negative degrees.
Define for any n < 0 the quantity 6,(.7 ) as the maximum of zero and

max{h’(X,.7 @ &) — h°(X,.7) : & is invertible with deg 7" < n}.

The 6, (.7") form a sequence of positive integers; they are zero for n < —g,
and increasing on [—g,0]. The following lemma gives better bounds on

S (7).

Lemma 4.4 Let .7 be a locally free sheaf of rank r on C/K. Then for
anyn <0
(7)) <rmax{0,g+n} <rg.

PROOF: Define m := —[—max{0,g + n}/d], i.e., m > 0 is the small-
est integer such that md,, — deg " > ¢ for any & with deg & < n.
The Riemann-Roch theorem implies that there is a non-zero section in
71(moo), and therefore one has the following inclusions of sheaves

The left hand side yields the inequality h°(.7 ® &) < h°(.7 (moo)).
Moreover bounding h° of the cokernel of the right monomorphism yields
the inequality h%(.7 (moo)) < h°(.7) + rmds. Combining the two in-
equalities proves the desired result. m

For j € Ny, let j = jo + jiq + jo2g® + ... be its g-adic expansion and
write j for the sum jo + j1 + ja + ... of the g-adic digits of j. For j as
above, define n; := [(2h7) + doo) /(1 — ¢)] < 0.

We now come to one of the central results of this article.

Theorem 4.5 Let .7 be a locally free T-sheaf on C over K whose re-
striction to X (v) represents .7 x(,) ®@a K. If v # 00, assume further that
z 18 nilpotent at v. Then

2h"j
qg—1

deg Hy oy < M) + ([ 222 ] 4+ doc ) + 60, (), 2)
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Note that after Proposition 4.3, we explained how to construct 7 for a
given crystal .7 . As j is of order O(log j), the above theorem and lemma
imply:

Corollary 4.6 The special values H, 5,+(z) are polynomials in A[z™!]
whose degrees grow like O(log 7).

The main step in the proof of Theorem 4.5 is the following lemma.

Lemma 4.7 There exists a locally free T—sheafzj of rank one on C over
K representing joo. 77 @4 K such that

21t + doo ~ [2/1*3

0< p— < -—n; < —deg ¥ < =

< < [222] + de:

Remark 4.8 To prove only Corollary 4.6 and not Theorem 4.5, it suffices
to construct ;j as in the lemma which satisfy the condition — deg iz i<
O(j). The following simple construction will give such & 5t

Using Lemma 1.30, one constructs a locally free 7-sheaf & on C over
K which represents joo1.7” @4 K. Define Zj = % g .. ®Z(qs)®35.
As 7@) and & have the same (negative) degree, and as & (@) is nil-
isomorphic to Z‘@qi, the assertion follows easily.

ProOF: To prove Lemma 4.7, we write j in its g-adic expansion as above,
and define & == %0 @ ... ® (2(9°))®3s 4, K. By Proposition 1.23,
(@) ig nil-isomorphic to #®¢ | and hence &7 jto 7% @4 K.

As k is the constant field of K, there is precisely one point of C/K
which lies above oo, which we also denote by co. Since .7 is a line bundle
on the open curve C'/ K ~\ {co}, there exists a line bundle on C'/ K extend-
ing it. Using Lemma 1.30 we can find a 7-sheaf &; representing jo1.7;
whose underlying sheaf is locally free of rank one and whose restriction
to C/K \ {oo} agrees with &;.

To compute the degree of & 7, we will analyze the cokernel v ;j defined
by the short exact sequence

T ~ ~

7 “; 0.

0—= (0 x id)* ;

The first thing to note about this sequence is that deg(c x id)* <’ j =
qdegjj. Thus one has (1 — q) degjj = dimg ”(~] and it suffices to
obtain good bounds on dimg (~j To investigate fj, we first consider its
restriction 7 to Spec A ® K, which fits into the short exact sequence

00— (o xid)*? —= 7} G 0. (3)
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By the proof of Proposition 5.10, in particular by (c¢) on page 61, the
support of 77 is concentrated on the point = of Spec(A ® K) which
corresponds to the multiplication map A ® K — K. (The point = arises
from the diagonal of Spec A x Spec A after base change from A to K.)
Furthermore, the quoted result shows that the dimension of the stalk of
71 at B is 2hT.

The Frobenius twist maps the short exact sequence (3) for j = 1 to
another short exact sequence, whose cokernel has the same K-dimension
and is concentrated above o(=). The definition of 27; now implies that
the K-dimension of 7; is 2h™j.

It remains to consider the stalk of #”; above co. Let 7 be a uniformizing
parameter of A, that lies inside K — such a 7w can be constructed using
the Riemann-Roch theorem. Then the completion of the stalk of ¢,k

at oo is isomorphic to S := (ks ® K)[[n]], and the completion of &;,
is a 7-module of the form (S,un"(o x id)) for some unit u of S and
some element n € N. Note that koo ® K is a field, as C is geometrically
irreducible. Furthermore (o x id)(7) = 7.

Write n = (¢ — 1)l + ng for some I,ng € Ny with 0 < ng < ¢. Then
(7718, un™ (o x id)) is a ‘formal’ 7-sheaf on S which contains (S, ur™ (o x
id)). We now replace .; by </ ;j(—loc). The above local analysis at co
shows that this still represents j,1.7;. Furthermore we have dim g /~] =
2hTj + nodso for some ng € [1,...,q — 1]. The asserted inequalities now
follow readily from (1 —¢)deg & = dimg 7 ;. m

PROOF of Theorem 4.5: Let Zj be as in the lemma. Then zj =7 ®
7 ; represents j,i((.7- ® 77 x(w) ®4 K), and Proposition 4.3 yields the
estimate deg H, op+; < hl(k/ij). We rewrite the expression on the right
using the Euler-Poincaré characteristic of coherent sheaves.

The change of the Euler-Poincaré characteristic of a locally free sheaf
of rank r under twisting with a line bundle is given by adding r times the
degree of the line bundle. Therefore we have

hO(75) = W7 5) = X(74) = X(:F) + rdeg 7
0 — W7 ) +rdeg ;.

