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Introduction

Let C be a smooth projective curve over a finite field k with a marked
point ∞ and let A be the ring of regular functions on C r {∞}. Further-
more, let C∞ be the completion of an algebraic closure of the function
field K of C at a place above ∞. In this situation Goss attaches a global
L-function to any family of Drinfeld-A-modules via an infinite Euler prod-
uct on the domain S∞ := C∗∞ × Zp, cf. [11]. As in the classical situation,
it converges on some ‘half plane’ of S∞. A similar procedure yields for
any closed point v of C and any family M of A-motives a global L-
function L(v)(M , s), which converges on a half plane of a suitably defined
domain Sv, [12], § 8.

The theme of the current article is to derive some consequences for
such global L-functions from the theory of crystals over function fields,
introduced by R. Pink and the current author in [2]. This theory en-
compasses A-motives as defined by Anderson, [1] — indeed any family
of A-motives on a scheme X is represented by an A-crystal on X. Fur-
thermore, for any compactifiable morphism f : Y → X, there is a functor
‘direct image with compact support’ from A-crystals on Y to A-crystals
on X, at least in the derived context. For such f a trace formula is given
in [2] for L-functions of crystals. It is this trace formula and the relations
between Goss’ global L-functions and L-functions of A-crystals which we
will mainly exploit.

Slightly generalizing Goss’ definition, we obtain for any A-scheme X of
finite type over k, any A-crystal F on X and any closed point v of C a v-
adic L-function L(v)(F , s) as an Euler product which converges on some
half plane of Sv, cf. Definition 2.8. Our principal goal is to prove that any
such function has a meromorphic, essentially algebraic continuation to all
of Sv, in the sense of [12], §8. Along the way, we will prove some interesting
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Departement Mathematik, ETH Zentrum, 8092 Zürich, Switzerland, e-mail:
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results on special values of v-adic L-functions at negative integers −n.
Namely they can be written as a quotient of polynomials whose degrees
grow logarithmically in n. Furthermore, we will obtain a criterion for such
an L-function to be entire, generalizing [22]. In particular, all these results
apply to the v-adic L-function of any family ψ of Drinfeld-A-modules with
everywhere good reduction.

The existence of such a meromorphic continuation was conjectured
by Goss in [11], and some special cases were treated by him in [10]. For
A = k[t], the conjecture was completely solved by Taguchi and Wan,
cf. [21]. The first general proof was sketched to us by Goss and evolved
during a stay of the present author at the Ohio State University. It is
based on some v-adic measure theory where at a crucial point our results
on special values of L-functions at negative integers are needed.

In this article we present two proofs of the above conjecture: An alge-
braic one that is again based on our analysis of special values at negative
integers, and an analytic one which uses the results in [21]. Our first proof
is similar to that sketched to us by Goss. However it completely avoids
any kind of measure theory and only uses a basic p-adic interpolation
procedure of certain special values.

Our second proof, which is independent of our results on special values,
takes place in the framework of [21], and is therefore analytic in nature. It
also yields results for α-meromorphic v-adic ϕ-sheaves over an A-scheme
X, cf. loc. cit., which appear not to be accessible from a purely algebraic
viewpoint.

There are further conjectures by Goss, cf. [14], on v-adic L-functions
attached to families of A-motives with everywhere good reduction, which
can be viewed as analogues of the generalized Riemann hypothesis for
number fields, and are concerned with the zeroes of v-adic L-functions.
Whether the cohomological methods used here will eventually contribute
to these conjectures seems unclear at the moment. A major obstacle is
that the cohomological theory of crystals possesses no duality and only
the first three of the usual six functors Rf!, f

∗,⊗, f∗, f !,Hom are avail-
able. Another problem is that Rf! does not preserve purity of weights.
Therefore, while we can express special values of v-adic values at negative
integers via an endomorphism acting on a cohomology module, we have
no control over the v-adic valuations of the eigenvalues of this action.

Independently of [2], in recent work, [6,7], M. Emerton and M. Kisin
developed a theory that has features dual to the theory of crystals over
function fields. It seems conceivable that one could also use their formal-
ism to obtain the results proven here.

We outline the content of this article: Section 1 reviews some basic
results of the theory of crystals over function fields including the main
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properties of the L-function L(G , T ) of a general crystalG . The follow-
ing section is dedicated to the definition of v-adic L-functions L(v)(F , s)
for an A-scheme X and a crystal F on X, and it discusses various of
its properties. Along the way, we recall Goss v-adic exponentiation, we
introduce twisting of L-functions by characters and we rephrase Goss’
definition of meromorphy and entireness. As a first application of the co-
homological theory of [2], we reduce Goss’ conjecture to the case where
F is a ϕ-sheaf (in the terminology of [21], Sect. 1) on the base SpecA,
cf. Corollary 2.23.

In the subsequent section, we study the L-function of Drinfeld-Hayes
modules, which are the generalization of the Carlitz module to rings A
other than k[t]. This is motivated by the work of Taguchi and Wan in [21],
where they show for A = k[t] and j ∈ N, that L(v)(F , (z,−j)) can be
expressed in terms of the L-function of the crystal F ⊗C ⊗j , whereC is
the crystal attached to the Carlitz module. Let h+denote the narrow class
number of A. Then for general A, we can relate in a similar manner the
value Hv,2jh+(z) := L(v)(F , (z,−2jh+)) to the L-function of the crystal
F twisted by the j-fold tensor power of a suitable rank one ϕ-sheaf P ,
cf. Theorem 3.8.

In Section 4, we give our first proof of Goss’ conjecture for general
A, which will be of a purely algebraic nature: Using the cohomological
methods of [2], we show that for a crystal F on SpecA and any closed
point v of C, the functions Hv,2jh+(z) are polynomials in A[z−1] whose
degrees grow like O(log j), cf. Corollary 4.6. Some simple estimates will
then allow us to construct a continuous function on Zp with values in
the Fréchet space of entire functions on P1(Cv) r {0}, which interpolates
the polynomials Hv,2jh+(z) ∈ A[z−1] at −2h+j. Goss’ conjecture is an
immediate consequence, cf. Corollary 4.16.

Concerning entireness of global L-functions, we prove the following
generalization of [22]: Suppose X is an affine equi-dimensional Cohen-
Macaulay scheme of dimension e, with a structure morphism to SpecA,
and F is a crystal which can be represented by a ϕ-sheaf. Then for
any place v of C, the function L(v)(F , s)(−1)e−1

extends to an entire,
essentially algebraic function on Sv, cf. Theorem 4.17. We end Section 4
by applying our methods to obtain results on Euler factors at places of
bad reductions and on trivial zeros of L-functions.

For the second, the analytic proof, we construct in Section 5 a uni-
formly overconvergent family of v-adic rank one ϕ-sheaves which interpo-
lates the tensor powers of the τ -sheaf P above, cf. Theorem 5.11. This
is suggested by our computations of global L-functions attached to ϕ-
sheaves constructed from Drinfeld-Hayes modules. The approach in [21],
together with some of the infrastructure developed in this article shows
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that for any α-meromorphic v-adic ϕ-sheaf over an A-scheme X, the re-
sulting v-adic L-function converges on a half plane ‘of radius q−α around
∞v’. For α =∞ one obtains a second proof of Goss’ conjecture.

Acknowledgments: It is a great pleasure to thank D. Goss for some
discussions during a stay of mine at the Ohio State University in spring of
1999, where he stressed the importance of obtaining logarithmic bounds
and explained his ideas about the relation of measures and global L-
functions, and furthermore for his continuing interest in this project.
Many thanks also to R. Pink for various comments and suggestions to
improve the original manuscript, and to F. Gardeyn for some helpful dis-
cussions related to his work.

Notation

• Let p denote the characteristic of the finite field k and q its order.
• By X, Y , etc., we denote schemes of finite type over k. Their absolute

Frobenius endomorphism with respect to k is denoted by σX , σY , etc.
When it seems redundant, the subscripts are often omitted. For x ∈ X
denote by kx its residue field.
• For a field L we denote by Lsep and Lalg a separable, respectively

algebraic closure.
• We fix a smooth projective curve C over k and a closed point ∞ on

it.
• The ring of regular functions on Cr{∞} is denoted by A, its fraction

field by K, and its set of maximal ideals by Max(A).
• For I a non-zero ideal of A, let deg(I) := dimk A/I denote its degree.
• For a closed point v of C, the maximal order in the completion Kv of
K at v will be Av, its residue field kv, and we set dv = [kv : k] and
qv = card(kv).

• If v is a finite place, pv will denote the maximal ideal of A correspond-
ing to v, and if p = pv, we also write kp for kv and dp for dv.

• By | . |v we denote the norm on Kv, which takes the value q−1
v on any

uniformizing parameter ofKv, and by vv : K∗v −→→ Z the corresponding
valuation.

• By Cv we denote the topological closure of an algebraic closure of Kv.
We fix an embedding ιv : A→ Kv → Cv.
• For any place v of K, let A(v) be the ring of regular functions on
C r {∞, v}.
• An A-scheme X will be a scheme over SpecA. If f : X → SpecA is

the corresponding morphism of schemes, we define X(v) ⊂ X to be
f−1(SpecA(v)) and denote by f(v) : X(v)→ SpecA(v) the restriction
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of f . For p ∈ Max(A), we denote by Xp → Spec kp the pullback of
X → SpecA along Spec kp → SpecA.
• For any ring R of characteristic p, let R{τ} denote the non-commuta-

tive ring of polynomials over R in the indeterminate τ subject to the
non-commutation rule τr = rqτ .

1. Crystals and their L-functions

In this section, we recall various parts from the theory of crystals over
function fields as developed in [2]. Except for Theorem 1.38, Corollary 1.47
and the discussion of the Frobenius twist, which is a useful tool when
studying L-functions, all results are from [2].

Throughout this section, B will denote a regular noetherian ring. In
the applications we will specialize B to regular rings constructed from A
or k.

1.1. Basic Notions

Definition 1.1 A coherent τ -sheaf over B on a scheme X is a pair F :=
(F , τ) consisting of a coherent sheaf F on X ×SpecB and an OX ⊗B-
linear homomorphism

(σ × id)∗F τ // F .

We often simply speak of τ -sheaves on X. The sheaf underlying a τ -sheaf
F will always be denoted F . When the need arises to indicate on which
sheaf τ acts, we write τ = τF .

On any affine chart SpecR ⊂ X a τ -sheaf over B corresponds to a
finitely generated R ⊗ B-module M together with a σ ⊗ id-linear homo-
morphism τ : M →M . We will occasionally use the notation (M, τ) and
call it a τ -module. EquivalentlyM may be regarded as a R{τ}⊗B-module
which is finitely generated over R⊗B.

By Cohτ (X,B) we denote the category whose objects are the coherent
τ -sheaves on X over B, and whose morphisms are those sheaf homomor-
phisms which are compatible with τ . Clearly this is an abelian B-linear
category.

There will be one instance when the base field k we work over will
be an issue. To indicate the ground field k in the nomenclature, we will
speak of coherent τ -sheaves on X over B relative to k.
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For a τ -sheaf F , we define the iterates τn of τ by setting inductively
τ0 := id and τn+1 := τ ◦ (σ × id)∗τn. They are OX ⊗B-linear homomor-
phisms

(σn × id)∗F τn // F .

Definition 1.2 A τ -sheaf F is called nilpotent if and only if τnF van-
ishes for some n > 0.

A homomorphism of τ -sheaves is called a nil-isomorphism if and only
if both its kernel and cokernel are nilpotent.

It is shown in [2], Chap. 2, that the nil-isomorphisms form a saturated
multiplicative system, denoted byS , of Cohτ (X,B). One can thus make
the following definition.

Definition 1.3 The category Crys(X,B) of B-crystals on X is the lo-
calization of Cohτ (X,B) with respect S .

We call a τ -sheaf F (locally) free, if its underlying sheaf F is (locally)
free. We call a crystal (locally) free, if it may be represented by a (locally)
free τ -sheaf. Because of the following rather trivial result, for crystals over
an affine base these notions are equivalent.

Lemma 1.4 Suppose that X = SpecR is affine and F is a τ -sheaf on
X. If F is locally free, then the crystal associated to F can be represented
by a τ -sheaf whose underlying module is free over R⊗B.

Proof: This is essentially Trick (2.2) of [21]: Suppose that F is repre-
sented by the τ -module (P, τP ), where P is projective and finitely gener-
ated over R⊗B. Choose any finitely generated projective module Q over
R⊗B such that P ⊕Q is free, and define τQ = 0. Then (P ⊕Q, τP ⊕ τQ)
represents F and has an underlying module which is free.

Remark 1.5 An algebraic ϕ-sheaf in the terminology of [21] is a locally
free τ -sheaf in our terminology.

Example 1.6 (a) An A-motive on X of rank r is a pair (M , chM )
where M ∈ Cohτ (X,A) is locally free of rank r and chM : X → SpecA
is a morphism of schemes such that the following conditions hold:

(i) The sheaf Coker((σ × id)∗M τ→ M ) vanishes on the complement of
the graph of chM inside X × SpecA.
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(ii) For every geometric point ix̄ : x̄ ↪→ X, such that x̄ is the spectrum of
an algebraically closed field, the τ -sheaf i∗x̄M is a Drinfeld-Anderson
A-motive of rank r in the sense of [20], Def. 5.1.

The pair (M , chM ) is also referred to as a family of A-motives on X of
rank r, chM is called the characteristic of M . In the terminology of [1],
condition (ii) can be expressed as follows. Choose t ∈ A non-constant, so
that k[t]→ A is finite flat of rank r′. Then i∗x̄M is a t-motive of rank rr′

which admits multiplication by A.
Note that if X is reduced, then it is neither necessary to specify the

map chM , nor to require condition (i), as in this case condition (ii) implies
that the projection pr1 : X×SpecA→ X induces an isomorphism between
the reduced induced subscheme attached to the support of Coker((σ ×
id)∗M τ→ M ) and X. Thus one can define chM : X → SpecA as the
inverse of this isomorphism composed with pr2 : X × SpecA → SpecA.
This defines the unique chM which satisfies (i).

(b) For a line bundle L on X, denote by Endk−v.sp.(L ) the set of
endomorphisms of L as a k-vector space scheme on X. A Drinfeld-A-
module (ψ,L ) of rank r on X is then defined as follows: ψ is a ring map
A→ Endk−v.sp.(L ) subject to the condition that for all points i : x ↪→ X
the induced map

ψx : A→ Endk−v.sp.(i∗L ) ∼= kx{τ} : a 7→ ψx(a) =
∞∑
i=0

αi(a)τ i

satisfies αi(a) = 0 for i > r deg(a) and αr deg(a)(a) ∈ k∗x.
To define the A-motive (M (ψ), τ) on X of rank r attached to (ψ,L ),

we denote by τ ′ ∈ Endk−v.sp.(Ga) the Frobenius on Ga relative to X.
Define

M (ψ) := Homk−v.sp.(L ,Ga).

This is naturally a quasi-coherent sheaf of OX -modules. The action of
a ∈ A is defined as right composition with ψ(a), and the action of τ as
left composition with τ ′. This defines an OX ⊗A-linear map τ : M (ψ)→
(σ × id)∗M (ψ), i.e., it makes (M (ψ), τ) into a τ -sheaf M (ψ). The sheaf
M (ψ) is in fact locally free of rank r on X × SpecA, cf. [5].

We define chψ : X → SpecA as the scheme map corresponding to the
ring map

A→ EndX(Lie(L )) ∼= Γ (X,OX)

induced from ψ, where Lie(L ) is the tangent space to L along the zero
section. The pair (M (ψ), chψ) is an A-motive of rank r. The verification
of condition (ii) is given in [1], (0.2), (0.3), (0.4). The verification of (i) is
an easy consequence.
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In the special case where A = k[t], X = SpecR and ψ is of standard
form, cf. [4], §5, the above can be made more explicit. Here ψ is simply a
ring homomorphism

ψ : A→ R{τ} : a 7→ ψ(a) =
r deg(a)∑
i=0

αi(a)τ i,

where αr deg(a)(a) is a unit in R for all a ∈ A. Let M(ψ) be the module
underlying M (ψ). Then M(ψ) = R{τ} where R acts by multiplication
on the left, a ∈ A acts via multiplication on the right with the element
ψ(a), and τ acts by multiplication on the left. As the leading coefficient
of ψ(t) is a unit in R, the module M(ψ) is free over R ⊗ A ∼= R[t] with
basis τ0, . . . , τ r−1. The map chψ is induced from the ring map A → R :
a→ α0(a).

1.2. Functors

In [2] various functors were constructed on crystals, namely pullback of
τ -sheaves, tensor product, extension by zero and direct image with com-
pact support. We will discuss them in this order. For details, we refer to
Sections 3 and 5 of loc. cit. To describe these functors, we fix a morphism
f : Y → X of finite type, an open immersion j : U → X and a closed
complement i : Z → X of j. Also let I be the ideal sheaf of Z.

A word on notation: For n ∈ N, we write I n for the n-th power
of I . For line bundles L we usually write L ⊗n to denote their n-th
power and L −1 to denote their inverse. By pr1 : X × SpecB → X, the
projection onto the first factor is denoted. For a sheaf F on X ×SpecB,
we abbreviate by I nF the subsheaf pr∗1(I

n)F of F .

Definition 1.7 For any τ -sheaf F on X over B we let f∗F denote the
τ -sheaf on Y over B consisting of the sheaf (f× id)∗F and the composite
homomorphism

(σ × id)∗(f × id)∗F
τ(f∗F ) // (f × id)∗F .

(f × id)∗(σ × id)∗F
(f×id)∗τF

44iiiiiiiiiiiiiiii

This defines a B-linear functor f∗ : Cohτ (X,B) −→ Cohτ (Y,B) which
induces a functor f∗ : Crys(X,B) −→ Crys(Y,B) on crystals.

By Cb(Crys(X,B)) and C−(Crys(X,B)) we denote the category of
bounded, respectively bounded above complexes of crystals on X over A.
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The corresponding derived categories are denoted Db(Crys(X,B)) and
D−(Crys(X,B)), respectively.

Theorem 1.8 (Pullback) On crystals, the functor f∗ is exact and the
left derived functors Lif∗ vanish for i > 0. Hence there is an induced
exact functor

f∗ : Db(Crys(X,B)) −→ Db(Crys(Y,B)).

For later applications, we quote the following simple lemma.

Lemma 1.9 The natural transformation τ : σ∗XF → F on Cohτ (X,B)
between the functors σ∗X and id induces an natural isomorphism between
the same functors considered on Crys(X,B).

