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Abstract. In [10] (C R Acad Sci Paris Ser I Math 323(2):117–120, 1996), [11] (Math Res
Lett 10(1):71–83 2003), [12] (Can J Math 57(6):1215–1223 2005), Khare showed that any
strictly compatible systems of semisimple abelian mod p Galois representations of a number
field arises from a unique finite set of algebraic Hecke characters. In this article, we consider
a similar problem for arbitrary global fields. We give a definition of Hecke character which
in the function field setting is more general than previous definitions by Goss and Gross and
define a corresponding notion of compatible system of mod p Galois representations. In this
context we present a unified proof of the analog of Khare’s result for arbitrary global fields.
In a sequel we shall apply this result to strictly compatible systems arising from Drinfeld
modular forms, and thereby attach Hecke characters to cuspidal Drinfeld Hecke eigenforms.

1. Introduction

In [10–12], Khare studied strictly compatible systems of abelian mod p Galois rep-
resentations of a number field. He proves that the semisimplification of any such
arises from a direct sum of algebraic Hecke characters, as was suggested by the
framework of motives. In particular, this shows that under minimal hypotheses,
such as only knowing the mod p reductions, one can reconstruct a motive from
an abelian strictly compatible system. Regarding the method, it is remarkable, that
the association of the Hecke characters to the strictly compatible systems is based
on fairly elementary tools from algebraic number theory. The first such association
was based on deep transcendence results by Henniart [9] and Waldschmidt [16]
following work of Serre [15]. They reconstruct the Hodge-Tate weights, i.e., the
infinity types of the corresponding Hecke characters from each individual member
of a strictly compatible p-adic system. Khare in turn uses every member of the
strictly compatible system, but from each one only the information contained in
the mod p reduction.

An application of the result of Khare is the association by elementary means
of a set of Hecke characters to any strictly compatible system of abelian Galois
representations over a number field. In [1], we had attached such a compatible
system over a global function field to any cuspidal Drinfeld Hecke-eigenform via
an Eichler–Shimura type isomorphism. A natural question posed by Goss and, in
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different form, by Serre, cf. [5, p. 414] was whether this strictly compatible system
would arise from a set of Hecke characters of A∞-type, see also [12, § 3]. After
studying Khare’s result, only an affirmative answer was conceivable. However, the
type of Hecke character needed seemed not to be present in the literature. It turned
out that the definitions by Goss [6], Gross [7] and others are modeled too closely
on the number field case for our purposes. The reason, put simply, is that there is a
unique way to embed the rational numbers Q into any number field, but there are
many ways to embed the function field Fp(t) into a global field of characteristic p,
even if one preserves some notion of ‘infinite places’.

The aim of the present article is twofold. First we introduce the required type of
Hecke character that arise from the strictly compatible systems from [1]. Our treat-
ment includes the usual Hecke characters (of A∞-type) for number fields, so that
our Hecke characters are indeed natural generalizations of classical ones. Second,
we prove our central theorem, Theorem 2.21: It asserts that over any global field
there is a bijection between n-element lists of (suitably defined) algebraic Hecke
characters and (suitably defined) strictly compatibly systems of abelian semisimple
n-dimensional mod p Galois representations. Our method of proof is modeled at
Khare’s. In a sequel to the present article, [2], we will apply the theorem to attach
a set of Hecke characters to the space of Drinfeld cusp forms of any given weight
and level.

The article is structured as follows: This introduction is followed by a sub-
section on notation used throughout the article. Sect. 2 starts with a number of
basic definitions for global fields of any characteristic: Sets of Hodge-Tate weights,
Hecke characters and strictly compatible systems of Galois representations. We
then recall how to attach such a strictly compatible system to any (finite list of)
Hecke character(s) and we state our main result, Theorem 2.21, which is basically
the converse to this attachment.

The subsequent Sect. 3 collects some preparatory material for the proof. As
should not be unexpected in light of Khare’s proof, we present yet another version
of the result of Corrales–Rodrigáñez and Schoof. Moreover, we also need a result
about the density of fixed points of a correspondence. In the number field case,
this is an easy consequence of the Čebotarev density theorem; in the function field
case our Theorem 3.5 completes an old result of MacRae [13] and establishes a
conjecture of his. The final Sect. 4 gives a unified proof of the main theorem which
works in the number and function field setting.

1.1. Notation

A number field is a finite extension of Q. In this article, the term function field
will mean a finite extension of the field of rational functions F(t) over some finite
field F. Global field will mean either number field or function field. For any global
field E the following notation is used:

• By E sep ⊂ Ealg we denote fixed separable and algebraic closures of E and by
G E the absolute Galois group Gal(E sep/E).
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• The set of all places of E is denoted by PE . By Par
E we denote its archimedean

places (of which there may be none) and by Pna
E its non-archimedean ones.

• For a place w ∈ PE we define Ew as the completion of E at w. For w ∈ Pna
E

by OEw , or simply Ow, we denote the valuation ring of Ew, by pw its maximal
ideal, by Fw its residue field and by qw the cardinality of Fw. We often identify
w ∈ Pna

E with the corresponding normalized valuation atw, so thatw(E∗) = Z.
• For S ⊂ Pna

E denote by OE,S ⊂ E the subring {α ∈ E | ∀w ∈ Pna � S : α ∈
Ow}.

• The ring of adeles of E is denoted by AE , its idele group by A∗E .
• If E is a function field, ϕE : E → E denotes the Frobenius endomorphism

x �→ x p. Over Ealg it is an isomorphism, and so is its i-fold iterate ϕi
Ealg for

any i ∈ Z. We write ϕi
E for the restriction of ϕi

Ealg to E ; it maps onto E pi
(⊂ E

for i ≥ 0).

From now on we fix a field characteristic p, i.e., p is either zero or a prime
number. We define (K ,∞) to be Q with its real place, if p = 0, and to be an
arbitrary global field of characteristic p with a choice∞ ∈ PK , if p > 0.

The letter L will always denote a finite extension of K contained in K alg. By
E, F we denote some global fields of characteristic p which may have no relation
to K (if p > 0). All Galois representations considered in this article will be contin-
uous representations of G E or G F and take values in GLn over some completion
or some residue field of L . We introduce some further notation:

• Places in L above∞ are called infinite places, the other ones finite places. The
set of all infinite places of L is denoted by P∞L that of all finite places by Pfin

L .
• For v ∈ PL and σ : E → L a homomorphism, v ◦ σ denotes the place in PE

under v.
• By (E∗ar)

o we denote the connected component of E∗ar :=
∏
w∈Par

E
E∗w.

• If p = 0, we set A
(0)
E := A∗E , if p > 0, we define A

(0)
E as the kernel of the degree

homomorphism deg : A∗E → Z, (aw) �→∑
w degw · w(aw).

• For an effective divisor m =∑
i niwi of E where no wi is real or complex, let

Um denote the subgroup of those elements in
∏
w∈Pna

E
O∗Ew which are congruent

to 1 modulo m, and define the strict m-class group of E as

Clm := E∗\A(0)E /(Um× (E∗ar)
o).

If p = 0 then Clm ∼= Im/Pm, where Im is the group of fractional ideals of E
which are prime to m, and Pm ⊂ Im the set of principal fractional ideals which
have a generator in E∗ ∩ (Um× (E∗ar)

o).
• For p > 0 we write Z[1/p] for the ring of rational numbers which are integral

away from p. For p = 0 we declare for convenience that Z[1/p] := Z.
• For any m ∈ N = Z≥1 which is not a multiple of p we write ζm ∈ K alg for a

primitive m-th root of unity.

2. Basic notions and the main theorem

The aim of the present section is to formulate our main result on strictly compatible
systems of mod p Galois representations. For this we first introduce the necessary
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notions, which in the generality needed seem to be new, and we recall various
well-known constructions in our more general setting.

2.1. Hodge-Tate characters

All number fields contain the field of rational numbers Q in a canonical way. This
constitutes an important difference to the situation for function fields. There, no
minimal field exists which is contained in all others. One way to obtain an analog
of Q is to fix one function field and consider only extensions of it. Embeddings
between such extensions (where here and later the term embedding is synonymous
with field homomorphism) are then required to fix the chosen base field. For our
purposes this is not the correct path to pursue, since this would deprive us of the
very flexibility needed for the Hecke characters attached to Drinfeld modular forms,
cf. [2]. Instead, we fix for all purposes a finite set of embeddings. Recall that E is
a global field of characteristic p ≥ 0.

Definition 2.1. A Hodge-Tate set is a finite subset � ⊂ Emb(E, K alg) of embed-
dings σ : E ↪→ K alg which we take to be Emb(E,Qalg) for p = 0.

