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Abstract

We study deformation rings of a n-dimensional representation ρ,
defined over a finite field of characteristic `, of the arithmetic funda-
mental group π1(X), where X is a geometrically irreducible, smooth
curve over a finite field k of characteristic p (6= `). We are able to
show when ρ has large image that the resulting rings are finite flat
over Z`. The proof principally uses a Galois-theoretic lifting result of
the authors in Part I of this two-part work, a lifting result for cusp-
idal mod ` forms of Ogilvie, Taylor-Wiles systems and the result of
Lafforgue. This implies a conjecture of A.J. de Jong in [dJ] for rep-
resentations of π1(X) with coefficients in power series rings over finite
fields of characteristic `, that have this mod ` representation ρ as their
reduction. A proof of all cases of the conjecture for ` > 2 follows from
a result announced (conditionally) by Gaitsgory in [Ga]. The methods
are different.
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1 Introduction

Let X be a geometrically irreducible, smooth curve over a finite field k of
characteristic p and cardinality q. Denote by K its function field and by
X̃ its smooth compactification and set S := X̃ \ X. Let π1(X) denote the
arithmetic fundamental group of X. Thus π1(X) sits in the exact sequence

0→ π1(X)→ π1(X)→ Gk → 0,

where X is the base change of X to an algebraic closure of k, and GF denotes
the absolute Galois group of any field F . In this paper we study deforma-
tion rings of mod ` representations of π1(X): fix a continuous, absolutely
irreducible representation ρ : π1(X)→ GLn(F) with F a finite field of char-
acteristic ` 6= p. We begin with the following conjecture of A. J. de Jong:
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Conjecture 1.1 ([dJ], Conj. 1.1) Let ρ : π1(X) → GLn(F[[x]]) be a
continuous representation with residual representation ρ. Then ρ(π1(X)) is
finite.

Remark 1.2 (i) In [dJ] de Jong proves the above for n ≤ 2 by ex-
tending Drinfeld’s reciprocity theorem in [Dr] to F((x))-coefficients.

(ii) It is an important feature, observed in Lemma 2.12 of [dJ], of the rep-
resentations considered in Conjecture 1.1 that the image of any inertia
group (for a place in S) is finite. We will exploit this several times.

To state a reformulation of the above, we we need some notation. Let O
be the ring of integers of a finite extension of the fraction field of W (F) inside
Q`, let ρ be as above and fix a lift η : π1(X) → O∗ of finite order of the 1-
dimensional representation det ρ. Then in [dJ], following [Ma], it is explained
how to attach a deformation ring Rη

X,O(ρ), or simply Rη
X for deformations of

ρ of determinant η and defined on π1(X). In [dJ] the following is shown:

Theorem 1.3 ([dJ]) Suppose ρ is absolutely irreducible when restricted
to π1(X). Then Conjecture 1.1 is equivalent to Rη

X being finite (as a module)
over Z`.

The theorem combined with the result quoted in Remark 1.2 (a) shows:

Corollary 1.4 ([dJ]) Suppose n = 2 and ρ is absolutely irreducible when
restricted to π1(X). Then Rη

X is finite over Z`.

Remark 1.5 Using obstruction theory, de Jong shows in [dJ] that if Rη
X

is finite over Z`, then it is also flat over Z` and a complete intersection.

1.1 Results

In Theorem 3.1 we prove, under a mild restriction, that the ring Rη
X is finite

over Z`. To avoid some technicalities, here we only state the following special
case:

Theorem 1.6 Let ρ : π1(X) → SLn(F) be a representation with F a
finite field of characteristic ` 6= p. Assume that ρ has full image, 6̀ |n,
|F| ≥ 4, and |F| > 5 if n = 2. Then the ring Rη

X is finite over Z`, and in
particular Conjecture 1.1 holds for all ρ with reduction ρ.
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Corollary 1.7 Let ρ be as in the previous theorem. Then it lifts to an
`-adic representation ρ : π1(X)→ SLn(O) with O the ring of integers of a fi-
nite extension of Q`. The representation ρ arises from a cuspidal eigenform,
and hence ρ is automorphic. If moreover at any place in S ramification is ei-
ther tame or of order prime to `, then there exists a lift ρ and a corresponding
cuspidal eigenform both of the same conductor as ρ.

Proof of the corollary: We prove the second statement as the first is similar
and easier. Let R0,η

X denote the quotient of Rη
X which parameterizes deforma-

tions which are minimal at the places in S. (This is a purely Galois-theoretic
requirement. The conditions on ramification are needed so that we can for-
mulate, using [BK1], Props. 5.1 and 5.2, a minimality condition.) By Poitou-
Tate and some obstruction theoretic arguments due to Mazur, it is by now
standard to show thatR0,η

X has a presentationW (F)[[x1, . . . , xn]]/(y1, . . . , yn),
where some of the yi could be zero. Because Rη

X/(`) is finite, the same holds
for R0,η

X /(`). From this one deduces easily that R0,η
X must be finite flat over

Z`. This proves the corollary when combined with the results of [Laf].

Remark 1.8 The corollary combined with finiteness theorems of Harder
about dimensions of cusp forms with bounded conductor and fixed central
character has consequences for conjectures in [Ka1], [Mo], [MT]; see [BK2].

1.2 Sketch of proof

The form of Conjecture 1.1, combined with Remark 1.2 (b) and Theorem
1.3, lends itself to proving it not necessarily over X, but over a suitable
finite cover Y of it, i.e. to applying base change techniques. We repeatedly
make use of this. In a first reduction, base change allows us to pass to a
situation where the assumptions of Theorem 1.6 are satisfied, and moreover
X is projective.

In a second reduction step, we apply a level lowering technique of Skinner-
Wiles in [SW] to the lift of ρ constructed in [BK1]. This relies on an im-
portant principle that was discovered by Carayol in [Ca] to switch types of
automorphic representations that give rise to a given ρ. The technique of
Skinner-Wiles yields, after finite base change, a minimal lift (i.e., a represen-
tation of π1(Y ) with Y projective) of ρ over some finite cover Y of X. (As
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the results in [Laf] provide us with all base change results one expects, this
does not require solvable base change.)

Thus it suffices to prove that the deformation ring Rη
Y of a representa-

tion ρ : π1(Y ) → SLn(F), with large image in the sense of Theorem 1.6,
is finite over Z`, where Y is a projective, smooth, geometrically connected
curve, and ρ lifts to an `-adic representation of π1(Y ). (Here RY is a minimal
deformation ring, i.e., parameterizes equivalence classes of lifts of ρ, to repre-
sentations of π1(Y ) with a fixed determinant η, defined over certain complete
Noetherian Z`-algebras.) This is a significant simplification, if compared to
the situation over number fields, as we need no level raising results (which
are still not available, at least in any generality).

We prove the finiteness of Rη
Y by constructing Taylor-Wiles systems for

ρ using the Galois cohomology techniques of Chapter 2 and automorphic
methods of Chapter 3. This allows one to prove that the deformation ring
Rη
Y for ρ is finite over Z`. By what we have said this proves Theorem 1.6.

Our techniques follow closely the original method of Wiles and Taylor in
[Wi] and [TW], and later developments [Di], [F], [SW], [HT2], which we have
to generalize to our context. In fact most of the work of this paper is devoted
to carrying out these generalizations. There is a small modification needed
to handle problems arising from “torsion” which may be of relevance even
in the number field case: in an appendix we explain this innovation in the
context considered in [Wi] and [TW].

1.3 Some remarks

In previous versions of this paper we had a weaker version of Theorem 1.6
with the additional hypothesis that ρ was locally irreducible at some place.
A result of Ogilvie [Ogilvie] in his University of Chicago thesis, see Theorem
3.7 below, allows us to remove this hypothesis.

A proof of all cases of de Jong’s conjecture has been announced condi-
tionally by Gaitsgory in [Ga] for ` > 2. His methods are different from ours.
Our proof works in many cases when ` = 2.

There are 2 separate works of Genestier and Tilouine (for GSp4), and
Clozel, Harris and Taylor (for GLn), on generalizations of [Wi] and [TW]
to n-dimensional representations of absolute Galois groups of totally real
number fields. It’s a comfort to us that we may quote verbatim from Section
II of [HT2] for the Hecke action at places that are introduced in building
Taylor-Wiles systems. One of the technical differences between the present
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work and [HT2] when building Taylor-Wiles systems is that we allow for the
possibility that the `th roots of 1 are in the base field which entails slight
adjustments on the Galois and automorphic side.

The key qualitative difference between the mentioned works and ours is
that we can prove automorphy of residual representations like ρ in the theo-
rem (by the main result of [BK1]), while in the other works this has to be at
the moment an important assumption that seems extremely difficult to verify
in the number field case. Furthermore our aim is different: we are mainly
interested in establishing algebraic properties of deformation rings, while in
the number field case these are established en route to proving modularity
of `-adic representations (which is known in our context by [Laf]!).

Throughout this paper we use the notation of Part I of this work without
further mention.

2 Galois cohomology

2.1 On deformations of the determinant

Unlike in part one of this work, we will no longer work with fixed determinants
when considering deformation problems. At the same time, we want to keep
finite the number of such determinants. The standard way over function fields
to achieve this is to require that under any deformation of the determinant
a certain a priori chosen place is totally split. This is basically what we
will be doing – except that the deformation theory, and there the proof of
Lemma 2.8 will require a slight twist of this, cf. Remark 2.9. The choice of
place is the content of the following lemma:

Lemma 2.1 There exist infinitely many places w ∈ X whose residue
field kw satisfies 6̀ | [kw : k] and k(ζ`) ∩ kw = k.