Definition 1.10 For τ -sheaves F andG on X over B, we let F ⊗G
denote the τ -sheaf on X over B consisting of the sheaf

F ⊗OX×SpecBG

and the composite homomorphism

(σ × id)∗
(
F ⊗G

) τF ⊗G // F ⊗G .

(
(σ × id)∗F

)
⊗

(
(σ × id)∗G

) (τF )⊗τG

44iiiiiiiiiiiiiiiiiii

This defines a bifunctor Cohτ (X,B)×Cohτ (X,B) −→ Cohτ (X,B),
which is B-bilinear. Passing to crystals, it induces a B-bilinear bifunctor

⊗ : Crys(X,B)×Crys(X,B) −→ Crys(X,B).

Definition 1.11 We let 1lX,B denote the B-crystal on X consisting of
the structure sheaf OX×SpecB and the natural isomorphism

(σ × id)∗OX×SpecB
∼→ OX×SpecB.

The crystal 1lX,B is the neutral object for the tensor product in the
category Crys(X,B).

Definition 1.12 A B-crystal is called of pullback type if it can be rep-
resented by a τ -sheaf F such that there exists a coherent sheaf F 0 on X
for which F = pr∗1F 0.
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By Lemma 1.4, any locally free crystal over an affine base X is of pullback
type.

An important property of crystals of pullback type is given by the
following theorem.

Theorem 1.13 If F is of pullback type, the functorG 7→G ⊗ F is
exact.

One can show that every complex in C−(Crys(X,B)) has a resolution
by a complex all of whose objects are of pullback type. Thus standard
methods in homological algebra show the following:

Theorem 1.14 (Tensor product) The functor ⊗ gives rise to a left
derived functor

L
⊗ : D−(Crys(X,B))×D−(Crys(X,B)) −→ D−(Crys(X,B)).

Because we assumed B to be regular, the previous result can be ex-
tended to the derived category of bounded complexes. We need the fol-
lowing definition.

Definition 1.15 We say that a complex (F •) in Db(Crys(X,B)) is
of bounded Tor-dimension if there exists n ∈ Z such that for any G
in Crys(X,B), considered as a complex concentrated in degree zero, the

complex (F •)
L
⊗G is exact in degrees less or equal to n.

The regularity of B yields the following result, which may be obtained
as a consequence of Proposition 1.32 below.

Theorem 1.16 Every complex in Db(Crys(X,B)) is of bounded Tor-di-

mension. Therefore the bifunctor
L
⊗ restricts to a bifunctor

L
⊗ : Db(Crys(X,B))×Db(Crys(X,B)) −→ Db(Crys(X,B)).

Definition 1.17 Consider a homomorphism h : B → B′ of regular k-
algebras. For any τ -sheaf F on X over B we let F ⊗B B′ denote the
τ -sheaf on X over B′ consisting of the sheaf F ⊗BB′ := (id×h)∗F and
the composite homomorphism

(σ × id)∗(id× h)∗F
τ(F ⊗BB′) // (id× h)∗F .

(id× h)∗(σ × id)∗F
(id×h)∗τF

44iiiiiiiiiiiiiiii
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This defines a B-linear functor ⊗B B′ : Cohτ (X,B) −→ Cohτ (X,B′)
which induces a functor ⊗B B′ : Crys(X,B) −→ Crys(X,B′) on
crystals. To indicate h, we sometimes write ⊗hB B′.

Because B is regular, one obtains the following theorem:

Theorem 1.18 (Change of Coefficients) The functor ⊗B B′ is of
finite Tor-dimension on sheaves, therefore it induces an exact functor

⊗B B′ : Db(Crys(X,B)) −→ Db(Crys(X,B′)).

Before continuing our discussion of functors, we will consider an im-
portant example of changing coefficients. Let σB : B → B denote the
absolute Frobenius on B relative to k.

Definition 1.19 For F ∈ Cohτ (X,B) we define F 7→ F (q) := F ⊗σBB
B and call it the Frobenius twist of F . Analogously, we define this op-
eration for B-crystals over X.

Remark 1.20 Suppose that (M , chM ) is an A-motive on X of rank
r. We leave it as an easy exercise to check that (M (q), σA ◦ chM ) and
(σ∗XM

(q), chM ) are also A-motives on X of rank r. As M (q) and σ∗XM
(q)

are nil-isomorphic, this shows that nil-isomorphic τ -sheaves can have dif-
ferent characteristics. Furthermore it shows that an A-motive and its
Frobenius twist will in general have different characteristics.

Because B is regular, the map σB is flat and one obtains:

Proposition 1.21 The endofunctor F 7→ F (q) is exact on the cate-
gories Cohτ (X,B) and Crys(X,B).

The functor σ∗X×SpecB, a priori defined on sheaves of OX×SpecB-mod-
ules, extends by functoriality to a functor on the categories Cohτ (X,B)
and Crys(X,B), which we again denote by the same symbol. This is an
operation simultaneously on the base and on coefficients which is functo-
rially isomorphic to (σ∗X )⊗σBB B. For a coherent sheaf F on a variety
Z, we denote by SymnF its n-th symmetric power.

Lemma 1.22 Let Z be any scheme over k. There exists a unique natural
transformation γF from the functor F → σ∗ZF to F → Symq F on co-
herent sheaves on Z which has the following description on M = Γ (V,F )
for an affine open V = SpecS ⊂ Z:

S σS⊗S M −→ SymqM : s⊗m 7→ s(m ·m ·m · . . . ·m︸ ︷︷ ︸
q

).
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Suppose now that Z = X × SpecB. By functoriality, γ extends to a
natural transformation γF between the functors F 7→ σ∗X×SpecBF and
F 7→ Symq F on Cohτ (X,B). This induces a natural transformation,
also denoted by γ, between the corresponding functors on B-crystals on X.

If F is a locally free τ -sheaf of rank one, then γF is an isomorphism
between σ∗X×SpecBF and F ⊗q ∼= Symq F .

The simple if lengthy proof of the lemma is left to the reader.

Proposition 1.23 If F is a locally free τ -sheaf of rank one, then F (q)

and F ⊗q are naturally isomorphic as crystals.

Proof: By Lemma 1.9, one has the isomorphism of crystals

σ∗XF
(q)

τ
F (q)

// F (q) .

As remarked above, σ∗XF
(q) and (σX×SpecB)∗F are isomorphic. Finally,

by the previous lemma the latter crystal is isomorphic to F ⊗q via the
natural transformation γF .

We now resume our discussion of functors.

Definition 1.24 Suppose that f is proper. For any coherent τ -sheaf F
on Y we let f∗F denote the τ -sheaf on X consisting of the sheaf (f ×
id)∗F and the composite homomorphism

(σ × id)∗(f × id)∗F
τf∗F //

base change
��

(f × id)∗F .

(f × id)∗(σ × id)∗F
(f×id)∗τF

44iiiiiiiiiiiiiiii

As before, this induces a B-linear functor f∗ : Crys(Y,B)→ Crys(X,B),
and one can show that it is right adjoint to f∗.

Theorem 1.25 (Direct image) Suppose f is proper. Then there exists
a natural functor

Rf∗ : Db(Crys(Y,B)) −→ Db(Crys(X,B)).
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Let U be a finite affine cover of Y . We use the notation Č•
U(F •) for

the total complex associated to the bicomplex obtained from (F •) by
applying the usual Čech resolution with respect to U to each object. Note
that in general Č•

U(F •) is no longer in Db(Crys(Y,B)). It is a complex
of quasi-coherent sheaves carrying a σ × id-linear operation τ .

Using (F •) 7→ f∗Č
•
U(F •), in [2], Chap. 5, the functor Rf∗ is con-

structed as a derived functor between suitably defined derived categories
which are naturally isomorphic to Db(Crys(Y,B)) and Db(Crys(X,B)),
respectively. To give the precise definitions is beyond the scope of this
article. As a consequence of this, one can show the following which is of
prime importance in order to compute the i-th cohomology Rif∗(F •)
of Rf∗(F •).

Proposition 1.26 There is an isomorphism

Rif∗(F •) ∼= (Rif∗(F •),Rif∗τ(F •)),

where Rif∗(F •) is the i-th hypercohomology for quasi-coherent sheaves
and where Rif∗τ(F •) is the endomorphism on it induced from τ .

The following theorem exhibits a rigidity of crystals which does not
hold for sheaves or τ -sheaves.

Theorem 1.27 Suppose f is finite, radicial and surjective. Then the
functors

Crys(X,B)
f∗ // Crys(Y,B)
f∗

oo

are mutually inverse equivalences of categories.

In particular, the above applies to σX : X → X and to the closed immer-
sion Xred → X, where Xred denotes the induced reduced subscheme of a
given scheme X.

The operation extension by zero, while ill-behaved on coherent sheaves,
is a good operation on crystals:

Theorem 1.28 (Extension by zero) There exists a functor

j! : Crys(U,B) −→ Crys(X,B),

which is uniquely characterized by the following properties:

(a) j∗j! ∼= idCrys(U,B) and
(b) i∗j! = 0.
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Note that the above theorem also gives a criterion for a τ -sheaf to rep-
resent the extension by zero of a given crystal. Passing to the derived
category, one obtains:

Theorem 1.29 There exists a functorial distinguished triangle

j!j
∗ −→ id −→ i∗i

∗ −→ j!j
∗[1].

Important for the existence of j!F in the proof of Theorem 1.28 is
the following lemma:

Lemma 1.30 Let F be in Crys(U,B) and suppose that ˜F is a coherent
extension of F to X×SpecB. Then j!F can be represented by a τ -sheaf
whose underlying sheaf is I n ˜F for any n >> 0.

As any coherent sheaf on U has a coherent extension to X, the following
is an immediate consequence.

Corollary 1.31 If F is of pullback type, then so is j!F .

We use the theory as developed so far to derive a result on the repre-
sentability of complexes by complexes of pullbacks. We find this interest-
ing, as being of pullback type is a property that is essentially preserved
under all our functors, and as crystals of pullback type have fibers which
are free crystals.

By Db(Crys(X,B))pb ⊂ Db(Crys(X,B)) we denote the triangulated
subcategory generated by bounded complexes all of whose objects are of
pullback type. Using the regularity of B, we will show the following:

Proposition 1.32 The inclusion Db(Crys(X,B))pb→Db(Crys(X,B))
is an equivalence of categories.

We first need an auxiliary result. Suppose X = SpecR is a regular
affine scheme of finite type over k. Then R ⊗B is regular (combine [17],
Thm. 30.2, Thm. 30.3, § 28, Lem. 1, to see that B is smooth over k).
Therefore any module over R ⊗ B admits a finite projective resolution.
The following lemma from [2] is a simple consequence.

Lemma 1.33 Let X = SpecR be affine and regular. Given any complex
(F •) ∈ Db(Crys(X,B)), there exists a complex (G •) ∈ Db(Crys(X,B))
whose objects are locally free, and hence of pullback type, and which is
quasi-isomorphic to (F •).
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Proof of Proposition 1.32: It suffices to prove that the inclusion is es-
sentially surjective, and so let (F •) be in Db(Crys(X,B)). By Theo-
rem 1.27, we may assume that X is reduced. Let ∅ = X0 ⊂ X1 ⊂ X2 ⊂
. . . ⊂ Xn = X be an increasing sequence of closed subsets of X such that
XirXi−1 is regular and affine. By Corollary 1.31 the functor j! preserves
crystals of pullback type, and it is clear that i∗ has the same property. Re-
peatedly applying Theorem 1.29 to XirXi−1 ↪→ Xi ←↩ Xi−1, we may as-
sume thatX is regular and affine. Thus we need to show that forX regular
affine the complex (F •) is in the essential image of Db(Crys(X,B))pb.
This follows from the previous lemma.

Finally we come to the definition of the functor Rf!, which computes
the direct image with compact support. By a result of Nagata, cf. [19],
any morphism f between (separated) schemes of finite type over a field
can be compactified. This means that there exists a commuting diagram

Y
j //

f

��

Ȳ

f̄��~~
~~

~~
~

X.

such that j is an open immersion and f̄ is proper.

Definition 1.34 In the above situation we define

Rf! := Rf̄∗ ◦ j! : Db(Crys(Y,B))→ Db(Crys(X,B)).

It can be shown that, in a suitable sense, Definition 1.34 is indepen-
dent of the chosen compactification. (For this one considers the set of
all compactifications as a direct filtered system and establishes various
compatibilities for the transition morphism, cf. [18], VI.3.)

We write Rif! for Rif̄∗ ◦ j!. In the special case where f : Y → Spec k
is the structure morphism, we also write Hi

c(Y, (F
•)) for Rif!(F •), re-

spectively H i
c(Y,F ) for Rif!F , where we regard F as a complex con-

centrated in degree zero.

Concerning the effect of Rf! on pullbacks, we have the following propo-
sition.

Proposition 1.35 Suppose F ∈ Crys(Y,B) is of pullback type. Then
the crystals Rif!F are of pullback type.
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Proof: Choose a compactification f = f̄ j where j is an open immersion
and f̄ is proper. By Corollary 1.31, the crystal j!F is of pullback type.
Using Čech resolutions to compute the higher direct images Rif̄∗, cf.
Proposition 1.26, the assertion follows.

The following results describe compatibilities of image with compact
support, pullback and tensor product:

Theorem 1.36 (Base Change) Let (F •) ∈ Db(Crys(Y,B)) and sup-
pose we are given the following pullback square:

Y ′
g′ //

f ′

��

Y

f

��
X ′ g

// X.

Then there is a functorial isomorphism g∗Rf!(F •) ∼= Rf ′! g
′∗(F •).

Theorem 1.37 (Projection Formula) There exists a natural isomor-
phism of functors

Rf!( )
L
⊗

∼=−→ Rf!(
L
⊗ f∗( )) :

Db(Crys(Y,B))×Db(Crys(X,B)) −→ Db(Crys(X,B)).

1.3. The functor Rf! on affine Cohen-Macaulay varieties

The following result will play an essential role for our main result on
entireness of L-functions.

Theorem 1.38 Let X be an affine Cohen-Macaulay variety of dimension
e with structure morphism gX : X → Spec k. Suppose F ∈ Crys(X,B) is
locally free. Let j : X → X̄ be any compactification and represent j!F by
some locally free τ -sheaf ˜F . Then RgX!F is represented by the complex
He(X̄, ˜F )[e] ∈ Db(Crys(Spec k,B)), which is concentrated in degree e.

Before giving the proof of the above theorem, we want to explain
the main obstacle that has to be overcome in the proof. Suppose X has
a compactification j : X → X̄, such that X̄ is projective and Cohen-
Macaulay and such that X̄ rX is a divisor D. We may represent F by
a free τ -sheaf on X, cf. Lemma 1.4, and thus represent j!F by a τ -sheaf˜F with underlying sheaf OX(−nD) ⊗ B for some n � 0, Lemma 1.30.
As OX(−D) is the inverse of an ample line bundle on X̄, Serre duality
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for X̄, cf. [15], Thm. III.7.6, implies that H i(X̄, ˜F ) = 0 for i 6= e. The
theorem now follows from Proposition 1.26.

In general such a compactification may not exist - at least we do
not know this. The main point of the proof given below is to use the
nilpotency of j!F on X̄rX for any compactification X̄ of X, in order to
show that the singularities of X̄ on the complement of X are irrelevant
when computing the absolute cohomology of the crystal RgX!F .

Proof: We choose a closed immersion i : X → AN for some N and
regard AN as the complement of a hyperplane in PN . By the remark below
Definition 1.34, it suffices to prove the theorem for the compactification
X ↪→ X̄, where X̄ is the closure of X in PN . We depict the situation in
the following diagram

X
i //

j

��

AN

j′

��
X̄

ī // PN

Let R denote the coordinate ring of X and S that of AN and let
(M, τ) be a projective τ -module on R⊗B representing F . Lemma 1.33 in
combination with Lemma 1.4 shows that one can find a resolution (G i)i≤0

of i∗F in D−(Cohτ (AN , B)) by free τ -sheaves, so that Γ (AN ,G i) ∼=
S⊕mi ⊗B for some mi ∈ N0.

Our next aim is to describe an extension by zero for j′ : AN ↪→ PN of
this resolution. For simplicity, we write O instead of O PN . By an inductive
procedure based on Lemma 1.30 and starting at i = 0, one can construct
a complex (G̃ •) of τ -sheaves which represents the complex j′!G

• in such
a way that the underlying sheaf in degree i is given by O (−ni)⊕mi where
0 < n0 < n−1 < n−2 < . . .. Considered as a complex of crystals, it is a
resolution of j′!i∗F . Note that any twist of this complex by a power of
O (−1) yields a complex of τ -sheaves with the same property.

Let ḡ denote the structure morphism of PN . By [15], Thm. III.5.1, for
l > 0 we have Riḡ∗O (−l) = 0 if i 6= N . Thus RgX!F ∼= Rḡ∗(j′!G

•) is
represented by (HN (PN ,G̃ i))i≤0. We claim that the latter complex has
cohomology only in degree e when regarded as a complex of crystals. The
claim yields the desired result, as by Proposition 1.26 we have RegX!F ∼=
He(X̄, j!F ′). We now prove the claim:

For each l, define the complex (M i
l )i∈Z of free B-modules as

. . . −→ HN (PN ,O (−ni−1−l)⊕mi−1) −→ HN (PN ,O (−ni−l)⊕mi) −→ . . . .

The natural inclusion O (−ni− l− 1)→ O (−ni− l) induces a morphism
of complexes fl : (M •

l+1) → (M •
l ) which is epimorphic on objects. The
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modules M i
l carry a B-linear operation τ il which is compatible with the

differentials and the maps fl. Considered as τ -modules fl is degreewise a
nil-isomorphism, so that all these complexes are isomorphic as complexes
of crystals.

By Serre duality, disregarding the τ -operation, the complex (M •
l ) is

dual to the complex (N •
l ) defined as:

. . . −→ Hom(O (−ni−l)⊕mi ,O ) −→ Hom(O (−ni−1−l)⊕mi−1 ,O ) −→ . . .

Simply dualizing the operations τM i
l
, we obtain endomorphisms compat-

ible with the differentials. The direct limit of the (N •
l ) for l → ∞ is the

complex HomS(S⊕m• , S) whose cohomology is Ext•S(M,S). The module
M is finitely generated and projective over the Cohen-Macaulay ring R.
In the following paragraph we will show that ExtiS(R,S) = 0 for i 6= N−e.
Hence ExtiS(M,S) = 0 for i 6= N − e, by the projectivity of M over R.
The proof of the above claim is now a consequence of Lemma 1.39 below.