A set of Hodge-Tate weights (�, (nσ )σ∈�) consists of

(a) a Hodge-Tate set �,
(b) for each σ ∈ � a number nσ ∈ Z[1/p] (recall that Z[1/p] = Z for p = 0).

A Hodge-Tate character is a homomorphism ψ : E∗ → (K alg)∗ for which
there exists a set of Hodge-Tate weights (�, (nσ )) such that ψ is equal to

ψ�,(nσ ) : E∗ →
(

K alg
)∗
, α �→

∏

σ∈�
σ(α)nσ .

In positive characteristic taking p-power roots is an automorphism of (K alg)∗, and
so ψ�,(nσ ) is well-defined.

In the function field case there is no canonical a priori choice for �. How-
ever, given a Hodge-Tate character ψ , Proposition 2.3 will yield a canonical pair
(�, (nσ )) representing ψ .

The field L ′ := K ·∏σ∈� σ(E) ⊂ K alg is finitely generated and algebraic over
K , and thus a finite extension of K . By L we usually denote a finite extension of
K which contains L ′. If p = 0 we take for L the Galois closure L ′ of E over Q.
If p = 0, then any Hodge-Tate character ψ�,(nσ ) takes its values in L , if p > 0 in
L1/pn

for some n ∈ N0.

Definition 2.2. A Hodge-Tate set � is called Frobenius-reduced or F-reduced if
either p = 0, or if p > 0 and no two elements in � differ by composition with a
power of ϕK alg .

Two Hodge-Tate sets � and �′ are equivalent if either p = 0, or if p > 0 and
if we have the equality of sets

⋃
n∈Z ϕn

K alg ◦� =
⋃

n∈Z ϕn
K alg ◦�′.

Two sets of Hodge-Tate weights are called equivalent, if they define the same
Hodge-Tate character.
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For p > 0, (�, (nσ )) a set of Hodge-Tate weights and (eσ ) ∈ Z� , define �′ :=
{ϕeσ

K alg ◦ σ | σ ∈ �} and for any σ ′ = ϕ
eσ
K alg ◦ σ ∈ �′, define nσ ′ := nσ p−eσ .

Thenψ�,(nσ ) = ψ�′,(nσ ′ ). This procedure yields a canonical representative for any
Hodge-Tate character:

Proposition 2.3. Any set of Hodge-Tate weights is equivalent to a unique set of
Hodge-Tate weights (�, (nσ )) such that

(a) � is F-reduced,
(b) if p > 0 then all exponents nσ lie in Z � pZ.

For this set of Hodge-Tate weights one may take L = K
∏
σ∈� σ(E) ⊂ K alg.

The unique set of Hodge-Tate weights given by the proposition for a Hodge-Tate
character will be called its standard representative. Note that for p > 0 condi-
tion (b) requires that all nσ are non-zero. We do allow � = ∅ in that case.

Proof. By the remark preceding the proposition, the only assertion which requires
proof is the uniqueness: Suppose that (�, (nσ )σ∈�) and (�′, (n′σ )σ∈�′) are equiv-
alent sets of Hodge-Tate weights, that � and �′ are F-reduced, and, if p > 0, that
all nσ and n′σ lie in Z � pZ. We will show that the sets agree:

For this, let�′′ be an F-reduced Hodge-Tate set equivalent to�∪�′. For p > 0
set

n′′σ ′′ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi nσ , ifψ−i
E ◦ σ = σ ′′ for some σ ∈ � and σ ′′ /∈ ϕZ

K alg ◦�′
−p j n′

σ ′ , ifψ− j
E ◦ σ ′ =σ ′′ for some σ ′ ∈�′ and σ ′′ /∈ϕZ

K alg ◦�
pi nσ − p j n′

σ ′ , ifψ−i
E ◦ σ =σ ′′ =ψ− j

E ◦σ ′ for some σ ∈� and σ ′ ∈�′
0, otherwise

for allσ ′′ ∈�′′. For p= 0 set n′′σ := nσ−n′σ . Thenψ�
′′,(nσ ′′ )=ψ�,(nσ )

(
ψ�

′,(nσ ′ )
)−1

= 1. We need to show nσ ′′ = 0 for all σ ′′ ∈ �′′. Consider the normalized valuation
v ∈ Pna

L and let w be the valuation v ◦ σ . Then for any α ∈ E∗ we find

0 = v(1) = v
(
ψ�

′′,(nσ ′′ )(α)
)
=

∑

σ ′′∈�′′
nσ ′′(v ◦ σ ′′)(α)

=
∑

w∈Sv

w(α)
∑

σ ′′∈�′′:w=v◦σ ′′
nσ ′′ . (1)

To deduce that the nσ ′′ are all zero, we consider the set 	�′′ ⊂ PE defined as

{w ∈ PE | there exist distinct σ, σ ′ ∈ �′′ and

v ∈ PL : v ◦ σ = v ◦ σ ′ = w}.
Below, in Proposition 3.4 for p = 0, and in Theorem 3.5 for p > 0, we shall prove
that 	�′′ has density zero. Both results are independent of the rest of this article,
and so there is no circular reasoning. As the reader might expect, Proposition 3.4
is an application of the Čebotarov density theorem.
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We now argue as follows: For any σ ′′ ∈ �′′ we have PL ◦ σ ′′ = PE . Because
	�′′ has density zero, there exists w /∈ 	�′′ and v ∈ Pna

L such that v ◦ σ ′′ = w. If
p > 0 we choose an auxiliary placew′which does not lie in Sv . The well-known for-
mulas for the Z-rank of the S-units in a global field yield rank O∗E,{w} = rank O∗E+1
if p = 0 and rank O∗E,{w,w′} = 1 > 0 = rank O∗E,{w} if p > 0. In particular, if
p = 0 there exists a {w}-unit α ∈ E∗ which is not a unit, and if p > 0 there exists
a {w,w′}-unit α ∈ E∗ which is not a constant. Now formula (1) for this α yields
nσ ′′ = 0. ��

2.2. Hodge-Tate sets as divisors

For p > 0 Hodge-Tate sets can be interpreted in terms of divisors: Let � be a
Hodge-Tate set and L an intermediate field for K ⊂ K alg containing σ(E) for
all σ ∈ �. Let X and CL denote the smooth projective geometrically irreduc-
ible curves with function fields E and L , respectively. Regarding the σ ∈ � as
morphisms CL → X , we obtain the reduced divisor

D� :=
⋃

σ∈�
Graph(σ ) ⊂ X × CL .

Conversely, let L ⊂ K alg be a finite extension of K and let D = ⋃
i∈I Di ⊂

X×CL be a reduced divisor with irreducible components Di . Denote by Li the func-
tion field of Di and by σi : E ↪→ Li the homomorphism corresponding to Di → X .

For each τ ∈ EmbL(Li , K alg), we obtain a diagram E
σi
↪−→ Li

τ
↪−→ K alg ←−↩ L .

The set

�D := {τ ◦ σi : i ∈ I, τ ∈ EmbL(Li , K alg)}
is a Hodge-Tate set. Correspondingly, we denote the finite extension L

∏
σ̃∈�D σ̃ (E)

of L by L D . Under suitable hypotheses, the above constructions are mutually
inverse. We leave the proof of the following elementary result to the reader.

Proposition 2.4. Let L ⊂ K alg be a finite extension of K . Then the assignments
� �→ D� and D �→ �D define mutually inverse bijections between Hodge-Tate
sets � such that σ(E) ⊂ L for all σ ∈ � and divisors D ⊂ X × CL all of whose
components are of degree 1 over CL.

For general D, a pair (D, L) contains slightly finer information than (�D, L D). As
we shall see below, Hodge-Tate sets are more natural for Hecke characters, while
the view point of divisors is better suited for strictly compatible systems of Galois
representations.

For i ∈ Z, let �i
X denote the correspondence on X × X defined by ϕi

E .

Definition 2.5. A reduced divisor D ⊂ X × CL is F-reduced if we cannot find
irreducible components D1 �= D2 of D and i ∈ Z, such that �i

X ◦ D1 = D2 (as
divisors).

Reduced divisors D, D′ are equivalent if
⋃

i∈Z�i
X ◦ D = ⋃

i∈Z�i
X ◦ D′

(as sets).
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With this definition, the Hodge-Tate set �D is F-reduced if and only if D is
F-reduced.

By slight abuse of notation, we also regard a divisor D ⊂ X × CL as the set

{(w, v) ∈ PE × PL | (w, v) ∈ D}.

For p = 0 and L a number field, we introduce analogous notation and call

DL := {(w, v) ∈ PE × PL | w|Q = v|Q}.

a divisor (the divisor for L). Moreover for� = Emb(E,Qalg), we set D� := DL

where L is the Galois closure of E over Q.