Proof: Let K ′ denote the unique constant field extension of K of degree `.
For a place w of K the following three conditions are equivalent: (a) w is split
in K ′/K, (b) ` divides [kw : k], (c) Frobw ∈ Gal(K ′/K) is trivial. Similarly
one has equivalences between (a’) kw ∩ k(ζ`) = k, (b’) K(ζ`)/K is inert at
w, (c’) Frobw ∈ Gal(K(ζ`)/K) has maximal order. Since Gal(K(ζ`)/K) and
Gal(K ′/K) are abelian of relatively prime order, the group Gal(K ′(ζ`)/K) is
the direct product of the above two. Let σ ∈ Gal(K ′(ζ`)/K) be of maximal

6



order. By the Čebotarev density theorem there exist infinitely many places
w ∈ X whose Frobenius automorphism maps to σ. Any such w will have the
desired properties.

For a place w as above one and Iw := Iw/([Gw, Iw]I`w) one has a split
exact sequence

0 −→ Iw −→ Gab
w −→ Ẑ −→ 0 (1)

where the group Iw ∼= k∗w/k
∗`
w is a quotient of Z/(`) and trivial unless ζ` ∈ K.

We fix a splitting sw : Gab
w → Iw.

Lemma 2.2 Let w, sw be as above. Let ρ : Gw → {1} ∈ F denote the
trivial character and ρw : Gw → GL1(Rw) the universal deformation of ρ for
deformations which factors via the splitting sw. Denote by Lw ⊂ H1(Gw,F)
the subspace corresponding to the tangent space of the universal deformation.

Then dimLw = dimFH
0(Gw,F(1)) = dimF F(1)π1(X), the subspace Lw

is a complement to H1
unr(Gw,F) in H1(Gw,F), and L⊥w is a complement to

H1
unr(Gw,F(1)) in H1(Gw,F(1)).

Proof: From the definition of Rw it follows that Lw is a complementary
sub vector space for H1

unr(Gw,F) in H1(Gw,F). Since local Tate-duality
is perfect, L⊥w must be a complementary vector space for H1

unr(Gw,F(1))
in H1(Gw,F(1)). The fact that Lw is complementary to H1

unr(Gw,F) also
implies that it has the same dimension as H2(Gw,F). Again by local Tate-
duality the latter is equal to the dimension of H0(Gw,F(1)). Combined with
the second assertion in Lemma 2.1 this yields the identities for dimF Lw.

From now on, for the remainder of this article, we fix a place w ∈ X as
in Lemma 2.1 and a splitting sw as in (1).

2.2 Removing local ramification

The current section lays the Galois-theoretic ground work for the base change
techniques which we will apply repeatedly in the proof of our main result
in the subsequent chapter. In this respect the following proposition and
corollary will be of much use to us.
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Proposition 2.3 Let R be in A, let ρ : π1(X) → GLn(R) a continuous
representation and let S1 ⊂ S be the set of places at which ρ(Iv) is finite.

Let Ts, Ti ⊂ X̃ be finite and disjoint and let m be some positive integer.
Then there exists a finite (possibly ramified) Galois cover Y → X, say with
function field L, such that

(i) L/K is totally split at all places above of Ts.

(ii) At places in Ti, the residue degree of the extension field L/K is a mul-
tiple of m.

(iii) The restriction ρ|π1(Y ) is unramified at the places above S1 \ Ts.

Note that the assumptions are satisfied for any representation ρ which is
unramified outside a finite set of places, provided R is finite or the ring of
integers of a local field of positive characteristic, cf. Remark 1.2 (b). Before
giving the proof, we state the following important corollary, which will be
used in the sequel:

Corollary 2.4 Suppose R, ρ, S1 are as in the previous proposition, Ti ⊂
X̃ and m some positive integer. Then there exists a finite (possibly ramified)
Galois covering Y → X with corresponding extension L/K of function fields
such that

(i) Y is geometrically connected over k

(ii) ρ(π1(X)) = ρ(π1(Y )) ρ(π1(X)) = ρ(π1(Y )),

(iii) ρ|π1(Y ) is unramified above the places in S1.

(iv) at places above Ti, the residue degree of L/K is a multiple of m.

In particular if R is finite or the ring of integers of a local field of positive
characteristic, we can ensure that ρ|π1(Y ) is unramified everywhere.

Proof of Corollary 2.4: We claim that there is a finite set T ′ ⊂ X disjoint
from Ti such that the elements ρ(Frobv), v ∈ T ′, topologically generate
ρ(π1(X)). Since ρ(π1(X)) is finite, by the Čebotarev density theorem there
exists a finite set T ′′ ⊂ X disjoint from Ti with the above property for ρ.
Let X ′ → X be the smallest finite Galois covering over which ρ becomes
trivial. Then ρ(π1(X ′)) is a pro-` group, and since the pro-` completion
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of π1(X ′) is topologically finitely generated, so is ρ(π1(X ′)). Therefore its
Frattini quotient is finite, and again by the Čebotarev density theorem we
may choose a finite set T ′′′ ⊂ X disjoint from Ti such that the elements
ρ(Frobv), v ∈ T ′′′, lie in ρ(π1(X ′)) and span the Frattini quotient. Therefore
by Burnside’s basis theorem these elements topologically generate ρ(π1(X ′)).
The claim follows with T ′ := T ′′ ∪ T ′′′.

Recall that E is the splitting field of ρ. Let now Ts ⊃ T ′ be a finite set
of places disjoint from Ti such that

(a) the greatest common divisor of the qv, v ∈ Ts, is q, and

(b) there exist w1, . . . , wj ∈ Ts such that Frobwi ∈ GE, i = 1, . . . , j, and
such that #(E ∩ Fp) is the greatest common divisor of the qwi , i =
1, . . . , j.

Applying the above proposition with these data, the corollary follows. (Note
that condition (b) guarantees the second part of (ii).)

We first prove the following lemma:

Lemma 2.5 Let K̃/K be finite with constant field k, let u be a place of

K̃ and K̃u the corresponding completion. Suppose F/K̃u is Galois of prime

degree e. Then for any set of place T of K̃ not containing u, there exists a
Galois extension L of K̃ of degree e such that

(i) all places in T are split,

(ii) there is a unique place u′ in L above K̃, and

(iii) the extension Lu′/K̃u is isomorphic to F/K̃u.

Proof: Let us first assume that e = p. Then F/K̃u is an Artin-Schreier

extension, say given by an equation xp − x = a for some a ∈ K̃u. Using
the approximation theorem, we can find b ∈ K̃ such that b − a lies in the
maximal ideal of the local ring at u and b lies in the maximal ideal of the
local rings of places in T . Then the Artin-Schreier extension L := K̃(z) with
zp − z = b has all the required properties.

We now suppose e 6= p. In this situation, we quote the following result
from [Ne], Ex. 6 (the required modifications for the function field case are

straightforward): For any finite set T ′ of places of K̃, the morphism

H1(GK ,Z/(e)) −→ qv∈T ′H1(Gv,Z/(e))
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is surjective. Note that H1(GK ,Z/(e)) = Hom(GK ,Z/(e)). Define T ′ :=
T ∪ {u} and set χv = 0 ∈ Hom(Gv,Z/(e)) for v ∈ T and choose for χu a
character of Gu whose fixed field is F . Let χ be a global character which
maps to the χv, v ∈ T ′. Then it is easy to see that the fixed field of χ satisfies
all the conditions required from L.

Proof of Proposition 2.3: By possibly shrinking S, we may assume that ρ is
ramified at all places of S. Let v1, . . . , vr denote the places in S and v1, . . . , vr′ ,
r′ ≤ r, those in S1 \ Ts. The groups ρ(Gv) are all pro-solvable. By repeated
application of the above lemma, we first construct a finite extension L1 over
K which is totally split at all places in Ts and such that the local extension
of L1/K above v1, is Galois with group isomorphic to ρ(Gv1) under ρ. Then
construct L2/L1 which is again totally split at all places of Ts and such that
for a place v′2 of L1 above v2 in K the local extension of L2/L1 above v′1 is
Galois with group isomorphic to ρ(Gv2) under ρ. One reaches inductively
an extension Lr′ which contains places w1, . . . , wr′ above v1, . . . , vr′ such that
the restriction of ρ to each Gwi is trivial.

By another repeated application of the lemma, we may construct an ex-
tension L′r′ of Lr′ , totally split at all places above Ts and such that the residue
degree at places in Ti grows by a multiple of m. (Locally at places in Ti one
constructs the unramified extensions of degree m.) Then the Galois closure
L of L′r′ above K has all the desired properties.

Simplifying assumption henceforth: Because of the corollary, and The-
orem 1.3, we may and will assume from now on that the curve X in Theorem
1.6 is projective.

2.3 On Taylor-Wiles’ auxiliary primes

In Section 3.4, we will construct Taylor-Wiles systems, [TW], in the minimal
case. As such they consist of a Galois-theoretic and a Hecke part. The
current section provides the Galois-theoretic tools needed. Recall that in
[BK1] the extension E/K is defined as the splitting field ρ.

We begin with the following Lemma:

Lemma 2.6 Let v be a place such that qv ≡ 1(mod `), ρ is unramified
at v and ρ(Frobv) has distinct eigenvalues which are all contained in F. Let
(R,M) be in A and let ρv : Gv → GLn(R) be a lift of ρv. Then up to strict
equivalence the image of ρv is diagonalizable.
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Recall that ρv, ρ
′
v : Gv → GLn(R) are strictly equivalent if there exists M ∈

GLn(R) congruent to the identity modulo M such that MρvM
−1 = ρ′v.