To see that ExtiS(M,S) = 0 for i 6= N − e, it suffices to show that
this holds after localizing at any maximal ideal m of S which lies in
the image of SpecR → SpecS. For such an m we need to show that
ExtiSm

(Rm, Sm) = 0 for i 6= N − e. The ring Rm has depth e, and thus by
[17], Thm. 17.1, all Ext-modules vanish for i < N − e. By the theorem of
Auslander-Buchsbaum, cf. [15], Prop. III.6.12A, the projective dimension
of R over S isN−e. This implies that all Ext-modules vanish for i > N−e,
cf. [15], Prop. III.10.A, and the proof is completed.

Lemma 1.39 Suppose for each l we are given complexes (M •
l ) of free,

finitely generated B-modules concentrated in negative degrees:

. . . −→M i−1
l

∂i−1

−→M i
l

∂i−→M i+1
l −→ . . .

We assume that the M i
l carry B-linear endomorphisms τ il which are com-

patible with the differentials. Furthermore, we assume that there are maps
of complexes fl : (M •

l+1)→ (M •
l ) which are epimorphisms on objects, com-

patible with the operation of the τ il , and such that τ il+1 acts nilpotently on
the kernel of M i

l+1 →M i
l .

Define (N •
l ) := HomB((M−•l ), B) as the dual complex of M •

l . Corre-
spondingly define maps gl dual to fl and endomorphisms κil on N i

l dual
to τ il . Clearly the maps gl are degreewise monomorphisms, and the maps
κil act nilpotently on Coker(N i

l → N i
l+1).

If the cohomology of lim−→(N •
l ) is concentrated in degree e, then for all

i 6= −e and all l, there exists an integer ni,l such that (τ il )
ni,l(Ker ∂il ) ⊂

Im ∂i+1
l , i.e., the operator induced by τ il on H i(M •

l ) is nilpotent.
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Proof: We fix l ≥ 0 and i 6= −e. As direct limits commute with taking
cohomology, we have lim−→H

i(N •
l ) = 0. Thus for each l, there exists an

l′ > l such that the map H i(N •
l ) → H i(N •

l′) is zero. As the M i
l are free

B-modules, this morphism is dual to H i(M •
l′)→ H i(M •

l ), which therefore
must be zero, too.

We now consider the following diagram:

0 // Ker(M i
l′ →M i

l )

∂i
l′

��

// M i
l′

∂i
l′

��

// M i
l

∂il
��

// 0

0 // Ker(M i+1
l′ →M i+1

l ) // M i+1
l′

// M i+1
l

// 0.

Let x be in Ker ∂il ⊂ M i
l . Because M i

l′ → M i
l is surjective, we can find

y ∈M i
l′ that maps onto x. Hence ∂il′(y) lies in the kernel ofM i+1

l′ →M i+1
l .

Because τ i+1
l′ acts nilpotently on this kernel, we can find n ∈ N, which

depends on i and l, such that (τ i−1
l′ )n annihilates this kernel. By the

compatibility of τ with the differentials it follows that y′ := (τ il′)
n(y) ∈M i

l′

lies in the kernel of ∂il′ . Using square brackets for cohomology classes, the
class [y′] maps to [(τ il )

nx] = (τ il )
n[x]. By our choice of l′, it follows that

(τ il )
n[x] = 0, and hence that (τ il )

n annihilates [x]. Since H i(N •
l ) is finitely

generated, it is therefore annihilated by a power of τ il .

1.4. L-functions of τ -sheaves

Let E be the fraction field of B. Let X0 denote the set of closed points
of X and for x ∈ X0, let dx denote its degree.

Definition 1.40 We define the local L-factor L(x,F , T ) of a crystal F
at a closed point x of X via

L(x,F , T )−1 := det
E

(id− Tτ |F x ⊗B E) ∈ E[T ],

where F x is any τ -sheaf representing the fiber of the crystal F at x and
where the determinant is taken over E.

Remark 1.41 The above definition is independent of the choice of the
F x. Furthermore, one can show that L(x,F , T )−1 is also represented
by

det
kx⊗E

(id− T dxτdx |F x ⊗B E) ∈ kx ⊗ E[T dx ],

where the determinant is computed over the ring kx ⊗ E. It follows that
L(x,F , T )−1 ∈ E[T dx ]. Based on the fact that, as a regular ring, B is
normal, it is shown in [2] that L(x,F , T )−1 ∈ B[T dx ].
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The local L-factor of (F •) ∈ Cb(Crys(X,B)) at x ∈ X0, is defined as

L(x, (F •), T ) :=
∏
i∈Z

L(x,F i, T )(−1)i ∈ 1 + T dxB[[T dx ]].

The number of points in X0 whose degree is below any given constant
is finite. Thus for any crystal F on X, the product

∏
x∈X0 L(x,F , T )

converges to an element in 1 + TB[[T ]] and we can make the following
definition.

Definition 1.42 For (F •) ∈ Cb(Crys(X,B)) we define the L-function
of (F •) on X as

L(X, (F •), T ) :=
∏
x∈X0

L(x, (F •), T ) ∈ 1 + TB[[T ]].

Unless we want to stress the base scheme X, we often write L((F •), T )
for L(X, (F •), T ).

Proposition 1.43 The above definition induces a function

L : Db(Crys(X,B)) −→ 1 + TB[[T ]]

which satisfies the following properties:

(a) If (F •) −→ (G •) −→ (H •) −→ (F •)[1] is a distinguished triangle,
then

L((F •), T ) · L((G •), T ) · L((H •), T ) = 1.

(b) For a bounded complex (F •) in Crys(X,B), denote by H•(F •) the
complex consisting of the cohomology groups of (F •) with zero differ-
entials. Then

L((F •), T ) = L(H•(F •), T ).

Remark 1.44 It is also possible to define L-functions of crystals via
‘projective resolutions’: Assume first that F is a crystal which is rep-
resented by a τ -sheaf of pullback type. Then the fiber above any closed
point x ∈ X is free, finitely generated over kx ⊗B. Define

L′(x,F , T )−1 := det
B

(id− Tτ |F x) ∈ 1 + T dxB[T dx ]

and denote by L′(X,F , T ) the corresponding global L-function. It is
rather trivial to note L = L′.

Let now F be any crystal. Using Proposition 1.32, which ultimately
rests on the use of projective resolutions, every crystal F regarded as
an element of K ′0(Crys(X,B)) can be written as a finite sum

∑
ni[G i]
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with ni ∈ Z where theG i are of pullback type and we write [G ] for the
element in K ′0(Crys(X,B)) represented byG . As an L-function should
factor via K ′0(Crys(X,B)), one defines L′(F , T ) :=

∏
i L
′(G i, T )ni , and

checks (on stalks) that this is independent of the chosen representatives.
Using the above proposition it easily follows that L = L′.

The central result on L-functions in [2] is the following.

Theorem 1.45 Let f : Y → X be a morphism between schemes of finite
type. Then for (F •) ∈ Db(Crys(Y,B)) one has

L(Y, (F •), T ) = L(X,Rf!(F •), T ).

In the case of the structure morphism Y → Spec k the above implies:

Corollary 1.46 For (F •) ∈ Db(Crys(Y,B)), the series

L(Y, (F •), T ) =
∏
i

L(Spec k,Hi
c(Y, (F

•)), T )(−1)i

is a rational function of T .

The following is a rather general criterion for an L-function to be
a polynomial (or the inverse of such), and not just a rational function.
Namely, the above corollary and Theorem 1.38 yield.

Corollary 1.47 Let X be a Cohen-Macaulay variety over k of dimen-
sion e. For any locally free crystal F in Crys(X,B), the L-function
L(X,F , T )(−1)e−1

lies in B[T ].

We conclude this section by studying the effect of the Frobenius twist
on L-functions.

Lemma 1.48 One has L(F , T )q = L(F (q), T q) for any crystal F on X.

Proof: Clearly it suffices to prove the above pointwise for any x ∈ X0.
Thus we may assume that X is the spectrum of a finite field extension
k′ of k. Also we may change coefficients and assume that B is a field E.
Then F corresponds to a finitely generated k′ ⊗ E-module M with a
σ × id-linear operation τ . Write

L(x,M, T )−1 = det
E

(1− Tτ |M) = 1 + a1T + . . . anT
n ∈ E[T ].

Because Frobenius on k′ and on E commute, one has L(x,F (q), T )−1 =
1 + aq1T + . . . aqnTn ∈ E[T ], and the assertion follows readily.
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2. Global L-functions

For the remainder of this article, we fix an A-scheme X. Let f : X →
SpecA denote the structure morphism to SpecA and gX : X → Spec k
the structure morphism to Spec k. If X = SpecA we usually assume that
it is an A-scheme via the identity.

Given a complex (F •) in Db(Crys(X,A)) and a closed point v of
C, we will define a v-adic L-function L(v)((F •), s). Our treatment will
follow closely that of [12], Chap. 8. As a first result, we show that any
such L-function can be expressed as the v-adic L-function of a complex
(G •) ∈ Db(Crys(SpecA,A)) all of whose objects are locally free crystals.
We conclude this section by recasting Goss’ definition of entireness and
meromorphy, cf. [12], § 8, in a slightly different form.

The main example to keep in mind is that of an A-motive (M , chM )
of rank r on X. The map f will then be chM and the crystal we consider
is the one represented by M .

2.1. Exponentiation of ideals

We first consider the place ∞. Let W∞ := Zp and S∞ := C∗∞ ×W∞. An
element s ∈ S∞ will have components (z, w). One defines an addition by
(z1, w1) + (z2, w2) = (z1 · z2, w1 +w2). The exponentiation map will be a
map

{fractional ideals of A} × S∞ → C∗∞ : (I, s) 7→ Is,

which is bilinear if we use multiplication on ideals, addition on S∞ and
multiplication on C∗∞.

We choose a uniformizing parameter π∞ of A∞. For some technical
reasons, cf. Remark 2.26, we assume that there exists an n > 0 such
that πn∞ ∈ K. To obtain π∞, one first chooses an element a ∈ A whose
valuation −m < 0 at ∞ is not divisible by p. For this one may use the
theorem of Riemann-Roch. Let π′∞ be any uniformizer of A∞. Then a1−q∞

is the product of a 1-unit u of A∞ with π′∞
m(q∞−1). As m(q∞−1) is prime

to p, we can write u = u′m(q∞−1) for some 1-unit u′ of A∞. We now take
π∞ := π′∞u

′−1.
Via this choice we identify K∞ with k∞((π∞)). An element a ∈ K∗ is

called positive if under the map K∗ → K∗∞
∼= k∞((π∞))∗, the element a is

mapped to an expression πn∞ + an+1π
n+1
∞ + an+2π

n+2
∞ . . ., where ai ∈ k∞

and n = v∞(a). Let P+ be the set of fractional ideals of A which are
principal and have a positive generator. This is a subgroup of finite index
of the set J of all fractional ideals of A. The class field H+ corresponding
to P+ is the narrow Hilbert class field of K, i.e., it is the maximal abelian
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extension of K which is unramified outside∞, and such that all places of
H+ above ∞ are tamely ramified of order dividing (q∞ − 1)/(q − 1) and
have residue field k∞.

For any R-valued field F , we denote by U1(F ) its 1-units. If a ∈ K is
positive, we define 〈a〉 := a/π

v∞(a)
∞ ∈ U1(K∞). Note that for any I ∈ P+

there exists a unique positive generator aI . Based on the fact that U1(C∞)
is uniquely divisible, the following is shown in [12], Prop. 8.2.4:

Proposition 2.1 The map

〈 〉 : P+ → U1(K∞) : I → 〈aI〉

extends to a unique homomorphism 〈 〉 : J → U1(C∞).

Definition 2.2 For I ∈ J , s = (z, w) ∈ S∞ define Is := zdeg I〈I〉w.

Note that this exponentiation depends on the choice of the uniformizing
parameter π∞.

To obtain an exponentiation by Z, we make the following definition:
Let π∗ be a d∞-th root of π∞, and define

s? : Z→ S∞ : j 7→ sj := (π−j∗ , j).

Thus for j ∈ Z and I ∈ J , we have Isj ∈ C∞. In particular, for I ∈ P+

the element Isj is the unique positive generator of Ij .

We now follow Goss, [12], §8, to obtain an exponentiation for the finite
places of K. Define V := K(Is1 : I ∈ J). This is a finite extension of K.
For a fixed place v 6= ∞, we choose an extension β = βv : V → Cv of
ιv : K → Cv, and set Kv,β := Kv(V) ⊂ Cv with ring of integers Av,β .
Unless we want to stress it explicitly, we drop the subscript v at β.

It follows that if a is positive in A, then β((a)s1) = a ∈ Kv,β . Based on
this, one can show that for any fractional ideal I prime to pv, the element
β(Is1) is in A∗v,β . We can write any a ∈ A∗v,β as a = uv,0(a)uv,1(a) where
uv,1(a) is a one-unit and uv,0(a) is a root of unity. Let qv,β denote the
cardinality of the residue field of Av,β .

Definition 2.3 We let Wv := Zp × Z/(qv,β − 1) and Sv := C∗v × Wv,
which is a group under the obvious addition. Elements are denoted by
s = (z, w, y). The v-adic exponentiation map is defined as

{fractional ideals of A prime to pv} × Sv → C∗v :

(I, s) 7→ zdeg(I)uv,0(β(Is1))yuv,1(β(Is1))w.



24 Gebhard Böckle

As before, this map is bilinear if we use multiplication on ideals, addition
on Sv and multiplication on C∗v. We caution the reader that the kind of
exponentiation we use, i.e., v-adic or with respect to∞, is only indicated
by giving the domain of the exponent. Note that the definition of the
v-adic exponentiation depends on the choice of the uniformizer π∞, as
well as on the choice of embedding βv.

Definition 2.4 For j ∈ Z, we define

sv,? : Z→ Sv : j 7→ sv,j := (1, j, j).

To have a more uniform notation, we also write s = (z, w, y) for s ∈ S∞,
where we identify S∞ with S∞×Z/Z, and use s∞,j for sj . For v 6=∞ the
image of Z under j 7→ sv,j is dense in 1× Zp × Z/(qv,β − 1).

With the above definitions in place, the following is trivial:

Proposition 2.5 For any place v 6= ∞, j ∈ Z and fractional ideal I
which is prime to pv, one has

βv(Is∞,j ) = Isv,j ∈ Cv.

One can also define an exponentiation for any place v 6= ∞ in an
analogous way to Goss’ definition for ∞, i.e., with exponents in Cv ×Zp.
This is the viewpoint taken in [21]. One simply obtains the restriction
of the exponentiation defined here to the subgroup C∗v × Zp × {0} of Sv.
An advantage of Goss’ definition is explained by the previous proposition
which says that for ideals I prime to v, the element ‘Ij ’ for j ∈ Z is
independent of the place v.

The following two results explain how to recover Goss’ definition of
exponentiation of ideals from that given in [21]. From loc. cit., §10, we
quote:

Proposition 2.6 For fixed y ∈ Z/(qv,β−1), the map I 7→ I(0,0,y) defines
a character χv,y : J → k∗v which via class field theory corresponds to a
character, also denoted by χv,y, of Gal(Ksep/K), which is at most ramified
at v and ∞. In particular, one has I(z,w,y) = I(z,w,0)χv,y(I).

To relate the above characters to crystals, we introduce some nota-
tion. By class field theory, there are only finitely many characters χ :
Gal(Ksep/K) → k∗v which are unramified outside v,∞. We define Gv :=
Gal(Ksep/K)/(∩Ker(χ)) where the intersection is over all such χ. Thus
Gv is the Galois group of some finite abelian extension of K. We define
Ĝv := Hom(Gv, k∗v), so that the characters in Ĝv are in bijection with the
above characters of the absolute Galois group.
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The following is a special case of [16], Prop. 4.1.1, recast in our termi-
nology:

Theorem 2.7 Let k̃ be a finite extension of k and v1, . . . , vn finite places
of C. Then there is a bijection between

– continuous characters χ : Gal(Ksep/K) → k̃∗ which are unramified
outside ∞, v1, . . . , vn ∈ C, and

– locally free τ -sheaves M ∈ Cohτ (SpecA r {pv1 , . . . , pvn}, k̃) of rank
one on which τ is an isomorphism.

Given a character χ, the corresponding τ -sheaf, denoted byM χ, is unique-
ly determined by the condition

L(p,M χ, T )−1 = 1− χ(Frobp)T dp

for all p ∈ Max(A) r {pv1 , . . . , pvn}.

In particular, for any χ ∈ Ĝv we obtain a corresponding locally free τ -
sheaf M χ on SpecA(v) over kv.

2.2. The definition of global L-functions

For x ∈ X0, let px be its image in Max(A) (this uses that X is of finite
type over k). Recall from the discussion after Definition 1.40 that for
F ∈ Crys(X,A) and x ∈ X0 one has L(x,F , T )−1 ∈ A[T dx ] ⊂ A[T dpx ].

Definition 2.8 Let (F •) ∈ Db(Crys(X,A)). If for s ∈ Sv, the product∏
x∈X(v)0

L(x, (F •), T )|T dpx=p−sx

converges, we denote it by L(v)(X, (F •), s) and call it the value of the
v-adic L-function of (F •) at s.

We write ζ(v)
X (s) for L(v)(X, 1lX,A, s), and call it the value at s of the

ζ-function of X over A.

Unless we want to emphasize the base scheme X, we write L(v)((F •), s)
for L(v)(X, (F •), s). The following proposition collects some basic prop-
erties of v-adic L-functions.

Proposition 2.9 (a) If X is the finite disjoint union of locally closed
subsets Xi, then L(v)(X, (F •), s) =

∏
i L

(v)(Xi, (F •), s) provided the
terms on the right are convergent products.
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(b) For the product in the above definition to converge for a fixed s, it
is sufficient that, for this s, the product converges for each individual F i.

(c) For X = SpecA one has

ζ
(v)
SpecA(s) =

∏
p∈Max(A(v))

(1− p−s)−1.

(d) Let i : Xred ↪→ X be the closed immersion of the induced re-
duced subscheme of X and define fred := f ◦ i : Xred → SpecA. Then
L(v)(X, (F •), s) = L(v)(Xred, i

∗(F •), s) on the domain of convergence.