By the previous lemma, we have deg & j < nj; < 0. Reordering the terms
and using the definition of 6,13 completes the proof of the theorem. g
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Let CT/K denote the curve corresponding to the function field H™,
let g7 denote its genus, ¢ the corresponding map CT — C, and define
the open subscheme CT(v) as ¢ 1(X (v)). We will use ¢ also for the map
C*(v) — X(v). Furthermore, we define 4, (.7) for locally free sheaves
7 on CT/K of rank r and n € —N in analogy to §,. Again one has
(7)) < rmax{0,¢g" + n} <rg™T, for a locally free T-sheaf of rank r on
C/K. Note that the Hurwitz genus formula yields

g =hMg—1) +doo + 1/2(h"/deo — h/dw).

Define nJ = [(h*j +hdw)/(1—q)] < 0. By arguing as above, however

working with C* instead of C, one can obtain the following two results,
which we state without proof:

Lemma 4.9 There exists a locally free T—sheaf;i‘j of rank one on CT /K
representing joongj ®4 K such that
h*j + hdso ~ _2hT

0 L 70 <« _pt < _deg o < hd
g—1 = s TAeTas T

Theorem 4.10 Let .7 be a locally free T-sheaf on Ct over K of rank
r whose restriction to C*(v) represents £*(.7 | x(y)) ®a K. For v # oo,

assume further that .7 is nilpotent at all places above v. Then

deg L (Z8 €5.(2,0,0)) < W (F) 7 (I0*5/(a = ) +hdo) +1, ().
4)

L
In particular, LW ((7*) ® €}, (2,0,0)) is a polynomial in A[z"]
whose degree grows like O(log 7).

Remarks 4.11 (a) If the 2-part of the class group of A is not a cyclic
non-trivial group, one can extend estimate (2) to

deg Hygye(2) < W) + (/0 = D]+ o) + (),

where n = [(h%] + dxo)/(1 — q)] This can be seen by working with the

highest exter10r power of &,# 4 instead of &2 and taking Lemma 3.6 into
account. The results needed from Proposition 5.10 continue to hold with
some obvious modifications.

(b) Recall that by Corollary 3.8, we have

—o L
L(v)(( ) ® < & g, ) = H L(U)((L )|SpecA(v) ®iy<h s — Sv,j)' (5)
x€G
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If all the ]G| = h™T factors in this expressions are asymptotically of the
same size, then one should expect that there exists a constant ¢ such that

degHy j(z) < c+rj/(q—1),

for all j € Ny, as can be seen by dividing the estimate (4) through h™.
Based on (5), in Theorem 4.15 we prove the weaker estimate deg H,, ;(z) <
c+jrh™/(qg —1). Let I/ be twice the exponent of the group Gal(H'/K),
so that h/|2h™. Then for all j divisible by A/, all factors on the right hand

side of formula (5) are identical. Using our estimate for (5:; (.%), this

J
proves

RY.T) hth'j 4+ hds 9
deg Hy py;(2)< e + h—Jr(maX {g‘*‘, ?} + %hdw).

Example 4.12 Let .7 = 15, 4 4 and define .7 to be the 7-sheaf 1ok
if v = 0o and .7 1 i otherwise, where .7, = “c(—v). By the Riemann-
Roch theorem 8, (.7 ) = 0 for all n < 0. Hence Proposition 4.5 gives the
estimate

deg Hyjp+(2) < dy +g— 1+ [2075/(q — 1)] + doo.

In particular, if v = oo and h™ = 1, i.e., h = ds = 1, then by part (a)
of the previous remark we find deg H;(z) < g + [j/(¢ — 1)]. For A = k[t]
this bound was obtained in [9], and it was probably one of Goss’ motiva-
tions to look for logarithmic bounds on the degrees of special values. The
results of loc. cit. also show that our estimate (2) is sharp. See also, [12],
Rems. 8.12.1 and [23].

4.2. Constructing a meromorphic continuation

We abbreviate hoo := 2hT and h,, := 2h™(gy, g, —1) for v # co. For a locally
free A-crystal .7~ on Spec A, define b, ; = L) (7, (2, —jhy, —jhy)) for
j € N. From the definition of L(*) and Theorem 2.16 we see that there
exists ¢ € R, independently of j, such that

b%j = H L<pai7 T)|TdP =p~—s

peMax(A(v)) s=(2,—jhv,—jhv)
for |z|, > c. For each p, the expression L(p,.7 ,T) is a power series
in A[[T%]] with constant coefficient 1. As A is a Dedekind domain and
whence has unique factorization of ideals, expanding the Euler product
yields by ; = > ;< aarl™®|s=(z,—jh,,—jn,) for unique elements a; € A for
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each ideal I of A. Note that a; = 0 if I is not relatively prime to p,.
Regarding the infinite valuation of the ay, it is a consequence of Proposi-
tion 2.15 that there exists a constant M € N such that aﬂeregI € Ay
for all I < A.

For each ideal I of A relatively prime to v, the element

o <I> ifv= o0,
Gu,I = Uy,1 (1°>1) otherwise

is a 1-unit in C,,. If v # oo, then the order of the units of the residue field

of A, g divides h,. Thus for any v, including v = oo, and any ideal I of A

which is prime to v, we have I(1—7hv,—jhv) — ¢/ hf Therefore, reordering

the above expression for b, ; yields

o

_ jh

boj = E ,Z " Z algqjjfv
n=0

I1<A,deg I=n
Lemma 4.13 There exists a constant C,, > 0 such that for olll € N, all
O<k<pand0<j<p
-
”bv,j - bv,j—l—kleqU_m <Cmp .

Proor: Using Corollary 4.6, we choose a constant C' € N such that
degb,,; < Clog, j. Furthermore, we choose M such that |as| < gt desl
for all ideals I of A. Then

C(1+1)

i kp! he
bu,j — J—i—kp Z z " Z ajgfjl (1_91;[)1 )

I<A,degI=n

l
Because gl}f”[ is in Uy (K, ), it follows that |1 — gfplh”\v < ¢, " . Thus

o c(
||bU7j - bv,jJrkleq;m < (qqcn) (+1)(qv ) (+1)qv ,

and the lemma follows if we choose C,, := ¢s'Pi{CM +m+1)(+1)-p'} g

Lemma 4.14 Given m, there exists Cp, > 0 such that for all j,j € N

Hbv,j - bv,j/Hq;m < Cnlj _j/|p-



48 Gebhard Bockle

PROOF: We claim that the constant C,,, from the previous lemma suffices.
First note that ||f + g||c < max{||f||.,||g||c} for any ¢ > 0 because |__|,

is ultrametric. In particular for all 7, 5/, 7/ one has
|1bv,; = bu,jlle < max{[[by,; — by,j|[e; [[bv,j7 — v jrllc}- (6)