Note also that ρv will factor through the tame quotient Gqv of Gv since
ρ is unramified and the kernel of π : GLn(R) → GLn(F) is prime to p. The
lemma implies that in fact ρv factors through the abelianization Ẑ×Z/(qv−1)
of Gqv .

Proof: Let us assume that ρv takes its image in the diagonal matrices. This
shows in particular, that the exponent e of the cyclic group ρ(Gv) is prime to
`. Because the kernel of π, defined above, is a pro-` group, the representation
ρv : Gqv → GLn(R) must factor via the quotient G := Z`(1) o (Z` × Z/(e))
of Gqv .

Let σ be a generator of Z/(e) and s of Z`×Z/(e). We may regard σ as well
as s as elements of G. Because ρ(σ) has distinct eigenvalues and ρv(σ) has
finite order e, using strict equivalence we may assume that ρv(σ) is diagonal.
Since ρ(σ) has distinct eigenvalues, the same holds for ρv(σ). But this implies
that ρv(s) is diagonal as well, because ρv(s) commutes with ρv(σ).

We now claim by induction on i ≥ 1 that ρv(t) (mod mi) is diagonal, the
assertion being trivially true for i = 1. So let us assume that the assertion
holds for i and write ρv(t) = D +B, where D is a diagonal matrix and B is
zero along the diagonal and has entries in mi. Because B2 ≡ 0(mod mi+1),
the relation sts−1 = tqv yields

ρv(s)(D +B)ρv(s)
−1 ≡ Dqv +

qv−1∑
i=0

DiBDqv−i−1 (mod mi+1).

As D ≡ I (mod m), and qv−1 ∈ m the right hand side is congruent to Dqv+B
modulo mi+1. Comparing off-diagonal entries, we see that B (mod mi+1)
commutes with ρv(s) (mod mi+1). This shows that B (mod mi+1) is diago-
nal, and hence zero.

For a place v as in the previous lemma, an integer m ∈ N such that
`m|(qv − 1), and an eigenvalue λ of ρ(Frobv), we define the collection of lifts
Cv,λ,m of ρv as follows:

Let s, t ∈ Gab
v
∼= Z/(qv−1)×Ẑ be such that t generates inertia and s maps

to Frobv in Gv/Iv. Denote by λ1, . . . , λn Teichmüller lifts of the eigenvalues
if ρ(Frobv) such that λ ≡ λ1 (mod `). Set

Rv,m := W (F)[[x1, . . . , xn, y]]/
(

(1 + y)`
m − 1

)
,
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and define ρv,λ,m : Gv −→→ Gab
v −→ GLn(Rv,m) by

s 7→ Diag(λ1(1 + x1), . . . , λn(1 + xn)), t 7→ Diag((1 + y), 1, 1, . . . , 1).

Finally define Cv,λ,m : A → Sets by

R 7→ Cv,λ,m(R) := {ρ : Gv → GLn(R) | ∃α ∈ HomA(Rv,m, R),

∃M ∈ 1 +Mn(mR) : ρ = M(α ◦ ρv,λ,m)M−1
}
.

We define Lv,λ,m ⊂ H1(Gv, ad(ρ)) as the subspace spanned by the 1-cocycles{
c : g 7→ 1

ε
(ρ(g)ρ−1

0 (g)− I)|ρ ∈ Cv,λ,m(F[ε]/(ε2))

}
, (2)

where ρ0 is the tautological lift induced from the splitting F→ F[ε]/(ε2). It
is easy to see that dimLv,λ,m = dimH1

unr(Gv, ad(ρ)) + 1 = n + 1. Moreover
Lv,λ,m is independent of m as long as m > 0. Finally, note also that Corollary
4.9 of [BK1] yields:

Lemma 2.7 Let σ ∈ Gal(E(ζ`)/K) be the image of Frobv. Then the
subspace

L⊥v,λ,m ⊂ H1
unr(Gv, ad(ρ)(1)) ∼= ad(ρ)/(Frobv − 1)ad(ρ)

of codimension one only depends on σ and the choice of λ (among the eigen-
values of ρ(σ)).

Because of the above lemma, we also write L⊥σ,λ or L⊥v,λ for L⊥v,λ,m. Note that
since the cyclotomic character χ is trivial on Gv, the restrictions of ad(ρ) and
ad(ρ)(1) to Gv agree.

The central result of this section is the following which is modeled at
[HT2], Thm. IV.5.3. The notation for Selmer groups is the standard one and
for instance the one used in [BK1].

Lemma 2.8 Let ρ : π1(X) → GLn(F) be a continuous representation.
Define Lw := H1

unr(Gv, ad0(ρ))⊕Lw,d, where Lw,d is the subspace of H1(Gw,F)
considered in Lemma 2.2, and F ⊂ ad(ρ) via the diagonal embedding. Sup-
pose that

(i) For any π1(X)-subrepresentation V of ad(ρ), there exists a regular
semisimple gV ∈ ρ(π1(X)) such that V gV 6= 0.
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(ii) If ζ` ∈ E, then H1(Gal(E/K(ζ`)), ad0(ρ)) = 0.

(iii) If ζ` ∈ K, then ad0(ρ) has no 1-dimensional subrepresentation.

(iv) The image of ρ has no quotient of order `.

Then for any given m ∈ N there exists a set Qm of dimH1
{Lv}({w}, ad(ρ))

places of X \ {w} such that

(a) qv ≡ 1(mod `m) for all v ∈ Qm,

(b) ρ(Frobv) has distinct eigenvalues for each v ∈ Qm, and

(c) H1
{L⊥v }

({w}∪Qm, ad(ρ)(1)) = 0 where Lv = Lv,λv for each v ∈ Qm, and

λv is some eigenvalue of ρ(Frobv).

Moreover dimH1
{Lv}({w}, ad(ρ)) = dimH1

{Lv}(Qm ∪ {w}, ad(ρ)).

The proof in fact shows that the sets Qm above may be chosen disjoint from
any given finite set of places S ′. Moreover the proof can be extended, almost
verbatim, to the case where one is given a set of deformation conditions
(Cv, Lv)v∈S∪{w} at a finite set S disjoint from {w}.

Proof: The proof follows closely the analogous proof given in [HT2] which
in turn is similar to that in [TW]. Note first that Lv = Hunr(Gv, ad(ρ))
implies that dimLv = h0(Gv, ad(ρ)). By Lemma 2.2 we have dimLw,d =
dimH0(Gw,F(1)), and so [BK1], Rem. 3.5, yields

dimH1
{Lv}({w}, ad(ρ)) = dimH1

{L⊥v }({w}, ad(ρ)(1)). (3)

Define Em := E(ζ`m) and let Ym → X \ {w} be the corresponding Galois
cover. We first claim that the composite

H1
{L⊥v }({w},ad(ρ)(1)) ↪→H1(π1(X\{w}),ad(ρ)(1))→H1(π1(Ym),ad(ρ)(1))Gal(Em/K)

is injective, where the second morphism is restriction.
We have Lw = H1

unr(Gw, ad0(ρ)) ⊕ Lw,d with Lw,d ⊂ H1(Gw,F), and so
we may prove the claim separately for the subrepresentations F and ad0(ρ)
of ad(ρ). We first consider ad0(ρ).

Condition (ii) yields H1(Gal(E1/K), ad0(ρ)(1))) = 0, as can be seen by
applying for instance by [Bö1], Prop. 1.8 (i),(ii). This proves the claim for
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m = 1 and ad0(ρ). For m > 1, inflation-restriction and taking invariants
yields the left-exact sequence

0→ H1(Gal(Em/E1), ad0(ρ)(1))Gal(E1/K) → H1(π1(Y1), ad0(ρ)(1))Gal(E1/K)

→ H1(π1(Ym), ad0(ρ)(1))Gal(Em/K).

We will show that the left hand term vanishes. Since K(ζ`m) is Galois over
K, the group Gal(Em/E1) lies in the center of Gal(Em/K). Moreover by the
definition of E1, the action of Gal(Em/E1) on ad(ρ)(1) is trivial. Therefore
we find

H1(Gal(Em/E1), ad0(ρ)(1))Gal(E1/K)

= H1(Gal(Em/E1),F)⊗F (ad0(ρ)(1))Gal(E1/K).

By (iii) the last expression is zero. This proves the claim for the ad0(ρ)-
component.

We will now consider the diagonal F-component. By inflation-restriction
we need to show

0 = H1
{L⊥v,d}

({w},F(1)) ∩H1(Gal(Em/K),F(1))

inside H1(π1(X \{w}),F(1)). Again by inflation-restriction, the second term
allows the isomorphism

H1(Gal(Em/K),F(1)) ∼= (H1(Gal(Em/K(ζ`)),F)⊗ F(1))Gal(K(ζ`)/K)).

By assumption (iv) the right hand side is isomorphic to

H1(Gal(K(ζ`m)/K(ζ`)),F)⊗ (F(1)Gal(K(ζ`)/K)).

If ζ` /∈ K, the proof of the claim is thus complete. In the case ζ` ∈ K,
a non-zero class in H1(Gal(Em/K),F(1)) describes a non-zero character
Gal(K(ζ`m)/K(ζ`)) −→ F. Because 6̀ | [kw : k], such a class restricts to a
non-zero class in H1

unr(Gw,F(1)). By Lemma 2.2 it maps to a nonzero class
in H1(Gw,F(1))/L⊥w,d and so such a class cannot lie in H1

{L⊥v,d}
({w},F(1)).