Ignoring for now the problem of convergence of the above product,
cf. Theorem 2.16, we give an alternative description of L(v)((F •), s). For
p ∈ Max(A), let ip : Xp → X be the pullback map corresponding to
Spec kp → SpecA. Viewing Xp as a scheme over k, we obtain the map

Crys(X,A) −→ Crys(Xp, A) : F 7→ F p := i∗pF .

Theorem 1.45 implies that for each p ∈ Max(A)

L(Xp, (F •
p), T ) =

∏
x∈X0

p

L(x, (F •), T ) ∈ 1 + T dpA[[T dp ]]

is a rational function. We call it the local L-factor of (F •) at p. In the case
where F is attached to a Drinfeld-module, rationality was first proved
in [21]. The following formula is immediate.

Proposition 2.10 On the domain of convergence of L(v)((F •), s), the
product ∏

p∈Max(A(v))

L((F •
p), T )|T dp=p−s

converges, and both expressions take the same value.

Having attached a crystal to any Drinfeld-A-module (ψ,L ) and to
any A-motive (M , chM ) on X, say each of rank r, we need to compare
the v-adic L-function attached to these objects as defined by Goss, cf.
[12], Ch. 8, [13], § 3, with our definition for the associated crystals. Let
f be chψ, respectively chM and F the crystal represented by M (ψ),
respectively M , cf. Example 1.6.

Fix a closed point x ∈ X. For a place v′ of A different from v and
px, let Tv′(x) be the v′-adic Tate-module of ψ, respectively M at x, [12],
Def. 4.10.9 and p. 154. This is a free Av′-module of rank r which carries
an action by Gal(ksep

x /kx) ∼= Ẑ. Let Frobx be the Frobenius element of
Gal(ksep

x /kx). The following is essentially shown in [12], Prop. 5.6.9.
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Proposition 2.11 Let v be any place of K. With the above notation, one
has

det(1− T dxτdxx |F x) = det(1− T dxFrobx|Tv′(x)) ∀x ∈ X0.

In particular L(x,F , T )|T dpx=p−sx
= det(1 − p−sx Frobx|Tv′(x))−1 for all

s ∈ Sv, x ∈ X0(v).

Let L(ψ/X, s), respectively L(M /X, s) be the L-functions as defined by
Goss, cf. [12], p. 256, [13], Rem. 3.14. These are also defined as infinite
products over the points of X0. The above lemma immediately implies
the following, where by writing an equality of L-functions we mean that
the respective infinite products have the same domain of convergence and
that on this domain their values agree.

Corollary 2.12 Let v be any place of K.

(a) For any Drinfeld-A-module (ψ,L ) on X of fixed rank, and with f =
chψ, one has

L(v)(X,M (ψ), s) = L(v)(ψ/X, s).

(b) For any A-motive (M , chM ) on X of fixed rank, and with f = chM ,
one has

L(v)(X,M , s) = L(v)(M /X, s).

This is a non-empty statement, as it is shown in [12] and [13] that the
functions L(v)(ψ/X, s) and L(v)(M /X, s) have a large domain of conver-
gence. Alternatively, one can appeal to Theorem 2.16 below.

2.3. A half plane of convergence

For c ∈ R≥0, let D∗v(c) := {z ∈ Cv : |z|v > c} be the punctured disc
around the infinite point ∞v of P1(Cv) of radius c. Furthermore, let
Dv(c) := D∗v(c) ∪ {∞v}, D̄∗v(c) := {z ∈ Cv : |z|v ≥ c} and D̄v(c) :=
D̄v(c) ∪ {∞v}.

Definition 2.13 A subset D∗v(c) ×Wv of Sv with c > 0 is called a half
plane.

Before proving that the Euler product representing L(v)(X, (F •), s)
converges on some half plane, we need some auxiliary results for v =∞.
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Lemma 2.14 Let X = SpecR be affine. Assume that (F , τ) is a τ -sheaf
with F = O ⊕rX×SpecA. Let ˜F := O ⊕rX×C . Then there exists an extension

τ̃ : (σX × idC)∗ ˜F → ˜F ⊗OC OC(−m∞)

of τ for a suitable m ∈ N.

Proof: After fixing a basis for the free sheaf F , we may represent
(F , τ) as a τ -module (R ⊗ Ar, α(σ × idSpecA)) for a unique choice of
matrix α ∈ Mr(R ⊗ A). We may view the entries of α as elements of
R ⊗ K∞. As there are only finitely many of them, one can find m ∈ N
such that all entries are in R⊗ π−m∞ A∞. The lemma follows easily.

Proposition 2.15 Given (F •) ∈ Db(Crys(X,A)), there exists m ∈ N
such that

∀x ∈ X0 : L(x, (F •), Tπm∞) ∈ 1 + T dxA∞[[T dx ]].

Proof: By Proposition 2.9(a), we may decompose the scheme X, as in
the proof of Proposition 1.32, into a finite disjoint union of locally closed
affine schemes which are regular under their reduced subscheme structure.
If we prove the proposition on each such subscheme, the general assertion
follows because there is only a finite number of such subschemes. Hence,
using Theorem 1.27, we assume that X is affine and regular.

Using Lemmas 1.4 and 1.33, we may assume that all F i are repre-
sented by free τ -sheaves. Because (F •) is bounded, there is only a finite
number of non-zero F i, and so we may assume that (F •) is concentrated
in degree zero and that F 0 is represented by a free τ -sheaf F as in the
previous lemma.

The lemma provides us with an extension

τ̃ : (σX × idC)∗ ˜F → ˜F ⊗OC OC(−m∞).

Therefore πmτ̃ defines an A∞-crystal F ∞ on X. From the definition of
the L-function of crystals, it follows that

L(x,F ∞, T ) = L(x,F , Tπm∞) ∈ 1 + T dxA∞[[T dx ]],

independently of x, by comparing the two expressions over K∞[[T ]].
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Theorem 2.16 For each v ∈ C and each (F •) ∈ Db(Crys(X,A)) the
Euler product defining L(v)((F •), s) is convergent on some half plane
D∗v(c) × Wv of Sv and the convergence is uniform on D̄∗v(c

′) × Wv for
any c′ > c.

Proof: As in the proof of the previous proposition, we may assume that
(F •) is concentrated in degree zero and F = F 0.

Suppose first that v 6=∞. We claim that we may take D∗v(1)×Wv as
a half plane of convergence. For x ∈ X0 write L(x,F , T ) = 1 + a1T

dx +
a2T

2dx + . . .. As L(x,F , T ) ∈ A[[T ]], all ai satisfy |ai|v ≤ 1. If |z|v > 1
in s = (z, w, y), then |p−sx |v = |z|−dpx

v < 1. Therefore we compute

|1− L(x,F , T )T dpx=p−sx
|v = |a1p

−sdx/dp
x + a2p

−s2dx/dp
x + . . . |v ≤ |z|−dxv .

(1)
Recall that an infinite product

∏∞
j=1(1 + bj) converges in Cv, if and only

if for any r > 0, the number of bj with |bj |v > r is finite. As X is of finite
type over k, for any n ∈ N the number of x ∈ X0 such that dx ≤ n is
finite. This together with the estimate (1) proves the convergence of the
product for L(v)(F , s). The assertion on uniform convergence is left as
an easy exercise.

Let now v = ∞. Then the local L-factors L(x,F , T ) are no longer
in A∞[[T ]]. However, if we choose m as in the previous proposition, then
the function L(x,F , Tπm∞) lies in A∞[[T ]] for all x ∈ X0. Proceeding as
above, it follows that D∗∞(qm∞)×W∞ is a half plane of convergence.

Remark 2.17 Let us fix a place v of K. As in Definition 2.8, one may
define a v-adic L-function for any complex in Db(Crys(X(v),Cv)). By
results analogous to Lemma 2.14 and Proposition 2.15, one can show that
the Euler product representing such an L-function is convergent on a half
plane of Sv. If the coefficients are in the ring of integers of Cv, the half
plane contains D∗v(1)×Wv, and there is no need to refer to the above two
results.

Thus, one may define a v-adic L-function for any complex in the de-
rived category Db(Crys(X(v), B)) where B is a subring of C∞.

2.4. On the ground field k

Let k′ be the constant field of K which clearly contains k. Via the struc-
ture map f : X → SpecA composed with SpecA → Spec k′, we see that
X is naturally a variety over k′ and not just over k.
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Proposition 2.18 Given a τ -sheaf F on X over A relative to k (cf.
remarks after Definition 1.1), there exists a τ -sheaf F ′ on X over A
relative to k′, such that for any place v of C the v-adic L-functions of F
and F ′ agree.

Based on this proposition, we will from Section 3 on assume that k is the
field of constants of K, i.e., that C is geometrically irreducible over k.

Proof: Let d = [k′ : k]. Then Spec k′ ⊗k A is the disjoint union of d
copies of SpecA. Let e be an idempotent of A′ := k′ ⊗k A which projects
onto precisely one of these copies. By σ′ the absolute Frobenius of X with
respect to k′ is denoted, i.e., σ′ = σd.

Via OX ⊗k A ∼= OX ⊗k′ A′, we regard F as a sheaf over X ×Spec k′

SpecA′. Furthermore, the d-th iterate of τ gives us an OX ⊗k′ A′-linear
endomorphism

(σ′ × id)∗F τd // F .

Because τd is A′-linear, multiplication with the idempotent 1⊗e of OX⊗k′
A′ commutes with τd, and we set

F ′ := ((1⊗ e)F , (1⊗ e)τdF ).

It remains to verify that F ′ satisfies the assertion of the proposition.
Obviously, X has the same closed points as a variety over k or over k′.
Thus it suffices to check that F and F ′ have the same local factors in
the definition of the respective v-adic L-functions. Hence we may assume
that X = Spec kx for some finite extension kx of k′. We may also work
with K instead of A and K ′ := k′ ⊗k K instead of A′ as coefficients.
So let M be a kx ⊗k K-module representing F and τ : M → M the
corresponding σ ⊗ id-linear endomorphism. Analogously one defines M ′,
τ ′ for F ′.

If τ is nilpotent, then M as well as M ′ have trivial v-adic L-functions.
For arbitrary τ , consider the decreasing sequence of submodules τ ldx(M),
l ∈ N, of M . Because kx ⊗k K is artinian, this sequence will become
stationary. As the kernel of M → τ ldx(M) is nilpotent, we may, by the
above, assume that τ is an isomorphism. Furthermore if p denotes the
image of Spec kx → SpecA, we will assume that p 6= pv as otherwise
again both v-adic L-functions will be trivial.

WriteK ′ = K1×. . .×Kd where allKi are isomorphic toK and where σ
acts onK ′ by cyclically permuting theKi. Correspondingly we writeM =
M1×. . .×Md, and we assume that e is the idempotent that is the identity
on K1 and zero on the other Ki. Relative to k, the local L-function of the
τ -module M , written Lk(x,M, T ), is given as the inverse of detkx⊗kK(1−
T dxτdx |M), where the determinant is taken over the ring kx⊗kK. As τdx
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fixes all the components Mi and as τ maps Mi isomorphically to Mi+1, it
follows that Lk(x,M, T )−1 = detkx⊗k′K1(1 − T dxτdx |M1). Therefore the

v-adic L-function L(v)
k (M, s) relative to k satisfies

L
(v)
k (M, s)−1 = det

kx⊗k′K1

(1− p−sdx/dpτdx |M1).

Relative to k′ we compute the corresponding data for M ′ = M1 and
τ ′ = τd|M1

. We use d′x and d′p to denote the degrees of x, respectively p

over k′, and write subscripts k′ at the L-functions to indicate that we
work over k′. We find that Lk′(x,M ′, T )−1 = detkx⊗k′K1(1−T d

′
xτ ′d

′
x |M1)

and hence

L
(v)
k′ (M ′, s)−1 = det

kx⊗k′K1

(1− p−sd
′
x/d

′
pτ ′

d′x |M1).

Since d′x/d
′
p = dx/dp and τdx|M1

= τ ′d
′
x , the assertion follows.

2.5. Twisting L-functions by characters

Let k̃ be a finite extension of k and choose an embedding into the k-
field Cv.

Definition 2.19 For (F •) ∈ Db(Crys(X,A)) and χ : Gal(Ksep/K) →
k̃∗ a character which is unramified outside v,∞, we define

L(v)
χ ((F •), s) :=

∏
x∈X(v)0

L(x, (F •
x), T )|T dpx=χ(Frobpx )p−sx

to be the twist of the v-adic L-function of (F •) by χ.

In the following discussion, we fix v, k̃ and χ. By going through the
proof of Theorem 2.16, it is simple to see that L(v)

χ has a half plane of
convergence. However the proposition below will give us a more intrinsic
way to see this.

Define Ã := Ak̃ as a ring inside Cv. Note that k̃ → Ã and A→ Ã are
obviously flat. Via change of coefficients, ⊗k̃ Ã, we may view the crystal
M χ from Theorem 2.7 as a locally free crystal in Crys(SpecA(v), Ã), and
f(v)∗M χ as a locally free crystal of Crys(X(v), Ã). Furthermore, the re-
striction (F •)|X(v) of (F •) to X(v) is an element of Db(Crys(X(v), Ã)).

By Remark 2.17, the v-adic L-function of the Ã-crystal (F •)|X(v)

L
⊗

f(v)∗M χ on X(v) is defined and represented by an Euler product on
some half plane of Sv. The characterization of M χ given in Theorem 2.7
combined with Definitions 2.8 and 2.19 yields the following result.
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Proposition 2.20 Whenever L(v)((F •)|X(v)

L
⊗ f(v)∗M χ, s) converges,

the Euler product of L(v)
χ ((F •), s) converges and takes the same value.

We now specialize the above discussion to the characters χv,y of Ĝv,
defined in Proposition 2.6. The quoted proposition and Theorem 2.7 yield
the following, which except for the terminology is in [21], §10:

Proposition 2.21 For (F •) ∈ Db(Crys(X,A)) and s = (z, w, y) in a
suitable half plane one has

L(v)((F •), s) = L(v)
χv,y((F

•), (z, w, 0))

= L(v)((F •)|X(v)

L
⊗ f(v)∗M χv,y , (z, w, 0)).

2.6. Reduction to X = SpecA

Theorem 2.22 Let v be a place of K and fix (F •) ∈ Db(Crys(X,A)).
If D∗v(c)×Wv is a common half plane of convergence for the two v-adic L-
functions L(v)(X, (F •), s) and L(v)(SpecA,Rf!(F •), s), then they agree
on this half plane.

Proof: According to Proposition 2.10, it suffices to show that∏
p∈Max(A(v))

L((F •
p), T )|T dp=p−s =

∏
p∈Max(A(v))

L((Rf!F
•)p, T )|T dp=p−s .

By base change, Theorem 1.36, we have (Rf!F
•)p
∼= Rf!(F •

p). The result
now follows from the trace formula for L-functions of τ -sheaves, Theo-
rem 1.45.

Corollary 2.23 Let (F •) be a complex in Db(Crys(X,A)). Then there
exists a complex (G •) ∈ Db(Crys(SpecA,A)), all of whose objects are lo-
cally free with the following property: Let v be a place of K and D∗v(c)×Wv

a half plane of convergence for the two v-adic L-functions L(v)(X, (F •), s)
and L(v)(SpecA, (G •), s). Then

L(v)(X, (F •), s) = L(v)(SpecA, (G •), s).

on D∗v(c)×Wv. One may furthermore assume that (G •) is concentrated
in degrees zero and one.
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Proof: By Theorem 2.22 we may replace the complex (F •) byRf!(F •).
As SpecA is smooth and affine, by Theorem 2.16 and Lemma 1.33, we
may replace the latter complex by a bounded complex (G •) of locally free
A-crystals on SpecA. If desired, one can replace (G •) by the complex

. . . −→ 0 −→
⊕
i even

G i 0−→
⊕
i odd

G i −→ 0 −→ . . .

2.7. Meromorphy

For c > 0, let Can(D̄v(c)) denote the ring of power series f =
∑

n≥0 anz
−n

over Cv which converge for |z|v ≥ c. This is a Banach space under
the norm ||f ||c := supn≥0 |an|vc−n. Similarly, for c ≥ 0 we denote by
Can(Dv(c)) the ring of those power series that converge for |z|v > c.
Let {cm} be any strictly decreasing sequence which converges to c. Then
Can(Dv(c)) is a Fréchet space under the metric

dist{cm}(f, g) :=
∞∑
m=1

2−m
||f − g||cm

1 + ||f − g||cm
.

This means Can(Dv(c)) is a complete linear metric space with respect to
dist{cm}. A sequence {gn} ⊂ Can(Dv(c)) is a Cauchy-sequence if and only
if this holds with respect to all norms || ||cm . Different sequences {cm}
will give equivalent metrics. If c = 0, we will usually use the sequence
cm = q−mv .

The following defines a metric distv on Wv. Let | |p be the valuation
on Zp such that |p| = p−1 and define for y ∈ Z/(qv,βv − 1) the symbol δy
as zero if y = 0 and as 1 otherwise. For (wi, yi) ∈Wv, i = 1, 2 we define

distv((w1, z1), (w2, y2)) := δy1−y2 + |w1 − w2|p.

By Theorem 2.16, the function z 7→ L(v)(F , (z, w, y)) represents a
power series in z−1 which is convergent on D∗v(c) for some c > 0, inde-
pendently of (w, y) ∈ Wv, and the coefficients of this power series vary
continuously in (w, y). If we set L(v)(F , (∞v, w, y)) := 1, we may regard
L(v)(F , ) as a continuous function Wv → Can(Dv(c)), where domain
and range are the metric spaces defined above.

Remark 2.24 The obvious restriction map Can(Dv(c′)) → Can(Dv(c))
for c′ < c is injective, as analytic functions are uniquely determined by
their power series expansion around ∞. This shows that L(v)(F , ) is
uniquely determined, if we know its restriction Wv → Can(Dv(c)) for
some arbitrarily large c.
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Definition 2.25 (Goss) A continuous function f : Wv → Can(Dv(0)) is
called entire.

An entire function is called essentially algebraic, if there exists a finite
extension K̃ of K such that for all j ∈ N0 the functions f(−j,−j) lie in
K̃[z−1].

The quotient of two entire functions is called meromorphic. The quo-
tient of two entire, essentially algebraic functions is called essentially al-
gebraic.

We say that L(v)(F , ) : Wv → Can(Dv(c)) has an entire, respec-
tively meromorphic continuation to Sv if there exists an entire, respec-
tively meromorphic function f whose restriction to Dv(c) agrees with
L(v)(F , ).