Definition 2.6. Let (D, L) be a pair consisting of a field L and D = DL for p = 0
and D a reduced divisor in X × CL for p > 0. For every place v of L , we set

Sv := SD
v := {w ∈ PE | (w, v) ∈ D} = pr1(D ∩ (PE × {v})).

For a Hodge-Tate set �, we also write S�v for SD�
v , so that S�v = v ◦�.

We define S∞ (= SD∞) as the union of all Sv where v is an infinite place of L .

The sets Sv are all finite and so is S∞. If E is a number field, then S∞ = Par
E ,

and if v is above a prime u ∈ N, then Sv is the set of all places of E above u. The
proof of the following lemma is left to the reader.

Lemma 2.7. Suppose p > 0. If D, D′ ⊂ X ×CL are equivalent reduced divisors,
then (SD

v )v∈PL = (SD′
v )v∈PL . Consequently, if� and�′ are equivalent Hodge-Tate

sets, then (S�v )v∈PL = (S�
′

v )v∈PL .

The set Sv describes the places in PE under a place v of L under the various
σ ∈ �. It will also be useful to have a compact notation for places of L above some
w ∈ PE . For any subset S ⊂ PE , we define

�−1(S) := {v ∈ PL | ∃σ ∈ �, v ◦ σ ∈ S}.

2.3. Algebraic Hecke characters

In this subsection, we introduce a general type of Hecke character. We shall see that
in the number field case our definition agrees with the usual one. However in the
function field setting our Hecke characters are more general than those previously
considered in [6,7]. In Sect. 2.6 we shall attach to any such Hecke character a strictly
compatible system of Galois representations. Under further hypothesis in the func-
tion field case, we can attach at the infinite places of L certain Größencharakters,
as well.



G. Böckle

Definition 2.8. An algebraic Hecke character of E is a continuous homomor-
phism

χ : A∗E −→
(

K alg
)∗

for the discrete topology on K alg such that the restriction χ |E∗ is a Hodge-Tate
character.

We say that (�, (nσ )σ∈�) is a set of Hodge-Tate weights for χ , if χ |E∗ =
ψ�,(nσ ).

A placew ∈ PE is said to be finite for χ , if the image under χ of E∗w (extended
by 1 to all other components) is finite.

The character χ is called of∞-type, if T∞ := �−1(S∞) agrees with P∞L , and
if all w ∈ S∞ are finite for χ .

For simplicity and since no other Hecke characters occur in the main body of
this article, we shall usually use the term Hecke character instead of algebraic
Hecke character.

Remark 2.9. Suppose E is a number field. Then K = Q, the field L is the Galois
closure of E in Qalg, and we have S∞ = Par

E and T∞ = P∞L = Par
L . By continuity

χ applied to E∗ar has finite order. Hence any algebraic Hecke character is of∞-type.
For a number field E , the set of Hecke characters of A∞-type in the sense of

Weil and the algebraic Hecke characters as defined above are the same, cf. [15,
§ 2.4, Exer.].

Remark 2.10. Suppose E is a function field, so that p > 0. Suppose in addition
that we have chosen an embedding K ↪→ E and have set � := EmbK (E, K alg)

and defined L as the Galois closure of E over K . Then, as the reader may verify,
the definitions of an algebraic Hecke character in [7, § 1] and of a Hecke character
of A0-type in [6, § 1] are covered by the above definition.

Remark 2.11. Since χ is continuous the image of U0 is finite, where 0 denotes the
trivial divisor on E . Hence there exists an effective divisorm such thatχ(Um) = {1}.
Clearly χ is also trivial on (E∗ar)

o, and restricted to E∗ its values lie in L∗ or in
(L1/pn

)∗ for some n ∈ N. Since Clm = E∗\A(0)E /(Um×(E∗ar)
o) is finite, the exten-

sion field L(χ(A(0)E )) is finite over L . By our conventions A
(0)
E = A∗E for number

fields and A∗E/A
(0)
E
∼= Z, for function fields, under the degree map. In either case

L(χ(A∗E )) is a finite extension of K .

By Remark 2.11, one can find an effective divisor m of E and an open finite
index subgroup Uar of

∏
w∈Par

E
E∗w such that χ is trivial on Um×Uar. Similar to the

classical situation, any such pair (m,Uar) is called a conductor of χ . The maximal
choice (mχ ,Uχ,ar) in both components is called the minimal conductor of χ . The
two components m and Uar we call the non-archimedean and archimedean part
of the conductor of χ , respectively. The group Uχ,ar always contains the connected
component (E∗ar)

o.
The following goes back to Goss, cf. [6, p. 125] and carries over to our setting:
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Proposition 2.12. If K is a function field, then mχ is squarefree.

Proof. Suppose mχ was not squarefree. Then there existsw ∈ PE such that 2[w] ≤
mχ . The kernel of O∗Ew → F∗w is a pro-p group, and by our hypothesis on mχ the

image of this group in (K alg)∗ is non-trivial. By continuity of χ the image is a finite
p-group. We reach a contradiction, since (K alg)∗ contains no elements of order p.

For later use we need to recall a simple criterion for the existence of Hecke
characters with suitable sets of Hodge-Tate weights. ��
Proposition 2.13. Let� be an F-reduced Hodge-Tate set and let S ⊂ Pna

E be finite.
There exists a Hecke character χ with set of Hodge-Tate weights (�, (nσ )) and
such that χ is trivial on an open finite index subgroup of

∏
w∈S E∗w, if and only

if, the image of the group of S-units O∗E,S under ψ�,(nσ ) is finite. In addition, if

ψ�,(nσ )(O∗E ) = {1}, then χ can be chosen to have trivial conductor.

Proof. Suppose first that χ agrees with ψ�,(nσ ) on E∗ and is trivial on an open
finite index subgroup of

∏
w∈S E∗w. Then χ maps the intersection of A

(0)
E with

US := ∏
w∈Pna

E �S O∗w ×
∏
w∈S E∗w to a finite group, and so ψ�,(nσ )(O∗E,S) is

finite.
For the converse, let U ′ ⊂ US be open and consider the short exact sequence

0 −→ E∗/
(
U ′ ∩ E∗

) −→ A
(0)
E /

(
(E∗ar)

o ×U ′ ∩ A
(0)
E

)

−→ E∗\A(0)E /
(
(E∗ar)

o ×U ′ ∩ A
(0)
E

)
−→ 0.

of abelian groups. By class field theory, the group on the right has finite order. By
our hypothesis, we can find U ′ ⊂ US open and of finite index, such that ψ�,(nσ ) is
trivial on U ′ ∩ E∗.

Since (K alg)∗ is a divisible group there exists a character χ ′ extending ψ�,(nσ )

to the middle group. If p = 0 we are done. For p > 0 we consider the short exact
sequence

0 −→ A
(0)
E /

(
U ′ ∩ A

(0)
E

)
−→ A∗E/

(
U ′ ∩ A

(0)
E

) deg−→ Z −→ 0,

which is clearly split. Therefore χ ′ extends to a character on A∗E , as desired. To see
the final assertion, note that under the hypotheses there, we may choose U ′ = U∅,
so that χ is trivial on E∗ar ×U0. ��

2.4. A basic formula

We will repeatedly make use of formulas similar to (1) in the proof of Proposi-
tion 2.3. The aim of this subsection is to give an axiomatic treatment of such a
formula. The reason behind the usefulness of such a formula is that it relates a
(multiplicatively written) Z-linear combination of values of a Hecke character at
Frobenius elements to values of the underlying Hodge-Tate character on E∗. So let
us fix the following:
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(a) A Hecke character χ with set of Hodge-Tate weights (�, (nσ )) such that � is
F-reduced and minimal conductor (mχ ,Uχ,ar).

(b) For any w ∈ Pna
E , a uniformizer �w of Ew and the element

xw :=
⎛

⎝1, . . . , 1, �w︸︷︷︸
atw

, 1, . . . , 1

⎞

⎠ ∈ A∗E

(c) If p = 0, for any w ∈ Pna
E an element α ∈ E∗ which is a {w}-unit, but not a

unit, and such that at all places w′′ ∈ Pna
E � {w} the component of α lies in

Umχ .
(d) If p > 0, for anyw �= w′ ∈ Pna

E an element α ∈ E∗ which is a {w,w′}-unit, but
not a constant, and such that at all places w′′ ∈ Pna

E � {w,w′} the component
of α lies in Umχ .

Without the conditions on the components at the w′′, the existence of α as in (c)
and (d) was explained in the proof of Proposition 2.3. The additional condition can
be achieved by replacing α by a suitable power — for instance the exponent of the
(finite) strict class group Clmχ . For the divisor of α we write n[w] if p = 0 and
n(degw′[w] − degw[w′]) if p > 0, and we assume without loss of generality that
n is positive.