This completes the proof of the claim.

Let now ψ be a 1-cocycle whose class [ψ] ∈ H1
{L⊥v }

({w}, ad(ρ)(1)) is non-

zero. By the above claim, the restriction of ψ to π1(Ym) is non-trivial.
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Since π1(Ym) acts trivially on ad(ρ)(1), the class [ψ] induces a non-trivial
Gal(Em/K)-equivariant homomorphism π1(Ym) → ad(ρ)(1). Let Eψ denote
the fixed field of its kernel, and V (1) its image in ad(ρ)(1). Then the induced
morphism Gal(Eψ/Em)→ V (1) is bijective.

Choose a regular semisimple g ∈ ρ(X) such that V g 6= 0, and an element
σ ∈ Gal(E1/K(ζ`)) such that g = ρ(σ). For such a g we now consider

V (1)g ∼= Vg ↪−→ ad(ρ)(1)g ∼= ad(ρ)g ∼= H1
unr(Gv, ad(ρ)(1)),

where v ∈ X \ {w} is any place with Frobv 7→ σ. For an eigenvalue λ of g we
denote by L⊥g,λ ⊂ ad(ρ)(1)g the corresponding subspace as defined in (2). One

easily shows ∩λL⊥g,λ = 0, where the intersection ranges over all eigenvalues
of g, e.g., by proving the dual assertion. We claim that there exists xV ∈ Vg
and an eigenvalue λ of g such that

ψ(Frobv) + xV /∈ L⊥g,λ ⊂ H1
unr(Gv, ad(ρ)(1)).

Assume otherwise. Then ψ(Frobv) +Vg ⊂ L⊥g,λ for all eigenvalues λ. This

implies Vg ⊂ L⊥g,λ for all λ, and therefore Vg ⊂ ∩λL⊥g,λ = 0, contradicting
Vg ∼= V g 6= 0.

Let τ ∈ π1(X \{w}) by any element which acts trivially on Em and maps
to xV under ψ. Because Eψ/K is Galois, by the Čebotarev density theorem
there exists a place v′ ∈ X \{w} such that the image of Frobv′ in Gal(Eψ/K)
agrees with that of τFrobv. By the above [ψ] /∈ L⊥v′,λ. A simple inductive
argument now finishes the proof of the lemma.

Remark 2.9 At two instances the above proof made crucially use of the
special choice of w and of the deformation condition on the determinant
that we enforce at w. First these choices were needed to obtain formula
(3). Second, they were needed to prove the injectivity of the F-component of
ad(ρ) in the displayed homomorphism below (3). There an important point is
that in the function field situation the extension K(ζ`m)/K(ζ`) is a constant
field extension, and hence unramified. The special choice of determinantal
deformations at w was then needed to rule out certain unramified characters.
In the number field case the extension K(ζ`m)/K(ζ`) typically is ramified at
the prime `, and so a choice of w and a deformation condition is unecessary.

To complement the above lemma, in the particular case in which we are
interested, we also prove the following:
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Lemma 2.10 Suppose ρ : π1(X) → SLn(F) is surjective, ` 6 |n, |F| ≥ 4,
and |F| > 5 for n = 2. Then

(i) ρ(π1(X)) = SLn(F) contains a regular semisimple element.

(ii) ad(ρ) = ad0(ρ)⊕F, ad0(ρ) is irreducible, and for any regular semisim-
ple g ∈ SLn(F) one has Fg = F and M0

n(F)g 6= 0.

(iii) H1(SLn(F),M0
n(F)) = 0.

(iv) SLn(F) has no quotient isomorphic to Z/(`).

Proof: Under our conditions on n and F, the group SLn(F) has no abelian
quotients, which shows (iv) and ρ(X) = SLn(F). Parts (i) and (ii) are clear
and (iii) follows from [CPS].

3 Automorphic methods

We begin this chapter by briefly reviewing parts of the theory of automorphic
forms over function fields. We formulate in Section 3.3 a principle of Carayol,
[Ca] in a form suitable for us (cf., the 2 lemmas in the section). Section 3.4
explains how to carry over the method of Taylor-Wiles systems and its later
simplification, cf. [TW], [Di], from the number field to the function field case,
using crucially results of Section 3.3, assuming that we are in a situation
where we have an automorphic lift of ρ of minimal level. Thereby we prove
isomorphisms between certain universal deformation rings and corresponding
Hecke algebras, under this crucial assumption. We present a slight technical
improvement over the usual method that might also be useful in the number
field case. In Section 3.5, we prove a theorem on ‘lowering the level up to base
change’ for certain cuspidal Hecke eigenforms, which allows us to verify this
assumption in a significant number of cases, enough to cover the applications
to Theorems 3.1 and 1.6 that are proved in the last section by pulling all the
results of this section together. Our method here is that of Skinner-Wiles,
[SW], and again relies on results of Section 3.3.

We fix some notation to state the main theorem of the final section: Let
O be a discrete valuation ring finite over W (F) and with maximal ideal m.
For a finite subset T of X, consider a representation ρ : π1(X \T )→ GLn(O)
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with residual representation ρ := ρ (mod m). The extension E/K is as in

Section 2.3. We say that ρ is of type-1 at a place v ∈ X̃, if ρ is unramified at
v and ρ(Iv) is unipotent of rank 1.

In the final section, we prove the following theorem and give some further
applications of it.

Theorem 3.1 Let O, T, ρ, ρ be as above and suppose they satisfy

(i) ρv is of type-1 at all v ∈ T ,

(ii) For any π1(X)-subrepresentation V of ad(ρ), there exists a regular
semisimple gV ∈ ρ(π1(X)) such that V gV 6= 0.

(iii) If ζ` ∈ K, then ad0(ρ) has no 1-dimensional subrepresentation,

(iv) If ζ` ∈ E, then H1(Gal(E/K(ζ`), ad0(ρ)) = 0.

(v) The image of ρ has no quotient of order `.

(vi) η := det ρ is of finite order,

Then Rη
X is finite flat over Z`.

The proof of this theorem will occupy us in the rest of the paper. Combined
with the Galois-theoretic lifting results of [BK1] (Theorem 1.1 and Theorem
2.4 there), the above theorem will easily imply Theorem 1.6 as we see at the
very end (see proof of Theorem 4.1).

Note that if ad0(ρ) is (absolutely) irreducible, then so is ρ. So when we
require both assumptions, we only state the former.

Let us fix the following notation for this chapter: For a place v of X̃ we
denote by Kv, Av, Mv, kv and qv the completion of the function field K of
X at v, its ring of integers, the maximal ideal of the latter, its residue field
and the cardinality of the latter, respectively. Let A = AK be the adeles
over K. The symbols F , O, F, and m will denote a finite sufficiently large
extension of Q`, its ring of integers, its residue field and the maximal ideal of
O, respectively. In the definitions to come, Λ stands for either of the three
rings F , O or F.

Note again that we have chosen a place w ∈ X and a splitting sw as in
Lemma 2.1 and in the short exact sequence (1). To this splitting corresponds
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the choice of a uniformizer πw of Kw unique up to multiplication by 1 + Mw.
From now on v will always a place of K different from w.

Let U0(kv) ⊂ GLn(kv) be the maximal parabolic which fixes the subspace
e1kv and define U0(v) := {g ∈ GLn(Av) : g (mod Mv) ∈ U0(v)}. For ḡ ∈
U0(kv) denote by a11(ḡ) its (1, 1)-entry.

Definition 3.2 For a character χv : k∗v → Λ∗, we denote by I1(χv) the
1-dimensional representation of U0(v) defined by

U0(v)
(mod Mv)−→ U0(kv)

a11−→ k∗v
χv−→ Λ∗.

We define U1,m(v) := {g ∈ U0(v) : a11(g (mod m)) ∈ k∗`
m

v }, so that
U1,m(v) ⊂ ker(I1(χv)) ⊂ U0(v) for any character χv of order dividing `m.

At w We also define the compact open group Ud(w) as the kernel of the
composite

GLn(Aw)
mod Mw−→→ GLn(kw)

det−→→ k∗w −→→ k∗w/(k
∗`
w ).

3.1 Automorphic forms over function fields

Our next aim is to define spaces of cusp forms on GLn(A).

In the sequel we will often work under the following hypothesis:

Assumption 3.3 • T is a finite subset of X \ {w},

• ω : GL1(A) → Λ∗ is a character of finite order, unramified outside
w, and trivial on πZ

w(1 + Mw)k∗`wK
∗. (with πw the uniformizer chosen

above.)

• for v ∈ T , χv : k∗v → Λ∗ is a character of `-power order `mv , which may
be trivial

The above set-up will be of use in two different instances, namely in lowering
the level of an automorphic cusp form associated to a residual Galois repre-
sentation and in constructing Taylor-Wiles systems. In the first case, we will
use the above notation as stated, in the second, the set T will be denoted by
Q or Qm.
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Using the chosen uniformizer πw ∈ Kw corresponding to sw, we define for
any m ∈ N0

Zm
T := K∗

(
πZ
w(1 + Mw)k∗`w ×

∏
v∈T

(1 + Mv)k
∗`m
v ×

∏
v/∈T∪{w}

A∗v

)
.