Remark 2.24 shows that if L(v)(F , ) has an entire continuation f to
Sv, then the function f is unique. Thus often we will simply say that
L(v)(F , ) is entire, meromorphic, essentially algebraic, respectively.
The definition of entireness, meromorphy, essential algebraicity, respec-
tively, on any open (hence compact) subgroup of Wv is analogous and left
to the reader.

Remark 2.26 In [12], Def. 8.5.12, one finds for v = ∞ the following
definition of essential algebraicity: f is essentially algebraic if there exists
a finite extension K̃ of K such that for all j ∈ N0 the functions f(−j,−j)
lie in K̃[z−1πj∗]. By our choice of π∞, we know that πn∗ ∈ K for some
n � 0. Therefore K̃ is finite over K if and only if K̃[π∗] is finite over
K. Hence we may work with the above uniform definition of essential
algebraicity for all places v.

For an L-function to be entire, we have the following simple criterion,
essentially in terms of the coefficients of its Taylor expansion near ∞v.

Proposition 2.27 Let L(F , ) : Wv → Can(Dv(c)) be given for some
c > 0. Suppose we have a set M := {(wn, yn) : n ∈ N} which is dense in
an open subgroup U of Wv such that

(a) ||L(F , ( , w1, y1))||q−mv is finite for all m ∈ N, and
(b) for each m ∈ N, there exists a constant Cm > 0 such that

||L(F , ( , wn, yn))− L(F , ( , wn′ , yn′))||q−mv
≤ Cm distv((wn, yn), (wn′ , yn′)).

Then L(v)(F , ) is entire on U .
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Proof: For fixed m the two conditions above mean that we have a uni-
formly continuous map from a dense subset of U to the metric space
Can(D̄v(q−mv )). By a simple argument from the theory of metric spaces,
this map has a unique continuous extension fm : U → Can(D̄v(q−mv )).

Independently of m, the maps fm and L(F , ) must agree when
restricted to Dv(max{c, q−mv }). Thus by Remark 2.24, the functions fm
patch, so that for each (w, y) ∈ U , one obtains a function f(w, y) ∈
Can(Dv(0)) which when restricted to D̄v(q−mv ) is fm(w, y). It remains to
show that f : U → Can(Dv(0)) is continuous.

Let w̄n be a sequence in U that converges to w̄. We need to show that
f(w̄n) → f(w̄). By the definition of the metric dist{q−mv }, it suffices to
show this convergence for all norms || ||q−mv , i.e., that fm(w̄n)→ fm(w̄)
for each fixed m. This is clear from the construction of the fm.

We conclude our discussion of meromorphy by comparing the entire-
ness of F to that of its Frobenius twist F (q). For l ∈ Z and a power series
g =

∑
anz

−n, we define gσ
l
:=

∑
aq

l

n z−n. Because Cv is perfect, this also
makes sense if l < 0. The map g 7→ gσ

l
is an isometric ring homomor-

phism from Can(D̄v(c)) to Can(D̄v(cq
l
)). With respect to suitable Fréchet

metrics of the spaces involved, the analogous map from Can(Dv(c)) to
Can(Dv(cq

l
)) is an isometry, too.

By Cont( , ), we denote the set of continuous maps between topo-
logical spaces. For f ∈ Cont(Wv,Can(D̄v(c))), we define

f (q) : Wv → Can(D̄v(cq)) : (w, y) 7→ (f(w, y))σ.

Thus we obtain a map

Cont(Wv,Can(D̄v(c)))→ Cont(Wv,Can(D̄v(cq))),

and similarly Cont(Wv,Can(Dv(c)))→ Cont(Wv,Can(Dv(cq))).

Lemma 2.28 Let f = L(F , ) : Wv → Can(Dv(c)) for some c > 0.
Then

f (q)(w, y) = L(F (q), ( , qw, qy)) : Wv → Can(Dv(cq)).

Proof: This is immediate from Definition 2.8 and Lemma 1.48.



36 Gebhard Böckle

From the definition it is obvious, that f (q)(w, y)(zq) = (f(w, y)(z))q.
Combined with the previous lemma this shows:

Corollary 2.29 For any place v of K, there exists a constant c ∈ R>0

such that L(v)(F , (z, w, y))q = L(v)(F (q), (zq, qw, qy)) on D∗v(c)×Wv.

Proposition 2.30 If L(v)(F (q), s) is entire, meromorphic, essentially
algebraic on D∗v(0)× qWv, then so is L(v)(F , s) on D∗v(0)×Wv.

Proof: Let f ∈ Cont(Wv,Can(Dv(c))) correspond to L(v)(F , s) for
c sufficiently large, and g : Wv → Can(Dv(cq)) to L(v)(F (q), s). By
Lemma 2.28, we have f (q)(w, y) = g(qw, qy). Thus our assumptions imply
that f (q) is entire, respectively meromorphic on Wv. Furthermore, if g is
essentially algebraic on qWv, then there exists a finite extension K̃ of K
such that f (q)(−j,−j) = g(−qj,−qj) lies in K̃[z−1] for all j ∈ N0.

The operation h 7→ hσ
−1

preserves Can(Dv(0)) as well as its subspace
of polynomials, Cv[z−1]. Moreover, if a polynomials pj belongs to K̃[z−1],
then the polynomial pσ

−1

j belongs to K̃1/q[z−1]. Because K is finitely
generated over k, the field K̃1/q is still a finite extension of K. Therefore
f , which is the composite

Wv
f (q)

// Can(Dv(0)) h 7→hσ−1

// Can(Dv(0)),

has the desired property on Wv whenever g has it on qWv.

3. Drinfeld-Hayes modules

From now on, we will assume that k is the subfield of constants of K, i.e.,
that C is geometrically irreducible, cf. Proposition 2.18.

LetC := (k[θ]⊗k k[t], (t− θ)(σ ⊗ id)) denote the τ -sheaf on Spec k[θ]
over k[t] associated to the Carlitz module. Then for any j ∈ N

ζ
(v)
Spec k[θ]((z, 0, 0)− sv,j) = L(C ⊗j , T )|T=z−1 ,

independently of v. (That ζ(v)
Spec k[θ](s) has a meromorphic continuation to

all of Sv is shown in [12], Thm. 8.9.2.) This is at the base of the following
observation from [21],

L(v)(F , (z, 0, 0)− sv,j) = L(F ⊗C ⊗j , T )|T=z−1

for A = k[t] and any crystal F , which relates special values of v-adic
L-functions to L-functions of τ -sheaves. In this section, we will discuss
similar results for general A.
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3.1. The L-function of the Drinfeld-Hayes crystal H A

Let Cl+(A) := J/P+ denote the narrow class group of A and h+ :=
cardCl+(A) the narrow class number. By O+ we denote the integral clo-
sure of A in H+. As H+/K is unramified away from ∞, the extension
O+/A is everywhere unramified. Let ξ : SpecO+ → SpecA be the cor-
responding covering map of schemes and G := Gal(H+/K) its Galois
group.

By [12], Prop. 7.2.20, every isomorphism class of rank one sign-norma-
lized Drinfeld-A-modules defined over Kalg, can be realized by a Drinfeld-
A-module ψH : A → O+{τ}. (This is the first instance where we use
that k is the constant field of A, as otherwise there are no rank one
Drinfeld modules relative to τ .) Furthermore such a ψH has everywhere
good reduction. For ψH as above and γ ∈ G we define ψγH as the composite
of ψH with the endomorphism on O+{τ} obtained by having γ act on the
coefficients. Then {ψγH : γ ∈ G} is a complete set of representatives of
isomorphism classes of rank one sign-normalized Drinfeld-Hayes modules,
loc. cit., Thm. 7.4.8.

Proposition 3.1 The sheaves M (ψγH) are locally free of rank one over
O+. The τ -sheaves ξ∗M (ψH) and ξ∗M (ψγH) are isomorphic for any γ ∈
G.

Proof: The first part is immediate from Example 1.6, and so we now
turn to the proof of the second. Applying ξ∗ simply means that we regard
M (ψH) as a τ -module over A⊗A. The action of γ on O+ induces an A⊗A-
linear automorphism γ̃ on O+⊗A{τ}, mapping r ⊗ aτ i to γ(r)⊗ aτ i.

As an O+{τ} ⊗ A-module, M (ψH) is isomorphic to the quotient of
O+{τ}⊗A by the left ideal generated by {ψH(a)⊗1−1⊗a : a ∈ A}. Under
the action of γ̃, the latter set maps to {ψγH(a)⊗ 1− 1⊗ a : a ∈ A}. Hence
γ̃ induces an A⊗A-linear isomorphism from ξ∗M (ψH) to ξ∗M (ψγH).

From now on, we write H A for M (ψH).

For p ∈ Max(A) let Frobp ∈ G := Gal(H+/K) denote the corre-
sponding Frobenius automorphism. Because G is abelian and O+/A is
unramified Frobp is well-defined for all p. For P ∈ Max(O+), let GP de-
note the corresponding decomposition subgroup of G, which is the sub-
group generated by Frobp, where P is above p. As GP only depends on
p, we sometimes use the notation Gp. Via the isomorphism G ∼= Cl+(A)
from class field theory, the element Frobp corresponds to the ideal class
[p] ∈ Cl+(A) of p. Let dP denote the degree of P over k, which is the
same as the order of [p].
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Lemma 3.2 For p ∈ Max(A) and P ∈ Max(O+) a place above p, one
has

L(P,H A, T )−1 = 1− (ps∞,1T dp)cardGP .

Proof: By its definition, L(P,H A, T )−1 = det(1−T dPτdP |(i∗PH A)⊗A
K). As is clear from Example 1.6(b), the pullback i∗PH A is the crystal as-
sociated to ψH (mod P). Because the order of the class [p] is cardGP, we
can choose a positive generator gp in pcardGP , so that gp = π

dp cardGp
∗ 〈p〉cardGP

and sign(gp) = 1. As ψH (mod P) has supersingular reduction at p, and
as it is sign-normalized, we have

ψH(gp) ≡ τdp cardGpα(sign(gp)) ≡ τdP (mod P),

for some α ∈ Gal(k∞/k). Thus τdP ⊗ 1 = 1⊗ gp on i∗PH A, and we have

L(P,H A, T )−1 = 1−
(
(π∗T )dp〈p〉

)cardGp

.

Let Ĝ denote the group of characters of G with values in Z[ζh+]. We
fix a prime ideal P of Z[ζh+] above p, and let k̃ denote the corresponding
residue field. For a character χ ∈ Ĝ let χ̄ : G → k̃∗ denote its reduction
modulo P. We extend ιv to a map Ã := k̃A → Cv. The well-known and
simple observation∏

χ∈Ĝ

(1− χ(Frobp)T ) = (1− T cardGp)cardG/ cardGp

now yields

Corollary 3.3 For any p ∈ Max(A):∏
P|p

L(P,H A, T )−1 =
∏
χ∈Ĝ

(1− χ̄(Frobp)ps∞,1T dp).

The following result is now an immediate consequence of the definition
of L(v) and the above corollary:

Theorem 3.4 (Goss) There exists a half plane of Sv on which the v-
adic L-function L(v)(H A, s) is given by∏

p∈Max(A(v))

∏
χ∈Ĝ

(
1− χ̄(Frobp)psv,1−s

)−1
.
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3.2. Crystals constructed from H A

We define the following τ -sheaves over A on SpecA:

P :=
(
Λh

+
ξ∗H A

)⊗2
Q j := ξ∗

(
H
⊗j
A

)
.

Had we chosen M (ψγH) instead of H A, then Proposition 3.1 shows that
the resulting τ -sheaves are isomorphic and hence define the same crystal.

The proof of the following lemma is easy and left to the reader.

Lemma 3.5 Let F ,G be τ -sheaves on X over A and x ∈ X0. Write
L(x,G , T )−1 =

∏r
l=1(1 − αlT dx) with αl ∈ Kalg. SupposeG is locally

free of rank r. Then the following hold:

(a) The j-th exterior power ΛjG ofG is a locally free τ -sheaf of rank
(
r
j

)
on X, and

L(x,ΛjG , T )−1 =
∏

1≤l1<l2<...<lj≤r
(1− αl1αl2 . . . αljT

dx).

(b) If L(x,F , T )−1 =
∏s
m=1(1− βmT dx) with βm ∈ Kalg, then

L(x,F ⊗G , T )−1 = L(x,F
L
⊗G , T )−1 =

r∏
l=1

s∏
m=1

(1− αlβmT dx).

(c) Suppose X = SpecA andG has rank one. Let x = p ∈ Max(A) and
write L(p,G , T )−1 = 1− αpT

dp. Then for s in a suitable half plane

L(v)(F ⊗G ⊗j , s) =
∏

p∈Max(A(v))

L(F p, T )|T dp=αjpp−s
.

Lemma 3.6 For an abelian group H with character group Ĥ define χH :=∏
χ∈Ĥ χ. If H/2H has order two, let χH,0 be the unique character on H

of order 2. Otherwise, let χH,0 be trivial. Then χH = χH,0.

Proof: We first consider the case where H is cyclic of order n. Then Ĥ
is also cyclic of order n. So let h0 be a generator of H and χ0 of Ĥ such
that χ0(h0) = ζn. Then

∏
χ∈Ĥ

χ(h0) =
n−1∏
i=0

ζin = ζ
(n2)
n =

{
1 n is odd
−1 n is even

and the lemma follows.
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Next, if H = H1 × H2 is the product of two subgroups, we write
correspondingly Ĥ = Ĥ1 × Ĥ2 where the characters in Ĥ1 are trivial on
H2 and vice versa. Then

χH =
∏
χ∈Ĥ

χ =
∏

χ1∈Ĥ1,χ2∈Ĥ2

χ1χ2 = χcardH2
H1

χcardH1
H2

.

It is clear how to extend the above formula to an m-fold product of cyclic
groups. The result follows easily.

Applying the above lemmas to Corollary 3.3 implies the following:

Corollary 3.7 For any p ∈ Max(A):

L(p,P ⊗j , T )−1 = (1− ps∞,2jh+T dp),

L(p,Q j , T )−1 =
∏
χ∈Ĝ

(1− χ̄(Frobp)ps∞,jT dp).

Corollary 3.8 Let (F •) be in Db(Crys(X,A)). For s = (z, w, y) in a
suitable half plane of Sv one has

(a)

L(v)((F •)
L
⊗ f∗P ⊗j , s) = L(v)((F •), s− sv,2jh+),

(b)

L(v)((F •)
L
⊗ f∗Q j , s) =

∏
χ∈Ĝ

L(v)((F •)|X(v)

L
⊗ f(v)∗M χ̄j , s− sv,j).

Proof: By Theorem 2.22, we may apply Rf! to the crystals whose L-
functions we want to compare. Using Theorem 1.37 (the projection for-
mula), we may assume that X = SpecA and f = id. Furthermore we may
assume that (F •) is a τ -sheaf concentrated in degree zero. Then the pre-
vious corollary, Lemma 3.5 and Proposition 2.20 imply both assertions of
the corollary.
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4. An algebraic proof of Goss’ conjecture

Let gX(v) : X(v) → Spec k be the structure morphism. The following
result is an immediate consequence of Definition 2.8, and the trace formula
for τ -sheaves, Theorem 1.45.

Proposition 4.1 For (F •) ∈ Db(Crys(X,A)), v a place of K and
|z|v � 1:

L(v)(X, (F •), (z, 0, 0)) = L(X(v), (F •), T )|T=z−1

= L(Spec k,RgX(v)!(F
•), T )|T=z−1 .

In particular, the special value of L(v) ‘at zero’ can be expressed as the
L-function of a τ -sheaf and is therefore a rational function in the variable
z−1 over A.

Using the results of the previous section, we will obtain a similar pre-
sentation for the special values of global L-functions at all negative in-
tegers. This will allow us to derive some congruence properties, which
in turn will show that all v-adic L-functions of crystals on arbitrary A-
schemes (of finite type) have a meromorphic continuation to all of Sv.

We remind the reader that from Section 3 on, we have assumed that
C is geometrically irreducible over k.

4.1. Special values at negative integers

Throughout this subsection, we assume that X = SpecA and that F is
a locally free crystal on X of rank r. Thus for a place v of K we have
X(v) = SpecA(v). The open immersion X(v)→ C will be denoted jv. By
C/K, we denote the base change of the curve C defined over k to K. For
a coherent sheafG on C/K, we abbreviate hi(G ) := dimH i(C/K,G )
and define its Euler-Poincaré characteristic χ(G ) := h0(G )− h1(G ).

Definition 4.2 For j ∈ N0, we define Hv,j(z) := L(v)(F , (z, 0, 0)− sv,j)
and call it the special value of L(v)(F , s) at −j.

As a consequence of Proposition 4.1, Corollary 3.8(a) and Theorem 1.38
we have:

Proposition 4.3 Suppose ˜F j is a locally free τ -sheaf in Cohτ (C,K)
representing jv!((F ⊗P ⊗j)|X(v))⊗AK. Then for j ∈ N0 the special value
Hv,2h+j(z) is a polynomial in A[z−1] of degree at most h1( ˜F j).
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Because (F ⊗P ⊗j)|X(v)⊗AK is a locally free crystal on the affine regular
scheme SpecA(v) ⊗k K, by Lemma 1.4 it may be represented by a free
finite rank τ -sheaf. Using Lemma 1.30 it is easy to construct a locally free
representative ˜F of jv!((F ⊗P ⊗j)|X(v))⊗A K.

To construct representatives ˜F j with good bounds on h1( ˜F j) , we
will need to control h0(X,F ⊗L ) where F is a fixed locally free sheaf on
C/K and L varies over the locally free sheaves of some negative degrees.
Define for any n ≤ 0 the quantity δn(F ) as the maximum of zero and

max{h0(X,F ⊗L )− h0(X,F ) : L is invertible with degL ≤ n}.

The δn(F ) form a sequence of positive integers; they are zero for n ≤ −g,
and increasing on [−g, 0]. The following lemma gives better bounds on
δn(F ).

Lemma 4.4 Let F be a locally free sheaf of rank r on C/K. Then for
any n ≤ 0

δn(F ) ≤ rmax{0, g + n} ≤ rg.

Proof: Define m := −[−max{0, g + n}/d∞], i.e., m ≥ 0 is the small-
est integer such that md∞ − degL ≥ g for any L with degL ≤ n.
The Riemann-Roch theorem implies that there is a non-zero section in
L −1(m∞), and therefore one has the following inclusions of sheaves

F ⊗L ↪−→ F (m∞)←−↩ F .