We consider an arbitrary pair 7,j’ and let p! be the exact p-power
divisor of j — 5. By (6), we may and will assume that j is the unique
representative in [1, p!] that is congruent to j’ modulo p!. We write

I+1 + I+s5—1

i =j+p" + jap ot jsp

for integers j; € [0,p — 1]. Again by (6), it follows that

Hbv,j - bv,j’”q;m

—b

< max L . _ o . —m.
- nfzo,?,nﬂ ||bv,]+ﬂ1pl+...ﬂn/p’+"’ U Yogtgipt A g P | |Q1) "
By the previous lemma the maximum is taken over positive numbers

which are bounded by C,,p~!, and the desired inequality follows. m

Theorem 4.15 Let .7 be a locally free A-crystal over Spec A. Then for
anyv € C, the L-function L(*) (.7, s), which is defined on some half plane
of Sy, is an entire, essentially algebraic function on S,. Furthermore, the
degrees of the special values H, j(z) € C[z71] grow like O(log j).

PROOF: Choose i € N such that ¢’ is larger then the p-part of h,. By
Proposition 2.27 and the previous lemma, the function L) (.7, s) is entire
on ¢'Z, x {0} C W, for any place v and any locally free 7-sheaf on .7 .

By the discussion above Proposition 2.20, one may view .7 @ .#y, .
as a locally free 7-sheaf in Coh, (X (v), Ak,). Arguing as above, its v-adic
L-function must be entire on ¢'Z, x {0} C W,. Proposition 2.21 now
shows that L®) (.7, s) is entire on ¢ W,. As .7 is locally free the same
holds for .7 (@) as well, and the entireness of L()(.7, s) follows from
Proposition 2.30.

To show that L®) (.7, s) is essentially algebraic, let x be any character

of G = Gal(H"/K). The above result shows that Lgcv) (.7, s) is entire. By
Corollary 3.8 we have

[T E)(Z s0mi) = EOZ 6 25,0 € AT
xi \&Z— v, =] = - '

)
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As the product of entire power series is a polynomial if and only all fac-

(U)(

tors are polynomials, the ij 7, 8y,—;) must be polynomials. By Theo-
rem 4.10, it follows that their degrees grow like O(log 7).
To complete the proof, we will now show that all coefficients of all

special values lie in a finite extension of K. Recall that for |z|, > 1, we

have
(U) T, S, j Z -n Z apl®—7.

I<A,degI=n

This is a power series with coefficients in the finite extension V of K,
independently of n. (The a; are in A, but the [®»—7 are only in V.)
Therefore the coefficients of all polynomials H, ;(z) must be in the finite

extension V of K, and whence L;U) (.7, s) is essentially algebraic. m

Corollary 4.16 Let (.7*) be a bounded complex of A-crystals over an
arbitrary A-scheme X of finite type. Then for any v € C, the L-function
L(U)((£°), s), defined on a half plane of S,, has a meromorphic entirely
algebraic continuation to S,.

PRrooF: This is an immediate consequence of the above Theorem and
Proposition 2.23. n

4.3. Entireness

In Theorem 4.15, we did not just obtain meromorphy of v-adic L-functions
but entireness. The following is a general criterion for a v-adic L-function
to be entire. It generalizes the result given in [22].

Theorem 4.17 Suppose Xieq @5 an affine equi-dimensional Cohen-Mac-
aulay variety of dimension e, cf. [15], IIL.7. Let v be a place of K, and X
an A-scheme. If .7 € Crys(X(v), A) is locally free, then L) (7, s)(=D"
is entire and essentially algebraic on S,.

PROOF: By Proposition 2.9(d), we may assume that X = X,.q. Because
X (v) is the pullback of the affine open subscheme Spec A(v) of Spec A
along the affine morphism f: X — SpecA, it is affine itself. As X (v)
remains Cohen-Macaulay, Corollary 1.47 together with Proposition 4.1
implies that

LO(Z, (2,0,0) 7V = LX (), Z DGV € Al




50 Gebhard Bockle

for any locally free .7~ on X. Corollary 3.8(a) then shows that
LW(F,(2,0,0) — 5,2554)) "D € A[z71] for all j € Ny.

Using Corollary 2.23 one can find locally free A-crystals ¢, m = 0,1,
on Spec A such that

LW(X,.7, s)(_l)eflL(”)(Spec A, To,8) = L™ (Spec A, T, s).

By Corollary 4.6, the special values of the L(*)(Spec A, G mys), m=0,1,
at the negative integers —2h™j are polynomials in A[z~!] whose degrees
grow like O(log j). As A is an integral domain, the degrees of the polyno-
mials L) (.7, (2,0,0) — Sv,zjm)(_l)%l grow like O(log j). The assertion
now follows by an argument analogous to the proof of Theorem 4.15. n

Combining the above results with Corollary 2.12 yields Goss’ conjec-
ture:

Corollary 4.18 Let (v, &) be a Drinfeld-A-module on X and (.# ,ch ;)

an A-motive, each of fized rank. Then the L-functions L) (/X s) and
LW (7 /X,s) are meromorphic and essentially algebraic. If furthermore
Xied s an equi-dimensional Cohen-Macaulay variety of dimension e over
k, then these L-functions raised to the power (—1)¢~1 € {£1} are entire.

4.4. Local L-factors at places of bad reduction

We conclude this section with a somewhat informal discussion of two
applications of the theory of T-sheaves to questions that arise naturally
in the context of L-functions of Drinfeld-A-modules or A-motives. The
first is to local L-factors at places of bad reduction.

We fix a finite extension K’ of K and a Drinfeld-A-module v over
Spec K’ or rank r. Let O’ be the ring of integers of K’ and C’ the smooth
projective curve over k corresponding to K'. It is well-known that at
all but finitely many places of O’ the Drinfeld-A-module ¢ has good
reduction. Let X' C Spec O’ be the exceptional set, let O, C K’ be the
ring of regular functions on Spec O’ X, and let ¢/’ be a Drinfeld- A-module
on O, of rank r with generic fiber .