Let now v be a place of Pna
L as well as its normalized valuation. We adopt the

same convention forw ∈ Pna
E (the ad hoc convention in the proof of Proposition 2.3

was different!). For a homomorphism σ : E ↪→ L , the ramification index of v over
w′′ = v ◦σ is denoted ev/w′′,σ . Note that the generic value of ev/w′′,σ is the insepa-
rable degree of σ ∈ �, and hence for p > 0 a power of p. Computing χ(α) in two
ways, using the Hecke character at the xw′′ and using the Hodge-Tate character on
α, we obtain

χ(xw)
n degw′χ(xw′)

−n degw = χ(α) =
∏

σ∈�
σ(α)nσ (2)

for p > 0 and a similar but simpler formula for p = 0. Computing the v-valuation,
canceling n and sorting the right hand side according to places in PE yields

v(χ(xw)) =
∑

σ∈�:v◦σ=w
ev/w,σ nσ

for p = 0 and

degw′ · v(χ(xw)) − degw · v(χ(xw′)) (3)

= degw′ ·
∑

σ∈�:v◦σ=w
ev/w,σnσ − degw ·

∑

σ∈�:v◦σ=w′
ev/w′,σnσ

for p > 0. We record some particular cases of the two previous formulas:

Lemma 2.14. (a) Suppose that neither w nor w′ lie in the set

	� = {w ∈ PE | there are distinct σ, σ ′ ∈ � and a

v ∈ PL : v ◦ σ = v ◦ σ ′ = w}.
Then the sums on the right contain at most one summand.
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(b) If �−1({w}) and �−1({w′}) are disjoint, then in (3) at most one of the sums is
non-zero.

2.5. Strictly compatible systems

In the following L ⊂ K alg denotes a finite extension of K and D is either DL

if p = 0 or it is a reduced divisor on X × CL . Recall that E is a global field of
characteristic p ≥ 0. By S we denote a finite subset of PE and by T a finite subset
of PL that contains Par

L . The following definition is adapted from [11]:

Definition 2.15. An L-rational strictly compatible system {ρv} of n-dimensional
mod v representations of G E for D with defect set T and ramification set S con-
sists of

(i) for each v ∈ PL � T a continuous semisimple representation

ρv : G E → GLn(Fv),

which is unramified outside S ∪ SD
v , and

(ii) for each place w ∈ PE � S a monic polynomial fw ∈ L[t] of degree n,

such that for all v ∈ PL � T and for all w ∈ PE � (S ∪ SD
v ) such that fw is

v-integral:

CharPolρv(Frobw) ≡ fw (mod pv).

We say that a place w ∈ PE is finite for {ρv} if there exists a finite extension
E ′w of Ew, such that the image of G E ′w under any ρv is trivial

In an analogous way one defines the notion of an L-rational strictly compatible
system of n-dimensional v-adic representations of G E for D with defect set T and
ramification set S. We omit a precise description of the obvious modification.

If p = 0, the defect set T will typically be the set Par
L . For p > 0 a typical T

is given in (5) below. The set S usually contains S∞. As we shall see below, if {ρv}
arises from a Hecke character χ based on a Hodge-Tate set� and if D = D� , then
S will contain the support of the minimal conductor of χ .

2.6. Strictly compatible systems from Hecke characters

Let χ be a Hecke character, let (�, (nσ )σ∈�) be the standard set of Hodge-Tate
weights for χ |E∗ , so that in particular � is F-reduced, and let L ⊃ K be a finite
extension containing σ(E) for all σ ∈ � as well as χ(A∗E ).

Our aim is to attach to χ for almost all places v ∈ PL a continuous abelian
Galois representation

ρχ,v : G E → L∗v.

The representations ρχ,v will form a strictly compatible system. They are linked by
the values taken on the Frobenius elements at unramified places. Under favorable
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circumstances (and always, if p = 0) we will attach a Größencharakter χGr,v :
A∗E/E∗ → L∗v of the Weil group or ideal class group of E for the remaining places
v ∈ PL . We follow [15, § 2] and [7].

Let us first recall the reciprocity law from class field theory: In both the number
and the function field situation, one has a reciprocity homomorphism

rec : A∗E/E∗(E∗ar)
o ↪→ Gab

E . (4)

In the number field case rec is an isomorphism. In the function field case, rec has
dense image and the restriction of rec to E∗\A(0)E is an isomorphism onto the kernel
of Gab

E −→→ Gab
F

, where by F we denote the field of constants of E . Let FrobF denote
the Frobenius automorphism on Falg fixing F. Then the induced homomorphism
from A∗E/A

(0)
E
∼= Z to GF sends, suitably normalized, the element 1 to the topo-

logical generator FrobF of GF. Regarding continuous representations G E → L∗v
we deduce:

Let v be in Pna
L . In the number field case, any continuous homomorphism from

A∗E/E∗(E∗ar)
o to the topological group L∗v induces a continuous homomorphism

Gab
E → L∗v . In the function field situation, we require the (necessary and sufficient)

additional hypothesis that there is an element in A∗E of non-zero degree which maps
to O∗v .

Define S as the union of Par
E and the support of the minimal conductor of χ . If

K = Q, define T := Par
L . If p > 0, choose placesw,w′ ∈ PE such that�−1({w})

and �−1({w′}) are disjoint, and define

T := {v ∈ PL | w /∈ Sv and χ(xw) /∈ O∗v} ∪ {v ∈ PL | w′ /∈ Sv and χ(xw′) /∈O∗v}.
(5)

The definition of T in the function field case does not depend on the choice of
{w,w′}:
Lemma 2.16. Suppose Sv ∩ {w,w′} = ∅. Then χ(xw) ∈ O∗v ⇐⇒ χ(xw′) ∈ O∗v .

The proof is immediate from formula (3) in Sect. 2.4, since by our hypothesis the
right hand side of (3) is zero.

Let v be any place of L . Any σ ∈ � induces a continuous homomorphism
ψσ,v : E∗v◦σ → L∗v . Denote by πw the projection A∗E → E∗w and define the homo-
morphism

χv := χ ·
∏

σ∈�

(
ψσ,v ◦ πv◦σ

)−nσ : A∗E → L∗v.

The proof of the following elementary lemma, we leave to the reader.

Lemma 2.17. The kernel of χv contains E∗ and the subgroup of Umχ × Uχ,ar of
elements whose component at all places w ∈ Sv is 1.
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Lemma 2.18. Suppose v is a place of L not in T . Thenχv defines a continuous char-
acter χv : A∗E/E∗(E∗ar)

o −→ O∗v . The induced homomorphism ρχ,v : G E −→ O∗v
via the reciprocity homomorphism in (4) is characterized by

ρχ,v(Frobw) = χ(xw) for all w ∈ PE � (S ∪ Sv).

Its conductor at places not in Sv is given by (mχ ,Uχ,ar).

Proof. Recall that χ is continuous on A∗E with respect to the discrete topology on
(K alg)∗. Since the characters ψσ,v are continuous with respect to the v-adic topol-
ogy on L∗v , the character χv is continuous with respect to the adelic topology on A∗E
and the v-adic topology on L∗v (a basis of open neighborhoods around 1 is given by
the sets 1+mn

v , n ∈ N). By Lemma 2.17, the kernel of χv contains E∗(E∗ar)
o and

thus by continuity of χv the kernel contains E∗(E∗ar)
o, proving the existence of χv .

Next, if p = 0, then under the reciprocity homomorphism (4) we have
A∗E/E∗(E∗ar)

o ∼= Gab
E and thus ρχ,v is defined and continuous. In particular, by

compactness of G E , the image of χv must lie in O∗v . If p > 0, then by our choice
of T there exists an idele of positive degree (either xw or xw′ ) whose image under
χv lies in O∗v (either χ(xw) or χ(xw′)). This implies that χv has image in O∗v .
By the discussion following (4), we see that χv induces under rec a continuous
homomorphism ρχ,v : G E −→ O∗v , as well.

Finally, assume that w is a place of E , not in S ∪ Sv . By the definition of S and
Sv and by Lemma 2.17, it follows that the ideles which at w lie in O∗w and at all
w̃ �= w are 1 lie in the kernel of χ and χv . By the compatibility of local and global
class field theory, χv is unramified at w and we have

ρχ,v(Frobw) = χv(xw) = χ(xw).
The local to global compatibility of class field theory also implies the assertion on
conductors and thus completes the proof of the lemma. ��

The following result on the system {ρχ,v} is an immediate consequence of
Lemma 2.18. It is well-known if E is a number field, cf. [15, II.2.5].