The left hand side yields the inequality h0(F ⊗ L ) ≤ h0(F (m∞)).
Moreover bounding h0 of the cokernel of the right monomorphism yields
the inequality h0(F (m∞)) ≤ h0(F ) + rmd∞. Combining the two in-
equalities proves the desired result.

For j ∈ N0, let j = j0 + j1q + j2q
2 + . . . be its q-adic expansion and

write j̄ for the sum j0 + j1 + j2 + . . . of the q-adic digits of j. For j̄ as
above, define nj̄ := [(2h+̄j + d∞)/(1− q)] < 0.

We now come to one of the central results of this article.

Theorem 4.5 Let ˜F be a locally free τ -sheaf on C over K whose re-
striction to X(v) represents F |X(v)⊗AK. If v 6=∞, assume further that˜F is nilpotent at v. Then

degHv,2h+j ≤ h1( ˜F ) + r
([ 2h+̄j

q − 1

]
+ d∞

)
+ δnj̄ ( ˜F ). (2)
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Note that after Proposition 4.3, we explained how to construct ˜F for a
given crystal F . As j̄ is of order O(log j), the above theorem and lemma
imply:

Corollary 4.6 The special values Hv,2jh+(z) are polynomials in A[z−1]
whose degrees grow like O(log j).

The main step in the proof of Theorem 4.5 is the following lemma.

Lemma 4.7 There exists a locally free τ -sheaf L̃ j of rank one on C over
K representing j∞!P

⊗j ⊗A K such that

0 <
2h+̄j + d∞
q − 1

≤ −nj̄ ≤ −deg L̃ j ≤
[ 2h+̄j

q − 1

]
+ d∞.

Remark 4.8 To prove only Corollary 4.6 and not Theorem 4.5, it suffices
to construct L̃ j as in the lemma which satisfy the condition −deg L̃ j ≤
O(j̄). The following simple construction will give such L̃ j :

Using Lemma 1.30, one constructs a locally free τ -sheaf L̃ on C over
K which represents j∞!P ⊗A K. Define L̃ j := L̃ ⊗j0 ⊗ . . . ⊗ L̃ (qs)⊗js .
As L̃ (qi) and L̃ have the same (negative) degree, and as L̃ (qi) is nil-
isomorphic to L̃ ⊗qi , the assertion follows easily.

Proof: To prove Lemma 4.7, we write j in its q-adic expansion as above,
and define P j := P ⊗j0 ⊗ . . . ⊗ (P (qs))⊗js ⊗A K. By Proposition 1.23,
P (ql) is nil-isomorphic to P ⊗q

l
, and hence P j to P ⊗j ⊗A K.

As k is the constant field of K, there is precisely one point of C/K
which lies above∞, which we also denote by∞. SinceP j is a line bundle
on the open curve C/Kr{∞}, there exists a line bundle on C/K extend-
ing it. Using Lemma 1.30 we can find a τ -sheaf L̃ j representing j∞!P j

whose underlying sheaf is locally free of rank one and whose restriction
to C/K r {∞} agrees with P j .

To compute the degree of L̃ j , we will analyze the cokernelC̃ j defined
by the short exact sequence

0 // (σ × id)∗L̃ j
τ // L̃ j

//C̃ j
// 0 .

The first thing to note about this sequence is that deg(σ × id)∗L̃ j =
q deg L̃ j . Thus one has (1 − q) deg L̃ j = dimKC̃ j and it suffices to
obtain good bounds on dimKC̃ j . To investigate C̃ j , we first consider its
restrictionC j to SpecA⊗K, which fits into the short exact sequence

0 // (σ × id)∗P j
τ //P j //C j // 0 . (3)
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By the proof of Proposition 5.10, in particular by (c) on page 61, the
support of C 1 is concentrated on the point Ξ of Spec(A ⊗ K) which
corresponds to the multiplication map A⊗K → K. (The point Ξ arises
from the diagonal of SpecA × SpecA after base change from A to K.)
Furthermore, the quoted result shows that the dimension of the stalk of
C 1 at Ξ is 2h+.

The Frobenius twist maps the short exact sequence (3) for j = 1 to
another short exact sequence, whose cokernel has the same K-dimension
and is concentrated above σ(Ξ). The definition of P j now implies that
the K-dimension ofC j is 2h+̄j.

It remains to consider the stalk ofC̃ j above∞. Let π be a uniformizing
parameter of A∞ that lies inside K — such a π can be constructed using
the Riemann-Roch theorem. Then the completion of the stalk of OC/K
at ∞ is isomorphic to S := (k∞ ⊗ K)[[π]], and the completion of L̃ j ,
is a τ -module of the form (S, uπn(σ × id)) for some unit u of S and
some element n ∈ N. Note that k∞ ⊗K is a field, as C is geometrically
irreducible. Furthermore (σ × id)(π) = πq.

Write n = (q − 1)l + n0 for some l, n0 ∈ N0 with 0 < n0 < q. Then
(π−lS, uπn0(σ× id)) is a ‘formal’ τ -sheaf on S which contains (S, uπn(σ×
id)). We now replace L̃ j by L̃ j(−l∞). The above local analysis at ∞
shows that this still represents j∞!P j . Furthermore we have dimKC̃ j =
2h+̄j + n0d∞ for some n0 ∈ [1, . . . , q − 1]. The asserted inequalities now
follow readily from (1− q) deg L̃ j = dimKC̃ j .

Proof of Theorem 4.5: Let L̃ j be as in the lemma. Then ˜F j := ˜F ⊗
L̃ j represents jv!((F ⊗P j)|X(v) ⊗A K), and Proposition 4.3 yields the
estimate degHv,2h+j ≤ h1( ˜F j). We rewrite the expression on the right
using the Euler-Poincaré characteristic of coherent sheaves.

The change of the Euler-Poincaré characteristic of a locally free sheaf
of rank r under twisting with a line bundle is given by adding r times the
degree of the line bundle. Therefore we have

h0( ˜F j)− h1( ˜F j) = χ( ˜F j) = χ( ˜F ) + r deg L̃ j

= h0( ˜F )− h1( ˜F ) + r deg L̃ j .

By the previous lemma, we have deg L̃ j ≤ nj̄ < 0. Reordering the terms
and using the definition of δnj̄ completes the proof of the theorem.
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Let C+/K denote the curve corresponding to the function field H+,
let g+ denote its genus, ξ the corresponding map C+ → C, and define
the open subscheme C+(v) as ξ−1(X(v)). We will use ξ also for the map
C+(v) → X(v). Furthermore, we define δ+n (F ) for locally free sheaves
F on C+/K of rank r and n ∈ −N in analogy to δn. Again one has
δ+n (F ) ≤ rmax{0, g+ + n} ≤ rg+, for a locally free τ -sheaf of rank r on
C/K. Note that the Hurwitz genus formula yields

g+ = h+(g − 1) + d∞ + 1/2(h+/d∞ − h/d∞).

Define n+
j̄

:= [(h+̄j+hd∞)/(1− q)] < 0. By arguing as above, however
working with C+ instead of C, one can obtain the following two results,
which we state without proof:

Lemma 4.9 There exists a locally free τ -sheaf L̃ j of rank one on C+/K

representing j∞!H
⊗j
A ⊗A K such that

0 <
h+̄j + hd∞
q − 1

≤ −n+
j̄
≤ −deg L̃ j ≤

2h+̄j

q − 1
+ hd∞.

Theorem 4.10 Let ˜F be a locally free τ -sheaf on C+ over K of rank
r whose restriction to C+(v) represents ξ∗(F |X(v)) ⊗A K. For v 6= ∞,
assume further that ˜F is nilpotent at all places above v. Then

degL(v)(F
L
⊗Q j , (z, 0, 0)) ≤ h1( ˜F )+ r

(
[h+̄j/(q− 1)]+hd∞

)
+ δ+nj̄ (

˜F ).
(4)

In particular, L(v)((F •)
L
⊗ Q j , (z, 0, 0)) is a polynomial in A[z−1]

whose degree grows like O(log j).

Remarks 4.11 (a) If the 2-part of the class group of A is not a cyclic
non-trivial group, one can extend estimate (2) to

degHv,jh+(z) ≤ h1( ˜F ) + r
(
[h+̄j/(q − 1)] + d∞

)
+ δn′

j̄
( ˜F ),

where n′
j̄

= [(h+̄j + d∞)/(1 − q)]. This can be seen by working with the
highest exterior power of ξ∗H A instead ofP and taking Lemma 3.6 into
account. The results needed from Proposition 5.10 continue to hold with
some obvious modifications.

(b) Recall that by Corollary 3.8, we have

L(v)((F •)
L
⊗ Q j , s) =

∏
χ∈Ĝ

L(v)((F •)| SpecA(v)

L
⊗M χ̄j , s− sv,j). (5)
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If all the |Ĝ| = h+ factors in this expressions are asymptotically of the
same size, then one should expect that there exists a constant c such that

degHv,j(z) ≤ c+ rj̄/(q − 1),

for all j ∈ N0, as can be seen by dividing the estimate (4) through h+.
Based on (5), in Theorem 4.15 we prove the weaker estimate degHv,j(z) ≤
c+ j̄rh+/(q − 1). Let h′ be twice the exponent of the group Gal(H+/K),
so that h′|2h+. Then for all j divisible by h′, all factors on the right hand
side of formula (5) are identical. Using our estimate for δ+

n+
j̄

( ˜F ), this
proves

degHv,h′j(z)≤
h1( ˜F )
h+

+
r

h+

(
max

{
g+,

h+h′j + hd∞
q − 1

}
+ q−2

q−1hd∞

)
.

Example 4.12 Let F = 1lSpecA,A and define ˜F to be the τ -sheaf 1lC,K
if v = ∞ and I v1lC,K otherwise, where I v = OC(−v). By the Riemann-
Roch theorem δn( ˜F ) = 0 for all n < 0. Hence Proposition 4.5 gives the
estimate

degH2jh+(z) ≤ dv + g − 1 + [2h+̄j/(q − 1)] + d∞.

In particular, if v = ∞ and h+ = 1, i.e., h = d∞ = 1, then by part (a)
of the previous remark we find degHj(z) ≤ g + [j̄/(q − 1)]. For A = k[t]
this bound was obtained in [9], and it was probably one of Goss’ motiva-
tions to look for logarithmic bounds on the degrees of special values. The
results of loc. cit. also show that our estimate (2) is sharp. See also, [12],
Rems. 8.12.1 and [23].

4.2. Constructing a meromorphic continuation

We abbreviate h∞ := 2h+and hv := 2h+(qv,βv−1) for v 6=∞. For a locally
free A-crystal F on SpecA, define bv,j := L(v)(F , (z,−jhv,−jhv)) for
j ∈ N. From the definition of L(v) and Theorem 2.16 we see that there
exists c ∈ R, independently of j, such that

bv,j =
∏

p∈Max(A(v))

L(p,F , T )|T dp=p−s

∣∣∣∣∣∣
s=(z,−jhv ,−jhv)

for |z|v > c. For each p, the expression L(p,F , T ) is a power series
in A[[T dp ]] with constant coefficient 1. As A is a Dedekind domain and
whence has unique factorization of ideals, expanding the Euler product
yields bv,j =

∑
I≤A aII

−s|s=(z,−jhv ,−jhv) for unique elements aI ∈ A for
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each ideal I of A. Note that aI = 0 if I is not relatively prime to pv.
Regarding the infinite valuation of the aI , it is a consequence of Proposi-
tion 2.15 that there exists a constant M ∈ N such that aIπ

M deg I
∞ ∈ A∞

for all I ≤ A.
For each ideal I of A relatively prime to v, the element

gv,I :=
{

〈I〉 if v =∞,
uv,1(Is∞,1) otherwise

is a 1-unit in Cv. If v 6=∞, then the order of the units of the residue field
of Av,β divides hv. Thus for any v, including v =∞, and any ideal I of A
which is prime to v, we have I(1,−jhv ,−jhv) = gjhvv,I . Therefore, reordering
the above expression for bv,j yields

bv,j =
∞∑
n=0

z−n
∑

I≤A,deg I=n

aIg
jhv
v,I .

Lemma 4.13 There exists a constant Cm > 0 such that for all l ∈ N, all
0 < k < p and 0 < j ≤ pl

||bv,j − bv,j+kpl ||q−mv ≤ Cmp−l.

Proof: Using Corollary 4.6, we choose a constant C ∈ N such that
deg bv,j ≤ C logp j. Furthermore, we choose M such that |aI | ≤ qM deg I

v

for all ideals I of A. Then

bv,j − bv,j+kpl =
C(l+1)∑
n=0

z−n
∑

I≤A,deg I=n

aIg
jhv
v,I

(
1− gkp

lhv
v,I

)
.

Because ghvv,I is in U1(Kv), it follows that |1− gkp
lhv

v,I |v ≤ q−p
l

v . Thus

||bv,j − bv,j+kpl ||q−mv ≤ (qmv )C(l+1)(qMv )C(l+1)q−p
l

v ,

and the lemma follows if we choose Cm := qsupl{C(M+m+1)(l+1)−pl}.

Lemma 4.14 Given m, there exists Cm > 0 such that for all j, j′ ∈ N

||bv,j − bv,j′ ||q−mv ≤ Cm|j − j′|p.
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Proof: We claim that the constant Cm from the previous lemma suffices.
First note that ||f + g||c ≤ max{||f ||c, ||g||c} for any c > 0 because | |v
is ultrametric. In particular for all j, j′, j′′ one has

||bv,j − bv,j′ ||c ≤ max{||bv,j − bv,j′′ ||c, ||bv,j′ − bv,j′′ ||c}. (6)

We consider an arbitrary pair j, j′ and let pl be the exact p-power
divisor of j − j′. By (6), we may and will assume that j is the unique
representative in [1, pl] that is congruent to j′ modulo pl. We write

j′ = j + j1p
l + j2p

l+1 + . . .+ jsp
l+s−1

for integers ji ∈ [0, p− 1]. Again by (6), it follows that

||bv,j − bv,j′ ||q−mv
≤ max

n′=0,...,n−1
||bv,j+j1pl+...+jn′pl+n′−1 − bv,j+j1pl+...+jn′+1p

l+n′ ||q−mv .

By the previous lemma the maximum is taken over positive numbers
which are bounded by Cmp−l, and the desired inequality follows.

Theorem 4.15 Let F be a locally free A-crystal over SpecA. Then for
any v ∈ C, the L-function L(v)(F , s), which is defined on some half plane
of Sv, is an entire, essentially algebraic function on Sv. Furthermore, the
degrees of the special values Hv,j(z) ∈ C[z−1] grow like O(log j).

Proof: Choose i ∈ N such that qi is larger then the p-part of hv. By
Proposition 2.27 and the previous lemma, the function L(v)(F , s) is entire
on qiZp × {0} ⊂Wv for any place v and any locally free τ -sheaf on F .

By the discussion above Proposition 2.20, one may view F ⊗M χv,y

as a locally free τ -sheaf in Cohτ (X(v), Akv). Arguing as above, its v-adic
L-function must be entire on qiZp × {0} ⊂ Wv. Proposition 2.21 now
shows that L(v)(F , s) is entire on qiWv. As F is locally free the same
holds for F (qi) as well, and the entireness of L(v)(F , s) follows from
Proposition 2.30.

To show that L(v)(F , s) is essentially algebraic, let χ be any character
of G = Gal(H+/K). The above result shows that L(v)

χ (F , s) is entire. By
Corollary 3.8 we have∏

χ∈G
L

(v)

χj
(F , sv,−j) = L(v)(F

L
⊗ Q j , 0) ∈ A[T ].
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As the product of entire power series is a polynomial if and only all fac-
tors are polynomials, the L(v)

χj
(F , sv,−j) must be polynomials. By Theo-

rem 4.10, it follows that their degrees grow like O(log j).
To complete the proof, we will now show that all coefficients of all

special values lie in a finite extension of K. Recall that for |z|v � 1, we
have

L(v)(F , sv,−j) =
∞∑
n=0

z−n
∑

I≤A,deg I=n

aII
sv,−j .

This is a power series with coefficients in the finite extension V of K,
independently of n. (The aI are in A, but the Isv,−j are only in V.)
Therefore the coefficients of all polynomials Hv,j(z) must be in the finite
extension V of K, and whence L(v)

χ (F , s) is essentially algebraic.

Corollary 4.16 Let (F •) be a bounded complex of A-crystals over an
arbitrary A-scheme X of finite type. Then for any v ∈ C, the L-function
L(v)((F •), s), defined on a half plane of Sv, has a meromorphic entirely
algebraic continuation to Sv.

Proof: This is an immediate consequence of the above Theorem and
Proposition 2.23.

4.3. Entireness

In Theorem 4.15, we did not just obtain meromorphy of v-adic L-functions
but entireness. The following is a general criterion for a v-adic L-function
to be entire. It generalizes the result given in [22].

Theorem 4.17 Suppose Xred is an affine equi-dimensional Cohen-Mac-
aulay variety of dimension e, cf. [15], III.7. Let v be a place of K, and X
an A-scheme. If F ∈ Crys(X(v), A) is locally free, then L(v)(F , s)(−1)e−1

is entire and essentially algebraic on Sv.

Proof: By Proposition 2.9(d), we may assume that X = Xred. Because
X(v) is the pullback of the affine open subscheme SpecA(v) of SpecA
along the affine morphism f : X → SpecA, it is affine itself. As X(v)
remains Cohen-Macaulay, Corollary 1.47 together with Proposition 4.1
implies that

L(v)(F , (z, 0, 0))(−1)e−1
= L(X(v),F , T )(−1)e−1

|T=z−1 ∈ A[z−1]
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for any locally free F on X. Corollary 3.8(a) then shows that

L(v)(F , (z, 0, 0)− sv,2jh+))(−1)e−1 ∈ A[z−1] for all j ∈ N0.

Using Corollary 2.23 one can find locally free A-crystalsG m,m = 0, 1,
on SpecA such that

L(v)(X,F , s)(−1)e−1
L(v)(SpecA,G 0, s) = L(v)(SpecA,G 1, s).

By Corollary 4.6, the special values of the L(v)(SpecA,G m, s), m = 0, 1,
at the negative integers −2h+j are polynomials in A[z−1] whose degrees
grow like O(log j). As A is an integral domain, the degrees of the polyno-
mials L(v)(F , (z, 0, 0) − sv,2jh+)(−1)e−1

grow like O(log j). The assertion
now follows by an argument analogous to the proof of Theorem 4.15.