Example 1.6(b) attaches functorially a 7-sheaf .#Z(¢') to ¢’ whose
fiber at the generic point agrees with .#Z (1). Ignoring the places of X', we
define

LY (4, s) := LW (Spec O, .2 (1)), 5).
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Theorem 4.15 implies that L(Ev) (1, s) is entire and essentially algebraic on
Sy

In analogy with the classical case of L-functions attached to abelian
varieties over number fields, one would also like to have local L-factors
at places in Y. For this we need to quote some work of Gardeyn, [§],
Prop. 1.13, at least in a simplified form for the specific situation at hand.

Proposition 4.19 (Gardeyn) Let @ # U C C' be open and .7 €
Coh (U, A) be locally free. Then there exists a unique (up to isomor-
phism) locally free T-sheaf .7 ™** in Coh,(C’, A) with the following prop-
erties.

(a) The restriction of .7 ™ to U is isomorphic to 7.

(b) If 7' € Coh.(C', A) is locally free and satisfies (a), then there ex-
1sts a unique monomorphism 7' — % which is compatible with the
isomorphism in (a).

The proof of the above proposition with K replacing A, which suffices for
the discussion below, can be obtained by a construction similar to that
of ZJ in the proof of Lemma 4.7.

In the case we are interested, the above proposition yields a 7-sheaf
(Y™ in Coh,(C’, A) which is locally free of rank r. Using Re-
mark 2.17, we define the v-adic L-function of v as

L™ (), 5) := L®)(Spec O', £ ()6, o, 5).

The main consequence of the above results, in particular of Theorem 4.15,
for L) (1, 5) is the following.

Corollary 4.20 The v-adic L-function of 1 is entire and essentially al-
gebraic on S,,.

We still owe the reader a good reason for the above definition of
L®) (s, s), which is yet another result of Gardeyn, cf. [8] Thm. 4.12.
Let p € X and choose a finite place v/ of K which is not below p.
Denote by T,/ (1) be the v'-adic Tate-module of 1), cf. [12], §4.10, con-
sidered as a Galois representation of the absolute Galois Gk, of Ky.
Let Vi (¢) := Ty (¢)) ®4,, Ky be the corresponding K,/[[G'k,]]-module.
Denote by I, the inertia subgroup of Gk, , by Froby the Frobenius endo-
morphism in G, /I, and by Vi/(1)s, the covariants of V(1)) under I,.
Finally denote by H}, (1) the A,-dual of T,y () and by H},(4)% its sub-

module of Ip-invariants.
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Proposition 4.21 (Gardeyn) In the above situation one has

L(p, 2 (4")™,T)~" = det(1 — T%Frob, 'V (¥)1,)
= det(1 — T%Frob, ' |H} ()").

This is precisely what one would expect from the classical situation.

The following tries to shed some light on the action of Frob, on
Vi ()1, - Let p be as above and assume that the reduction W of ¥ at p is
a Drinfeld module over O'/p of rank 1 < 7 < r. At first glance, one might
expect that L(p, .7 ()™ T) agrees with L(p,.# (), T). However, quite
the opposite is true and, considering the classical situation, this should
not come unexpectedly. For example in the case of an elliptic curve E/Q
with multiplicative reduction at a prime [, on has L,(E,T) = (1 £7T),
while at the same time, the action of Frobenius on the ["-torsion points
of the reduction at p, i.e. of the multiplicative group over k, is via the
cyclotomic character.

To describe the action of Froby, on Vi (1)1, we need the following
result due to Drinfeld, cf. [4], which is analogous to Tate-uniformization:
There exists a Drinfeld-module ¢ of rank 7 which has good reduction at
p and an exponential function eZ): Cy — C, such that for any a € A the
following diagram commutes.

0 Ay Cyp . (o 0

ls@(a) l@(a)p iw(a)

0 Ay Cp—2>C, 0.

For every ideal I of A this induces a short exact sequence 0 — ¢[I] —
Y[I] — Ay /1Ay — 0 of Gk, -modules, and therefore a short exact sequence

0 — Vi) — Vir () — Vi (4y) — 0

of Ky[[Gk,]]-modules. One can show that V,(v)5, = Vi(Ap)r,, while
the Galois-action of G, on % is described by the action on Vi(¢). In
particular, L(p, .7 (¢),T) is unrelated to L(p, .7 ()™, T'), affirming our
remark above.

If desired one could also define an L-factor for the places above oo,
which is related to the action of the local Galois group at this place on
the corresponding lattice in Co,. The mystery that still remains is, what
L-factors, if any, one should use at the place v. See [12], introduction to

89, for some discussion of this.
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4.5. On trivial zeroes

Our second application will be to trivial zeros. We first recall the moti-
vation that lead to their definition.

In the classical situation, e.g., for the L-function of a finite Hecke
character over a number field, one has precise formulas for the order of
vanishing at all negative integers. Once these are known, it is easy to get a
hold of the leading term of the Taylor series of the L-function at negative
integers, which is often an algebraic integer with arithmetic significance.

In the function field case one can make the following analogy. Sup-
pose L(”)(s) is the v-adic L-series, say of some 7-sheaf, which is entire
and essentially algebraic. At the negative integer j we have the function
fi(2) := L™W((2,0,0)—s, ;) which is entire in 2. If we write f; as a Tay-
lor series in 27! around z = 1 and are interested in the leading term, the
vanishing order of this series at z = 1 is important. There is no general
formula which describes this vanishing order, and only in some specific
cases this has been computed explicitly, cf. [24]. However via congruences
between f;j(z) modulo p, and the mod p reduction of certain classical
L-functions of characters for certain L(*), Goss is able to define a simple
polynomial factor of f;. It is the zeroes of this factor to which one refers
as trivial zeros. For a more detailed discussion see [12], Ch. 8.

In some examples, we observed that these trivial zeros may also be
explained using our cohomological viewpoint. We outline the idea for

v =00 and LV)(s) = CSpeCA( s). For this we define the functions g¢;(z) :=
L(KA ,z71), j € Np, which are polynomials in z~!. By Corollary 3.8
these are related to (é;?CA((z, 0,0) — sy5) via:

LY, = =50 42,000 =s05)- [[ L(Lsi, (2,0,0) = 50).
XEG’\{l}
(7)

Let C* be the smooth projective curve over k corresponding to H™.
In particular, the places of C* ~\. Spec O are precisely those that map to
the place oo of C under &, cf. Section 3. Using Proposition 4.19, we define
the locally free T-sheaf

F R = (5" € Cohe (CF,K).

