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MOD � REPRESENTATIONS OF ARITHMETIC
FUNDAMENTAL GROUPS, I: AN ANALOG OF
SERRE’S CONJECTURE FOR FUNCTION FIELDS

GEBHARD BÖCKLE and CHANDRASHEKHAR KHARE

Abstract
There is a well-known conjecture of Serre that any continuous, irreducible represen-
tation ρ : GQ → GL2(F�) that is odd arises from a newform. Here GQ is the absolute
Galois group of Q, and F� is an algebraic closure of the finite field F� of � elements.
We formulate such a conjecture for n-dimensional mod � representations of π1(X) for
any positive integer n and where X is a geometrically irreducible, smooth curve over
a finite field k of characteristic p (p �= �), and we prove this conjecture in a large
number of cases. In fact, a proof of all cases of the conjecture for � > 2 follows from
a result announced (conditionally) by Gaitsgory in [G]. The methods are different.
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1. Introduction
Let X be a geometrically irreducible, smooth curve over a finite field k of characteristic
p and cardinality q. Denote by K its function field and by X̃ its smooth compactifi-
cation, and set S := X̃\X. Let π1(X) denote the arithmetic fundamental group of X.
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Thus π1(X) sits in the exact sequence

0 → π1(X) → π1(X) → Gk → 0,

where X is the base change of X to an algebraic closure of k and GF denotes the
absolute Galois group of any field F .

We study here mod � representations of π1(X), that is, continuous, absolutely
irreducible representations ρ : π1(X) → GLn(F) with F a finite field of characteristic
� �= p. In this paper, we are mainly interested in an analog of (the qualitative part of)
Serre’s conjectures in [S] in the function field situation.

Let us fix once and for all an embedding ι : Q ↪→ Q�. Then with respect to this
embedding ι, and for any finite set T of places of X, there is a correspondence between
n-dimensional �-adic representations of π1(X\T ) with finite-order determinant and
suitably ramified cuspidal eigenforms (or, equivalently, cuspidal automorphic repre-
sentations with a newvector fixed by a suitable open compact subgroup of GLn(AK ))
on GLn(AK ) with finite-order central character. This correspondence is the global
Langlands correspondence for function fields due to Drinfeld (see [D1]) and Lafforgue
(see [L]).

We call a residual representation ρ automorphic if it is isomorphic to the resid-
ual representation attached to (an integral model of) an n-dimensional continuous
representation π1(X\T ) → GLn(Q�) that is associated to a cuspidal automorphic
representation of GLn(AK ) in [D1] and [L] for some finite set of places T . An analog
of Serre’s conjecture in the function field setting is therefore that any absolutely
irreducible residual representation ρ is automorphic. It is worth noting that unlike in
the classical setting, here there are no local conditions that need to be imposed on
ρ to expect it to be automorphic. In view of [L], this conjecture is equivalent to the
assertion that any such ρ lifts to an �-adic representation of π1(X\T ) of finite-order
determinant for some finite subset T of X.

There is little known about Serre’s original conjecture, while the analog that we
study for function fields is more accessible because of the results in [D1] and [L] The
analog seems to be crucial for the applications of de Jong’s conjecture by Drinfeld in
[D2] to some purity conjectures of Kashiwara on perverse sheaves.

The main results of de Jong [dJ, Thms. 4.9 and 1.3 (ii)] directly imply that the
function field analog of Serre’s conjecture holds for n ≤ 2 (for n = 1, it is a simple
consequence of class field theory). This is strong evidence in favor of the analog. In
fact, the main conjecture made in [dJ, Conj. 1.1] may be regarded as a refinement of
the above analog and easily implies it.

In Theorem 2.4, we establish the analog in many more cases by producing suit-
able �-adic liftings of ρ. Our approach uses the Galois cohomological methods of
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R. Ramakrishna in [R] and their further refinements by R. Taylor in [T]. The following
is an important special case of Theorem 2.4.

THEOREM 1.1
Let X be a smooth, geometrically irreducible curve defined over a finite field k of
characteristic p, and let ρ : π1(X) → SLn(F) be a representation with F a finite field
of characteristic � �= p. Assume that

(i) ρ has full image, |F| ≥ 4, �� | n, and
(ii) at any v ∈ S, the ramification is either tame or of order prime to �.

Then ρ lifts to a representation ρ : π1(X\T ) → SLn(W (F)) with T a finite set of
places of X and W (F) the Witt vectors of F. Hence ρ is automorphic.

What is mainly needed in the proof of Theorem 1.1 (and of Theorem 2.4) is that
the adjoint representation ad0(ρ) of ρ on the traceless matrices of Mn(F) is irreducible
and that H 1(im(ρ), ad0(ρ)) is (almost) zero.

For � > 2, a proof of all cases of our analog of Serre’s conjecture follows from
the work of Gaitsgory (see [G]). The methods are completely different; and while
Gaitsgory’s work should prove the conjecture in totality for � > 2, our methods also
apply in characteristic 2.

In [BK], a continuation of this paper, we study the conjecture of A. J. de Jong
from [dJ], which is about deformations of representations of the type ρ studied in
this paper. For this, we use the lifting result of the present article. In fact, proving
de Jong’s conjecture was the main motivation for this work. Our results toward
de Jong’s conjecture yield that in many cases, ρ arises from a cuspidal eigenform
form of level the conductor of ρ, where by arises from, we mean that ρ is isomorphic
to the reduction of the n-dimensional �-adic representation (which might no longer
have coefficients in Witt vectors) associated to the eigenform, thus proving results
toward the analog of Serre’s conjecture in its quantitative aspect.

2. Statement of the main result
Our main goal is to prove a general criterion for a residual representation to lift
to a characteristic 0 representation which then gives a proof of Theorem 1.1, using
Lafforgue’s theorem. We start by first making all the necessary definitions to state
a result, Theorem 2.4, that is more general but also more technical to state than
Theorem 1.1. After stating Theorem 2.4, we first quickly derive Theorem 1.1 from it.
Then in the following sections, following Ramakrishna (see [R]) and Taylor (see [T]),
we give the proof of Theorem 2.4. For the general background on Galois cohomology
of function fields, the reader is referred to [NSW, Chaps. 7 and 8].

Let us fix some notation. For a place v of X̃, denote by qv the cardinality of
the residue field at v. Let Gv ⊃ Iv ⊃ Pv be the absolute Galois group of the
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4 BÖCKLE and KHARE

completion of K at v, its inertia, and wild inertia subgroup, respectively. We also
choose an embedding Gv → GK . For any curve X ⊂ X̃, this yields morphisms
Gv/Iv ↪→ π1(X); and by Frobv ∈ π1(X), we denote the corresponding Frobenius
substitution at v ∈ X.

Let χ� : π1(X) → F∗
� ↪→ F∗ be the mod � cyclotomic character. For any F[π1(X)]-

module M , by M(i), i ∈ Z, we denote the twist of M by the ith tensor power of χ�, and
by M∗ := Hom(M, F), we denote its dual representation. Note that M∗ is the dual in
the sense of representation theory, but it is not the Gm-dual of M . We frequently use the
abbreviation hi(π1(X),M) := dimF Hi(π1(X), M) or a variation of this abbreviation
with π1(X) replaced by some Gv .

Suppose now that ρ : π1(X) → GLn(F) is a residual representation, where F is
some finite field of characteristic � �= p. Then Mn(F) is a π1(X)-module via the adjoint
action composed with ρ. We denote it by ad(ρ). Its subrepresentation on the traceless
matrices M0

n(F) of Mn(F) is denoted by ad0(ρ). Via the perfect π1(X)-equivariant
trace pairing

ad(ρ) × ad(ρ) → F : (A, B) 	→ Trace(AB),

the representation ad(ρ) is self-dual. Because � does not divide n, this pairing restricts
to perfect pairings on the scalar matrices, and

ad0(ρ) × ad0(ρ) −→ F : (A,B) 	→ Trace(AB) (1)

on ad0(ρ). In particular, ad0(ρ) ∼= ad0(ρ)∗ as representations if �� | n.
To state the main technical theorem, we need to introduce some further notation.

By E, we denote the splitting field of ρ over K , that is, the fixed field of ρ in a fixed
separable closure Ksep of K . Let ζ� ∈ Ksep be a primitive �th root of unity.

Recall that a matrix A ∈ GLn(F) is called regular if dimF Mn(F)A = n, where A

operates via the adjoint action, that is, via conjugation.

Definition 2.1
An R-class or Ramakrishna-class for ρ is the conjugacy class of an element σ ∈
Gal(E(ζ�)/K) such that A := ρ(σ ) is regular and one of the following two cases holds:

(I) χ�(σ ) �= 1, and A has distinct simple roots λ, λ′ ∈ F with λ′ = χ�(σ )λ;
(II) χ�(σ ) = 1, and in the Jordan decomposition of A, there occurs at least one

(2 × 2)-block with eigenvalue λ ∈ F.

The conditions that a Galois automorphism is regular or that it satisfies (I) or (II) are
invariant under conjugation, and so the definition makes sense. If � = 2, then only
case (II) can occur.
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Definition 2.2
We call a place v of X an R-place for ρ if the class of Frobv in Gal(E(ζ�)/K) is an
R-class.

Note that if an R-class exists, then by the Čebotarev density theorem, there exist
infinitely many R-places.

Following Ramakrishna, at suitably chosen R-places, we define local deformation
problems of a particular type. In an inductive lifting procedure in favorable cases, this
has two effects. First, a suitably defined global deformation problem has no global
obstructions to lifting. Second, in the induction step, one may find sufficiently many
1-cocycles so that the lift can be deformed into another lift that is everywhere locally
liftable.

To describe a sufficient condition for the first effect to happen, we denote by
V the space Fn considered as a representation of π1(X) via ρ, and we let σ be an
R-class of type (II). The indecomposable summands of V are denoted by V i , and
ad(ρ)i (ad0(ρ)i) denotes the corresponding representation on (the trace zero matrices
of) End(V i), considered as a representation of 〈σ 〉. Let λi be one of the eigenvalues
of V i . We define

ad0(ρ)σ :=
∏

mult(λi )=2
λi∈F

ad0(ρ)i . (2)

Since V ∼= ⊕
i V i , there is a 〈σ 〉-equivariant homomorphism ad0(ρ) → ad0(ρ)σ .