Proposition 2.19. The familiy {ρχ,v}v∈PL�T forms an L-rational strictly compat-
ible system of 1-dimensional representations of G E for D� with defect set T and
ramification set S. The corresponding family of monic degree 1 polynomials is given
by

fw(t) := t − χ(xw) for all w ∈ PE � S.

If some w ∈ PE is finite for χ , it is finite for {ρχ,v}.
Suppose now that χ is of ∞-type and let v be in P∞L . We will show that χv

defines a Größencharakter in the sense of Hecke: We define OE as the ring of
integers of E if p = 0 and as the ring of elements of E with no poles outside S∞
if p > 0. For a divisor m denote by Im the set of fractional OE -ideals which are
prime to the support of m. Also, denote by (A∞E )∗ the ideles over PE � S∞, by
U∞m the intersection Um ∩ (A∞E )∗ and by E∞ the product

∏
w∈S∞ Ew. Since χ is

of∞-type, U∞ := {x ∈ E∗∞ | χ(x) = 1} is a finite index subgroup of E∗∞
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The group Imχ is isomorphic to the quotient of the restricted product
∏′
w/∈S E∗w

modulo the compact open subgroup
∏
w/∈S O∗Ew . Extending (αw)w∈PE �S by 1 on

S � S∞, the latter quotient injects into (A∞E )∗/U∞mχ
, yielding a monomorphism

Imχ ↪→
(
A∞E

)∗
/U∞mχ

. (6)

The right hand side injects into E∗\A∗E/U∞mχ
. Observe that by its definition the

character χv is trivial on E∗U∞mχ
. Composing the above maps defines therefore a

homomorphism

χGr,v : Imχ −→ L∗v.

For p = 0 the following result is well-known, cf. [15, II.2.7].

Proposition 2.20. Suppose χ is of∞-type. Then for each v ∈ P∞L , the character
χGr,v is a Hecke-type Größencharakter on Imχ such that for any w /∈ S∞ ∪ S, one
has χGr,v(pw) = χ(xw), independently of v, and for all α ∈ E∗ ∩U∞ with α ≡ 1
(mod mχ ):

χGr,v(αOE ) = ψ(�,(nσ ))(α).

Proof. Under (6) any prime ideal pw for w /∈ S∞ ∪ S is mapped to the idele xw
(modulo U∞mχ

). Now by definition χGr,v(pw) is equal to χ(xw) for suchw, and this
proves the first assertion.

Suppose now that α lies in E∗ ∩U∞ and satisfies α ≡ 1 (mod mχ ). Then the
value of the principal fractional ideal αOE under χGr,v is given by

χGr,v(αOE ) = χv ((α, 1)) = χv
((

1, α−1
))
= χ

((
1, α−1

))∏

σ

σ (α−1)−nσ

=
∏

σ

σ (α)nσ ,

where pairs are considered as elements in (A∞E )∗ × E∗∞. The computation is justi-
fied, since α, and hence α−1 lie in U∞. The term on the right is ψ(�,(nσ ))(α), and
this completes the proof. ��

2.7. Statement of the main theorem

Let χ be a Hecke character of E . Proposition 2.19 shows that χ gives rise to an
L-rational strictly compatible abelian system {ρχ,v} of v-adic Galois representa-
tions. As we observed, the ρχ,v take values in O∗v . Hence their reductions to Fv
form an L-rational strictly compatible abelian system {ρ̄χ,v} of mod v Galois rep-
resentations in the sense of Definition 2.5. Our main result states that the above
construction yields all v-adic and all mod v strictly compatible abelian systems:
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Theorem 2.21. Let {ρv}v∈PL�T be an L-rational strictly compatible abelian sys-
tem of n-dimensional mod v representations of G E for a reduced divisor D ⊂
PE × PL . Then there exist Hecke characters (χi )i=1,...,n for �D such that for all
v ∈ PL D not above T the mod v Galois representation of G E attached to ⊕n

i=1χi

is isomorphic to the semisimplification ρss
v of ρv . The character list (χi )i=1,...,n is

unique up to permutation.
Ifw ∈ PE is finite for {ρv}, then it is finite for all χi . If the set T∞ for�D agrees

with P∞L and if all places in S∞ are finite for {ρv}, then all χi are of∞-type.

Remark 2.22. In the number field case, the strictly compatible systems considered
by Khare and the A∞-type Hecke characters in the sense of Weil are the strictly
compatible systems and Hecke characters we consider. Not unexpectedly, the above
theorem recovers the results of Khare, since except for some special results on
function fields, we closely follow his method of proof, cf. also Remark 2.9 and
Definition 2.5.

Any v-adic strictly compatible system gives rise to a mod v system. Since semi-
simple strictly compatible systems with the same polynomials fw are conjugate,
the following is immediate:

Corollary 2.23. Let {ρv} be an L-rational strictly compatible abelian system of n-
dimensional v-adic representations of G E for a reduced divisor D ⊂ PE × PL .
Then there exist Hecke characters (χi )i=1,...,n for�D such that for all v ∈ PL D not
above T the mod v Galois representation of G E attached to⊕n

i=1χi is isomorphic
to the semisimplification ρss

v of ρv . The character list (χi )i=1,...,n is unique up to
permutation.

Ifw ∈ PE is finite for {ρv}, then it is finite for all χi . If the set T∞ for�D agrees
with P∞L and if all places in S∞ are finite for {ρv}, then all χi are of∞-type.

3. Preparations

3.1. On a result of Corrales-Rodrigáñez and Schoof

In [3] Corrales-Rodrigáñez and Schoof, and later Khare in [11], consider the fol-
lowing type of question, which in some form was first posed by Erdös: Suppose G
is a finitely generated subgroup of L∗, for L a number field. What can be deduced
for an element x ∈ L∗ if it is known that the reduction x (mod v) (or a power of x
with some restrictions on the exponent) lies in G (mod v) for a set of places v of
density 1? Is x itself in G, is a power of x in G? Following the methods of [3] and
[11], we obtain a slight generalization of the results proved therein for a similar type
question and for a general global field L . Via a different method, Erdös’ question
(and some variants) were also proved in [14].

To approach the question, choose T so that x and G are contained in O∗L ,T . By
the Dirichlet unit theorem the units O∗L ,T form a finitely generated abelian group
whose maximal torsion free quotient has rank #T − 1+ #Par

L . Following [3], [10]
we consider the question “does xe lie in GO∗uL ,T ” for infinitely many u. For p � | u,
this question can be reformulated via Kummer theory. To apply Kummer theory,
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one needs to pass from L to L(ζu), and hence it is important to understand the
kernel of the homomorphism

O∗L ,T /O∗uL ,T → O∗L(ζu),T /O∗uL(ζu),T
. (7)

For p � | u, it is shown in [3, Lem. 2.1] that the kernel embeds into H1(Gal(L(ζu)/L),
μu) and that the latter group is trivial unless 4|u and ζ4 /∈ L . The embedding is given
by sending the class of an element t ∈ L∗ such that t = su for some s ∈ L(ζu)

∗ to
the 1-cocycle

ct : Gal(L(ζu)/L)→ μu, σ �→ σ(s)

s
.

For 4|u and ζ4 /∈ L one easily deduces H1(Gal(L(ζu)/L), μu) ∼= Z/(2) from the
results of loc.cit. However, this case, i.e., where 4|u and ζ4 /∈ L , is not relevant
to us, since in the proofs of our applications one may simply adjoin ζ4 to L if 4
divides u.

Let Lu := L
(
ζu, u

√
O∗L ,T

)
and Hu := Gal(Lu/L(ζu)). Then for p � | u the

pairing

O∗L ,T /O∗uL ,T × Hu → 〈ζu〉, (α, h) �→ 〈α, h〉 := h(α1/u)

α1/u

is perfect by Kummer theory provided that (7) is injective; here α1/u denotes any
element of Lalg whose u-th power is α. Note that for g ∈ Gal(Lu/L) one has

〈
α, ghg−1

〉
= ghg−1(α1/u)

α1/u = g

(
hg−1(α1/u)

g−1α1/u

)

= g(〈α, h〉).

Writing g(ζu) = ζ
f

u , we find 〈α, ghg−1〉 = 〈α, h f 〉. From this one deduces
ghg−1 = h f . Consequently any subgroup of Hu is normal in Gal(Lu/L). Note
also that for places v′ of L(ζu) (so that u|(qv′ −1)) which are unramified for Lu/L ,
one has a compatible pairing

F∗v′/F
∗u
v′ × Gal

(
Fv′(

u
√

Fv′)/Fv′
)
→ 〈ζu〉,

(
α,Frobi

v′
)
�→ αi(qv′−1)/u .

Let HG,u ⊂ Hp be the annihilator of GO∗uL ,T /O∗uL ,T , and let SG,u
L ⊂ PL be the

set of places v which are totally split in LG,u := L(ζu)(
u
√

G) over L and unramified
in Lu/L , i.e., those places of L for which Frobv ∈ Gal(Lu/L) is well-defined and
lies in HG,u .