Following the proof of Lemma 4.7, one can show that #, Ky has negative
degree. Theorem 1.45 then shows that L(#~ %’;‘,z_l) is a polynomial
in z~1. Clearly we have

Lz, 27Y) = L( 3, 2~ Hdet (id — 2~

v|oo

(LK )w)-
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Hence the local L-factors of % %ajx at the places above oo give visibly rise

to zeroes of L(#~ %J ,z~1). Some local computations for # 4 at the places
above oo show that whenever j is divisible by ¢ — 1, each of the h places
above oo contributes precisely one zero of L(#~ fﬂ 271,

Let hg be the least common multiple of ¢ — 1 and twice the exponent
of the abelian group Gal(H"/K). Then for all j = lhg, | € N, formula (7)
implies that

- 00 h+
L(iﬁ% Z_l) = (CépelA((z’ 0, O) o 51},_7')) ’

which yields at least one linear factor of Cé;?c 4((2,0,0) = s4,5). Such a
factor is also obtained by Goss’ congruence calculations, and the results
obtained above look very similar to [12], Rem. 8.13.10. In fact, we expect
that the above gives a reinterpretation of the trivial zeroes obtained by
Goss as L-factors arising from places above co. We plan to come back to
this in future work.

We also compared our calculations with the results given by Thakur in
[24] concerning the precise vanishing order of zeta-functions at negative
integers near z = 1. This showed that the above method will not be able
to recover Thakur’s finer results.

5. An analytic proof of Goss’ conjecture

Except for the theory of shtukas, cf. [12], Ch. 6, or [20], the concepts dis-

cussed in this section are all from [22], where L-functions of p-sheaves are

investigated analytically. Our main contribution to this is Theorem 5.11

below. We continue to assume that C' is geometrically irreducible over k.
We define

X®AU = ILHX X Speck Spec Av/(pg)

n

and correspondingly, “x®A, = lim OxQp Ay /Pl
n
Definition 5.1 A v-adic ¢-sheaf over A, on a scheme X is a pair & :=

(#,7) consisting of locally free sheaf # on X®Ay, and an “x&®A,-linear
homomorphism

(o xid)*& ——= &,

A v-adic p-sheaf is called lisse if T is an isomorphism.
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Let .7 be any locally free 7-sheaf .7~ on X with A- (or A,-) coefficients.
For v # oo the v-adic completion of .7 gives rise to a v-adic (-sheaf.
For v = oo and X = Spec R affine, one may first replace .7~ by a nil-
isomorphic free 7-module ((R ® A)",7), cf. Lemma 1.4, and then use
Lemma 2.14 to see that ((R® Ax)", 7712) is a 7-sheaf on X over Ay for
any m > 0. Via oo-adic completion, this gives rise to a oco-adic yp-sheaf
attached to .7~ (in a non-unique way!). A more canonical way to attach
an oo-adic 7-sheaf to .7 as above, is to work with co-adic 7-sheaves over
X &Ko and to first pass from .7 to .7 ®4 K, and then to complete this
oo-adically, cf. [21], Rem. 7.2.

Given a v-adic ¢-sheaf & on any scheme X of finite type over k, one
can attach an L-function L(#,T) € 14T A,[[T]] to it as in Definition 1.42.
If X is furthermore an A-scheme, one may use Definition 2.8 to define its
v-adic L-function L)(#,s), and as in Theorem 2.16 and the discussion
preceding Remark 2.24, one can see that there exists a ¢ > 0 such that
L®)(Z,5) is a continuous function from W, to C?*(D,(c)). If v # oo and
if & arises via completion from a locally free 7-sheaf .% on X over A, then
L(7,T) = L(£,T), and the same equality holds for the corresponding
v-adic L-functions if X is an A-scheme. If v = oo, X is affine and &
is attached to .7 via Lemmas 1.4 and 2.14 as above, then L(Z,T) =
L(.7,Tx) and L®)(£, (z,w,y)) = L) (7, (zn™,w, y)) for some m €
N. If one uses the construction .7~ — & from [21], Rem. 7.2, no fudge
factor is needed.

Important for the meromorphy properties of L(#,T) and L®)(Z,s)
are the concepts of a log-convergence and overconvergence and the corre-
sponding uniform notions. We now recall these from [21], §3. For this, let
W be any compact topological space. We assume first that X = Spec R
is affine. Let x1,...,2, € R be a set of generators over k.

Given any element z of R®A,, one can find a sequence (c,) C A,

n € Nj* such that
T = Z " ®cp

QGN"L
where z = (z1,...,2y) and for n = (ny,...,n,) we write 2 for zi* -
...xpm. We say that (cy,) represents z (w.r.t. z).

Definition 5.2 A family (x(w))wew of elements x(w) € R is called uni-
formly « log-convergent if for each w € W there exists a sequence (cp(w))
i A, such that

(a) xz(w) is represented by the sequence (cp(w)), and

(b)

inf,,ew ordy cp(w)

lim inf >

n|—o0 log, |n| ’
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where |n| =ny 4+ ...+ npy,.

The family (z(w)) is called uniformly overconvergent if (c,(w)) as
above ezxists such that

inf,,ew ordy cp(w)

lim inf > 0.

|n|—oc0 |
Remark 5.3 (a) The notions of being uniformly « log-convergent or
overconvergent, respectively, are independent of the choice of a generating
set of R over k, because if 2, ..., 2!, is another such, then the z; can be
expressed as polynomials in the 2, and vice versa.

(b) It is obvious that an overconvergent element is « log-convergent
for all & € R>¢. Also an « log-convergent element is 3 log-convergent for
all 3 € [0, al.

(c) If W is the one-element set {wp} and = z(wy), we will simply say
that x is « log-convergent, respectively overconvergent, if the one-element
family satisfies the corresponding uniform notion. This convention will al-
ways, without further mentioning, be applied when specializing a uniform
notion to a one-element set.

(d) A family of matrices (B(w))wew in M,(R®A,) is called uni-
formly « log-convergent, respectively uniformly overconvergent, if each
component gives rise to such a family in R®A,,.

If # is a v-adic p-sheaf such that & is free over R®A, of rank 7,
then with respect to any basis B of ¢ over R®A,, the operation 7 is
represented by a unique matrix By € M, (R®A,).

Definition 5.4 A family (£ (w))wew of free v-adic p-sheaves of rank r is
called uniformly « log-convergent if one can choose a basis B(w) for each
w such that the family of matrices By, is uniformly o log-convergent.