Definition 2.3
We say that ρ admits sufficiently many R-classes if there exists at least one R-class and
if the following two restriction homomorphisms (composed with ad0(ρ) → ad0(ρ)σ
at R-places) are injective:

H 1
(
Gal(E(ζ�)/K), ad0(ρ)

)
−→

∏
[σ ] an R-class

of type(II)

H 1
(〈σ 〉, ad0(ρ)σ

) ⊕
∏
v∈S

H 1
(
ρ(Iv), ad0(ρ)

)
,

H 1
(
Gal(E(ζ�)/K), ad0(ρ)(1)

)
−→

∏
[σ ] an R-class

of type(II)

H 1(〈σ 〉, ad0(ρ)σ (1)
) ⊕

∏
v∈S

H 1(ρ(Iv), ad0(ρ)(1)
)
.

The group H 1(〈σ 〉, ad0(ρ)σ ), as well as the homomorphism to it, does not depend
on the choice of representative σ of the R-class [σ ].

Our main result is the following.
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THEOREM 2.4
Let X be a smooth, geometrically irreducible curve defined over a finite field k of
characteristic p �= l, and let ρ : π1(X) → GLn(F) be a continuous representation.
Assume that

(a) ad0(ρ) is irreducible over F�[im(ρ)],
(b) ρ has sufficiently many R-classes,
(c) at all v ∈ S, the ramification is either tame or of order prime to �.

Then ρ lifts to a representation ρ : π1(X\T ) → GLn(W (F)), where

(i) T is a finite set of places of X,
(ii) det ρ is the Teichmüller lift of det ρ,
(iii) for v ∈ S, the conductors of ρ and ρ agree, and

(iv) if ρ is tame at v, then ρ(Iv)
∼=→ ρ(Iv), that is, ρ is minimal at v.

Note that we do not need that ad0(ρ) is absolutely irreducible. Note also that the
condition that ad0(ρ) is irreducible implies that � does not divide n since in the case
�|n, the representation ad0(ρ) contains the trivial representation on scalar matrices as
a nontrivial submodule.

As an application of Lafforgue’s theorem, we find the following.

COROLLARY 2.5
Any ρ as in Theorem 2.4 is automorphic.

We have the following example for the existence of sufficiently many R-classes.
Combined with Theorem 2.4, it completes the proof of Theorem 1.1. �

PROPOSITION 2.6
Suppose ρ : π1(X) → SLn(F) is surjective, �� | n, � �= p, and |F| ≥ 4. Then ρ admits
sufficiently many R-classes.

Proof
Let us first show the injectivity of the restriction homomorphisms in Definition 2.3. If
|F| > 5 or n > 2, then by [CPS, Table 4.5, p. 185], we have H 1(SLn(F),M0

n(F)) = 0.
In this case, it easily follows from, for example [B1, Sect. 5] that

H 1
(
Gal(E(ζ�)/K), ad0(ρ)

) = 0 and H 1
(
Gal(E(ζ�)/K), ad0(ρ)(1)

) = 0.
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If 4 ≤ |F| ≤ 5 and n = 2, the condition �� | n rules out the case |F| = 4. In [T], it is
shown for n = 2 and F = F5 how to find an R-class σ such that

F ∼= H 1(Gal(E(ζ�)/K), ad0(ρ)
) → H 1(〈σ 〉, ad0(ρ)

)
is injective (in this particular case, one has ad0(ρ)σ = ad0(ρ)). If χ� is trivial, the same
class also works for ad0(ρ)(1) = ad0(ρ). If χ� is nontrivial, then by [B1, Sect. 5], one
has H 1(Gal(E(ζ�)/K), ad0(ρ)(1)) = 0.
It remains to prove the existence of at least one R-class. For this, note that SLn(F) has
no abelian quotients; and therefore the morphism

ρ × χ� : π1(X) −→ SLn(F) × F∗

surjects onto SLn(F) × im(χ�). Since SLn(F) contains matrices of type (II), the
existence of an R-class is obvious. Furthermore, if � �= 2 and if im(χ�) is non-
trivial, then one may also find matrices of type (I). This completes the proof of
Proposition 2.6. �

3. Strategy of the proof of Theorem 2.4
Our method of producing lifts is essentially that of Ramakrishna (see [R]). However,
we follow the more axiomatic treatment as presented in [T]. Let us fix from now on
a representation ρ : π1(X) → GLn(F) that satisfies the conditions of Theorem 2.4,
and let n ≥ 2 since n = 1 is trivial by using Teichmüller lifts. In the following, we
assume that ad0(ρ) is irreducible over F�[im(ρ)] (and hence that �� | n). Also, define
η : π1(X) → W (F)∗ as the Teichmüller lift of det ρ; and for any place v, define
restrictions ηv := η|Gv

and ρv := ρ |Gv
.

The strategy in [R] to produce lifts of ρ to W (F) is to first consider all deformations
of ρ which are representations of π1(X\T ) for some fixed finite subset T of R-places
of X and which at the places in S∪T are allowed to have ramification of a very specific
type only. Without loss of generality, we assume that ρ is ramified at the places in S,
and we call these residually ramified places or, simply, r-places.

The type of ramification is most conveniently formulated in terms of suitable local
lifting problems Cv at places v ∈ S ∪ T . In this formulation, the crucial requirement
locally is that the versal hull (of the deformation problem described by Cv) is smooth
over the ring W (F) of relative dimension h0(Gv, ad0(ρ)). In Sections 4 and 5, we
define such Cv for R- and r-places, respectively.

The global conditions on T and the types Cv are made in such a way that one can
inductively construct lifts of ρ to the rings Wn(F) of Witt vectors of length n. They can
be entirely formulated in terms of Galois cohomology. In this section, we recall the
necessary background from [T] and give a proof of the main theorem, Theorem 2.4,
pending on a key lemma whose proof is given in Section 6.
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Let A denote the category of complete Noetherian local W (F)-algebras (R, mR)
with residue field F and where morphisms are morphisms of local rings which are the
identity on the residue field. By a lift of determinant ηv of ρv , we mean a continuous
representation ρ : Gv → GLn(R) for some (R, mR) ∈ A such that ρ (mod mR) = ρv

and det ρ = ηv .

Definition 3.1
Following [T], we call a pair (Cv, Lv), where Cv is a collection of lifts of ρv of
determinant ηv and Lv is a subspace of H 1(Gv, ad0(ρ)), (locally) admissible and
compatible with ηv if it satisfies the conditions P1–P7 of [T], where one has to replace
m by mR and M2(m) by Mn(mR) in property P2.

Unlike in [T], we do regard the Cv as a functor from Noetherian local rings R with
fixed residue field F to lifts of ρ to R. This makes a slight notational difference.

We will repeatedly assert that certain pairs (Cv, Lv) satisfy conditions P1–P7.
Condition P4 is typically the most difficult to verify, while the other ones are rather
straightforward. Therefore, in proofs that verify Taylor’s conditions, we exclusively
treat condition P4. For the convenience of the reader, we now state this condition;
while for the other ones, we refer to [T].

P4. Suppose for i = 1, 2, we are given rings Ri ∈ A, ideals Ii ⊂ Ri , represen-

tations ρi ∈ Cv(Ri), and an isomorphism φ : R/I1
∼=→ R2/I2 such that φ(ρ1

(mod I1)) = ρ2 (mod I2). Let R ∈ A be the subring of R1 ⊕ R2 consisting of
pairs with the same image in R1/I1

∼= R2/I2. Then ρ1 ⊕ ρ2 lies in Cv(R).

Remark 3.2
To any pair (Cv, Lv) satisfying P1–P7, there corresponds a deformation problem in the
sense of Mazur (see [M]) which possesses a versal hull whose corresponding versal
deformation ring is smooth over W (F) of relative dimension dim Lv . Conversely, to
any smooth, versally representable deformation problem, one can define a pair (Cv, Lv)
that satisfies Taylor’s conditions P1–P7. If given such a deformation problem, then
under this correspondence, the subspace Lv of H 1(Gv, ad0(ρ)) corresponds to the dual
of the tangent space of the versal deformation. In formula (5), we give the explicit
description of Lv .

Heuristically, one expects dim Lv ≤ h0(Gv, ad0(ρ)) since, conjecturally, the ver-
sal deformation ring of all deformations of ρv with fixed determinant is a complete
intersection, flat over W (F) and of relative dimension h0(Gv, ad0(ρ)).

Suppose one is given a finite set T ⊂ X and, for each v ∈ S ∪ T , a locally
admissible pair (Cv, Lv) compatible with ηv .
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Definition 3.3
A lift of type (Cv)v∈S∪T is a continuous representation ρ : π1(X\T ) → GLn(R)
for some (R, mR) ∈ A such that ρ (mod mR) = ρ, ρ|Gv

∈ Cv for all v ∈ S ∪ T

and det ρ = η.

To describe tangential conditions on the (deformation ring corresponding to the)
above lifts, we need to fix some more notation. For v a place of X̃ and any Gv-module
M , the pairing M × M∗ → F, defined by evaluation, is obviously perfect. Tate local
duality says that the induced pairing

H 1(Gv, M) × H 1(Gv, M
∗(1)

) −→ H 2(Gv, F(1)
) ∼= F (3)

is perfect as well, and one denotes for any F-submodule L ⊂ H 1(Gv, M) its annihilator
under this pairing by L⊥ ⊂ H 1(Gv, M

∗(1)). In the particular case of the subspace of
unramified cocycles

H 1
unr(Gv, M) := H 1(Gv/Iv, M

Iv ) ⊂ H 1(Gv, M),

one finds H 1
unr(Gv, M)⊥ = H 1

unr(Gv, M
∗(1)). In line with the usual notation h1(. . .),

we abbreviate h1
unr(Gv, M) := dimF H 1

unr(Gv, M).
The situation most interesting to us is M = ad0(ρ). By (1), this module is self-dual,

and so Tate local duality induces the perfect pairing

H 1
(
Gv, ad0(ρ)

) × H 1
(
Gv, ad0(ρ)(1)

) −→ H 2
(
Gv, F(1)

) ∼= F. (4)

For a finite subset T of X(= X̃\S) and a collection (Lv)v∈S∪T of subspaces of
H 1(Gv, ad0(ρ)), one defines H 1

{Lv}(S ∪ T , ad0(ρ)) as the kernel of

H 1
(
π1(X\T ), ad0(ρ)

) −→
⊕

v∈S∪T

H 1
(
Gv, ad0(ρ)

)
/Lv.