Lemma 3.1. Set Gsat := {y ∈ O∗L ,T | ∃n ∈ N : yn ∈ G} and fix u ∈ N. Let
the notation be as above, and assume that p � | u and that ζ4 ∈ L if 4|u. Then the
following hold:

(a) The set SG,u
L has density 1

[LG,u :L] .
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(b) Suppose x1, . . . , xn ∈ O∗L ,T generate a subgroup X. Then the set

{
v ∈ SG,u

L | (x1, . . . , xn) mod v ∈ (GO∗uL ,T )
×n mod v

}

has density at most

1

[LG,u : L] ·
[

XGsatO∗uL ,T : GsatO∗uL ,T

] ,

and, if X ⊂ Gsat, has density equal to

1
[
LG,u : L

] · [XGG∗usat : GG∗usat

] .

Proof. Part (a) is immediate from the Čebotarov density theorem, since HG,u is
normal in Gal(Lu/L). For (b), we introduce some notation: For H ⊂ Hu and
W ⊂ O∗L ,T /O∗uL ,T , we write AnnH (W ) ⊂ H for the set of those h ∈ H annihilat-

ing all of W – and similarly mod v. Then for x ∈ O∗L ,T and v ∈ SG,u
L one has the

following chain of equivalences:

(x mod v) ∈ (
GO∗uL ,T mod v

)

⇐⇒ Ann〈Frobv〉
(
GO∗uL ,T mod v

) = Ann〈Frobv〉
(〈x,G〉O∗uL ,T mod v

)

⇐⇒ 〈Frobv〉 ∩ AnnHu

(
GO∗uL ,T

) = 〈Frobv〉 ∩ AnnHu

(〈x,G〉O∗uL ,T

)

v∈SG,u
L⇐⇒ Frobv ∈ AnnHu

(〈x,G〉O∗uL ,T

)
.

For the tuple (x1, . . . , xn) this implies

(x1, . . . , xn) mod v ∈ (GO∗uL ,T

)×n mod v ⇐⇒ Frobv ∈ AnnHu

(〈X,G〉O∗uL ,T

)

Since under our hypotheses the Kummer pairing is perfect, the index of the sub-
group AnnHu (〈X,G〉O∗uL ,T ) in AnnHu (GO∗uL ,T ) is equal to the index of GO∗uL ,T ⊂〈X,G〉O∗uL ,T .

Suppose first that X is contained in Gsat. From the definition of Gsat, one
deduces Gsat ∩ GO∗uL ,T = GG∗usat. The second isomorphism theorem for groups
now yields

XGO∗uL ,T /GO∗uL ,T
∼= X/

(
X ∩ GO∗uL ,T

) X⊂Gsat∼= X/
(
X ∩ GG∗usat

)

∼= XGG∗usat/GG∗usat.

An application of the Čebotarov density theorem concludes the proof of (b) in the
case X ⊂ Gsat. The argument in the general case is similar. One observes that there
always is a surjection

XGO∗uL ,T /GO∗uL ,T −→→ XGsatO∗uL ,T /GsatO∗uL ,T .

��
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Remark 3.2. Let the notation be as in Lemma 3.1. In particular let X be a finitely
generated subgroup of O∗L ,T , by X1, . . . , Xn and consider the density δ of

{
v ∈ SG,u

L | (x1, . . . , xn) mod v ∈ (GO∗uL ,T

)×n mod v
}
.

Then Lemma 3.1(b) has the following consequences for this density:
If X is not a subset of Gsat, and so the image of X in the free and finitely gen-

erated abelian group O∗L ,T /Gsat is non-zero, then the product δ · [LG,u : L] tends
to zero for u →∞.

If on the other hand X is a subset of Gsat, then the same product stays bounded
below by 1

[Gsat :G] as u tends to∞.

Corollary 3.3. Let G ⊂ L∗ be finitely generated, n in N, c1, . . . , cd in (L∗)×n.

(a) Suppose q ∈ N is prime to p and q ≥ 2, and that the following set has density
one
{
v∈PL |∃ j ∈ {1, . . . , d} ∃ev ∈N coprime to q, such that cev

j ∈G×n mod v
}
.

Then there exist j ∈ {1, . . . , d} and e ∈ N such that ce
j ∈ G×n. If q is a prime

and q > d, one can choose e coprime to q.
(b) Suppose that c j �∈ G×n

sat for all j ∈ {2, . . . , d} and that the density of

{v ∈ PL | ∃ j ∈ {1, . . . , d} such that c j ∈ G×n mod v }
is one. Then there exists a p-power e such that ce

1 ∈ G×n.

Proof. Choose T in such a way that the finitely generated group G ⊂ L∗ becomes
a subset of O∗L ,T and moreover that all components of all c j lie O∗L ,T , as well. If
p is different from 2, we enlarge L to L(ζ4); thereby G and x remain the same
and all hypotheses are preserved. For (a) let u := qm for some m � 0. Since the
exponents ev in the hypothesis are all prime to q the operation c �→ cev on the finite
group O∗L ,T /O∗uL ,T of exponent q is bijective. Therefore the sum over all j of the
densities of the sets

{
v ∈ SG,u

L | (c j mod v) ∈
((

GO∗uL ,T

)×n mod v
)}

(8)

is at least 1
[LG,u :L] . Choose j0 such that the density of the set is at least 1

d·[LG,u :L] .
Denote by X j ⊂ G the subgroup generated by the entries of the tuple c j . We apply
Lemma 3.1 (b) to the X j . Since we assume m � 0, by Remark 3.2 the set X j0 must
be contained in Gsat. This proves the first assertion of (a). Moreover in this case
the density of the set (8) for j0 is explicitly determined by Lemma 3.1 (b), and we
deduce

1

d
≤ 1

[
X j0 GG∗usat : GG∗usat

] .

Again since m � 0, this implies that the q-primary component of X j0 G/G is of
cardinality bounded by d. This proves the remaining assertion of (a).
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To prove (b), we repeat the proof of (a) for any prime q �= p. Since for j =
2, . . . , n, the densities of the sets (8) multiplied by [LG,u : L] are arbitrarily small,
the expression

1
[
X1GG∗usat : GG∗usat

]

must come arbitrarily close to 1. Thus the q-primary component of X1G/G has
cardinality one. This completes the proof. ��

3.2. On a result of MacRae

MacRae [13] proved a result on the density of conjugate fixed points under a corre-
spondence under certain hypotheses on the correspondence. He also made a precise
conjecture what the optimal set of hypothesis should be. In this section we prove
this conjecture. We begin by presenting the well-known analogue of MacRae’s
conjecture in the number field setting.

Proposition 3.4. Let ϕi : E → L, i = 1, 2, be two distinct field homomorphisms
of number fields. Then the set {w ∈ PE | ∃v ∈ PL : v ◦ ϕ1 = w = v ◦ ϕ2} has
density zero.

Proof. It clearly suffices to prove the result for L the Galois closure of E over Q,
and so we assume this from now on. By standard results of Galois theory, we may
extend the ϕi to field automorphisms ψi ∈ G := Gal(L/Q). Applying ψ−1

1 to
the situation, we can assume ψ1 = idL . Our hypothesis now says that ψ2 is not
the identity on E . Let H := Gal(L/E) ≤ G. We shall prove the following claim,
which clearly implies the assertion of the proposition: The set

	 := {w ∈ PE | ∃σ ∈ G � H, ∃v ∈ PL : v lies above w and σ(w)}
has density zero.

Let w be a place of E , v a place of L above w and σ ∈ G. The set of all places
abovew is then H ·v, that of places above σ(w) is σHσ−1 ·σ(v) = σH ·v. Hence
there is a place above w and σ(w) simultaneously if and only if Hv ∩ σHv is
non-empty. If Gv ⊂ G denotes the decomposition group at v, this is equivalent to
Gv intersecting HσH non-trivially. Therefore we have the following equivalence:

∃σ ∈ G � H, ∃v ∈ PL : v lies above w and σ(w)⇐⇒ Gv ∩
⋃

σ∈G�H

HσH �= ∅.

Clearly
⋃
σ∈G�H HσH = G � H , and so the latter condition is equivalent to

Gv �⊂ H , or in other words to [Ew : Qpw ] > 1 for pw ∈ PQ the place below w. It
remains to estimate densities. Let r be in R>0. First observe that

#{w ∈ PE | w ∈ 	, N (w) ≤ r} = #{w ∈ PE | [Ew : Qpw ] > 1, N (w) ≤ r}
≤ [E : Q] · #{p ∈ PQ | p ≤ √r}.
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Next we have

#{w ∈ PE | N (w) ≤ r} ≥ #{w ∈ PE | pw is totally split in L/Q, N (w) ≤ r}
= [E : Q] · #{p ∈ PQ | p is totally split in L/Q, p ≤ r}.