The family is called uniformly overconvergent if one can choose a fam-
ily of basis (B(w))wew such that (Bsw))wew is uniformly overconver-
gent.

The generalization of the previous definition to an arbitrary base
scheme X of finite type over k is as follows:

Definition 5.5 Let (£ (w))wew be a family of v-adic p-sheaves on X.
This family is called uniformly o log-convergent if there exists a finite
affine cover U; of X such that for each i the restriction of (£ (w))wew to
U; is free and uniformly o log-convergent.

Analogously, one defines the notion of a uniformly overconvergent fam-
ily of v-adic p-sheaves.
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Remark 5.6 (a) Suppose that X = Spec R is affine and that .7 is a
¢-sheaf. By Lemma 1.4, which is Trick (2.2) of [21], there exists a free
7-sheaf .7’ which is nil-isomorphic to .7 . With respect to some basis,
one can represent 7+ by a matrix over R ® A. As elements of R ® A,
are overconvergent in R®A,, the v-adic T-sheaf attached to .7’ is an
overconvergent v-adic ¢-sheaf & whose v-adic L-function is the same as
that of .7, except for a fudge factor if v = o0 — for v = oo see the
discussion below Definition 5.1.

For -sheaves on general X, it seems unknown whether such an &£
always exists. However if one only studies meromorphy properties of L-
functions, the global existence of such an & is not important as one can
always write X as a finite disjoint union of locally closed affine subschemes
X, and, correspondingly, obtain the L-function of .7” on X as the product
of the L-functions of .7 on all Xj.

(b) If (£ (w))wew and (£'(w'))wew: are both uniform « log-conver-
gent, respectively overconvergent families, then so is their tensor product
(Z(w) @ ZNW'")) (w,wyew xw-

The importance of the above notions stems from the following theorem
due to Taguchi and Wan, cf. [21], Thm. 5.2, and [22], Thm. 4.1:

Theorem 5.7 Suppose that X is smooth affine equi-dimensional over k
of dimension e and (£ (w))wew is a uniformly « log-convergent family
of v-adic @-sheaves. Then w— L(Z (w),z" )"V s a continuous map
from W to C*(D,(q,“)). If the family is uniformly overconvergent, then
this assignment gives a continuous map W — C**(D,(0)).

Using Theorem 4.17, the proof of [22], Thm. 4.1, yields:

Corollary 5.8 The assertion of the above theorem holds under the weaker
assumption that X,eq s affine, Cohen-Macaulay and equi-dimensional
over k of dimension e.

In [21], the above was applied to prove meromorphy for the v-adic L-
function of a v-adic p-sheaf in the case A = k[t]. The idea is, to p-adically
interpolate (#7®"), ey by a uniformly overconvergent family of ¢-sheaves
(Z, (w))wez, of rank 1. Then the global v-adic L-function of any v-adic
p-sheaf & is the map

w i L(£ ® Zo(w),27h).

For A = klt], so that & is simply the Carlitz 7-sheaf #°, such a family is
given explicitly in [21].
Recall that h, = 2h™ if v = co and h, = 2h™(gy g, — 1) otherwise.
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Definition 5.9 For v a finite place, we define &7, to be the v-adic -
sheaf on Spec A(v) associated to 77®"/hes .

The construction at oo requires more effort. However once &7, is
constructed, it is as simple to handle as all the other 27,. We need the
following proposition whose proof will be given later.

Proposition 5.10 There exists a line bundle =~ on Spec A x C and a
morphism

71 (0 xid)* 7 — 7 (heo/doo(Spec A x {oo})),

which satisfies the following conditions:

(a) The restriction of & = (&, T) to Spec A® A is isomorphic to 7.
(b) If Z« denotes the completion of & at 0o and if we set Tog := wﬁow/dw%,

then & is a lisse co-adic p-sheaf.

Our main result concerning the &7, is the following:

Theorem 5.11 There exists a family (év(w))wezp of free v-adic p-
sheaves of rank 1 which is overconvergent and such that for each n € No
the local L-factors of %™ and of &,(—n) agree for all p # p,.

The proof will be an immediate consequence of Theorem 5.18. Before
giving details, we will derive various consequences for the meromorphy
and holomorphy of the v-adic L-functions of v-adic y-sheaves:

Corollary 5.12 Suppose X is a scheme of finite type over A and & is a
v-adic p-sheaf on X which is a log-convergent, respectively overconver-
gent.

(a) If Xiea is affine Cohen-Macaulay and equi-dimensional of dimension
e over k, then the function LW (£, 3)(*1)5_1 is a continuous map from
W, to C*™(Dy(q, %)), respectively to C**(D,(0)).

(b) For general X, the function L) (&, s) maps W,, continuously into the
quotient field of C*™(Dy(q,®)), respectively that of C**(D,(0)), with
the further property that there exists a neighborhood of oo, on which
the function is holomorphic and takes values near 1.

By Remark 5.6 and Corollary 2.12, this gives a second proof of Goss’
conjecture.

If in part (a), one assumes X to be smooth (or at least an affine com-
plete intersection), then the corollary can be obtained without making
use of any of the results of Sections 1 or 4. It is a consequence entirely of
Theorem 5.11 and the work of Taguchi and Wan, [21] and [22].
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PrOOF: We only give the proof in the a log-convergent case and for
v # 00, the other cases being analogous. Note that we may clearly assume
that X = X,eq, as passing from X to X,eq does not affect L) (&, s).

Suppose first that X = Spec R is affine, Cohen-Macaulay and equi-
dimensional of dimension e over k, and let f: X — Spec A be the struc-
ture morphism. Theorem 5.11 implies that the family (f*év(w))wezp is
uniformly overconvergent on X. Thus (£ ® f*@v(w))wgzp is uniformly
a log-convergent on X. Therefore by Corollary 5.8, the following map,
which we denote by a, is continuous:

W s L(i® f*év(w)yzfl)(*l)e—l : Zp N Can(Dv(q;a))'

As remarked, when defining the v-adic L-function of a v-adic yp-sheaf,
there exists ¢ > 1 such that L()(#,s): W, — C*(D,(c)) is continuous.
The proof, which is essentially that of Theorem 2.16, shows that near
00, this function takes values near 1. Therefore also L(®) (#, s)(*l)c_1 is
a continuous function from W, to C**(D,(c)). Hence the composition

w— (hyw, w, — () Z (2w, (-1t
Z, (how,0) Wv( Y) (Z,(zw,y)) Can(Dy(c),

denoted o', is a continuous map Z, — C**(D,(c)).