Ramakrishna’s first observation is the following lemma.

LEMMA 3.4
Suppose one is given locally admissible pairs (Cv, Lv)v∈S∪T compatible with η such
that

H 1
{L⊥

v }
(
S ∪ T , ad0(ρ)(1)

) = 0.

Then there exists a lift of ρ to W (F) of type (Cv)v∈S∪T .

The proof is essentially that of [T, Lemma 1.2], and so we omit the details.
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Remark 3.5
Mimicking the proofs of [DDT, Thms. 2.13, 2.14], one obtains for a π1(X\T )-module
M and subspaces Lv ⊂ H 1(Gv,M) for v ∈ S ∪ T the formula

|H 1
{Lv}(S ∪ T , M)|

|H 1
{L⊥

v }(S∪T ,M∗(1))|
= |H 0(π1(X), M)|

|H 0(π1(X), M∗(1))|
∏

v∈S∪T

|Lv|
|H 0(Gv,M)| .

In our situation, M ∼= M∗ ∼= ad0(ρ), and the first quotient on the right-hand side
of the above formula is clearly 1. Thus, by Remark 3.2, one expects the product on
the right to have the value at most 1. Furthermore, this should happen precisely when
dim Lv = h0(Gv, ad0(ρ)) for all v ∈ S ∪T . Therefore, if the hypothesis of Lemma 3.4
is satisfied, then one expects

dim H 1
{Lv}

(
S ∪ T , ad0(ρ)

) = 0.

In terms of deformation theory, compare Remark 3.2; this can be interpreted by saying
that the universal deformation ring of type (Cv)v∈S∪T is smooth over W (F) of relative
dimension zero, that is, isomorphic to W (F).

Note that the above formula also holds for S ∪ T = ∅ even though the duality
results in [NSW] are not proved in this case. The reason is that in this case, the right-
hand side is 1; and because H 0(π1(X), ad0(ρ)) = 0, the left-hand side expresses that
fact that the Euler-Poincaré characteristic of the unramified F[π1(X̃)]-module ad0(ρ)
is zero.

We need to generalize slightly the concept of sufficiently many R-classes for
the following result. Suppose we are given locally admissible (Cv, Lv)v∈S∪T that are
compatible with η.

Definition 3.6
We say that ρ admits sufficiently many R-classes for (Cv, Lv)v∈S∪T if there exists at
least one R-class and if the following restriction homomorphisms (composed with
ad0(ρ) → ad0(ρ)σ at R-places) are injective:

H 1
(
Gal(E(ζ�)/K), ad0(ρ)

) ∩ H 1
{Lv}

(
S ∪ T , ad0(ρ)

)
−→

∏
σ an R−class

of type(II)

H 1
(〈σ 〉, ad0(ρ)σ

)
,

H 1
(
Gal(E(ζ�)/K), ad0(ρ)(1)

) ∩ H 1
{L⊥

v }
(
S ∪ T , ad0(ρ)(1)

)
−→

∏
σ an R−class

of type(II)

H 1
(〈σ 〉, ad0(ρ)σ (1)

)
.



xxx dmj4021 July 1, 2005 16:47

AN ANALOG OF SERRE’S CONJECTURE FOR FUNCTION FIELDS 11

The main observation of Ramakrishna, if adapted to our situation, is the following
key lemma.

LEMMA 3.7
Suppose one is given a finite set of places T ′ ⊂ X and locally admissible (Cv, Lv)v∈S∪T ′

that are compatible with η and such that∑
v∈S∪T ′

dim Lv ≥
∑

v∈S∪T ′
h0(Gv, ad0(ρ)

)
.

If ρ admits sufficiently many R-classes for (Cv, Lv)v∈S∪T ′ , then one can find a finite
set of R-places T ⊂ X and locally admissible (Cv, Lv)v∈T compatible with η such
that

H 1
{L⊥

v }
(
S ∪ T ∪ T ′, ad0(ρ)

) = 0.

The proof of Lemma 3.7 is given in Section 6. Let us now explain how this gives
a proof of Theorem 2.4.

In the following two sections, we define good local lifting problems at certain
unramified primes and at ramified primes, where the ramification is either of order
prime to � or prime to p. Correspondingly, we obtain pairs (Cv, Lv) satisfying prop-
erties P1–P7 of Taylor [T]. We then apply Lemma 3.7 with T ′ = ∅ and assume that
ρ ramifies at all places of S. In order to do that, we also have to check that if ρ has
sufficiently many R-classes, then this implies that ρ has sufficiently many R-classes
for (Cv, Lv)v∈S , where the (Cv, Lv) is defined below. Once this is shown, Theorem 2.4
follows easily from Lemmas 3.4 and 3.7. The full proof is given at the end of Section 6.

4. Local lifting problems at R-places
In this section, we define locally admissible pairs (Cv, Lv) at R-places v compatible
with the Teichmüller lift ηv : Gv → W (F) of det ρv (see Proposition 4.4). So for
the remainder of this section, we fix an R-place v and denote by σ the image of
Frobv in Gal(E(ζ�)/K), so that [σ ] is an R-class. We also fix an eigenvalue λ ∈ F of
A := ρv(σ ), as required in the definition of an R-place.

The definition of Cv at an R-place
Using the rational canonical form, we may assume that A is given in the form

A =

A1 0
. . .

0 Ar

 ,



xxx dmj4021 July 1, 2005 16:47
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where each Ai is a square matrix of size ni , the matrices Ai for i > 1 are in rational
canonical form and act indecomposably, and the matrix A1 has the following form
depending on our two cases:

A1 =
(

λχ�(σ ) 0
0 λ

)
in case (I) and

A1 =
(

λ 1
0 λ

)
in case (II).

Note that in case (II), the Ai , i ≥ 1, are in bijection with the irreducible represen-
tations V i used in the definition of formula (2). Because the Ai act indecomposably,
the eigenvalues form a single Galois orbit and the Jordan canonical form of an Ai

consists of identical blocks for each of the eigenvalues. Because A is regular, different
Ai have distinct orbits of eigenvalues. Also, clearly, each Ai is again regular.

For i = 2, . . . , r we define

ρv,i : Gv −→ GLni
(Rv,i)

as a lift representing the versal unramified deformation of ρv,i : Gv → GLni
(F),

defined as the restriction of ρv to the ith block.
For the definition in case i = 1, let Ẑ be the profinite completion of Z and Ẑ′

be the prime-to-p completion of Ẑ. Let s, t be topological generators of Ẑ and Ẑ′,
respectively. For q ′ a power of p, and thus prime to �, define Gq ′ := Ẑ′

� Ẑ, where the
semidirect product is given (in multiplicative notation) by the condition sts−1 = tq

′
.

Then Gqv
can be identified with the tame quotient of Gv in such a way that t is a

generator of Iv/Pv and s is a lift of the Frobenius automorphism in Gv/Iv . Therefore
we make the following convention.

CONVENTION 4.1
Whenever a representation factors via the tame quotient of Gv , we identify this tame
quotient in the above way with Gqv

.

Thus if ρ is unramified at v, then the images of Frobv and of s in Gal(E(ζ�)/K)
are the same; and so for each j ∈ Z, the elements s and σ act in the same way
on ad0(ρ)(j ).

By µ̂ ∈ W (F), we denote the Teichmüller lift of any element µ of F, and we set δ

to be zero in case (I) and 1 in case (II). We now define Rv,1 := W (F)[[x1,0, x1,1]] and



xxx dmj4021 July 1, 2005 16:47

AN ANALOG OF SERRE’S CONJECTURE FOR FUNCTION FIELDS 13

ρv,1 : Gv � Gqv
−→ GL2(Rv,1) by

s 	→
(

λ̂qv(1 − x1,1) δ

0 λ̂(1 − x1,1)

)
and t 	→

(
1 x1,0

0 1

)
.

The necessary condition ρv,1(s)ρv,1(t) = ρv,1(t)qvρv,1(s) can be verified easily. Since
χ�(σ ) ≡ qv (mod �), we also have ρv,1(s) ≡ A1 (mod (�, x1,0, x1,1)).

We now define

Rv :=
r

⊗̂
i=1

Rv,i

/(
r∏

i=1

det ρv,i(s) − ηv(s)

)

with ⊗̂ formed over W (F) and the corresponding representation ρv : Gv −→ GLn(Rv)
as ⊕ρv,i (where the entries are taken modulo the ideal generated by

∏r
i=1 det ρv,i(s)−

ηv(s)).
To investigate the resulting representations, we first need a simple result on the

individual ρv,i . For this, we denote by ad(ρ)i the adjoint representations of the Ai and
by the ad0(ρ)i its subrepresentation on trace zero matrices; that is, in case (II), they
agree with those defined in (2). Then we have the following lemma.

LEMMA 4.2
Let i be in {2, . . . , r}. Then the versal deformation ring Rv,i is smooth over W (F) of
dimension h1

unr(Gv, ad(ρ)i) = ni . If �� | ni , and if ηi is any lift of det ρv,i to W (F), then
the versal deformation ring for unramified deformations of determinant equal to ηi is
smooth of dimension h1

unr(Gv, ad0(ρ)i) = ni − 1.

Proof
Since ρ is unramified at v, one has h1

unr(Gv, ad(ρ)) = dim Mn(F)A and, similarly,
h1

unr(Gv, ad(ρ)i) = dim Mn(F)Ai . The assertion now follows easily from the regularity
of A(= ρ(Frobv)). �

COROLLARY 4.3
Assume that there exists an i ≥ 2 such that � does not divide ni . Then Rv is smooth
over W (F) of relative dimension n − 1 = h0

unr(Gv, ad0(ρ)).