By the Čebotarev density theorem, the latter number behaves asymptotically for
r → ∞ like [E : Q]/[L : Q] · #{p ∈ PQ | p ≤ r}. Gauss’ formula for the
distribution of prime numbers yields the claimed density result

#{w ∈ PE | w ∈ 	, N (w) ≤ r}
#{w ∈ PE | N (w) ≤ r}

r→∞−→ 0.

��
To explain the function field analogue of Proposition 3.4, let us fix some nota-

tion: Let X be a smooth projective, geometrically connected curve over the finite
field Fq . Let πi : X × X → X , i = 1, 2, be the canonical projections, and let D
be an effective divisor on X × X such that both projections from D to X are finite.
We think of D as a correspondence on X and define

	D := {x ∈ |X | | ∃z ∈ |D| : π1(z) = x = π2(z)},
where |X | is the set of closed points of X .

Using intersections on the surface X × X , one can describe 	D as follows:
Let Frob : X → X be the Frobenius endomorphism relative to Fq which is given
by f �→ f q on rational functions on X . Let �i be the graph of Frobi or, equiv-
alently, the i-fold iterate of the correspondence � := �1. Note that �0 is simply
the diagonal �X on X × X . Using these powers of �, the set 	D is the projection
of ∪i∈N0 D ∩�i along π1 or, equivalently, along π2 from X × X to X . For i < 0
we denote by �i the transpose of �−i .

Theorem 3.5. Suppose that D does not contain any divisor of the form �i , i ∈ Z.
Then 	D has density zero.

This result was conjectured in [13], where it was proved under the following
additional hypothesis: (a) D is irreducible, and (b), if m and n are the degrees of D
over X with respect to the projections πi , i = 1, 2, then either m/n does not lie in
qZ, for q the cardinality of the constant field of X , or m = n = 1 and D is different
from �X . The main improvement of our result above is that it no longer imposes
any restrictions on the quotient m/n.

Decomposing D into irreducible divisors, the above theorem may be restated in
terms of global function fields. The statement is essentially that of Proposition 2.5,
were in addition one needs to assume that theϕi are separable. However, the method
of proof there can not be generalized. The intersection ϕ1(E)∩ϕ2(E) ⊂ L may be
finite. But even if it is infinite and thus a function field, it may happen that one cannot
reduce to a Galois theoretic situation; for instance if [L : ϕ1(E)] �= [L : ϕ1(E)].
Our proof is a simple application of intersection theory on surfaces – a heuristic
argument is given in Remark 3.6. MacRae’s proof is quite different.
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Proof of Theorem 3.5. Our aim is to give, for any r ∈ N, a bound on the number
of points in 	D which are defined over Fqr : For a point x ∈ |X | to be contained in
	D(Fqr ) it is necessary and sufficient that

(a) there exists i ∈ N0 such that x ∈ π1(D ∩�i ), and
(b) x ∈ π1(�X ∩�r ).

Using (b), we may in (a) replace �i by �i+r t for any t ∈ Z. (This can easily be
verified using explicit coordinates.) Thus we have

	D
(
Fqr

) ⊂ π1

⎛

⎝
[r/2]⋃

i=[(1−r)/2]
D ∩�i

⎞

⎠
(
Fq

)
.

This gives the estimate

#	D
(
Fqr

) ≤
[r/2]∑

i=[(1−r)/2]
#
(

D ∩�i
)
.

By our hypothesis all intersections D ∩�i , i ∈ Z, are proper. Whence we may use
the intersection pairing on X × X to give an upper bound for #(D ∩�i ). As in [8],
we write · instead of ∩ for this pairing, and denote by gX the genus of X .

By [8, Exer. V.1.10] one has �i · �i = q |i |(2 − 2gX ) for any i ∈ Z. Let d1
and d2 denote the degrees of D to X with respect to the projections πi , i = 1, 2.
The degrees of the same projections of D +�i to X are then given by d1 + 1 and
d2 + q−i , if i < 0, and by d1 + qi and d2 + 1, if i ≥ 0. In either case, the product
of these two degrees is therefore bounded by (d1 + d2)(d1 + d2 + q |i |). Applying
[8, Exer. V.1.10], yields

2D ·�i ≤ −D2 − (�i )2 + 2(d1 + d2)
(

d1 + d2 + q |i |
)
.

Using the above expression for (�i )2, we deduce that there is a constant c ∈ Z

such that for all i ∈ Z

2D ·�i ≤ c + q |i |(2(d1 + d2)+ 2gX − 2).

Plugging this into the estimate for 	D(Fqr ), one finds

#	D(Fqr ) ≤
[r/2]∑

i=[(1−r)/2]

(
c/2+ q |i |(d1 + d2 + gX − 1)

)
.

≤ cr

2
+ 2(d1 + d2 + gX − 1)qr/2+1.

Thus clearly the upper density lim supr→∞ #	(Fqr )/qr of 	 is zero as asserted.
��
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Remark 3.6. Let us give the idea of the above proof in the simplest case X = P1

and where D is the graph of a function f/g on P1 for polynomials f, g in an inde-
terminate x , say of degrees d1 and d2. The Fqr -valued points of 	D are the x- (or

y-) coordinates that satisfy the equations y = xqi
and y = ( f/g)(x) for some

i ∈ {0, 1, . . . , r − 1} and xqr = x . Because of the latter equation, the first equation
may be replaced by yqr−i = x if convenient. In the above proof, we consider both
pairs of equations each time for i in the range 0, . . . , [r/2]. Then y = xqi

and
y = ( f/g)(x) leads to a polynomial equation in x of degree at most d1+ qi , while
y = ( f/g)(x) and yqi = x yields a polynomial equation in y of degree at most
d2 + qi . Counting the solutions in both cases leads to the estimate we obtained in
the above proof. Had we not interchanged the role of x and y for the i > [r/2] the
estimates obtained would have been much worse - and not sufficient to deduce the
desired result.

Remark 3.7. One may wonder whether it is possible to deduce Theorem 3.5 by a
proof similar to that of Proposition 3.4. This leads to the question of whether the
intersection of any two global fields inside K alg is again a global field. The answer
is in the negative as the following example, communicated to us by H. Stichtenoth,
explains:

Let k be any field of characteristic p > 0 and consider F := k(x), F1 := k(y),
for y = z p − z, and F2 := k(z), for z = x2(x − 1). Observe that the places x = 0
and x = 1 of F both lie above the place y = 0 of F1 and also above the place
z = 0 of F2. We claim that F1 ∩ F2 is finite over k. To prove this, it suffices to
assume k = kalg and to show that F ′ := F1 ∩ F2 is equal to k. Assume otherwise.
Then F ′ is a subfield of F of positive transcendence degree, and hence, by Lüroth’s
theorem, of the form k(w) for some w ∈ F � k. By a change of variables, we may
assume that the places y = 0 of F1 and z = 0 of F2 are above the place w = 0
of F ′. It is now a simple matter of computing the ramification degrees of x = 0
and of x = 1 above w = 0 via F ′ ⊂ F1 ⊂ F and F ′ ⊂ F2 ⊂ F , to obtain a
contradiction: If e1 denotes the ramification degree of y = 0 above w = 0 and if
e2 denotes the ramification degree of z = 0 above w = 0, via the first sequence
of fields the ramification degrees of x = 0 and x = 1 above w = 0 are both e1,
wheres via the second sequence of fields they are 2e2 and e2, respectively; this is
impossible since we cannot have 2e2 = e1 = e2 with e2 > 0.

4. Proof of the main result

PROOF of Theorem 2.21. We may clearly replace D by an F-reduced divisor,
since by Lemma 2.7 this does not alter v �→ Sv = SD

v . In § 2.2 we explained how
to attach to a pair (D, L)with F-reduced D ⊂ PE ×PL pair a (�D, L D)with�D

an F-reduced Hodge Tate set. Since replacing L by a finite extension yields again
a strictly compatible system, we assume that in fact L = L D and D = D� for an
F-reduced Hodge-Tate set �. Also there is no loss of generality in assuming that
the strictly compatible system {ρv} is semisimple.
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Interchangeably, we regard the ρv as representations of Gab
E and of A∗E with the

caveat that in the function field case the reciprocity map only has dense image, so
that being continuous with respect to Gab

E is more restrictive than with respect to
A∗E . We assume that the ρv are given in diagonal form over some finite extension
F̃v of Fv . The support of the minimal conductor of ρv is determined by the sets S
and Sv . In the function field case, due to Proposition 2.12 the minimal conductor
of ρv is bounded by the effective divisor [S] + [Sv]. In the number field case, the
most one can say is that the minimal conductor is bounded by sv[S]+[Sv] for some
sv ∈ N depending on v. Define N to be

N := 2
∏

w∈S�Par
E

#
(
Fw × F∗w

)
.