Theorem 5.11 together with Definition 5.9, Lemma 3.5 and Corol-
lary 3.8 shows that the maps a and a’ agree on —Nj. As this set is
dense in Z,, by continuity one has a = a’. Thus we have shown that
LW (£, )Y when restricted to hyZy, x {0} is a continuous map to
C*(Dy(q, ®)). Now one can follow the proof of Theorem 4.15 to complete
the proof of part (a).

For (b), we first note that one may pass from X to Xq without
changing neither the associated wv-adic L-function nor the property of
being « log-convergent. In this case, we may break up X, as in the proof
of Proposition 1.32, into locally closed smooth affine schemes X/ over k
so that LW (X, £, s) = [[; LW (X!, #,s). The assertion of (b) is now a
direct consequence of (a). m

As a preparation for the proof of Theorem 5.11, we first need to es-
tablish some properties of the p-sheaves &7,,.

Lemma 5.13 For a place v # o0, the v-adic p-sheaf &, is lisse over
Spec A(v).
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ProOOF: To show that 75, is an isomorphism, it suffices to do so over
each fiber Specky, of Spec A(v), and it suffices to do this for an iterate of

T, . From Corollary 3.7(a) we know that T‘i” = p®<.2h* on the fiber at p.

For any p different from p,, it follows that Tf"v = pSoho ig a 1-unit of K.
Hence 7., is an isomorphism. n

PROOF of Proposition 5.10: Let 1y : A — O™{7} be the Drinfeld-Hayes
module from Section 3. To understand the behavior of 2# 4 near oo, we
will make use of the shtuka attached to g, which we construct following
[12], Ch. 6. In the terminology of [20], this shtuka will be a pure Drinfeld-
Anderson sheaf of rank 1 with pole co and dimension 1 over Spec O™. This
we push down to a family on Spec A, and then take its highest exterior
power. The result will be (&, 7). It will then not be difficult to establish
the properties claimed in the proposition.

For the first construction, one can follow [12], §6.2, Data B — Data
A, where L is to be replaced by O*, Ly by k£ and R by A. One obtains
sheaves .7;, i € Z, on Spec O" x C and monomorphisms

Bi: Fi — Fipy1 and  «;: (0 xid)*. 7 — Fiqq.

Furthermore this construction shows that restricted to Spec O™ x Spec A,
one has 3; = idy, and a; = 75,, independently of i.

Moreover, this construction is compatible with the base change map
igy: Spec OT/P — Spec OT for P € Max(O™). The results in [12], §6.2,
are directly applicable to i%;’ﬁ, z}’%ﬁi and i?iai. This yields the following;:

(a) The sheaves .7 are locally free of rank one on Spec O x C.

(b) Define oo : Spec Ot — Spec Ot x C' : s — (s,00), using Spec O+ —
Specks — C. Then there is a locally free rank one sheaf %1 on
Spec O such that Coker(;) & Yoox Zi+1. In fact, by the construction
alluded to above one can identify 7 with g0+, independently of
i.

(c) Let &: Spec O — Spec A — C be the map from Section 3 and define

vz: Spec O — Spec O x C': s +— (s,£(5)).

Then there is a locally free rank one sheaf Z;,1 on Spec OT such that
Coker(a;) = vz4 #it1-

(d) The map Bitdo—1---Bi+10i: % — Fitd,, identifies .74 with the
sheaf .7 (Spec OT x {oo}).

(e) For each P € Max(O™), the Euler characteristic of i3-70 is zero.
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We define Z; to be (A2"7(¢ x ide). (% & .7%)). By functoriality, the
B; induce monomorphisms f}: <; — <1, and the o; monomorphisms
o i (o xid)*¢; — <iy1. The above description of .% on Spec OT x

Spec A yields that 3, = id» and o} = 7> on Spec A x Spec A. It is now
straightforward to translate the above properties to the <; to obtain.

(a’) The sheaves ¢; are locally free of rank one over Spec A x C.
(b”) The sheaf #} | defined by the short exact sequence

/
> ] > !
0— i — Ciy1 — %41 — 0

is supported on Spec A x {oo}. If ps: Spec A x C' — Spec A denotes
the canonical surjection, then poox 7, | is locally free on Spec A of rank
2h.

(c’) Let I be the kernel of A® A — A and define 7/, as

Spec(A ® A)/I" — Spec A ® A — Spec A x C.
Then there is a locally free rank one sheaf %, on Spec(A® A)/I">
such that Coker(aj) =~y 77 .

Lemma 5.14 Suppose we are given a short exact sequence of sheaves

00— v —0—0 (8)

on Spec AxC, where &', &/ are line bundles, < is supported on Spec A x
{o0} and poos @ is locally free on Spec A of rank d. Then d|d and under
the left inclusion of (8), one has

.:/f':,y’( 4 (Spec A x {oo})).

(o)
PRrOOF: We induct on the rank of & over Spec A. The assertion is local
near oo, so we choose an affine Spec A’ C C which contains oo. Let

0—L —L-—Q—0

be the short exact sequence of A ® A’-modules corresponding to the re-
striction of (8) to Spec A® A’ and let po, be the maximal ideal of A’ that
gives rise to oo. If we tensor this short exact sequence with ks = A’ /poo
over A’, we obtain the right exact sequence

L'®a koo — LOa koo — QRu koo — 0

on the Dedekind domain A®ks (note that C'is geometrically irreducible).
The module L ® 4/ ko is projective of rank one over A ® k.. Therefore it
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is either isomorphic to its quotient Q ® 47 koo, or the quotient has finite
support. The latter is absurd, since @ is projective on A of rank d. It
follows that the morphism L' ® 4/ koo — L @4/ koo is the zero map, and
hence that pooL D L.

Define Q1 by the short exact sequence 0 — L' — pooL — Q" — 0.
Comparing this sequence to the short exact sequence with L as its middle
term, the snake lemma yields the short exact sequence 0 — Q' — @Q —

L/psoL — 0, and hence @’ is projective over A of rank d' = d — d. B
the induction hypothesis, we have do|d’ and L' = pgo/d“’ (pooL), and the

lemma easily follows. m

By the lemma, the map ] identifies 7741 with (21 (Spec A x {o0}))
where h = h/d... By (c¢’) above, the cokernel of

af: (0 x1d)*G; — Ciy1 = Ci(2h(Spec A x {0}))

has its support away from Spec A x {oo}. So if we complete along Spec A x
{00} and specify i = 0, we obtain:

2hl ( de)
al

(
Therefore with .« := %y and 7 := «

G0)oo — (C0) oo
ot

the proposition follows. n

Lemma 5.15 The sheaf 7, is free of rank one over Spec A(v)®A, for
any place v.