Note that for �� | n, there always exists an i ≥ 2 with �� | ni .

Proof
By Lemma 4.2 and the definition of Rv,1, the ring ⊗̂r

i=1Rv,i is smooth of dimen-
sion n. Because the Ai have distinct sets of eigenvalues for different i, we have
h0

unr(Gv, ad(ρ)) = ∑
i h

0
unr(Gv, ad(ρ)i), which in turn implies h1

unr(Gv, ad(ρ)) =
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∑
i h

1
unr(Gv, ad(ρ)i) = n since h1(Ẑ, M) = h0(Ẑ, M). Moreover, if one of the ni

is not divisible by �, then it is easy to see that h1
unr(Gv, ad0(ρ)) = h1

unr(Gv, ad(ρ)) − 1.
Let i0 be the corresponding index.

We now prove the smoothness of Rv . Lemma 4.2 applied to i0 says that there is
a system of local coordinates of Rv,i such that det ρv,i0 (s) = ηi0 (s)(1 + x), where x

is one of these coordinates. (This also works for i0 = 1.) If we regroup the defining
relation of Rv , it therefore yields the relation

ηv(s)
∏
i �=i0

det ρ−1
v,i (s) = ηi0 (s)(1 + x),

and the variable x does not occur on the left-hand side. Thus the relation eliminates
the variable x, which is one of the local coordinates in a suitable set of such for the
ring ⊗̂iRv,i . Because ⊗̂iRv,i is smooth over W (F) of relative dimension n, so is Rv of
relative dimension n − 1. �

The following defines a pair (Cv, Lv) compatible with ηv . The functor Cv : A −→
Sets is given by

R 	→ Cv(R) := {
ρ : Gv → GLn(R)

∣∣ ∃α ∈ HomA(Rv, R),

∃M ∈ 1 + Mn(mR) : ρ = M(α ◦ ρv)M−1
}
.

Moreover, if ρ0 : Gv → GLn(F[ε]/(ε2)) denotes the trivial lift of ρv , the subspace
Lv ⊂ H 1(Gv, ad0(ρ)) is the set of 1-cocycles{

c : Gv → ad0(ρ) : g 	→ 1

ε
(ρ(g)ρ−1

0 (g) − I )
∣∣∣ ρ ∈ Cv(F[ε]/(ε2))

}
, (5)

and Lv,unr ⊂ H 1
unr(Gv, ad0(ρ)) is the intersection Lv ∩ H 1

unr(Gv, ad0(ρ)).

PROPOSITION 4.4

(i) dimF Lv = 1 + dimF Lv,unr = n − 1.
(ii) The pair (Cv, Lv) satisfies conditions P1–P7 of [T].

Proof of Proposition 4.4 (i)
Let us fix local coordinates xi,j , j = 1, . . . , ni of the rings Rv,i , i = 2, . . . , r . We
also enumerate them, so that the variable x in the proof of Corollary 4.3 is given by
xi0,1.

First let c0 be the 1-cocycle that arises from Rv → F[ε]/(ε2) by mapping the xi,j ,
j ≥ 1 and (i, j ) �= (i0, 1), to zero and x1,0 to ε. (The image of xi0,1 is determined by
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the xi,j with j ≥ 1.) The corresponding element in Lv is easily seen to nonzero and
ramified. Moreover, all cocycles obtained from an assignment where x1,0 maps to zero
are unramified. This shows dim Lv = dim Lv,unr + 1.

Let L′
v be the set of cocycles corresponding to the ring R′ := ⊗̂iRv,i/(x1,0). The

ring R′ together with the representation ⊕iρv,i (mod (x1,0)) is by its very construction,
and by Lemma 4.2, a versal deformation ring. Hence the same is true for its smooth
quotient R′/(

∏r
i=1 det ρv,i(s) − ηv(s) ∼= R/(x1,0)). The latter is of relative dimension

n−2 over W (F), and its mod � tangent space is dual to Lv,unr. So dimF Lv,unr = n−2,
as asserted. �

To prove the second part of Proposition 4.4, we need the following lemma.

LEMMA 4.5
Let R̃ be in A and α, α′ ∈ HomA(Rv, R̃) such that there exists M ∈ GLn(R̃) congruent
to the identity modulo mR̃ with M(α ◦ ρv)M−1 = α′ ◦ ρv. Then α ◦ ρv(s) = α′ ◦ ρv(s),
so that, in particular, M commutes with α ◦ ρv(s).

Proof
We use the same local parameters for Rv as in the proof of Proposition 4.4(i). The
matrix ρv(s) has entries in the power series ring over W (F) in the variables xi,j ,
j ≥ 1. By ρv(s)r , we denote the part of ρv(s) that is homogeneous of degree r , so that
ρv(s) = ∑∞

r=0 ρv(s)r . The assertion dimF Lv,unr = n − 2 of Proposition 4.4(i) means
precisely that the n− 2 matrices ∂

∂xi,j
ρv(s)1 over all i, j with j ≥ 1 and (i, j ) �= (i0, 1)

form a basis of the vector space Lv,unr ⊂ ad0(ρ)/(s − 1)ad0(ρ).
Define τ := α ◦ ρv , τ ′ := α′ ◦ ρv . Let τ(m) := τ (mod mm

R̃
), and introduce

analogous abbreviations τ ′
(m), α(m), α′

(m), and M(m). By induction on m, we show below
that α(m)(xi,j ) = α′

(m)(xi,j ) for all i, j with j ≥ 1. This clearly implies τ(m)(s) = τ ′
(m)(s)

for all m, and thus the proof of Lemma 4.5 is completed. It remains to give the
inductive argument. The case m = 1 is clear, and so we now carry out the induction
step m 	→ m + 1.

By the induction hypothesis, M(m) commutes with τ(m)(s). Because ρv(s) is reg-
ular, [B2, Lem. 5.6] implies that there exists a lift M ′ of M(m) to GLn(R̃/mm+1

R̃
)

which commutes with τ(m+1)(s). By considering M ′−1
M(m+1), we may thus as-

sume M(m+1) = I + � for some � ∈ Mn(mm

R̃
/mm+1

R̃
). We also define elements

δi,j := α(m+1)(xi,j ) − α′
(m+1)(xi,j ), which, by the induction hypothesis, lie in m

m+1
R̃

.
The expansion of ρv(s) in homogeneous parts shows

τ ′
m+1(s) = τm+1(s) + ρv(s)1|xi,j =δi,j

in GLn

(
R̃/mm+1

R̃

)
,
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and so the condition M(m+1)τ(m+1)(s)M−1
(m+1) = τ ′

(m+1)(s) yields

∑
(i,j )

δi,j

∂

∂xi,j

ρv(s)1 = ρv(s)1|xi,j =δi,j
= �τ(m+1)(s) − τ(m+1)(s)� (6)

in Mn(mm

R̃
/mm+1

R̃
). The right-hand side is a linear combination of coboundaries, that is,

zero in H 1(Gv, ad0(ρ))⊗mm

R̃
/mm+1

R̃
. The elements ∂

∂xi,j
ρv(s)1 are linearly independent

in H 1(Gv, ad0(ρ)). Therefore both sides must vanish, and this concludes the induction
step and the proof of Lemma 4.5. �

Proof of Proposition 4.4(ii)
The only nontrivial condition that needs to be verified is P4. So we assume the
setup given in the condition P4, as displayed explicitly in the third paragraph after
Definition 3.1; that is, we have rings R1, R2 ∈ A, lifts ρi ∈ Cv(Ri), ideals Ii ∈ Ri ,

and an identification φ : R1/I1
∼=→ R2/I2 under which ρ1 (mod I1) = ρ2 (mod I2).

We want to glue the ρi to an element ρ ∈ Cv(R) for

R := {
(r1, r2) ∈ R1 ⊕ R2 : r1 (mod I1) = r2 (mod I2)

}
.

So let αi ∈ HomA(Rv, Ri) and Mi ∈ GLn(Ri) such that ρi = Mi(αi ◦ ρv)M−1
i ,

i = 1, 2. We claim that there exist α ∈ HomA(Rv,R) and M ∈ GLn(R) with M ≡ I

(mod mR) such that ρ := M(α ◦ ρv)M−1 = ρ1 ⊕ ρ2.
By conjugating ρ1 by some lift of M2 (mod I1) to R1, we may assume that

M2 = I . By Lemma 4.5, the matrix M1 (mod I1) commutes with(
α1 (mod I1)

) ◦ ρv(s) = (
α2 (mod I2)

) ◦ ρv(s).

Using [B2, Lem. 5.6], and the regularity of A = ρv(s), we may choose a lift M ′
1 ∈

GLn(R1) of M1 (mod I1) which commutes with α1 ◦ ρv(s). We now replace M1 by
M̃1 := M1M

′
1
−1 and α1 by some α̃1 : Rv → R1, which differs from α1 at most on the

variable x0 and such that

M̃1(α̃1 ◦ ρv)M̃−1
1 = M1(α1 ◦ ρv)M−1

1 .

Defining M := (M̃1, I ) ∈ GLn(R) and α := (α′
1, α2) : Rv → R, condition P4 is

verified. �

On the local duality pairing
As before, we fix v and eigenvalue(s) λ (and λ′ = χ�(σ )λ) and identify Gqv

with the
tame quotient of Gv , so that s maps to σ ∈ Gal(E(ζ�)/K).
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Observe first that by repeatedly applying the Leray-Serre spectral sequence to
Gv ⊃ Iv ⊃ Pv and ad0(ρ), one obtains the short exact sequence

0 → ad0(ρ)/(s − 1)ad0(ρ) → H 1(Gqv
, ad0(ρ)

) → (
ad0(ρ)(−1)

)s → 0 (7)

and isomorphisms Hi(Gv, ad0(ρ)) ∼= Hi(Gqv
, ad0(ρ)) for all i ≥ 0 since Pv

acts trivially on ad0(ρ). This allows us to regard Lv,unr as a subspace of ad0(ρ)/
(s − 1)ad0(ρ) = ad0(ρ)/(σ − 1)ad0(ρ).