For any m ∈ N and any finite (possibly empty) T ⊂ X \ {w} we define
a compact open subgroup of GLn(A) by

Um
T := Ud(w)×

∏
v∈T

U1,m(v)×
∏

v/∈T∪{w}

GLn(Av) ⊂ GLn(A)

Under the hypothesis of Assumption 3.3, and for m ≥ max{mv : v ∈ T},
we define C

ω,(χv)
cusp,T (Λ) as the space of all functions

f : GLn(K)\GLn(A)/Um
T → Λ

with the following properties:

(i) The central action of Zm
T on f is described by ω,

(ii) for v ∈ T the right action of U0(v) on f(g · ) is via the character I1(χv),
and

(iii) f is cuspidal (cf. [BJ], § 5).

Note that the conditions do completely determine the central action of A∗v.

We define the analogous space C
ω,(χv)
c,T (Λ) with the last condition replaced by

compact support mod center. By a result of Harder we have an inclusion
C
ω,(χv)
cusp,T (Λ) ⊂ C

ω,(χv)
c,T (Λ)

For any m ∈ N0 we define a second space of functions Cω,m
cusp,T (Λ) as the

space of all functions

f : GLn(K)\GLn(A)/Um
T → Λ

such that for z ∈ Zm
T one has f(zg) = ω(z)f(g), and f is cuspidal. If instead

of cuspidal we consider functions that are compact mod center we denote the
corresponding space by Cω,m

c,T (Λ).
The following is an immediate consequence of the above definitions:
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Proposition 3.4 Assume that F contains ζ`m. Then for any m ∈ N0

Cω,m
cusp,T (F ) ∼=

⊕
(χ′v)

C
ω,(χ′v)
cusp,T (F ),

and
Cω,m
c,T (F ) ∼=

⊕
(χ′v)

C
ω,(χ′v)
c,T (F ),

where the (χ′v) range over all characters of Πv∈T
U0(v)
U1,m(v)

.

Proposition 3.5 Let M(O) be any of the spaces C
ω,(χv)
cusp,T (O), C

ω,(χv)
c,T (O),

Cω,m
cusp,T (O) or Cω,m

c,T (O).

(i) The spaces M(O) are free and when we consider the cuspidal space they
are also finitely generated over O.

(ii) The induced morphism M(O)⊗O F→M(F) is injective.

Proof: The modules C
ω,(χv)
c,T (O) and Cω,m

c,T (O) of compactly supported func-
tions may be viewed as functions on an infinite (discrete) set. Hence they
are free O-modules. The other two are submodules of these, and thus they
are free as well. This proves (i).

For (ii) note that the argument given in (i) shows that for the spaces
describing compactly supported functions the morphism in question is an
isomorphism. Since cuspidality is preserved under the reduction map O → F
the injectivity also follows in the remaining cases.

By definition, cf. [BJ], one has a smooth admissible automorphic represen-
tation Π(f) of GLn(A) attached to an automorphic form f for GLn (simply
given by Λ[GLn(A)]f). The local constituents of Π(f) are denoted Πv(f), so
that Π(f) ∼= ⊗̂vΠv(f). Conversely, if Π is a smooth admissible cuspidal au-
tomorphic representation and U a compact open subgroup of GLn(A), then
ΠU is a (possibly empty) space of cusp forms.
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3.2 Hecke-algebras

For v /∈ T ∪ {w} we define the spherical Hecke algebra Hv as the algebra
of bi-GLn(Av)-invariant locally constant compactly supported functions on
GLn(Kv) with values in Z`, and where multiplication is given by convolution.
The algebra Hv contains naturally defined elements Tv,i, i = 1, . . . , n, the
Hecke-operators at v, and the Satake isomorphism asserts that

Hv
∼= Z`[Tv,1, . . . , Tv,n, T

−1
v,n ].

For v ∈ T (T might be empty) and mv ∈ N0, we follow [HT2], Ch. II
(there is no difference between the function and the number field case here):
So we denote by Vv,i, i = 1, . . . , n−1, the Hecke-operators in the convolution
algebra of U1,mv(v)-bi-invariant locally constant compactly supported func-
tions on GLn(Kv) with values in Z`, defined as in [HT2], (II.2.2). By Vv,n
we denote the U-operator from [HT2], II.2.4, which again lies in the above
convolution algebra. (We choose the notation Vv,n, to avoid any conflict with
our notation for compact opens.) The commutative subalgebra generated
over Z` by the Vv,i, i = 1, . . . , n, is denoted by Hmv

v . We consider Hecke
action at places in T only when building Taylor-Wiles systems.

To obtain a Hecke action at almost all places (namely outside w), we set

Hab,m:
T =

⊗
v∈T

Hm
v ⊗

⊗
v/∈{w}∪T

Hv.

This Hecke algebra acts on the spaces of cusp forms C
ω,(χv)
cusp,T (Λ), Cω,m

cusp,T (Λ)
and the analogous (much larger, infinite-dimensional) space of functions that
are compact mod center. For m ≥ max{mv : v ∈ T}, we define Hm

T (Λ),

resp. H(χv)
T (Λ) as the image of Hab,m

T ⊗Z Λ in the endomorphism ring of

Cω,m
cusp,T (Λ), resp. C

ω,(χv)
cusp,T (Λ). Also define Hm

c,T (Λ) and H(χv)
c,T (Λ) as the image

of Hab,m
T ⊗Z Λ in the endomorphism ring of Cω,m

c,T (Λ) and C
ω,(χv)
c,T (Λ). Because

Cω,m
cusp,T (Λ) is a free Λ-module of finite rank, the same holds for Hm

T (Λ) and

H(χv)
T (Λ) and one has Hm

T (F ) ∼= Hm
T (O) ⊗O F and H(χv)

T (F ) ∼= Hm
T (O) ⊗O

F . (Although Cω,m
c,T (Λ) is not a free Λ-module of finite rank, we still have

Hm
c,T (F ) ∼= Hm

c,T (O)⊗O F .)

We state the main theorem of [Laf]:

Theorem 3.6 ([Laf]) For any finite subset T of X, there is a bijection
between
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• smooth irreducible cuspidal automorphic representations Π whose cen-
tral character is of finite order and with Πv unramified for v /∈ {w}∪T ,
and

• irreducible continuous representations ρ : π1(X \({w}∪T ))→ GLn(Q`)
with determinant of finite order.

Suppose that for Π as above, the eigenvalues of the operators Tv,i, v /∈ {w}∪T ,
i = 1, . . . , n, are αv,i (and αv,0 = 1). Then the correspondence is given by
the condition

det
(

1− xρ(Frobv)
)

=
n∑
i=0

xn−iαv,i. (4)

Suppose we are given ρ : π1(X \{w}∪T )→ GLn(O) with absolutely irre-
ducible residual representation ρ. Let Π be the corresponding automorphic
representation. By the relation (4) the Hecke-eigenvalues αv,i, v /∈ {w} ∪ T ,
i ∈ 1, . . . , n, lie in O, and so they define ring-homomorphisms

Hv → F : Tv,i 7→ αv,i (mod m)

for v /∈ {w} ∪ T .

For v ∈ T the representation Πv satisfies Π
U1,mv (v)
v 6= 0. If this is 1-

dimensional then U0(v) acts on it by a character χv. If this character is
non-trivial, then Πv is principal series. (If the dimension is bigger than 1
then Πv is unramified.)

If ρ is unramified at v with n distinct eigenvalues and if λ̄ is the eigenvalue
at the (1, 1)-entry (this will be the case when the only time we need to
consider the Hecke action at T which is when building TW systems), then
by [HT2] one has two cases:

1. If Πv is unramified, then dim Π
U1,mv
v = n, the action of Vv,n on this

space is semisimple, it has a unique eigenvalue which reduces to λ̄ and the
corresponding eigenspaces is 1-dimensional; this 1-dimensional subspace is
also an eigenspace for the operators Vv,i, i = 1, . . . , n − 1. The correspond-
ing eigenvalues are denoted bv,i and their mod m reductions depend only
on ρ(Frobv).

2. If Πv is ramified, then dim Π
U1,mv
v = 1, and if, we denote by bv,i

the eigenvalues for the Hecke-operators Vv,i, i = 1, . . . , n, their reductions
modulo m depend only on ρ(Frobv) (and by the same formulas as in the first
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case). Moreover the reduction of bv,n is λ̄. In either case one obtains a ring
homomorphism

Hmv
v → F : Vv,n 7→ λ̄, Vv,i 7→ bv,i (mod m) (i = 1, . . . , n− 1).

The above homomorphisms induce a ring homomorphism Hab,m
T → F

whose kernel is a maximal ideal which we denote by mρ. This notation is
justified because the homomorphism depends only on data defined in terms
of ρ. We also denote by mρ the image of this ideal in Hm

T (O), H(χv)
T (O),

Hm
c,T (O) and H(χv)

c,T (O). (Since a priori there is no relation between ρ and
Cω,m
cusp,T (O), this image can be all of Hm

T (O).) For an Hm
T -module M , we

denote by Mmρ its localization at mρ.
The following theorem is crucial to us, and is proved by David Ogilvie

[Ogilvie] in his Chicago thesis. (The referee had also sketched a possible
approach to proving the result.)

Theorem 3.7 (Ogilvie) Compatible with the Hecke action of Hm
T we have

isomorphisms C
ω,(χv)
cusp,T (O)mρ ' C

ω,(χv)
c,T (O)mρ and Cω,m

cusp,T (O)mρ ' Cω,m
c,T (O)mρ

(and the same statement after dropping the Hecke operators at T ).

3.3 Carayol’s principle

The methods of this section, which allow us to change “types” of automorphic
forms which give rise to a given ρ, use a principle discovered by Carayol that
occurs in the proof of [Ca] Lemme 1.

We define Nn(`) as the order of an `-Sylow subgroup of GLn(k).
We may consider the Hecke action without the operators at places in T

and will denote the induced maximal ideal of this smaller Hecke algebra by
the same symbol.