PROOF: Note that the radical of A(v)&A, contains A(v)®p,A,, cf. the
characterization of the radical of a ring given in [17], p. 3. Thus by
Nakayama’s Lemma, [17], Thm. 2.2, it suffices to show that %, modulo
A(v)®py A, is free of rank one over A(v) ® k.

By Theorem 2.7, the reduction modulo A(v)®p, A, of the lisse p-sheaf
&, corresponds to a Galois representation p: Gal(K*P/K) — k} such
that for all p # p,, the element p(Froby) is the mod p,-reduction of the

eigenvalue of Tif) acting on i,%%. By Corollary 3.7 and the definition of
hy as 2h™(gy 8, — 1), we have

p(Eroby) = p*v#e (mod p,) = (p™2* (mod py)) e~
= (g (mod py,))\%s = = 1,

where g,’g € A is the unique positive generator of the ideal p2h+. Hence by
the Cebotarov density theorem, p is the trivial representation. Via the
correspondence in Theorem 2.7, the 7-sheaf g, c. 4() 1, also gives rise to
the trivial Galois representation. Appealing to the uniqueness statement
of Theorem 2.7, the result follows. n
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Proposition 5.16 There exists for each v an element u, € A(v) ® A,

such that

(a) uy —1 € A(v) @ ppAy.

(b) The local L-factors of Z, and of (A(v)®Ay, uy(o x id)) agree for all
p # po-

ProOOF: We first consider the case v # 0o. Let & be a locally free sheaf
on Spec(A @ A) such that & @ 7»®"w/he is free of rank r. Define & as
the 7-sheaf (<,0). Let L, be the A(v)®A, module corresponding to the
completion of ..

The previous lemma and the choice of & imply that reduction modulo
A(v)®pyA, yields

Ly (mod A(v)®p,A,) © (A(v) @ ky) =2 (A(v) @ k)P

As C' is geometrically irreducible, A(v) ® k,, is a Dedekind domain. Thus,
by [3], § 7.4, the module L, (mod p,) must be free of rank r — 1. Arguing
as in Lemma 5.15, this implies that L, is free of rank r — 1. Hence with
respect to a suitable basis we may represent 7,4, as a diagonal matrix
M with entries (u,,0,0,...,0) along the diagonal.

Furthermore, -~ was chosen so that & @& &7®hv/he ig free of rank

r. Therefore, we can represent 7 as an r X r-matrix M with entries in
A ® A. The same matrix also represents 7, ¢, . Hence we can find N €

GL,(A(v)®A,) such that

0 ...
NMN =M =10 0...|,

where N7 is obtained from N by acting with ¢ x id on all entries. This
implies that

NIMN=MNT °N=| 0 ... 0

for suitable c11,...,c1n € A®A,. We define u, := c1,1 and note that
Uy =Tr(M'N°N)=Te(NIMN)=Tr(M) c A® A C A(v) ® A,.

Lemma 5.17 For a € M,(A(v)®A,) and 3 € GL.(A(v)®A,), define
v-adic p-sheaves

7 = ((A(v)®4,)", a(o®id)), ¢ = (A(v)®A,)", B~ B(c&id)).
Then for any p # p, one has
L(p, 2, T) = L(p, 2", T).
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PRrROOF: Fix p # p, and denote by & the reduction of o modulo p&A,.
One defines 3 and 3% analogously. Note that &, § and 3° are matrices
over kp®Av = ky, ® Ay, as kp is finite over k. Furthermore note that
in Definition 1.40 of the local L-factor there is no need to pass to K-
coefficients whenever .7, is already free over k; ® A,. It follows that

L(p. 7", )™ % det(1 ~Taf~ ) = det(1 ~ Thaj ™),

where for the second equality we use that conjugation by the A,-linear
operator 3 does not change determinants computed over A,.

Because 3 is an isomorphism, <" = ((A(v)®A,)", BaB~7 (c®id)) is
isomorphic to ¢, so that both have the same local L-factor at p. But the
inverse local L-factor of 2" at p is det, (1 — TSaB7), and hence the
assertion of the lemma is shown. g

The lemma shows that &#, & &, and

) C11---Cln
(AWRA), [ 0 ... 0 | (0 xid)

have the same local L-factors. Therefore &, (—1) = (A(v)®Ay, uy(o x
id)) and &, must have the same local L-factors. Following the proofs of
Lemma 5.13 and Lemma 5.15, this shows that 22, (—1) is lisse and that
its reduction modulo A(v)®p,A, is isomorphic to Ige. 4 4, This finally
shows that u, = 1(mod A(v)®p,A4,), and concludes the proof for v # oco.

If v = oo, we choose an affine subscheme Spec A’ of C' which con-
tains 0o. Let po, be the maximal ideal of A’ corresponding to oco. The
above considerations apply almost verbatim to the restriction of & from
Proposition 5.10 to Spec A x C’. We leave the details to the reader. m

Theorem 5.18 The family 7,(w) := (A(v)®A,,uy" (0 X id))wez, is a
uniformly overconvergent family of v-adic p-sheaves such that év(—n)
and Z$"™ have the same local L-factors.

PROOF: By the previous proposition and Lemma 3.5, only uniform over-
convergence remains to be shown. Tracing through the definitions of uni-
form overconvergence, one can see that we need to verify that (uy)wez,
is a uniformly overconvergent family of elements of A®A, in the sense of
Definition 5.2. For this, we write u, — 1 as a finite sum 22:1 T Qb €
A(v) ® pyAy. Without loss of generality, we may assume that the x; form
a set of generators of A(v).
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We use the binomial theorem to rewrite u} as

o0

=3 () (Swen)
n=0 %
_ o (W i1 i i1 i n
_Z<n> Z i @b b <i1,...,il>
n=0 i1+...+i=n
Cyee () (Y ),
ni,...,n;) \n|
neNp
With en(w) := (,, 2 ) (12017 ... b, it follows immediately that
vv(c’n(’w)) > 1 independently of w,
n

and the desired results follows. n
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