Moreover, the short exact sequence (7) can be given an explicit interpretation in
terms of 1-cocycles representing cohomology classes. Namely, any 1-cocycle c of Gqv

with values in ad0(ρ) is uniquely determined by its values c(s), c(t). These are subject
to the conditions c(s) ∈ ad0(ρ) and c(t) ∈ (ad0(ρ)(−1))s , that is, c(t) ∈ ad0(ρ) satisfies
sc(t) = 1/qvc(t). Furthermore, the 1-coboundaries are precisely the 1-cocycles with
c(s) ∈ (s − 1)ad0(ρ) and c(t) = 0.

For ad0(ρ)(1), one has analogous results. Namely, Hi(Gv, ad0(ρ)(1)) ∼=
Hi(Gqv

, ad0(ρ)(1)) for all i ≥ 0, and there is the short exact sequence

0 → ad0(ρ)(1)/(s − 1)ad0(ρ)(1) → H 1
(
Gqv

, ad0(ρ)(1)
) → ad0(ρ)s → 0.

It identifies L⊥
v,unr := L⊥

v ∩ H 1
unr(Gv, ad0(ρ)(1)) as a subspace of the module

ad0(ρ)(1)/(σ − 1)ad0(ρ)(1). In the same way as sequence (7), it can be rephrased
using cocycles.

Clearly, the subspace Lv,unr of ad0(ρ)/(σ −1)ad0(ρ) only depends on the element
σ ∈ Gal(E(ζ�)/K) and the choice of λ and not on the place v. For the inclusion
L⊥

v,unr ⊂ ad0(ρ)(1)/(σ − 1)ad0(ρ)(1), this is not immediate since it was defined using
the pairing (4), which in turn was based on Tate local duality. Also, while Lv,unr is built
out of diagonal blocks, as is apparent from the construction of (Rv, ρv), in general,
L⊥

v,unr is not of such a form.

Remark 4.6
Leaving the details to the reader, the following is an example in which L⊥

v,unr is not
composed of diagonal blocks. Suppose χ� is of order � − 1 and ρv

∼= ⊕�−1
i=1 F(� − i).

Then with respect to the given diagonal block form of ρv , the unramified cocy-
cles in H 1(Gv, ad0(ρ)(1)) can be nonzero precisely at the entries (1, 2), (2, 3), . . . ,
(l − 2, l − 1), and (l − 1, 1). The same therefore holds for cocycles from L⊥

v,unr ⊂
H 1

unr(Gv, ad0(ρ)(1)) for any choice of λ.
For later use, we now show that L⊥

v,unr ⊂ ad0(ρ)(1)/(σ − 1)ad0(ρ)(1), too, only
depends on σ and λ and not on v. This is done by expressing Tate local duality for
the pairing (4) as well as the isomorphism H 2(Gv, F(1)) ∼= F in terms of cocycle
representatives.



xxx dmj4021 July 1, 2005 16:47
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Let us first turn to H 2(Gv, F(1)). Since Ẑ and Ẑ′ are of cohomological dimension
one, a Leray-Serre spectral sequence argument yields isomorphisms H 2(Gv, F(1)) ∼=
H 2(Gqv

, F(1)) ∼= F. Recall (a) that elements of H 2(Gqv
, F) classify extensions of

Gqv
by F, and (b) that elements of this cohomology group may be represented by

normalized 2-cocycles, that is, maps

[. , .] : Gqv
× Gqv

→ F,

which satisfy [1, g] = [g, 1] = 0 for all g ∈ Gqv
, and

f [g, h] − [fg, h] + [f, gh] − [f, g] ∀f, g, h ∈ Gqv
.

Note that, in our situation, f [g, h] = [g, h]; but we decided to leave f in the notation
to remind the reader of the condition of a normalized 2-cocycle also in the case of
nontrivial coefficients.
Regarding the duality pairing (4), we have the following results.

LEMMA 4.7
In terms of normalized 2-cocycles, an isomorphism

H 2
(
Gqv

, F(1)
) ∼=−→ F

is given by

[. , .] 	→
q�−1

v −1∑
i=1

[t i , t] + [
tq

�−1
v , s�−1

] − [s�−1, t] ∈ F.

We do not claim that the isomorphism we construct is the canonical one. But
since any two isomorphisms only differ by multiplication with some element of F∗,
the choice of isomorphism does not affect the definition of the annihilator under local
Tate duality.

LEMMA 4.8
With respect to the isomorphism of Lemma 4.7, the trace pairing

H 1
(
Gv, ad0(ρ)

) × H 1
(
Gv, ad0(ρ)(1)

) −→ F

is given explicitly in terms of 1-cocycles as follows. Let c1 and c2 be 1-cocycles
of H 1(Gqv

, ad0(ρ)) and H 1(Gqv
, ad0(ρ)(1)), respectively. Then the image of (c1, c2)

under the pairing is given by

Trace
(
c1(s)c2(t) − c2(s)c1(t)

) ∈ F,
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unless � = 2 and qv ≡ 3 (mod 4). In the latter case, it is Trace(c1(s)c2(t) +
c2(s)c1(t) + c1(t)c2(t)).

COROLLARY 4.9
Lv,unr and L⊥

v,unr only depend on σ and the choice of eigenvalue λ.

The proof of the corollary shows that for any Lv ⊂ H 1(Gv, ad0(ρ)) which only
depends on σ , the modules Lv,unr as well as L⊥

v,unr only depend on σ .
Based on the corollary, we introduce the following notation.

Definition 4.10
Suppose σ is the image of Frobv in Gal(E(ζ�)/K). Then we write

Lσ,unr ⊂ad0(ρ)/(σ − 1)ad0(ρ) and L⊥
σ,unr ⊂ad0(ρ)(1)/(σ − 1)ad0(ρ)(1)

for Lv,unr and L⊥
v,unr, respectively. If we also want to include the choice of λ in the

notation, we write Lσ,λ,unr and L⊥
σ,λ,unr, respectively.

Proof of Corollary 4.9
On rings of characteristic �, the definition of Cv depends only on σ ; hence so does Lv .
Then, clearly, the modules Lv,unr = H 1

unr(Gv, ad0(ρ)) ∩ Lv ⊂ ad0(ρ)/(σ − 1)ad0(ρ)
as well as

Lv := (
Lv + H 1

unr(Gv, ad0(ρ))
)
/H 1

unr

(
Gv, ad0(ρ)

) ⊂ (
ad0(ρ)(−1)

)σ
only depend on σ . Since H 1

unr(Gv, ad0(ρ)) and H 1
unr(Gv, ad0(ρ)(1)) are orthogonal

under the trace pairing, Lemma 4.8 shows that L⊥
v,unr is the module of those unramified

cocycles c̃2 of Gv for which c̃2(s) lies in{
m′ ∈ ad0(ρ)(1)

∣∣ Trace(m · m′) = 0 ∀m′ ∈ Lv

}
.

Since the latter module only depends on σ , so does L⊥
v,unr. �

Proof of Lemma 4.8
We assume that we have proved Lemma 4.7. In terms of 1-cocycles, the map

H 1(Gqv
, ad0(ρ)

) × H 1(Gqv
, ad0(ρ))

) → H 2(Gqv
, ad0(ρ) ⊗ ad0(ρ)(1)

)
is given by mapping a pair (c1, c2) to the (normalized) 2-cocycle defined by [f, g] :=
c1(f ) ⊗ c2(g). If we compose this with the map on cohomology induced from the
trace map

ad0(ρ) ⊗ ad0(ρ)(1) → F(1) : A ⊗ B 	→ Trace(AB),
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we obtain the (normalized) 2-cocycle defined by [f, g] := Trace(c1(f )c2(g)) ∈ F(1).
By Lemma 4.7, it follows that the pair (c1, c2) is mapped to

Trace

q�−1
v −1∑
i=1

c1(t i)c2(t) + c1

(
tq

l−1
v

)
c2(s�−1) − c1(s�−1)c2(t)

 ∈ F.

Because c1 restricted to Ẑ′ is a homomorphism, we have c1(t i) = ic1(t). So the sum
simplifies to

c1(t)c2(t)
q�−1

v −1∑
i=1

i = c1(t)c2(t)q�−1
v

(
q�−1

v − 1
)
/2.

As q�−1
v ≡ 1 (mod �), this sum is zero unless � = 2 and qv ≡ 3 (mod 4). In the latter

case, it is c1(t)c2(t). For the same reason, the term c1(tq
�−1
v ) = q�−1

v c1(t) = c1(t).
To complete the proof of Lemma 4.8, it now suffices to show that we may replace

c2(s�−1) by −c2(s) (and, similarly, c1(s�−1) by −c1(s)). An easy calculation shows that
Trace(c1(t)(σ − 1)c2(s)) = 0. Also, we have c2(s�−1) = (1 + σ + · · · + σ �−2)c2(s).
Combining the previous two observations, we find

Trace
(
c1(t)c2(s�−1)

) = Trace
(
c1(t)(� − 1)c2(s)

) = −Trace
(
c1(t)c2(s)

)
,

as asserted. The argument for c1(s�−1) is analogous. �

Proof of Lemma 4.7
By the Leray-Serre spectral sequence applied to

Ẑ′
� (� − 1)Ẑ ⊂ Ẑ′

� Ẑ

and the module F(1), we obtain an isomorphism

H 2
(
Ẑ′

� Ẑ, F(1)
) ∼= (

H 2(Ẑ′
� (� − 1)Ẑ, F)(1)

)Z/(�−1)
,

given by restriction. The point is that the action of Ẑ′ × (� − 1)Ẑ on F(1) is trivial
(the residue field of the corresponding local Galois extension has order q�−1

v and,
hence, contains a primitive (� − 1th root of unity). Since both H 2(. . .)-terms are
isomorphic to F, it is not necessary to take invariants on the right for there to be
an isomorphism. So it suffices to show that the identification asserted in Lemma 4.7
is given by first restricting normalized 2-cocycles and then giving an isomorphism
H 2(Ẑ′

� (� − 1)Ẑ, F) ∼= F.
For the latter, we use the interpretation in terms of extension classes (cf. [W,

Sect. 6.6]). So let [. , .] be a normalized 2-cocycle of H 2(Ẑ′
� (� − 1)Ẑ, F). Then
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the corresponding extension G can be described as the group whose underlying
elements are pairs (a, x), a ∈ F, x ∈ Ẑ′

� Ẑ, and whose composition law is given by
(a, x)(b, y) = (a + x · b + [x, y], xy). The cocycle is trivial if and only if the group
G is split, and this in turn is equivalent to the existence of elements a, b ∈ F such that
s̃ := (a, s�−1) and t̃ := (b, t) satisfy

s̃ t̃ = t̃ q
�−1
v s̃. (8)

Using the composition law, one can compute both sides of (8) as elements in
F � (Ẑ′

� (�− 1)Ẑ). The components in with values in Ẑ′
� (�− 1)Ẑ always agree. So

let us denote the difference of the F-component by d([. , .]) (since it depends on [. , .]).
It is given by

d([. , .]) =
q�−1

v −1∑
i=1

[t i , t] +
[
tq

�−1
v , s�−1

]
− [s�−1, t].