Lemma 3.8 We assume the set-up of Assumption 3.3 for sets of char-
acters (χv) and (χ′v) such that

• Λ is the fraction field F of O,

• for each v ∈ T , the product of Nn(`) with the order of χ−1
v χ′v, which we

assume is a power of `, divides the order of k∗v.
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Then
rankOC

ω,(χv)
cusp,T (O)mρ = rankOC

ω,(χ′v)
cusp,T (O)mρ

(and the same conclusion holds if we consider the corresponding maximal
ideal of the smaller Hecke algebra without the operators at the places in T ).

Localization at mρ commutes with reductionO → F of the ring of integers
of F to its residue field. Furthermore, after reduction on has χv ≡ χ′v ≡ 1 in
F for all v ∈ T . So in view of Proposition 3.5(i)-(ii) and Theorem 3.7 due to
Ogilvie, it suffices to prove the following

Lemma 3.9 Suppose the hypothesis of Lemma 3.8 hold. Then the sub-

modules C
ω,(χv)
c,T (O)⊗O F and C

ω,(χ′v)
c,T (O)⊗O F of Cω,m

c,T (F) agree.

Proof: By Z we denote the center of GLn, viewed as an algebraic group
over K and we regard Zm

T as a subgroup of Z(A). Because of the central

action and the conditions on the places v ∈ T , elements in C
ω,(χv)
c,T (O) may

be thought of as functions with finite support and values in O on the infinite
set GLn(K)Zm

T \GLn(A)/U0
T . Choose gj ∈ GLn(A), j ∈ J , such that

GLn(A) =
∐
j∈J

GLn(K)Zm
T gjU

m
T .

Let O((χv)) denote O with the compatible action via ω and the χv by

Zm
T U

0
T/U

m
T Z(K). Then C

ω,(χv)
c,T (O) can also be identified with elements of

the direct sum
⊕

j∈J O((χv))
GLn(K)∩ZmT g

−1
j UmT gj , because in addition to the

actions by ω and the χv, the component at gj also carries a trivial action by
GLn(K). We have analogous descriptions for forms with F-coefficients, and

for the space C
ω,(χ′v)
c,T (Λ) with Λ ∈ {O,F}.

Since we prefer to work with the action of the finite group Zm
T,0/Z(K)πZ

w,
we observe that elements in Cω,...

c,T (. . .) may be regarded as functions on the

set GLn(A)/Z(K)πZ
w. By Lemma 3.10 below, the `-part of the exponents of

(the finite groups) (GLn(K)πZ
w ∩ Zm

T,0g
−1
j Um

T gj)/Z(K)πZ
w divide Nn(`) for all

j. Using the second hypothesis of Lemma 3.8 we have

O((χv))
GLn(K)∩ZmT gjU

m
T g
−1
j ∼= O((χ′v))

GLn(K)∩ZmT g
−1
j UmT gj

for all j ∈ J . Hence for each j ∈ J either this set is zero, or agrees with O.
This completes the proof of Lemma 3.9.
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Lemma 3.10 If γ ∈ GLn(K)/K∗ is of `-power order, its order divides
Nn(`).

Proof: We have the exact sequence

0 −→ SLn(K)/{x ∈ K∗ : xn = 1} −→ GLn(K)/K∗ −→ K∗/K∗n −→ 0.

Because the image of γ in K∗/K∗n is of `-power order, it must lie in k∗/k∗n.
Because ` is prime to n, the order of this image divides the order of the
`-Sylow of k∗. Say the latter order is n`. Then γn` lies in SLn(K)/{x ∈ K∗ :
xn = 1}. Again because n is prime to `, there is an element γ′ ∈ SLn(K)
which maps to γn` and whose order is the same as that of γn` . Thus it
suffices to show that if γ′ ∈ SLn(K) is of `-power order `d, then the order of
γ′ divides the order of an `-Sylow of SLn(k).

Let k′ be the smallest extension of k which contains a primitive `d-th
root of unity. We assume that γ′ is given in rational canonical form over K.
We claim that γ′ has entries in k. For this we may assume that the rational
canonical form consists of a single block, which is thus completely determined
by the characteristic polynomial of γ′. But the characteristic polynomial has
coefficients in k′ and in K and thus in k. Hence γ′ has coefficients in k. Thus
γ′ lies up to conjugation in SLn(k), and our last assertion is shown.

3.4 Taylor Wiles systems

Throughout this section, we fix a lift ρ : π1(X)→ GLn(O) of ρ and make the
following assumption:

Assumption 3.11 η := det ρ is of finite order.

For each m ∈ N we also fix a finite subset Qm ⊂ X \ {w} of places
such that for all v ∈ Qm the matrix ρ(Frobv) has distinct eigenvalues and
qv ≡ 1 (mod `m). In this section we will complement the Galois theoretic
work in Section 2 by automorphic results that together yield the existence of
Taylor-Wiles systems.

Define ∆m as the maximal quotient of
∏

v∈Qm k
∗
v of exponent `m. Via the

projection onto the (1, 1)-entry, we identify

∆m
∼=
∏
v∈Qm

U0(v)/U1,m(v).
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There is a natural (“diamond”) action of ∆m on the spaces Cω,m
cusp,Qm

(O)mρ

and Cω,m
c,Qm

(O)mρ . Using Lemma 3.9 and its proof, we easily show:

Proposition 3.12 We fix a positive integer m and assume the set-up of
Assumption 3.3, with

(a) the set of places Qm here playing the role of T there,

(b) Λ a discrete valuation ring O containing W (F)[ζ`m ],

(c) `mNn(`) dividing the order of k∗v for all v ∈ Qm.

Then Cω,m
cusp,Qm

(O)mρ is free over O[∆m], and for the invariants under ∆m

one has (
Cω,m
cusp,Qm

(O)mρ

)∆m

= Cω,0
cusp,Qm

(O)mρ .

Note that by Proposition 3.4, one has the isomorphism

Cω,m
cusp,Qm

(O)mρ ⊗ F ∼=
⊕
(χ′v)

C
ω,(χ′v)
cusp,Qm

(O)mρ ⊗ F,

where the sum is over all characters of (χ′v) of ∆m.

Proof: The second assertion is obvious from the definitions. To prove the
first, observe that because localization at mρ commutes with the action of
∆m and because of Theorem 3.7, it will suffice to show that Cω,m

c,Qm
(O) is free

over O[∆m]. This follows easily (see proof of Proposition 5.6.1 of [CDT])

from the fact that for all characters (χv) of ∆m, we have C
ω,(χv)
c,Qm

(O)mρ ⊗F is
of the same rank independent of (χv) as follows from Lemma 3.9.

We now define universal deformation and Hecke rings corresponding to
the above situation.

Choose for each v ∈ Qm a Teichmüller lift λv of one of the eigenvalues of
ρ(Frobv). Write λ for (λv)v∈Qm . Let

ρm,λX,Qm
: π1(X \ ({w} ∪Qm))→ GLn(Rm,λ

X,Qm
)

denote the universal deformation that parameterizes deformations ρ̃ : π1(X \
({w} ∪Qm))→ GLn(R), R ∈ A, R an O-algebra, of ρ such that

• det ρ̃w factors via Gw
sw−→ Iw and ρ̃w ⊗ (det ρ̃w)−1/n is unramified,
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• for all v ∈ Qm, ρv is of type Cv,λv ,m as defined above Lemma 2.7.

Note also that from the local conditions at v ∈ Qm, via the action of Iv one
obtains a homomorphism O[∆m]→ Rm,λ

X,Qm
.

We define ω : GL1(A) → O∗ as the Hecke-character corresponding to
η = det ρ. For v ∈ T we let χv : k∗v → O∗ be the trivial character. Then
the above data satisfies Assumption 3.3 for Λ = O. Suppose a basis of Anv
is chosen in such a way that e1,v corresponds to the eigenvalue λv. We now
define

Tm,λ
X,Qm

:= (Hm
Qm(O))mρ .

Let τ1, . . . , τs be a list of the Galois representations corresponding via
Lafforgue’s theorem to eigenforms in C̃ω,m

S,Qm
(O)mρ . By choice of the maximal

ideal and definition of the Hecke action at places in Qm, using the C-valued
theory one finds that the algebra Tm,λ

X,Qm
⊗OF is semisimple, cf. [HT2], (III.2),

second paragraph. We therefore denote by

τ := τ1 ⊕ . . .⊕ τs : π1(X \Qm) −→ GLn(Tm,λ
X,Qm

⊗O F )

the corresponding Galois representation.

Proposition 3.13 The representation τ can be written as the composi-
tion of representations

π1(X \Qm)
τ
m,λ
X,Qm−→ GLn(Tm,λ

X,Qm
) ↪→ GLn(Tm,λ

X,Qm
⊗O F ).

Proof: Because ρ is absolutely irreducible, the image of τ lies in the ring
of traces. By the Čebotarev density theorem, this ring is spanned by the
coefficients of the characteristic polynomials of

τ(Frobv), v /∈ {w} ∪Qm.

Thus by Lafforgue’s theorem, it is spanned by the Hecke-eigenvalues of the
corresponding eigenforms. Thus the ring of traces lies in Tm,λ

X,Qm
.
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From the definition of τm,λX,Qm
it is clear that it is a representation of the

type parameterized by ρm,λX,Qm
. By universality there arises a unique morphism

Rm,λ
X,Qm

→ Tm,λ
X,Qm

such that τm,λX,Qm
is induced from ρm,λX,Qm

. Both rings are non-
zero because of the existence of ρ.