Combining the above results with Corollary 2.12 yields Goss’ conjec-
ture:

Corollary 4.18 Let (ψ,L ) be a Drinfeld-A-module on X and (M , chM )
an A-motive, each of fixed rank. Then the L-functions L(v)(ψ/X, s) and
L(v)(M /X, s) are meromorphic and essentially algebraic. If furthermore
Xred is an equi-dimensional Cohen-Macaulay variety of dimension e over
k, then these L-functions raised to the power (−1)e−1 ∈ {±1} are entire.

4.4. Local L-factors at places of bad reduction

We conclude this section with a somewhat informal discussion of two
applications of the theory of τ -sheaves to questions that arise naturally
in the context of L-functions of Drinfeld-A-modules or A-motives. The
first is to local L-factors at places of bad reduction.

We fix a finite extension K ′ of K and a Drinfeld-A-module ψ over
SpecK ′ or rank r. Let O′ be the ring of integers of K ′ and C ′ the smooth
projective curve over k corresponding to K ′. It is well-known that at
all but finitely many places of O′ the Drinfeld-A-module ψ has good
reduction. Let Σ ⊂ SpecO′ be the exceptional set, let O′Σ ⊂ K ′ be the
ring of regular functions on SpecO′rΣ, and let ψ′ be a Drinfeld-A-module
on O′Σ of rank r with generic fiber ψ.

Example 1.6(b) attaches functorially a τ -sheaf M (ψ′) to ψ′ whose
fiber at the generic point agrees with M (ψ). Ignoring the places of Σ, we
define

L
(v)
Σ (ψ, s) := L(v)(SpecO′Σ ,M (ψ′), s).
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Theorem 4.15 implies that L(v)
Σ (ψ, s) is entire and essentially algebraic on

Sv.
In analogy with the classical case of L-functions attached to abelian

varieties over number fields, one would also like to have local L-factors
at places in Σ. For this we need to quote some work of Gardeyn, [8],
Prop. 1.13, at least in a simplified form for the specific situation at hand.

Proposition 4.19 (Gardeyn) Let ∅ 6= U ⊂ C ′ be open and F ∈
Cohτ (U,A) be locally free. Then there exists a unique (up to isomor-
phism) locally free τ -sheaf F max in Cohτ (C ′, A) with the following prop-
erties.

(a) The restriction of F max to U is isomorphic to F .
(b) If F ′ ∈ Cohτ (C ′, A) is locally free and satisfies (a), then there ex-

ists a unique monomorphism F ′ ↪→ F which is compatible with the
isomorphism in (a).

The proof of the above proposition with K replacing A, which suffices for
the discussion below, can be obtained by a construction similar to that
of L̃ j in the proof of Lemma 4.7.

In the case we are interested, the above proposition yields a τ -sheaf
M (ψ′)max in Cohτ (C ′, A) which is locally free of rank r. Using Re-
mark 2.17, we define the v-adic L-function of ψ as

L(v)(ψ, s) := L(v)(SpecO′,M (ψ′)max
| SpecO′ , s).

The main consequence of the above results, in particular of Theorem 4.15,
for L(v)(ψ, s) is the following.

Corollary 4.20 The v-adic L-function of ψ is entire and essentially al-
gebraic on Sv.

We still owe the reader a good reason for the above definition of
L(v)(ψ, s), which is yet another result of Gardeyn, cf. [8] Thm. 4.12.
Let p ∈ Σ and choose a finite place v′ of K which is not below p.
Denote by Tv′(ψ) be the v′-adic Tate-module of ψ, cf. [12], §4.10, con-
sidered as a Galois representation of the absolute Galois GKp of Kp.
Let Vv′(ψ) := Tv′(ψ) ⊗Av′ Kv′ be the corresponding Kv′ [[GKp ]]-module.
Denote by Ip the inertia subgroup of GKp , by Frobp the Frobenius endo-
morphism in GKp/Ip and by Vv′(ψ)Ip the covariants of Vv′(ψ) under Ip.
Finally denote by H1

v′(ψ) the Av′-dual of Tv′(ψ) and by H1
v′(ψ)Ip its sub-

module of Ip-invariants.
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Proposition 4.21 (Gardeyn) In the above situation one has

L(p,M (ψ′)max, T )−1 = det(1− T dpFrob−1
p |Vv′(ψ)Ip)

= det(1− T dpFrob−1
p |H1

v′(ψ)Ip).

This is precisely what one would expect from the classical situation.
The following tries to shed some light on the action of Frobp on

Vv′(ψ)Ip . Let p be as above and assume that the reduction ψ̄ of ψ at p is
a Drinfeld module over O′/p of rank 1 ≤ r̄ < r. At first glance, one might
expect that L(p,M (ψ′)max, T ) agrees with L(p,M (ψ̄), T ). However, quite
the opposite is true and, considering the classical situation, this should
not come unexpectedly. For example in the case of an elliptic curve E/Q
with multiplicative reduction at a prime l, on has Lp(E, T ) = (1 ± T ),
while at the same time, the action of Frobenius on the ln-torsion points
of the reduction at p, i.e. of the multiplicative group over k, is via the
cyclotomic character.

To describe the action of Frobp on Vv′(ψ)Ip , we need the following
result due to Drinfeld, cf. [4], which is analogous to Tate-uniformization:
There exists a Drinfeld-module ϕ of rank r̄ which has good reduction at
p and an exponential function epψ : Cp → Cp such that for any a ∈ A the
following diagram commutes.

0 // Λp //

ϕ(a)

��

Cp

ep
ψ //

ϕ(a)
��

Cp

ψ(a)
��

// 0

0 // Λp // Cp

ep
ψ // Cp // 0.

For every ideal I of A this induces a short exact sequence 0 → ϕ[I] →
ψ[I]→ Λp/IΛp → 0 ofGKp-modules, and therefore a short exact sequence

0 −→ Vv′(ϕ) −→ Vv′(ψ) −→ Vv′(Λp)→ 0

of Kv′ [[GKp ]]-modules. One can show that Vv′(ψ)Ip ∼= Vv′(Λp)Ip , while
the Galois-action of GKp on ψ̄ is described by the action on Vv′(ϕ). In
particular, L(p,M (ψ̄), T ) is unrelated to L(p,M (ψ′)max, T ), affirming our
remark above.

If desired one could also define an L-factor for the places above ∞,
which is related to the action of the local Galois group at this place on
the corresponding lattice in C∞. The mystery that still remains is, what
L-factors, if any, one should use at the place v. See [12], introduction to
§9, for some discussion of this.
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4.5. On trivial zeroes

Our second application will be to trivial zeros. We first recall the moti-
vation that lead to their definition.

In the classical situation, e.g., for the L-function of a finite Hecke
character over a number field, one has precise formulas for the order of
vanishing at all negative integers. Once these are known, it is easy to get a
hold of the leading term of the Taylor series of the L-function at negative
integers, which is often an algebraic integer with arithmetic significance.

In the function field case one can make the following analogy. Sup-
pose L(v)(s) is the v-adic L-series, say of some τ -sheaf, which is entire
and essentially algebraic. At the negative integer j we have the function
fj(z) := L(v)((z, 0, 0)−sv,j) which is entire in z−1. If we write fj as a Tay-
lor series in z−1 around z = 1 and are interested in the leading term, the
vanishing order of this series at z = 1 is important. There is no general
formula which describes this vanishing order, and only in some specific
cases this has been computed explicitly, cf. [24]. However via congruences
between fj(z) modulo pv and the mod p reduction of certain classical
L-functions of characters for certain L(v), Goss is able to define a simple
polynomial factor of fj . It is the zeroes of this factor to which one refers
as trivial zeros. For a more detailed discussion see [12], Ch. 8.

In some examples, we observed that these trivial zeros may also be
explained using our cohomological viewpoint. We outline the idea for
v =∞ and L(v)(s) = ζ

(∞)
SpecA(s). For this we define the functions gj(z) :=

L(H ⊗j
A , z−1), j ∈ N0, which are polynomials in z−1. By Corollary 3.8

these are related to ζ(∞)
SpecA((z, 0, 0)− sv,j) via:

L(H ⊗j
A , z−1) = ζ

(∞)
SpecA((z, 0, 0)−sv,j) ·

∏
χ∈Ĝr{1}

L(∞)(M χ̄j , (z, 0, 0)−sv,j).

(7)
Let C+ be the smooth projective curve over k corresponding to H+.

In particular, the places of C+ r SpecO+ are precisely those that map to
the place∞ of C under ξ, cf. Section 3. Using Proposition 4.19, we define
the locally free τ -sheaf

H max
K,j := (H ⊗j

A )max ∈ Cohτ (C+,K).

Following the proof of Lemma 4.7, one can show thatH max
K,j has negative

degree. Theorem 1.45 then shows that L(H max
K,j , z

−1) is a polynomial
in z−1. Clearly we have

L(H ⊗j
A , z−1) = L(H max

K,j , z
−1) ·

∏
v|∞

det
K

(id− z−1τ |(H max
K,j )v).
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Hence the local L-factors ofH max
K,j at the places above∞ give visibly rise

to zeroes of L(H ⊗j
A , z−1). Some local computations forH A at the places

above ∞ show that whenever j is divisible by q − 1, each of the h places
above ∞ contributes precisely one zero of L(H ⊗j

A , z−1).
Let h0 be the least common multiple of q − 1 and twice the exponent

of the abelian group Gal(H+/K). Then for all j = lh0, l ∈ N, formula (7)
implies that

L(H ⊗j
A , z−1) =

(
ζ
(∞)
SpecA((z, 0, 0)− sv,j)

)h+

,

which yields at least one linear factor of ζ(∞)
SpecA((z, 0, 0) − sv,j). Such a

factor is also obtained by Goss’ congruence calculations, and the results
obtained above look very similar to [12], Rem. 8.13.10. In fact, we expect
that the above gives a reinterpretation of the trivial zeroes obtained by
Goss as L-factors arising from places above ∞. We plan to come back to
this in future work.

We also compared our calculations with the results given by Thakur in
[24] concerning the precise vanishing order of zeta-functions at negative
integers near z = 1. This showed that the above method will not be able
to recover Thakur’s finer results.

5. An analytic proof of Goss’ conjecture

Except for the theory of shtukas, cf. [12], Ch. 6, or [20], the concepts dis-
cussed in this section are all from [22], where L-functions of ϕ-sheaves are
investigated analytically. Our main contribution to this is Theorem 5.11
below. We continue to assume that C is geometrically irreducible over k.

We define

X⊗̂Av := lim−→
n

X ×Spec k SpecAv/(pnv )

and correspondingly, OX⊗̂Av := lim←−
n

OX⊗̂kAv/pnv .

Definition 5.1 A v-adic ϕ-sheaf over Av on a scheme X is a pairE :=
(E , τ) consisting of locally free sheafE on X⊗̂Av and an OX⊗̂Av-linear
homomorphism

(σ × id)∗E τ //E .

A v-adic ϕ-sheaf is called lisse if τ is an isomorphism.



Global L-functions over function fields 55

Let F be any locally free τ -sheaf F on X with A- (or Av-) coefficients.
For v 6= ∞ the v-adic completion of F gives rise to a v-adic ϕ-sheaf.
For v = ∞ and X = SpecR affine, one may first replace F by a nil-
isomorphic free τ -module ((R ⊗ A)r, τ), cf. Lemma 1.4, and then use
Lemma 2.14 to see that ((R⊗A∞)r, τπm∞) is a τ -sheaf on X over A∞ for
any m � 0. Via ∞-adic completion, this gives rise to a ∞-adic ϕ-sheaf
attached to F (in a non-unique way!). A more canonical way to attach
an ∞-adic τ -sheaf to F as above, is to work with ∞-adic τ -sheaves over
X⊗̂K∞ and to first pass from F to F ⊗AK, and then to complete this
∞-adically, cf. [21], Rem. 7.2.

Given a v-adic ϕ-sheafE on any scheme X of finite type over k, one
can attach an L-function L(E , T ) ∈ 1+TAv[[T ]] to it as in Definition 1.42.
If X is furthermore an A-scheme, one may use Definition 2.8 to define its
v-adic L-function L(v)(E , s), and as in Theorem 2.16 and the discussion
preceding Remark 2.24, one can see that there exists a c > 0 such that
L(v)(E , s) is a continuous function from Wv to Can(Dv(c)). If v 6=∞ and
ifE arises via completion from a locally free τ -sheaf F on X over A, then
L(F , T ) = L(E , T ), and the same equality holds for the corresponding
v-adic L-functions if X is an A-scheme. If v = ∞, X is affine and E
is attached to F via Lemmas 1.4 and 2.14 as above, then L(E , T ) =
L(F , Tπm∞) and L(∞)(E , (z, w, y)) = L(∞)(F , (zπm∞, w, y)) for some m ∈
N. If one uses the construction F 7→E from [21], Rem. 7.2, no fudge
factor is needed.

Important for the meromorphy properties of L(E , T ) and L(v)(E , s)
are the concepts of α log-convergence and overconvergence and the corre-
sponding uniform notions. We now recall these from [21], §3. For this, let
W be any compact topological space. We assume first that X = SpecR
is affine. Let x1, . . . , xn ∈ R be a set of generators over k.

Given any element x of R⊗̂Av, one can find a sequence (cn) ⊂ Av,
n ∈ Nm

0 such that
x =

∑
n∈Nm

xn ⊗ cn

where x = (x1, . . . , xm) and for n = (n1, . . . , nm) we write xn for xn1
1 ·

. . . xnmm . We say that (cn) represents x (w.r.t. x).

Definition 5.2 A family (x(w))w∈W of elements x(w) ∈ R is called uni-
formly α log-convergent if for each w ∈W there exists a sequence (cn(w))
in Av such that

(a) x(w) is represented by the sequence (cn(w)), and
(b)

lim inf
|n|→∞

infw∈W ordv cn(w)
logq |n|

≥ α,
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where |n| = n1 + . . .+ nm.

The family (x(w)) is called uniformly overconvergent if (cn(w)) as
above exists such that

lim inf
|n|→∞

infw∈W ordv cn(w)
|n|

> 0.

Remark 5.3 (a) The notions of being uniformly α log-convergent or
overconvergent, respectively, are independent of the choice of a generating
set of R over k, because if x′1, . . . , x

′
n′ is another such, then the xi can be

expressed as polynomials in the x′i′ and vice versa.
(b) It is obvious that an overconvergent element is α log-convergent

for all α ∈ R≥0. Also an α log-convergent element is β log-convergent for
all β ∈ [0, α].

(c) IfW is the one-element set {w0} and x = x(w0), we will simply say
that x is α log-convergent, respectively overconvergent, if the one-element
family satisfies the corresponding uniform notion. This convention will al-
ways, without further mentioning, be applied when specializing a uniform
notion to a one-element set.

(d) A family of matrices (B(w))w∈W in Mr(R⊗̂Av) is called uni-
formly α log-convergent, respectively uniformly overconvergent, if each
component gives rise to such a family in R⊗̂Av.

If E is a v-adic ϕ-sheaf such that E is free over R⊗̂Av of rank r,
then with respect to any basis B of E over R⊗̂Av, the operation τ is
represented by a unique matrix BB ∈Mr(R⊗̂Av).

Definition 5.4 A family (E (w))w∈W of free v-adic ϕ-sheaves of rank r is
called uniformly α log-convergent if one can choose a basis B(w) for each
w such that the family of matrices BB(w) is uniformly α log-convergent.

The family is called uniformly overconvergent if one can choose a fam-
ily of basis (B(w))w∈W such that (BB(w))w∈W is uniformly overconver-
gent.

The generalization of the previous definition to an arbitrary base
scheme X of finite type over k is as follows:

Definition 5.5 Let (E (w))w∈W be a family of v-adic ϕ-sheaves on X.
This family is called uniformly α log-convergent if there exists a finite
affine cover Ui of X such that for each i the restriction of (E (w))w∈W to
Ui is free and uniformly α log-convergent.

Analogously, one defines the notion of a uniformly overconvergent fam-
ily of v-adic ϕ-sheaves.
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Remark 5.6 (a) Suppose that X = SpecR is affine and that F is a
ϕ-sheaf. By Lemma 1.4, which is Trick (2.2) of [21], there exists a free
τ -sheaf F ′ which is nil-isomorphic to F . With respect to some basis,
one can represent τF ′ by a matrix over R ⊗ A. As elements of R ⊗ Av
are overconvergent in R⊗̂Av, the v-adic τ -sheaf attached to F ′ is an
overconvergent v-adic ϕ-sheafE whose v-adic L-function is the same as
that of F , except for a fudge factor if v = ∞ — for v = ∞ see the
discussion below Definition 5.1.

For ϕ-sheaves on general X, it seems unknown whether such an E
always exists. However if one only studies meromorphy properties of L-
functions, the global existence of such anE is not important as one can
always writeX as a finite disjoint union of locally closed affine subschemes
Xi and, correspondingly, obtain the L-function of F on X as the product
of the L-functions of F on all Xi.

(b) If (E (w))w∈W and (E ′(w′))w′∈W ′ are both uniform α log-conver-
gent, respectively overconvergent families, then so is their tensor product
(E (w)⊗E ′(w′))(w,w′)∈W×W ′ .

The importance of the above notions stems from the following theorem
due to Taguchi and Wan, cf. [21], Thm. 5.2, and [22], Thm. 4.1:

Theorem 5.7 Suppose that X is smooth affine equi-dimensional over k
of dimension e and (E (w))w∈W is a uniformly α log-convergent family
of v-adic ϕ-sheaves. Then w 7→ L(E (w), z−1)(−1)e−1

is a continuous map
from W to Can(Dv(q−αv )). If the family is uniformly overconvergent, then
this assignment gives a continuous map W → Can(Dv(0)).

Using Theorem 4.17, the proof of [22], Thm. 4.1, yields:

Corollary 5.8 The assertion of the above theorem holds under the weaker
assumption that Xred is affine, Cohen-Macaulay and equi-dimensional
over k of dimension e.

In [21], the above was applied to prove meromorphy for the v-adic L-
function of a v-adic ϕ-sheaf in the case A = k[t]. The idea is, to p-adically
interpolate (P ⊗n)n∈N by a uniformly overconvergent family of ϕ-sheaves
(P̃ v(w))w∈Zp of rank 1. Then the global v-adic L-function of any v-adic
ϕ-sheafE is the map

w 7→ L(E ⊗ P̃ v(w), z−1).