The assignment [. , .] 	→ d([. , .]) ∈ F is F-linear, and we have argued that it takes the
value zero only if [. , .] is a 2-coboundary. Therefore d induced an isomorphism

d : H 2
(
Ẑ′

� (� − 1)Ẑ, F
) ∼= F : [. , .] 	→ d([. , .]).

Given a 2-cocycle for Ẑ′
� Ẑ, restricting it to Ẑ′

� (� − 1)Ẑ and applying d yields
precisely the formula in Lemma 4.7, and so its proof is completed. �

5. Local lifting problems at r-places
Regarding places at which ρ is ramified, one has the following results.

PROPOSITION 5.1
Suppose that ρ(Iv) is of order prime to �. Define the functor Cv : A → Sets by

R 	→ {
ρ : Gv → GLn(R) | ρ (mod mR) = ρv, ρ(Iv) ∼= ρ(Iv), det ρ = ηv

}
,

and define Lv as the corresponding subspace in H 1(Gv, ad0(ρ)). Then (Cv, Lv) sat-
isfies the conditions P1–P7 of [T], the conductors of ρv and of any lift ρ ∈ Cv(R),
R ∈ A agree, Lv = H 1

unr(Gv, ad0(ρ)), and dim Lv = h0(Gv, ad0(ρ)).

Proof
Except for the assertion on conductors, this is essentially [T, Exam. E1], and so we
only prove the latter part. For any ring R ∈ A and ρ ∈ Cv(R), let Vρ(R) denote the
R[Gv]-module defined by ρ. The kernel of GLn(R) → GLn(F) is a pro-� group and
thus prime to p. Therefore the Swan conductors of ρ and ρv are the same. The module
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Vρ(R) is free over R, and thus the difference of the valuations of the conductors of the
two representations is given by

rankR Vρ(R)Iv − dimF Vρv
(F)Iv . (9)

Since Gv acts on both representations via the same quotient I v , which is prime to
�, there is a natural equivalence between R[I v]-representations, which are free and
finite over R, and F[I v]-representations given by reduction modulo mR . In particular,
both categories are semisimple, and thus expression (9) is well defined. Furthermore,
this implies that the number of trivial components contained in Vρ(R), as an I v-
module, is the same as that of Vρv

(F) and, hence, that the difference (9) is zero, as
asserted. �

PROPOSITION 5.2
Suppose that ρv is at most tamely ramified and that h0(Gv, ad0(ρ)) < h0(Gv, ad(ρ)).
Then there exists a pair (Cv, Lv) that satisfies conditions P1–P7 of [T] with Lv =
H 1

unr(Gv, ad0(ρ)) and dim Lv = h0(Gv, ad0(ρ)), is compatible with ηv , and is such
that the conductors of ρv and any lift ρ ∈ Cv(R), R ∈ A, agree.

The proof of Proposition 5.2 occupies the remainder of this section.

Remark 5.3
One can construct examples that show that the condition dimF ad0(ρ)Gv <

dimF ad(ρ)Gv is necessary. The latter is automatically satisfied if �� | n.

Remark 5.4
If ρ(Iv) is of order prime to �p, we may apply either Proposition 5.1 or Proposition 5.2
to obtain a pair (Cv, Lv). The pairs so obtained do have similar properties; and, in fact,
in Remark 5.10, we explain why the two are isomorphic.

We need a number of preparations for the proof of Proposition 5.2. Since all
representations that intervene factor via the tame quotient Gqv

of Gv , we fix for the
rest of this section the usual (topological) generators s, t of Gqv

satisfying the relation
sts−1 = tqv .

For B ∈ GLn(W (F)), we denote by V the corresponding (W (F)[�])-module on
W (F)n by having � act via B. Let QF denote the fraction field of W (F). We say that
B ∈ GLn(W (F)) is a minimal lift of its reduction B ∈ GLn(F) if V = ⊕iVi,s ⊗W (F)Vi,u,
where the Vi,? are (W (F)[�])-modules such that:

(i) on Vi,u, the matrix representing � is W (F)-conjugate to a regular unipotent
matrix in Jordan form;
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(ii) on Vi,s , the characteristic polynomial of � is irreducible, and its roots are
Teichmüller lifts of elements in F.

LEMMA 5.5
Any B ∈ GLn(F) has a minimal lift to GLn(W (F)).

Proof
Let V := Fn be the F[�]-module V := Fn obtained by having � act as B. We
choose a decomposition V ∼= ⊕V i into indecomposable submodules V i with respect
to the action of �. On V i , the action of � decomposes into commuting semisimple
and unipotent parts defined over F. For instance, by considering Jordan normal forms
over F, one shows that, correspondingly, one has V i

∼= V i,s ⊗F V i,u, where V i,s is a
semisimple representation of � and V i,u is a unipotent representation of �. Because
V i is indecomposable, the characteristic polynomial of � on V i,s is irreducible over
F. For the same reason, the action of � on V i,u is by a regular unipotent matrix. So
we may assume that the operation of � on V i,s is given by a companion matrix whose
characteristic polynomial is irreducible over F and that its operation on V i,u is given
by a single Jordan block with eigenvalue 1.

We now lift � on V i,u to a single Jordan block with eigenvalue 1 over W (F) and �

on V i,s to a companion matrix with eigenvalues the Teichmüller lifts of those of � on
V i,s . The corresponding representations Vi,u and Vi,s combine to give a representation
of W (F)[�] on V = ⊕

i Vi,s⊗W (F)Vi,u which has all the required properties. Therefore
the matrix representing this � is a minimal lift of B. �

To formulate some further auxiliary results, suppose B is a minimal lift of B :=
ρ(t), and define M := Mn(W (F))/{AB − BqvA|A ∈ W (F)}. Then we have the
following lemma.

LEMMA 5.6

(i) The module M is flat over W (F).
(ii) There exists a lift ρ0 : Gv � Gv −→ GLn(W (F)) with ρ0(t) = B.

Proof
In the case when ρ(Iv) is an �-group, part (i) was shown during the proof of [B1,
Proposition 3.2]. This is used below.

For the general case, let � and the Vi,? be as in the definition of minimal lift of
B. It is not difficult to see from condition (ii) that we may assume that � on Vi,s is
given as a companion matrix Bi,s . Now let F′ be a finite extension of F which contains
all eigenvalues of B. Then, clearly, over W (F′) the companion matrices Bi,s may
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be diagonalized. Moreover, this diagonalization procedure commutes with reduction
modulo �. Since the base change ⊗W (F) W (F′) is faithfully flat, for the proof of 5.6,
we from now on assume that F contains all the eigenvalues of B.

To proceed with the proof of Lemma 5.6, we require a normal form for the pair of
matrices A, B. Observe first that the relation A B A

−1 = B
qv implies that the operation

x 	→ xqv acts on the set of eigenvalues of B. Second, since these eigenvalues lie in
F, the matrix B can be brought into Jordan normal form over F. The reader may now
easily fill in the details for the following result.

LEMMA 5.7
Let d denote the number of orbits under x 	→ xqv among the eigenvalues of B, and
choose representatives µi ∈ F, i = 1, . . . , d , for the orbits. By mi , we denote the
length of the orbit of µi; and by µ̂i , we denote the Teichmüller lift of µi . Then:

(i) µ
q

mi
v

i = µi; and the elements µ
q

j
v

i , i = 1, . . . , d, j = 1, . . . , mi are pairwise
disjoint and form a complete list of the eigenvalues of B := ρ(t); and

(ii) with respect to a suitable basis, one has

B =

B1 0
. . .

0 Bd

 , where each Bi =

Bi,1 0
. . .

0 Bi,mi


is a square matrix and, for fixed i, the Bi,j can be written as Bi,j = µ̂

q
j−1
v

i Ui

for some unipotent Ui in Jordan form, independent of j .

Furthermore, if B is given as in (ii), then A := ρ(s) takes the form

A =

A1 0
. . .

0 Ad

 with Ai =



0 Ai,1 0 · · · 0

0 Ai,2
. . .

...
. . .

. . . 0
0 0 Ai,mi−1

Ai,mi
0 · · · 0

 ,

and the Ai,j satisfy the relation Ai,jUi = U
qv

i Ai,j .

We continue with the proof of Lemma 5.6. Since (i) is known in the case where
ρ(Iv) is an �-group, there exist matrices A0,i,j over W (F) that satisfy A0,i,jUi =
U

qv

i A0,i,j for all i, j and whose reduction modulo � agrees with Ai,j . Let A0 be
composed from the A0,i,j in the same way as A is from the Ai,j . Then A0 is a lift to
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W (F) of A such that A0BA−1
0 = Bqv . (This proves Lemma 5.6 only under the further

hypothesis that F contains all eigenvalues of B.)
We now consider the exact sequence

0 → K → Mn

(
W (F)

) A 	→AB−Bqv A−→ Mn

(
W (F)

) → M → 0, (10)

where K := {A ∈ W (F) : AB = BqvA}. To complete (i), we need to show that the
generic rank of M is the same as its special rank. Using the relation A0BA−1

0 = Bqv , the
middle homomorphism in (10) is equivalently given by A 	→ A0(A−1

0 AB − BA−1
0 A).

Thus if we apply the isomorphism Mn(W (F)) → Mn(W (F)) : A 	→ A−1
0 A to the

middle terms in (10), we obtain the isomorphic exact sequence

0 → K′ → Mn

(
W (F)

) A′ 	→A′B−BA′−→ Mn

(
W (F)

) → M′ → 0 (11)

with kernel K′ = {A′ ∈ Mn(W (F)) : A′B = BA′} ∼= K and cokernel M′ =
Mn(W (F))/{A′B − BA′|A′ ∈ W (F)} ∼= M. We need to prove that the generic and
special ranks of M′ agree.