Proposition 3.14 The induced morphism Rm,λ
X,Qm

→ Tm,λ
X,Qm

is surjective.

Proof: By Nakayama’s lemma it suffices to prove the assertion modulo m.
It is clear from the Langlands correspondence that the reductions modulo
m of the Hecke-operators Tv,i, v /∈ {w} ∪ T , and T ′w,i, i = 1, . . . , n, lie in
the image. At places v ∈ T this again follows from the compatibility of
the global Langlands correspondence with the local one, and the explicit
decription of the Hecke action at places in T , cf. [HT2] (V.1.5). Namely, the
action of Vv,n (mod m) is given by the first eigenvalue λ̄ of ρ(Frobv) and the
action of Vv,i (mod m), i = 1, . . . , n− 1, by the elements bv,i (mod m) which
are expressions in the elementary symmetric polynomials in the remaining
eigenvalues of ρ(Frobv). So in this case, too, the reductions of the Hecke-
operators lie in the image of Rm,λ

X,Qm
.

If Qm = ∅, we drop it as well as m and λ from the notation, and add a
superscript zero, i.e., the above morphism becomes R0

X → T0
X . We have the

following central result:

Theorem 3.15 Suppose that Assumption 3.11 and the following condi-
tions hold

(i) For any π1(X)-subrepresentation V of ad(ρ), there exists a regular
semisimple gV ∈ ρ(π1(X)) such that V gV 6= 0.

(ii) If ζ` ∈ K, then ad0(ρ) has no 1-dimensional subrepresentation,

(iii) If ζ` ∈ E, then H1(Gal(E/K(ζ`), ad0(ρ)) = 0.

(iv) im(ρ) contains no normal subgroup of index `.

Then R0
X → T0

X is an isomorphism.

Proof: The proof is based on the use of Taylor-Wiles system in the im-
proved form due independently to F. Diamond and K. Fujiwara, cf. [Di] and
[F]. For each m ∈ N, use Lemma 2.8 to choose a set Qm ⊂ X such that
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(a) #Qm = d := dimH1
{Lv}({w}, ad(ρ)(1))

(b) qv ≡ 1(mod Nn(`)`m) for all v ∈ Qm,

(c) ρ(Frobv) has distinct eigenvalues for each v ∈ Qm, and

(d) H1
{L⊥v }

({w} ∪Qm, ad(ρ)) = 0 where Lv = Lv,λv for each v ∈ Qm and λv
is the Teichmüller lift of some eigenvalue of ρ(Frobv).

Note that dimH1
{Lv}({w}, ad(ρ)) = dimH1

{Lv}({w} ∪ Qm, ad(ρ)), and define

λm as (λv)v∈Qm .
We introduce notation similar to [Di], §2. Define

R := R0
X/m, T := T0

X/m,

Rm := R
m,λm
X,Qm

/m, Tm := T
m,λm
X,Qm

/m,

H := HomO(C̃0,ω
S,∅(O)mρ ,F),

Hm := HomO(C̃m,ω
S,Qm

(O)mρ ,F),

Am := O[∆m]/m ∼= F[[y1, . . . , yd]]/(y1, . . . , yd)
m

One easily verifies from the preceding work that

(i) Each Rm is topologically generated by d elements over F,

(ii) Rm/m
m
Rm
∼= F[[x1, . . . , xd]]/(x1, . . . , xd)

m,

(iii) there exists a canonical Rm-linear surjection πm : Hm −→→ H,

(iv) under Rm −→→ R the image of (y1, . . . , yd) is zero,

(v) Hm is via Am → Rm → Tm a module over Am and Rm and the action
of Am is the same as that which occurs in Proposition 3.12,

(vi) Hm is free over Am (by Proposition 3.12).

We now verify the following assertion that is also a crucial part of construct-
ing Taylor-Wiles systems:

(vii) The morphism πm induces an isomorphism Hm/(y1, . . . , yd) ∼= H where

we consider these as modules over R
m,λm
X,Qm

.
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In view of Proposition 3.12 and the above definitions it suffices to show that
we have an isomorphism

Cω,0
cusp,∅(O)mρ ' Cω,0

cusp,Qm
(O)mρ (5)

as modules over R
m,λm
X,Qm

. This follows from the arguments in the proofs of
[HT2], Prop. (V.2.3) and (V.2.4), and where the isomorphism above is given
by the (exact analog of the) map X∞,Qm of [HT2]. We give some details.
As remarked in loc. cit. we need to prove the isomorphism in (5) only after
tensoring with Q`. We first prove that all forms that contribute to the right
hand side are old at places in Qm.

For this let f be a cuspidal Hecke eigenform for GLn whose image in the
RHS of 5 is non-trivial. Let v be in Qm. As the `-adic representation ρf
corresponding to f reduces to ρ residually, ρf restricted to a decomposition
group Gv at v is a lift of ρv to O. By Lemma 2.6 such lifts are diagonalizable
and therefore finite on inertia. Hence by the compatibility of the global
Langlands correspondence of [Laf] with the local Langlands correspondence
and the unramifiedness of the central character at v, Πv(f) is an unramified
principal series representation.

We are now in the situation described on page 21 and quoted from [HT2].
The action of Vv,n on Πv(f)U0(v) is diagonalizable and there is exactly one
eigenvalues whose reduction modulo m is λv (mod m), and it has multiplicity
one. Therefore after localization at mρ at most a one-dimensional subspace of
Πv(f)U0(v) remains. That the remaining space is indeed 1-dimensional follows
from the fact that (5) is injective. We have thus completed the proof of (vii).

It now follows from [Di], Thm 2.1, that R is a complete intersection of
dimension zero and H is free over R. Since the action of R on H factors
via T, it follows in particular that R → T must be injective and hence an
isomorphism.

Let us now come back to the original question. Because Tm,λ
X,Qm

is O-

torsion free and finitely generated, the surjection Rm,λ
X,Qm

−→→ Tm,λ
X,Qm

splits as
a map ofO-modules. By the above its reduction modulo m is an isomorphism.
But then the morphism itself must be bijective.

3.5 Lowering the level à la Skinner and Wiles

We have the following ‘lowering the level’ result as in the work of Skinner
and Wiles in [SW].
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Theorem 3.16 Suppose ρ : π1(X \ T ) → GLn(O) and ρ := ρ (mod m)
satisfy the following conditions:

• O contains ζ`,

• for all v ∈ T , ρ is of type-1 and `Nn(`) divides the order of k∗v.

Then there exists a representation ρ′ : π1(X \ T )→ GLn(O) such that

(i) the residual representations of ρ and ρ′ agree,

(ii) ρ′(Iv) is finite for v ∈ T .

Remark 3.17 This theorem is referred to as a level lowering result as
from it one deduces that there is a solvable base change Y → X, that one can
make disjoint from any given covering of X, such that ρ′|π1(Y ) has conductor
the conductor of ρ|π1(Y ). We use this in the section that is coming up!

Proof of Theorem 3.16: We use Lafforgue’s theorem to convert the above
into an assertion about cusp eigenforms that we have proved in Lemma 3.8:
Via Lafforgue’s theorem, which is compatible with the local Langlands cor-
respondence, ρ corresponds to a cuspidal Hecke eigenform in C

ω,(χv)
cusp,T (O)mρ .

(In this proof we do not need to consider Hecke action at places in T ).
Let now (χ′v) be such that χ′v is of exact order ` at all v ∈ T . By

Lemma 3.8 we find a non-zero cuspidal Hecke eigenform f ′ in C
ω,(χ′v)
cusp,T (O)mρ .

Let ρ′ be the corresponding Galois representations, which exists by Laf-
forgue’s theorem. The first assertion is clear from the definition of mρ. At
places in T , it follows from the non-triviality of χ′v, that Πv(f

′) is ramified
principal series (see 21). This shows the second assertion.

4 Proof of main theorems

We can finally give the proof of our central theorem.

Proof of Theorem 3.1: We argue by contradiction, and, in view of Theo-
rem 1.3, assume that there is a representation ρ′ : π1(X)→ GLn(F[[x]]) with
ρ = ρ′ (mod x) and ρ′(π1(X)) infinite. Because ` does not divide n, taking
n-th roots is an isomorphism on the 1-units in F[[x]]∗. Therefore the n-th
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root of the 1-unit part of det ρ′ is a character, say η̃, of π1(X). It has the
property det(η̃ · ρ′) = det ρ. Since the image of π1(X) under any character
of π1(X) is finite, we will from now on assume det ρ′ = det ρ.

We now consider the ring R := ker(O ⊕ F[[x]] −→→ F). It lies in A and
affords a representation ρ′′ := ρ ⊕ ρ′ : π1(X) → GLn(R) with determinant
η. Set Ti := T the set of places at which ρ is of type-1. Take m ∈ N such
that `Nn(`) divides #k∗w,m for all w ∈ Ti. Then Corollary 2.4 applied to ρ′′

provides us with a finite Galois covering Y → X such that

(i) Y is geometrically connected over k.

(ii) ρ′′(π1(Y )) = ρ′′(π1(X)), ρ(π1(Y )) = ρ(π1(X)),

(iii) ρ is unramified at places not above Ti, and

(iv) ρ|Gw′ is of type-1 and ` ·Nn(`)|#k∗w′ for all w′ above a place w ∈ Ti.