For A = k[t], so that P is simply the Carlitz τ -sheafC , such a family is
given explicitly in [21].

Recall that hv = 2h+ if v =∞ and hv = 2h+(qv,βv − 1) otherwise.
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Definition 5.9 For v a finite place, we define P v to be the v-adic ϕ-
sheaf on SpecA(v) associated to P ⊗hv/h∞.

The construction at ∞ requires more effort. However once P ∞ is
constructed, it is as simple to handle as all the other P v. We need the
following proposition whose proof will be given later.

Proposition 5.10 There exists a line bundle L on SpecA × C and a
morphism

τ̃ : (σ × id)∗L → L (h∞/d∞(SpecA× {∞})),

which satisfies the following conditions:

(a) The restriction of L := (L , τ̃) to SpecA⊗A is isomorphic to P .
(b) IfP∞ denotes the completion ofL at∞ and if we set τ∞ := π

h∞/d∞
∞ τ̃ ,

then P ∞ is a lisse ∞-adic ϕ-sheaf.

Our main result concerning the P v is the following:

Theorem 5.11 There exists a family (P̃ v(w))w∈Zp of free v-adic ϕ-
sheaves of rank 1 which is overconvergent and such that for each n ∈ N0

the local L-factors of P ⊗nv and of P̃ v(−n) agree for all p 6= pv.

The proof will be an immediate consequence of Theorem 5.18. Before
giving details, we will derive various consequences for the meromorphy
and holomorphy of the v-adic L-functions of v-adic ϕ-sheaves:

Corollary 5.12 Suppose X is a scheme of finite type over A andE is a
v-adic ϕ-sheaf on X which is α log-convergent, respectively overconver-
gent.

(a) If Xred is affine Cohen-Macaulay and equi-dimensional of dimension
e over k, then the function L(v)(E , s)(−1)e−1

is a continuous map from
Wv to Can(Dv(q−αv )), respectively to Can(Dv(0)).

(b) For general X, the function L(v)(E , s) maps Wv continuously into the
quotient field of Can(Dv(q−αv )), respectively that of Can(Dv(0)), with
the further property that there exists a neighborhood of ∞v on which
the function is holomorphic and takes values near 1.

By Remark 5.6 and Corollary 2.12, this gives a second proof of Goss’
conjecture.

If in part (a), one assumes X to be smooth (or at least an affine com-
plete intersection), then the corollary can be obtained without making
use of any of the results of Sections 1 or 4. It is a consequence entirely of
Theorem 5.11 and the work of Taguchi and Wan, [21] and [22].
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Proof: We only give the proof in the α log-convergent case and for
v 6=∞, the other cases being analogous. Note that we may clearly assume
that X = Xred, as passing from X to Xred does not affect L(v)(E , s).

Suppose first that X = SpecR is affine, Cohen-Macaulay and equi-
dimensional of dimension e over k, and let f : X → SpecA be the struc-
ture morphism. Theorem 5.11 implies that the family (f∗P̃ v(w))w∈Zp is
uniformly overconvergent on X. Thus (E ⊗ f∗P̃ v(w))w∈Zp is uniformly
α log-convergent on X. Therefore by Corollary 5.8, the following map,
which we denote by a, is continuous:

w 7→ L(E ⊗ f∗P̃ v(w), z−1)(−1)e−1
: Zp → Can(Dv(q−αv )).

As remarked, when defining the v-adic L-function of a v-adic ϕ-sheaf,
there exists c > 1 such that L(v)(E , s) : Wv → Can(Dv(c)) is continuous.
The proof, which is essentially that of Theorem 2.16, shows that near
∞v this function takes values near 1. Therefore also L(v)(E , s)(−1)e−1

is
a continuous function from Wv to Can(Dv(c)). Hence the composition

Zp
w 7→(hvw,0) // Wv

(w,y) 7→L(v)(E ,(z,w,y))(−1)e−1

// Can(Dv(c)),

denoted a′, is a continuous map Zp → Can(Dv(c)).
Theorem 5.11 together with Definition 5.9, Lemma 3.5 and Corol-

lary 3.8 shows that the maps a and a′ agree on −N0. As this set is
dense in Zp, by continuity one has a = a′. Thus we have shown that
L(v)(E , s)(−1)e−1

when restricted to hvZp × {0} is a continuous map to
Can(Dv(q−αv )). Now one can follow the proof of Theorem 4.15 to complete
the proof of part (a).

For (b), we first note that one may pass from X to Xred without
changing neither the associated v-adic L-function nor the property of
being α log-convergent. In this case, we may break up X, as in the proof
of Proposition 1.32, into locally closed smooth affine schemes X ′i over k
so that L(v)(X,E , s) =

∏
i L

(v)(X ′i,E , s). The assertion of (b) is now a
direct consequence of (a).

As a preparation for the proof of Theorem 5.11, we first need to es-
tablish some properties of the ϕ-sheaves P v.

Lemma 5.13 For a place v 6= ∞, the v-adic ϕ-sheaf P v is lisse over
SpecA(v).
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Proof: To show that τP v is an isomorphism, it suffices to do so over
each fiber Spec kp of SpecA(v), and it suffices to do this for an iterate of
τP v . From Corollary 3.7(a) we know that τdp

P = ps∞,2h+ on the fiber at p.
For any p different from pv, it follows that τdp

P v
= ps∞,hv is a 1-unit of Kv.

Hence τP v is an isomorphism.

Proof of Proposition 5.10: Let ψH : A → O+{τ} be the Drinfeld-Hayes
module from Section 3. To understand the behavior of H A near ∞, we
will make use of the shtuka attached to ψH , which we construct following
[12], Ch. 6. In the terminology of [20], this shtuka will be a pure Drinfeld-
Anderson sheaf of rank 1 with pole∞ and dimension 1 over SpecO+. This
we push down to a family on SpecA, and then take its highest exterior
power. The result will be (L , τ). It will then not be difficult to establish
the properties claimed in the proposition.

For the first construction, one can follow [12], §6.2, Data B → Data
A, where L is to be replaced by O+, L0 by k and R by A. One obtains
sheaves F i, i ∈ Z, on SpecO+× C and monomorphisms

βi : F i −→ F i+1 and αi : (σ × id)∗F i −→ F i+1.

Furthermore this construction shows that restricted to SpecO+×SpecA,
one has βi = idHA and αi = τHA , independently of i.

Moreover, this construction is compatible with the base change map
iP : SpecO+/P → SpecO+ for P ∈ Max(O+). The results in [12], §6.2,
are directly applicable to i∗PF i, i∗Pβi and i∗Pαi. This yields the following:

(a) The sheaves F i are locally free of rank one on SpecO+× C.
(b) Define γ∞ : SpecO+→ SpecO+× C : s 7→ (s,∞), using SpecO+→

Spec k∞ → C. Then there is a locally free rank one sheaf C i+1 on
SpecO+ such that Coker(βi) ∼= γ∞∗C i+1. In fact, by the construction
alluded to above one can identifyC i with O SpecO+, independently of
i.

(c) Let ξ : SpecO+→ SpecA ↪→ C be the map from Section 3 and define

γZ : SpecO+→ SpecO+× C : s 7→ (s, ξ(s)).

Then there is a locally free rank one sheaf Z i+1 on SpecO+ such that
Coker(αi) ∼= γZ∗Z i+1.

(d) The map βi+d∞−1 . . . βi+1βi : F i −→ F i+d∞ identifies F i+d∞ with the
sheaf F i(SpecO+× {∞}).

(e) For each P ∈ Max(O+), the Euler characteristic of i∗PF 0 is zero.
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We defineG i to be (Λ2h+
(ξ × idC)∗(F i ⊕ F i)). By functoriality, the

βi induce monomorphisms β′i :G i →G i+1, and the αi monomorphisms
α′i : (σ × id)∗G i → G i+1. The above description of F i on SpecO+×
SpecA yields that β′i = idP and α′i = τP on SpecA × SpecA. It is now
straightforward to translate the above properties to theG i to obtain.

(a’) The sheavesG i are locally free of rank one over SpecA× C.
(b’) The sheafC ′

i+1 defined by the short exact sequence

0 −→G i
β′i−→G i+1 −→C ′

i+1 −→ 0

is supported on SpecA × {∞}. If p∞ : SpecA × C → SpecA denotes
the canonical surjection, then p∞∗C ′

i+1 is locally free on SpecA of rank
2h+.

(c’) Let I be the kernel of A⊗A→ A and define γ′Z as

Spec(A⊗A)/Ih∞ → SpecA⊗A→ SpecA× C.

Then there is a locally free rank one sheaf Z ′i+1 on Spec(A⊗A)/Ih∞
such that Coker(α′i) ∼= γ′Z∗Z

′
i+1.

Lemma 5.14 Suppose we are given a short exact sequence of sheaves

0 −→ L ′ −→ L −→ Q −→ 0 (8)

on SpecA×C, where L ′, L are line bundles, Q is supported on SpecA×
{∞} and p∞∗Q is locally free on SpecA of rank d. Then d∞|d and under
the left inclusion of (8), one has

L ′ = L
(
− d

d∞
(SpecA× {∞})

)
.

Proof: We induct on the rank of Q over SpecA. The assertion is local
near ∞, so we choose an affine SpecA′ ⊂ C which contains ∞. Let

0 −→ L′ −→ L −→ Q −→ 0

be the short exact sequence of A ⊗ A′-modules corresponding to the re-
striction of (8) to SpecA⊗A′, and let p∞ be the maximal ideal of A′ that
gives rise to ∞. If we tensor this short exact sequence with k∞ ∼= A′/p∞
over A′, we obtain the right exact sequence

L′ ⊗A′ k∞ −→ L⊗A′ k∞ −→ Q⊗A′ k∞ −→ 0

on the Dedekind domain A⊗k∞ (note that C is geometrically irreducible).
The module L⊗A′ k∞ is projective of rank one over A⊗ k∞. Therefore it
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is either isomorphic to its quotient Q ⊗A′ k∞, or the quotient has finite
support. The latter is absurd, since Q is projective on A of rank d. It
follows that the morphism L′ ⊗A′ k∞ → L ⊗A′ k∞ is the zero map, and
hence that p∞L ⊃ L′.

Define Q1 by the short exact sequence 0 → L′ → p∞L → Q′ → 0.
Comparing this sequence to the short exact sequence with L as its middle
term, the snake lemma yields the short exact sequence 0 → Q′ → Q →
L/p∞L → 0, and hence Q′ is projective over A of rank d′ = d − d∞. By
the induction hypothesis, we have d∞|d′ and L′ = p

d′/d∞
∞ (p∞L), and the

lemma easily follows.

By the lemma, the map β′i identifiesG i+1 withG i(2h̃(SpecA×{∞}))
where h̃ = h+/d∞. By (c’) above, the cokernel of

α′i : (σ × id)∗G i −→G i+1
∼=G i(2h̃(SpecA× {∞}))

has its support away from SpecA×{∞}. So if we complete along SpecA×
{∞} and specify i = 0, we obtain:

π2h̃
∞α

′
0 : (σ × id)∗(G 0)∞

∼=−→ (G 0)∞.

Therefore with L :=G 0 and τ̃ := α′0 the proposition follows.

Lemma 5.15 The sheaf P v is free of rank one over SpecA(v)⊗̂Av for
any place v.

Proof: Note that the radical of A(v)⊗̂Av contains A(v)⊗̂pvAv, cf. the
characterization of the radical of a ring given in [17], p. 3. Thus by
Nakayama’s Lemma, [17], Thm. 2.2, it suffices to show that P v modulo
A(v)⊗̂pvAv is free of rank one over A(v)⊗ kv.

By Theorem 2.7, the reduction modulo A(v)⊗̂pvAv of the lisse ϕ-sheaf
P v corresponds to a Galois representation ρ : Gal(Ksep/K) → k∗v such
that for all p 6= pv, the element ρ(Frobp) is the mod pv-reduction of the
eigenvalue of τdp

P v
acting on i∗pP v. By Corollary 3.7 and the definition of

hv as 2h+(qv,βv − 1), we have

ρ(Frobp) = psv,hv (mod pv) = (psv,2h+ (mod pv))(qv,βv−1)

= (g′p (mod pv))(qv,βv−1) = 1,

where g′p ∈ A is the unique positive generator of the ideal p2h+
. Hence by

the Cebotarov density theorem, ρ is the trivial representation. Via the
correspondence in Theorem 2.7, the τ -sheaf 1lSpecA(v),kv also gives rise to
the trivial Galois representation. Appealing to the uniqueness statement
of Theorem 2.7, the result follows.
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Proposition 5.16 There exists for each v an element uv ∈ A(v) ⊗ Av
such that

(a) uv − 1 ∈ A(v)⊗ pvAv.
(b) The local L-factors of P v and of (A(v)⊗̂Av, uv(σ × id)) agree for all

p 6= pv.

Proof: We first consider the case v 6=∞. Let L be a locally free sheaf
on Spec(A ⊗ A) such that L ⊕P ⊗hv/h∞ is free of rank r. Define L as
the τ -sheaf (L , 0). Let Lv be the A(v)⊗̂Av module corresponding to the
completion of L .

The previous lemma and the choice ofL imply that reduction modulo
A(v)⊗̂pvAv yields

Lv (mod A(v)⊗̂pvAv)⊕ (A(v)⊗ kv) ∼= (A(v)⊗ kv)⊕r.
As C is geometrically irreducible, A(v)⊗kv is a Dedekind domain. Thus,
by [3], § 7.4, the module Lv (mod pv) must be free of rank r−1. Arguing
as in Lemma 5.15, this implies that Lv is free of rank r − 1. Hence with
respect to a suitable basis we may represent τP v⊕L v as a diagonal matrix
M ′v with entries (u′v, 0, 0, . . . , 0) along the diagonal.

Furthermore, L was chosen so that L ⊕P ⊗hv/h∞ is free of rank
r. Therefore, we can represent τ as an r × r-matrix M with entries in
A⊗A. The same matrix also represents τP v⊕L v . Hence we can find N ∈
GLr(A(v)⊗̂Av) such that

N−1MNσ = M ′ =

 u′v 0 . . .
0 0 . . .
. . . . . . . . .

 ,

where Nσ is obtained from N by acting with σ × id on all entries. This
implies that

N−1MN = M ′N−σN =

 c1,1 . . . c1,n
0 . . . 0
. . . . . . . . .

 .

for suitable c1,1, . . . , c1,n ∈ A⊗̂Av. We define uv := c1,1 and note that

uv = Tr(M ′N−σN) = Tr(N−1MN) = Tr(M) ∈ A⊗A ⊂ A(v)⊗Av.

Lemma 5.17 For α ∈ Mr(A(v)⊗̂Av) and β ∈ GLr(A(v)⊗̂Av), define
v-adic ϕ-sheaves

G := ((A(v)⊗̂Av)r, α(σ⊗̂id)),G ′ := ((A(v)⊗̂Av)r, αβ−σβ(σ⊗̂id)).

Then for any p 6= pv one has

L(p,G , T ) = L(p,G ′, T ).
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Proof: Fix p 6= pv and denote by ᾱ the reduction of α modulo p⊗̂Av.
One defines β̄ and β̄σ analogously. Note that ᾱ, β̄ and β̄σ are matrices
over kp⊗̂Av ∼= kp ⊗ Av, as kp is finite over k. Furthermore note that
in Definition 1.40 of the local L-factor there is no need to pass to Kv-
coefficients whenever F x is already free over kx ⊗Av. It follows that

L(p,G ′, T )−1 def= det
Av

(1− T ᾱβ̄−σβ̄) = det
Av

(1− T β̄ᾱβ̄−σ),

where for the second equality we use that conjugation by the Av-linear
operator β̄ does not change determinants computed over Av.

Because β is an isomorphism,G ′′ := ((A(v)⊗̂Av)r, βαβ−σ(σ⊗̂id)) is
isomorphic toG , so that both have the same local L-factor at p. But the
inverse local L-factor ofG ′′ at p is detAv(1 − T β̄ᾱβ̄−σ), and hence the
assertion of the lemma is shown.

The lemma shows that P v ⊕L v and(A(v)⊗̂Av)r,

 c1,1 . . . c1,n
0 . . . 0
. . . . . . . . .

 (σ × id)


have the same local L-factors. Therefore P̃ v(−1) := (A(v)⊗̂Av, uv(σ ×
id)) and P v must have the same local L-factors. Following the proofs of
Lemma 5.13 and Lemma 5.15, this shows that P̃ v(−1) is lisse and that
its reduction modulo A(v)⊗̂pvAv is isomorphic to 1lSpecA,kv . This finally
shows that uv ≡ 1(mod A(v)⊗̂pvAv), and concludes the proof for v 6=∞.

If v = ∞, we choose an affine subscheme SpecA′ of C which con-
tains ∞. Let p∞ be the maximal ideal of A′ corresponding to ∞. The
above considerations apply almost verbatim to the restriction of L from
Proposition 5.10 to SpecA× C ′. We leave the details to the reader.

Theorem 5.18 The family P̃ v(w) := (A(v)⊗̂Av, u−wv (σ × id))w∈Zp is a
uniformly overconvergent family of v-adic ϕ-sheaves such that P̃ v(−n)
and P ⊗nv have the same local L-factors.

Proof: By the previous proposition and Lemma 3.5, only uniform over-
convergence remains to be shown. Tracing through the definitions of uni-
form overconvergence, one can see that we need to verify that (uwv )w∈Zp
is a uniformly overconvergent family of elements of A⊗̂Av in the sense of
Definition 5.2. For this, we write uv − 1 as a finite sum

∑l
i=1 xi ⊗ bi ∈

A(v)⊗ pvAv. Without loss of generality, we may assume that the xi form
a set of generators of A(v).
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We use the binomial theorem to rewrite uwv as

uwv =
∞∑
n=0

(
w

n

)( ∑
i

xi ⊗ bi
)n

=
∞∑
n=0

(
w

n

) ∑
i1+...+il=n

xi11 . . . x
il
l ⊗ b

i1
1 . . . b

il
l

(
n

i1, . . . , il

)
=

∑
n∈Nl0

xn ⊗
((

|n|
n1, . . . , nl

)(
w

|n|

)
bn1
1 . . . bnll

)
.

With cn(w) :=
( |n|
n1,...,nl

)(
w
|n|

)
bn1
1 . . . bnll , it follows immediately that

vv(cn(w))
|n|

≥ 1 independently of w,

and the desired results follows.
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