Counting dimensions in the exact sequence (10) and in the corresponding se-
quence for the reduction modulo �, it suffices to show that the dimensions of
K′ ⊗W (F) QF and of K′

:= {A′ ∈ Mn(F)|A′
B = B A

′} agree.Because the Bi,j

have distinct eigenvalues modulo �, the matrices A
′ ∈ K′

and A′ ∈ K′, respectively,
have the same block form as B. So we may consider blocks for each pair i, j separately.
Therefore it suffices to prove the assertion in the case where B is a single Jordan block
with eigenvalue 1. This case was treated explicitly in the proof of [B1, Proposition 3.2].
The proof of (i) is now complete.

It remains to deduce (ii) from (i). Because M is flat, the reduction modulo � of the
exact sequence (10) remains exact, and so the kernel of the reduction is K/�K. The
matrix A = ρ(s) ∈ Mn(F) lies in this kernel and is therefore the reduction modulo �

of a matrix A ∈ K. Because A and B satisfy the same relations as s, t , the desired lift
exists, and Lemma 5.6 is thus proved. �

As a corollary to the above proof and with A0 ∈ GLn(W (F)) as in the
proof, we record the following technical result, obtained by using base change and
flatness.

COROLLARY 5.8
Let B ∈ GLn(W (F)) be a minimal lift of B ∈ GLn(F). Then for any R ∈ A, the
submodules K(R) := {A ∈ Mn(R) : AB = BqvA} and K′(R) := {A ∈ Mn(R) :
AB = BA} of Mn(R) are free and direct summands of R-rank independent of R.
Moreover, K′(R) = A−1

0 K(R).
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Proof of Proposition 5.2
For a subset {b1, . . . , bm} of K(W (F)), which is specified below, and for indetermi-
nates x1, . . . , xm, we define

Sv := A0 +
∑

xibi ∈ GLn(Rv), Tv := B,

Rv := W (F)
[
[x1, . . . , xm]

]
/
(

det Sv − ηv(s)
)
,

ρv : Gv � Gqv
∼= Ẑ′

� Ẑ −→ GLn(Rv) : s 	→ Sv, t 	→ Tv,

and the functor Cv : A → Sets by

R 	→ Cv(R) := {
ρ : Gv → GLn(R)

∣∣∃α ∈ HomA(Rv, R),

∃M ∈ 1 + Mn(mR) : ρ = M(α ◦ ρv)M−1
}

Let Lv ⊂ H 1(Gv, ad0(ρ)) be the subspace corresponding to the lifting problem
Cv; that is, Lv is defined as in (5). As ρv(t) does not deform, the subspace Lv lies
inside

H 1
unr

(
Gv, ad0(ρ)

) ∼= ad0(ρ)
t
/(s − 1)(ad0(ρ)t ).

We denote by b̄1, . . . , b̄m ∈ K(F) the reductions of the bi modulo �. So the elements

A
−1

b̄i lie in K′(F) = ad0(ρ)t , and an explicit calculation shows that Lv is spanned
by the images in ad0(ρ)

t
/(s − 1)(ad0(ρ)t ) of those linear combinations

∑
yiA

−1
b̄i ,

yi ∈ F, which are consistent with the determinant condition det Sv = η(s).
The latter condition modulo (�, m2

R) means

det A
!= det A · det

(
I + A

−1
(∑

yib̄i

))
; that is,

1 = 1 +
∑

yiTrace(A
−1

b̄i).

Thus the above linear combinations satisfy
∑

yiTrace(A
−1

b̄i) = 0.
Now we fix the choice of the bi by taking them as a subset of K(W (F)), whose

reduction modulo � forms a basis of K(F)/{b A − A b : b ∈ K(F)}. The elements
A

−1
b̄i then form a basis of

ad(ρ)t /(s − 1)
(
ad(ρ)t

) = K′(F)/{A b A
−1 − b : b ∈ K′(F)}.

To pass from ad(ρ) to ad0(ρ), we use our assumption

h0(Gv, ad(ρ)
)

> h0(Gv, ad0(ρ)
)
.
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Because (ad(ρ)Iv )Gv/Iv ∼= (ad(ρ)Iv )Gv/Iv
as an F-vector space, and similarly for ad0(ρ),

we deduce that (ad(ρ)t )/(s − 1)(ad(ρ)t ) properly contains (ad0(ρ)t )/(s − 1)(ad0(ρ)t ).
This in turn shows that any element of the module (ad0(ρ)t )/(s − 1)(ad0(ρ)t ) can be

obtained as a linear combination
∑

yiA
−1

b̄i , which satisfies
∑

i yi Trace(A
−1

bi) = 0.
This has two consequences. Firstly, we have Lv = H 1

unr(Gv, ad0(ρ)); secondly, the
relation det Sv = η(s) allows one to eliminate one of the variables xi since this is
possible tangentially, and so Rv is smooth of relative dimension dim Lv over W (F).

Note also that the determinant of ρv is the Teichmüller lift of that of ρv . For ρv(t),
this follows from the construction of B; for ρv(s), it follows from the definition of Rv .
This implies the result in general since ρv is only tamely ramified.

Let us now verify properties P1–P7 of [T]. As expected, the only property that is
nontrivial is P4. To verify it, suppose we are given rings R1, R2 ∈ A, lifts ρi ∈ Cv(Ri),
ideals Ii ∈ Ri , and an identification R1/I1

∼= R2/I2 under which ρ1 (mod I1) ≡ ρ2

(mod I2). We need to show that (ρ1, ρ2) lies in Cv(R) for

R := {
(r1, r2) ∈ R1 ⊕ R2 : r1 (mod I1) = r2 (mod I2)

}
.

So let αi ∈ HomA(Rv, Ri) and Mi ∈ GLn(Ri) such that ρi = Mi(αi ◦ ρv)M−1
i ,

i = 1, 2. We claim that there exist α ∈ HomA(Rv, R) and M ∈ GLn(R) with M ≡ I

(mod mR) such that (ρ1, ρ2) = M(α ◦ ρv)M−1. By conjugating ρ1 by some lift of M2

(mod I1) to R1, we may assume M2 = I .
By an inductive argument, which is left to the reader, one can show the following

auxiliary result.

LEMMA 5.9
Suppose R̃ ∈ A, J̃ is a proper ideal of R̃, A′ ∈ A+∑

βibi +Mn(J̃ ) for some βi ∈ R̃,
and A′B = BqvA′. Then there exists β ′

i ∈ R̃ with β ′
i − βi ∈ J̃ and C ∈ I + Mn(J̃ )

such that

A′ = C
(
A +

∑
β ′

ibi

)
C−1.

Continuing with the proof of Proposition 5.2, observe that the condition

M1(α1 ◦ ρv)M−1
1 (mod I1) = α2 ◦ ρv (mod I2) (12)

applied to t implies that M1 (mod I1) commutes with B. By Corollary 5.8, we can
find a lift M̃1 ∈ Mn(R1) of M1 (mod I1) which commutes with B.

Because of (12) and the choice of M̃1, we can apply Lemma 5.9 to A′ :=
M̃1(α1 ◦ ρv(s))M̃−1

1 . It yields α′
1 : Rv → R1 and C ∈ I + Mn(I1) such that

C
(
α′

1 ◦ ρv(s)
)
C−1 = M̃1

(
α1 ◦ ρv(s)

)
M̃−1

1
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and α′
1 (mod I1) = α2 (mod I2). Define C̃ := M1M̃

−1
1 C ∈ I + Mn(I1). Then

C̃(α′
1 ◦ ρv)C̃−1 = M1(α1 ◦ ρv)M−1

1 = ρ1.

Therefore, if we set M := (C̃, I ) ∈ I + Mn(mR) and α := (α′
1, α2) : Rv → R, we

have

(ρ1, ρ2) = M(α ◦ ρv)M−1,

and so the proof of P4, and hence of all the axioms of Taylor, is completed.
It remains to prove the assertion on the conductors. As in the proof of Proposi-

tion 5.1, the difference in conductors is given by

dimR Vρ(R)Iv − dimF Vρv
(F)Iv ,

where the notation is analogous to that in the quoted proof. Since Iv is topologically
generated by the single element t , whose image is the image of the matrix B ∈
GLn(W (F)), this difference is given by

dimR K′(R) − dimF K′(F).

By Corollary 5.8, this difference is zero. This shows that the conductors of ρ and ρv

agree, and Proposition 5.2 is thus proved. �

Remark 5.10
Suppose now that the image of Iv under ρ is of order prime to �p. Let (ρ ′

v, R
′
v) be

the versal deformation constructed in Proposition 5.1, and let (ρv, Rv) be the one
constructed in the previous proof.

The representation ρv was constructed so that ρv(t) was a minimal lift of B.
Because � does not divide #ρ(Iv), the matrix B is completely reducible. So the Vi,u

in the definition of minimal lift are 1-dimensional. Therefore ρv(t) is completely
reducible and of finite order prime to �.

The versality of (ρ ′
v, R

′
v) shows that there is a morphism R′

v → Rv that induces
ρv form ρ ′

v . Because it is an isomorphism on mod � tangent spaces, the morphism is
surjective. Since both rings are smooth of the same dimension, it must be bijective.
This shows that the two deformations agree.