Since ρπ1(Y ) satisfies all the conditions originally imposed on ρ, we may
therefore rename Y to X, assume that ρ′ is unramified everywhere and has
determinant det ρ, and that ρ satisfies the following conditions:

(i) ρ := ρ(mod m) is absolutely irreducible,

(ii) ρ(π1(X)) contains a regular semisimple element,

(iii) η := det ρ is of finite order,

(iv) at places v at which ρ ramifies, ρv is of type-1 and `Nn(`) divides #k∗v .

Condition (iv) allows us to apply Theorem 3.16 on level lowering. Thereby
we may replace (iii) by

(iv)’ ρ(Iv) is finite at all places where ρ ramifies and ρ does not.

By yet another application of Corollary 2.4 to ρ′′ with Ti = ∅, the latter
condition may be replaced by

(iv)” ρ′′ is unramified at all places.

Recall that R0
X is universal for deformations of ρ to O-algebras in A which

are unramified outside {w}, and unramified at w after a twist by a character
of order ` that factors via sw. Because ρ′ is unramified everywhere, there is
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a unique morphism φ : R0
X → F[[x]] which induces ρ′. The ring F[[x]] is of

characteristic ` and so φ factors via R0
X/(`).

On the other hand by Theorem 3.15, which used the technique of Taylor-
Wiles systems, the ring R0

X is finite over Z`. Therefore R0
X/(`) is finite, and

this contradicts our assumption that ρ′ has infinite image.

When combined with Lemma 2.10 and [BK1], Prop. 2.6, the following
result implies Theorem 1.6. (Note that (i) below implies 6̀ |n, and that we
are assuming that X is projective which implies that in the situation of
Theorem 1.6 the lifting result of [BK1] is available.)

Theorem 4.1 Suppose ρ : π1(X)→ GLn(F) satisfies

(i) ad0(ρ) is absolutely irreducible over F`[im(ρ)],

(ii) if ζ` ∈ E, then H1(Gal(E/K(ζ`)), ad0(ρ)) = 0 and ad0(ρ) is absolutely
irreducible over F[ρ(π1(Z))], where Z → X corresponds to K(ζ`)/K,

(iii) ρ admits R-places,

(iv) ρ(π1(X)) contains a regular semisimple element.

Then Rη
ρ is finite over Z`, where η is the Teichmüller lift of det ρ.

Proof: To prove the assertion on Rη
X we may, as in the preceeding proof,

pass from X to a finite Galois cover provided that we preserve all our original
hypothesis.

Using (i)–(iii) we obtain from [BK1], Thm. 2.4, a finite set T ⊂ X and a
representation ρ : π1(X \T )→ GLn(W (F)) such that ρ is of type-1 at places
in T .

Suppose now that im(ρ) contains a normal subgroup of index `, and let
π : Y → X be the corresponding Galois cover of degree `. Because 6̀ |n,
the modular representation theory of finite groups shows that ad0(ρ) is still
absolutely irreducible over ρ(π1(Y )). Also (iv) still holds for ρ|π1(Y ). We
claim that (ii) still holds for ρ|π1(Z).

So suppose ζ` ∈ E. By the reasoning given above, ad0(ρ) will still be
absolutely irreducible over F[π1(ZY )] for the pullback ZY → Y of Z → X
along Y → X. Let K ′/K(ζ`) be the field extension corresponding to ZY →
Y . Inflation-restriction yields

0→ H1(Gal(K ′/K(ζ`)), ad0(ρ)Gal(E/K′))→ H1(Gal(E/K(ζ`), ad0(ρ))

→ H1(Gal(E/K ′, ad0(ρ))Gal(K′/K(ζ`)) → H2(Gal(K ′/K(ζ`)), ad0(ρ)Gal(E/K′)).
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The outer terms are zero because ad0(ρ)Gal(E/K′) = 0. The second term is zero
by assumption. Now any `-group acting on a finite-dimensional non-trivial F`

vector space has a non-trivial set of invariants. Since Gal(K ′/K(ζ`)) ∼= Z/(`),
this implies H1(Gal(E/K ′, ad0(ρ)) = 0. Thus (ii) holds over Y instead of X.

By induction, we may therefore pass to an extension Y ′ of X over which
(i), (ii) hold, and such that in addition ρ(π1(Y ′)) has no normal subgroup
of index `. Over Y ′ we can now apply Theorem 3.1, and the result follows.
(This uses again the formulation of Conjecture 1.1, which makes it obvious
that de Jong’s conjecture holds for ρ, if it holds for ρ|π1(Y ′).)

5 Appendix

In the paper we use a modified construction of Taylor-Wiles systems intro-
duced in [TW]. In this appendix we explain this modification in the original
context of modular curves of [TW]. We use notation of [Di] to indicate what
the problem is and how we handle it. The main point is that when proving
freeness of certain cohomology groups it is enough for the purposes of TW
systems to prove this over certain group algebras whose group of characters
“kill torsion”.

A key step in TW systems is to prove, for certain finite set of primes
Q = {q1, · · · , qr} and any positive integer N prime to the primes in Q, re-
sults towards the freeness of the cohomology group H1(XN,Q,O)m as a mod-
ule over O[∆Q] (under the natural action) with ∆Q the Sylow `-subgroup
(which we may also view as the maximal `-quotient) of Πq∈Q(Z/qZ)∗, where
m is a mod ` maximal ideal of a certain Hecke algebra which satisfies a cer-
tain set of conditions, and where O is a finite flat extension of Z`. Here XN,Q

is the modular curve corresponding to the subgroup Γ0(N) ∩ Γ1(q1 · · · qr).
Further the quotient of H1(XN,Q,O)m by the augmentation ideal of Z`[∆Q]
is isomorphic to H1(X0(N),O)m if the primes qi in addition satisfy the hy-
pothesis that the mod ` representation ρ corresponding to m is such that it
is unramified at qi and the ratio of the eigenvalues of ρ(Frobqi) are not q±1

i .
One of the technical steps in proving the freeness is to impose an auxiliary

level structure to avoid problems arising from torsion of Γ0(N). We indicate
an argument that bypasses this.

We observe the following proposition which directly follows from the proof
of [Ca] Lemme 1:
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Proposition 1 Let e be any integer that kills the torsion of Γ0(N). Let
∆Q
e be the subgroup of Hom(∆Q,Q`/Z`) that consists of eth powers. Consider

the twisted sheaf O(χ) for any character χ ∈ ∆Q
e on X0(Nq1 · · · qr) and

assume O to be large enough to contain all values of χ. Then if k is the
residue field of O, the reduction O(χ)⊗k is isomorphic to the constant sheaf
k on X0(Nq1 · · · qr).

As a standard consequence one has:

Corollary 2 Let ∆e
Q be the quotient of ∆Q that is dual to the subgroup

∆Q
e of Hom(∆Q,Q`/Z`). Let XN,Q,e be the modular curve that corresponds to

the congruence subgroup that is the kernel of the natural map Γ0(Nq1 · · · qr)→
∆e
Q. Let m be a maximal ideal of a certain Hecke algebra (as in [Di]: we drop

operators Tr, Ur for r not coprime to Nq1 · · · qn) acting on H1(XN,Q,e,O) such
that the corresponding residual representation ρ of GQ is not reducible. Then
H1(XN,Q,e,O)m has a natural action of ∆e

Q and is a free O[∆e
Q]-module for

any O that is finite flat over Z`.

Proof of the proposition: For conciseness of notation we denote by Y and
X the curvesXN,Q,e andX0(Nq1 · · · qr), and we have the natural map r : Y →
X that is the quotient by ∆e

Q. The sheaf O(χ) is described as ∆e
Q\[Y ×O]

with ∆e
Q acting on the constant sheaf O by χ. The stalk at a point x ∈ X,

after choosing a point y in r−1(x), can be identified with the subset of the
stalk at y of the constant sheaf, Oy, on which the stabilizer of y in ∆e

Q acts
by χ (thus it is either Oy or 0). From this description the proposition follows
using our assumption on χ.

Proof of the corollary: We first note that as ρ is irreducible, the étale H0

and H2 of modular curves with coefficients in the twisted sheaves above
do not have the maximal ideal m in their support (see Section 3 of [Ca]).
Thus from the proposition above, and the long exact sequence of cohomol-
ogy, it follows that for for any character χ ∈ ∆Q

e on X0(Nq1 · · · qr) we
have a (Hecke equivariant) isomorphism H1(X0(Nq1 · · · qr),O(χ))m ⊗ k '
H1(X0(Nq1 · · · qr, k)m. Then by a standard argument (see proof of Proposi-
tion 5.6.1 in [CDT]) the corollary follows.
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Let us further assume that for each n ∈ N we have sets of primes Qn of
constant cardinality r such that for q ∈ Qn, q is prime to N , q is 1 mod `n,
and ρ is unramified at q with the ratio of the eigenvalues of ρ(Frobq) not q±1

(such sets exist when ρ restricted to the quadratic subfield of Q(µ`) is not
reducible). Then again H1(XN,Q,e,O)m is a free O[∆e

Qn
]-module whose quo-

tient by ∆e
Qn

is isomorphic to H1(X0(N),O)m. The group ∆e
Qn

surjects onto
Z/(`n−e)r, and thus grows systematically with n. This is enough to construct
TW systems as in Section 3.1 of [Di] avoiding imposition of auxiliary level
structures.

The modification of this appendix can also be used to avoid imposition
of auxiliary level structure needed to bypass torsion problems in the level-
lowering method of [SW], as done in the main body of this paper. Here
the further remark, in addition to the observation above, is that when base
changing to make orders of multiplicative groups of orders of residue fields at
some fixed places congruent to 1 modulo high powers of `, one also requires
certain other places, chosen in advance, to split completely, so that the `-part
of the torsion can’t grow much under base change.
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