6. Proof of Theorem 2.4 and the key lemma

Proof of Lemma 3.7
We first prove the following claim.
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Claim 1
There exists a finite set T0 of R-places of type (II), and for each such R-place v a
choice of eigenvalue λv , as in Definition 2.1, such that

H 1
{Lv}

(
S ∪ T ′ ∪ T0, ad0(ρ)

) ∩ H 1
(

Gal(E(ζ�)/K),M0
n(F)

) = 0, (13)

H 1
{L⊥

v }
(
S ∪ T ′ ∪ T0, ad0(ρ)(1)

) ∩ H 1(Gal(E(ζ�)/K),M0
n(F)(1)

) = 0. (14)

We only give the proof of (13), the proof of (14) being analogous.
Let σ1, . . . , σs be representatives of the different R-classes of type (II). For each

σi , let λi,j , j = 1, . . . , mi , be the list of eigenvalues in F of multiplicity 2 (in the
characteristic polynomial). Pick unramified places vi,j , i = 1, . . . , s, j = 1, . . . , mi ,
such that Frobvi,j

= σi for all i, j . Let (Cvi,j
, Lvi,j

) be the lifting problem defined in
Section 4 for the pair (vi,j , λi,j ), and let T0 := {vi,j : i = 1, . . . , s, j = 1, . . . , mi}.
Note that the Lvi,j ,unr are the space Lσi,λi,j ,unr of Definition 4.10. We consider the
following commuting diagram:

H 1
(
Gal(E(ζ�)/K), ad0(ρ)

)∩H 1
{Lv}

(
S ∪ T ′, ad0(ρ)

)
��

��

∏
v∈T0

H 1
(〈σv〉, ad0(ρ)σv

)

��

H 1
{Lv}

(
S ∪ T ′, ad0(ρ)

)
��
∏

v∈T0

H 1
(
Gv, ad0(ρ)

)
/Lv .

The kernel of the bottom row is H 1
{Lv}(S ∪ T ′ ∪ T0, ad0(ρ)). By assumption, there

are sufficiently many R-classes for (Cv, Lv)v∈S , and so the top horizontal arrow is
injective. For each i, the image of the top left term in

∏
j=1,...,mi

H 1(〈σvi,j
〉, ad0(ρ)σvi,j

)

is diagonal. Therefore we may replace the top right term by
∏

i H
1(〈σi〉, ad0(ρ)σi

) and
still retain the injectivity of the top horizontal map. Below we show that the induced
right vertical arrow

∏
i

H 1(〈σi〉, ad0(ρ)σi

) →
∏
v∈T0

H 1(Gv, ad0(ρ)
)
/Lv (15)

is injective. An easy diagram chase then shows that the intersection of H 1
{Lv}(S ∪ T ′ ∪

T0, ad0(ρ)) and H 1(Gal(E(ζ�)/K), ad0(ρ)) is zero, as desired.
The injectivity of (15) may be verified on the morphisms

H 1
(〈σi〉, ad0(ρ)σi

) −→
∏

j=1,...,mi

H 1
(
Gvi,j

, ad0(ρ)
)
/Lvi,j

,
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individually. The representation ad0(ρ)σi
itself is a direct sum of adjoint repre-

sentations on (2 × 2)-blocks of matrices of trace zero. Furthermore, the image of
H 1(〈σi〉, ad0(ρ)σi

) lies in H 1
unr(Gvi,j

, ad0(ρ))/Lvi,j ,λi,j ,unr, and H 1
unr(Gvi,j

, ad0(ρ)) itself
breaks up into a direct sum over pieces corresponding to the rational canonical form
of ρ(σi). So one is reduced to consider a single (2 × 2)-block, and we may assume
n = 2 and mi = 1. But then Lv,unr = 0 (v = vi,j ) by Proposition 4.4, and the map

H 1
(〈σi〉, ad0(ρ)

) −→ H 1
unr

(
Gvi,j

, ad0(ρ)
)

is simply given by inflation and is thus injective. Note finally that (13) is preserved
under adding further R-primes to T0. We have thus proved Claim 1.

By enlarging T ′ if necessary, we assume from now on that (13) and (14) hold with
T0 = ∅. We now induct on the dimension of H 1

{L⊥
v }(S ∪ T ′, ad0(ρ)) and assume that it

contains a nonzero cocycle φ. By the formula in Remark 3.5 and our assumptions, the
space H 1

{Lv}(S ∪ T ′, ad0(ρ)) contains a nonzero cocycle ψ as well.

Claim 2
There exists w ∈ X\T ′ and an admissible pair (Cw,Lw) compatible with η such that
the following hold:

(i) n − 1 = dim Lw = dim Lw,unr + 1,
(ii) φ does not map to zero in H 1(Gw, ad0(ρ)(1))/L⊥

w , and
(iii) the space (H 1

unr(Gw, ad0(ρ)) + Lw)/Lw lies in the image of the morphism

H 1
{Lv}

(
S ∪ T ′, ad0(ρ)

) → H 1(Gw, ad0(ρ)
)
/Lw.

Suppose for a moment that we have proved Claim 2, and let T ′′ := T ′ ∪ {w}. The
argument given in [T, proof of Lem. 1.2] then shows, by using (i) and (iii), that

H 1
{L⊥

v }
(
S ∪ T ′, ad0(ρ)(1)

) = H 1
{L⊥

v }v∈S∪T ′ ∪{L⊥
w+H 1

unr(Gw,ad0(ρ)(1))}
(
S ∪ T ′′, ad0(ρ)(1)

)
,

and, by using (ii), that

H 1
{L⊥

v }
(
S ∪ T ′′, ad0(ρ)(1)

)
↪→ H 1

{L⊥
v }v∈S∪T ′ ∪{L⊥

w+H 1
unr(Gw,ad0(ρ)(1))}

(
S ∪ T ′′, ad0(ρ)(1)

)
is a proper containment, so that the proof of Lemma 3.7 is completed.
Claim 2 is clearly implied by the following.

Claim 3
There exists w ∈ X\T ′ and an admissible pair (Cw, Lw) compatible with η such that

(i) above holds and, furthermore, that
(ii′) φ does not map to zero in H 1

unr(Gw, ad0(ρ)(1))/L⊥
w,unr and

(iii′) ψ does not map to zero in H 1
unr(Gw, ad0(ρ))/Lw,unr (∼= F).
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To prove Claim 3, note that conditions (13) and (14) imply that the cocycles ψ

and φ restrict to nonzero homomorphisms

φ : GE(ζ�) → (
ad0(ρ)

)
(1) and ψ : GE(ζ�) → ad0(ρ).

Let Eφ and Eψ be the fixed fields of the respective kernels. Depending on whether
the cyclotomic character χ� is trivial, they may or may not be equal. The in-
duced morphisms on Gal(Eφ/E(ζ�)) and Gal(Eψ/E(ζ�)), respectively, are equiv-
ariant for Gal(E(ζ�)/K). Because ad0(ρ) is irreducible as an F�[im(ρ)]-module,
the morphisms φ, ψ are bijective. Thereby the group M := Gal(EψEφ/E(ζ�))
may be regarded as an F[Gal(E(ζ�)/K)]-module that surjects onto ad0(ρ) and
ad0(ρ)(1).

Now let σ ∈ Gal(E(ζ�)/K) represent an R-class, and denote by σ̃ a lift
of Gal(EψEφ/K). The subspaces Lunr,σ of ad0(ρ)/(σ − 1)ad0(ρ) and L⊥

unr,σ of
ad0(ρ)(1)/(σ − 1)ad0(ρ)(1) from Definition 4.10 are of codimension one with respect
to F. Define L̃unr,σ and L̃⊥

unr,σ as the corresponding subspaces of codimension one in
ad0(ρ) and ad0(ρ)(1), respectively. Each of the conditions

ψ(ξ ) ∈ −ψ(σ̃ ) + L̃unr,σ and φ(ξ ) ∈ −φ(σ̃ ) + L̃⊥
unr,σ ,

for ξ ∈ M = Gal(EψEφ/E(ζ�)), determines a hyperplane in the F-vector space M .
As we assumed |F| > 2, the join of these two hyperplanes cannot span all of M; and,
hence, there exists ξ ∈ Gal(EψEφ/E(ζ�)), which lies on neither. We fix such a ξ and
define ξ̃ := ξ σ̃ .

Since EψEφ is Galois over K , by the Čebotarev density theorem, we can choose
a place w in X\T ′ such that Frobw = ξ̃ . Take Cw and Lw as constructed in Section 4,
so that by Proposition 4.4, condition (i) is satisfied and (Cw, Lw) is compatible with
η. Condition (ii′) is satisfied since the image of φ in H 1

unr(Gw, ad0(ρ)) is given by the
element φ(Frobw) = φ(ξ̃ ) = φ(ξ ) + φ(σ̃ ) ∈ ad0(ρ)/(s − 1)ad0(ρ), which does not lie
in Lσ,unr. Condition (iii′) is verified in the same way, and this completes the proof of
Lemma 3.7. �

Proof of Theorem 2.4
By enlarging X, if necessary, we may assume that ρ ramifies at all places of S. Using
Propositions 5.1 and 5.2, there exist locally admissible pairs (Cv, Lv)v∈S compatible
with η for which one has dim Lv = h0(Gv, ad0(ρ)) and such that the conductor (at v)
of any lift of type Cv is the same as that of ρv .

We claim that if ρ admits sufficiently many R-classes, then it admits suffi-
ciently many R-classes for (Cv, Lv)v∈S . We only verify the injectivity of the first
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homomorphism in Definition 3.6. For this, consider the diagram

H 1
(
Gal(E(ζ�)/K), ad0(ρ)

)
��

�� ∏
v∈S H 1

(
ρ(Iv), ad0(ρ)

)
��

H 1
{Lv}

(
S, ad0(ρ)

)
�� ∏

v∈S H 1
(
Gv, ad0(ρ)

)
/Lv.

To prove the claim, it suffices to show that the right vertical arrow is injective. By
Propositions 5.1 and 5.2, we have Lv = H 1

unr(Gv, ad0(ρ)) for v ∈ S; and thus by the
inflation restriction sequence, the morphism H 1(Gv, ad0(ρ))/Lv ↪→ H 1(Iv, ad0(ρ))
is a monomorphism. Therefore it suffices to show for each v that

H 1
(
ρ(Iv), ad0(ρ)

) −→ H 1
(
Iv, ad0(ρ)

)
is injective. This is clear since it is an inflation map.

Having established the existence of sufficiently many R-classes for ρ, we can
apply Lemmas 3.4 and 3.7, and Theorem 2.4 follows readily. �
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