Consider α ∈ E∗ and denote by Div(α) = ∑
i∈I di [wi ] its divisor and by

Suppα = {wi : i ∈ I } its support. We assume that all di are non-zero and that the
wi ∈ Pna

E are pairwise distinct. Suppose also that no wi lies in S ∪ Sv . For simpler
notation, we assume that Sv and S are disjoint. Corresponding to the disjoint union

PE = Sv ∪ {wi | i ∈ I } ∪ S ∪ (PE � (Sv ∪ {wi | i ∈ I } ∪ S)),

we write ideles in A∗E as quadruples, and we write α for a constant tuple α. Then

1 = ρv
(
(α, α, α, α)N sv

)
= ρv

(
αN sv

, αN sv
, 1, 1

))

= ρv
(
αN sv

, 1, 1, 1
))∏

i∈I

ρv(Frobwi )
di N sv

.

For each placew ∈ PE �S, let Lw denote the splitting field over L of the polynomial
fw ∈ L[t]. Let λw = (λi,w)i=1,...,n denote the roots of fw in Lw repeated according
to their multiplicity. If τ is a permutation of {1, . . . , n}, then λw,τ denotes the tuple
(λτ(i),w)i=1,...,n . Having the ρv in diagonal form means, that for each v ∈ PL � T
and each w ∈ PE � (S ∪ Sv) at which fw is v-integral, there exists a permutation
τw,v of {1, . . . , n} such that ρv(Frobwi ) is the diagonal matrix with diagonal

λw,τw,v (mod v) = (λτw,v(1),w, . . . , λτw,v(n),w) (mod v).

Hence

ρv

(
α−N sv

, 1, 1, 1
))
=
(
∏

i∈I

λdi
wi ,τwi ,v

)N sv

(mod v), (9)

where multiplication and exponentiation is componentwise on each entry of the
n-tuple.

If the ρv come from an n-tuple of Hecke characters, the expression of the right
hand side of (9), without reduction modulo v, will have to agree with a power of
the associated Hodge-Tate character evaluated at α, cf. formula (2). The following
is a first approximation to this:
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Lemma 4.1. Let α be in E∗ and let Div(α) =∑
i∈I di [wi ] be its divisor. Define

Gα := 〈σ(α) | σ ∈ �〉 ⊂ L∗ ⊂
(
∏

i∈I

Lwi

)∗
.

Suppose Suppα is disjoint from S. Then there exist a tuple τ = (τi )i∈I of permu-
tations of {1, . . . , n} and eα ∈ N such that λα,τ :=

∏
i∈I λ

di
wi ,τi satisfies

(
λα,τ

)eα ∈ (Gα)
×n .

Since τ admits only finitely many choices, in the sequel, we regard eα as indepen-
dent of τ .

Proof. Let q ≥ 2 be relatively prime to pN . Let v be any place of PL � T such that
Sv contains none of the wi and such that all fwi are v-integral. Then by formula
(9), for any such v there exists a τ , such that

λN sv

α,τ = ρv
(
α−N sv

, 1, 1, 1
))

(mod v)

We claim that the order of the right hand side divides the order of (Gα mod v) ⊂
F̃
∗
v . Since F̃

∗
v is cyclic, this proves (λN sv

α,τ mod v) ∈ ((Gα)
×n mod v) for almost

all v ∈ PL . The lemma then follows from Corollary 3.3(a).
To prove the claim, observe that for w ∈ Sv we have α ∈ Ow and ρv|E∗w is

trivial on 1+ pw. Hence the component α−N sv above Sv as an argument of ρv may
be viewed as an element of

∏
w∈Sv (Ow/pw)

∗. For w = v ◦ σ ∈ v ◦ � = Sv , the
units (Ow/pw)

∗ embed via σ into F∗v . It follows that the order of the tuple α in∏
w∈Sv (Ow/pw)

∗ is the least common multiple of the orders of the σ(α) mod v.
Since F∗v is cyclic the latter is the order of Gα (mod v). ��

Consider v ∈ Pna
L . The polynomials fw lie in L ⊂ Lv . For instance via the

Newton polygon of fw for v, one can see that one has well-defined values v(λi,w),
i = 1, . . . , n. By the support Supp(λw)ofλw we mean the finite set of thosev ∈ Pna

L
for which one of these values is non-zero. It will be useful to have some information
on this support:

Lemma 4.2. There exists a finite set T ′ ⊂ PL such that for all w /∈ S we have

Supp(λw) ⊂ T ′ ∪�−1({w}).
Proof. Fix w0 ∈ PE but not in S. Let w be any place of E not in S ∪ {w0}, and
let α ∈ E∗ have support {w,w0}, i.e., divisor d[w] + d0[w0] with d, d0 �= 0. By
Lemma 4.1 we have

(
λd
w,τ λ

d0
w0,τ0

)eα =
∏

σ∈�
σ(α)nα,σ ,

for tuples nα,σ ∈ Nn and permutations τ, τ0 of {1, . . . , n}. If we compute the
valuation of this expression at any v /∈ �−1({w,w0}), the right hand side is zero.
It follows that

Supp(λw) ⊂ Supp(λw0
) ∪�−1({w0}) ∪�−1({w}).

So the lemma holds with T ′ := Supp(λw0
) ∪�−1({w0}). ��
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Let 	� := {w ∈ PE | #� > #�−1({w})}. By Proposition 3.4 for p = 0 and
Theorem 3.5 for p > 0, the set	� has density zero. Forw ∈ PE �	� and σ ∈ �
there a unique vw,σ ∈ PL such that vw,σ ◦ σ = w. For any such w we define
(mw,σ )σ∈� ∈ (Qn)� by

mw,σ :=
vw,σ (λw)

evw,σ /w,σ
∈ Qn . (10)

On Qn we consider the natural permutation action by the group Sn .

Lemma 4.3. Suppose α ∈ E∗ has non-empty support disjoint from 	� ∪ T ′ ◦ �.
Suppose in addition that �−1({w}) and �−1({w′}) are disjoint for any w �= w′ in
Supp(α). Then with the notation from Lemma 4.1, for all i ∈ I and σ ∈ � one has
eαmwi ,σ

∈ Zn and

λeα
α,τ =

∏

σ∈�
σ(α)

eατi (mwi ,σ
) (11)

Moreover for any w,w′ in Pna
E � (	� ∪ T ′ ◦�), there exists τw,w′ ∈ Sn such that

τw,w′(mw,σ ) = mw′,σ ∀σ ∈ �.
Proof. Lemma 4.1 yields λeα

α,τ =∏
σ∈� σ(α)

nα,σ,τ for suitable nα,σ,τ ∈ Zn . Apply-
ing a valuation v of L yields

eα
∑

i∈I

div(λwi ,τi
) =

∑

σ∈�
nα,σ,τ ev/v◦σ,σ v ◦ σ(α) ∈ Qn .

(Recall that the valuations corresponding to v and v ◦ w are normalized.) By our
hypotheses on Supp(α), for v = vwi ,σ this simplifies to

eαdivwi ,σ (λwi ,τ j
) = evwi ,σ /wi ,σnα,σ,τdi .

Canceling the di , the first assertion follows from the definition of the mw,σ .
The first part yields τi (mwi ,σ

) = τ j (mw j ,σ
)wheneverwi , w j are in the support

of α. We also know that given any two places in Pna
E there exists α ∈ E∗ whose sup-

port consists of these two places. If we are givenw,w′ in Pna
E � (	� ∪T ′ ◦�), we

can find w′′ in this set such that �−1({w′′}) is disjoint from the two corresponding
sets for w and w′. We now apply the first part to α, α′ ∈ E∗ with support {w′′, w}
and {w′′, w′} to conclude the proof. ��

By reindexing all λw with w ∈ Pna
E � (	� ∪ T ′ ◦�), we assume from now on

that we have (mσ )σ∈� ∈ (Qn)� such that

(mσ )σ∈� = (mw,σ )σ∈� ∀w ∈ Pna
E � (	� ∪ T ′ ◦�)

and that each τi fixes (mσ )σ∈� , so that all components of (all) τ lie in

∩σ∈� StabSn (mσ ) ⊂ Sn .

Note however that τ is not redundant on the left hand side of (11).
Our next aim is to uniformly bound the exponents eα (for α as in Lemma 4.3).

This requires the following lemma:
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Lemma 4.4. There exists M ∈ N such that any root of unity contained in any of
the fields Lw is of order dividing M.

Proof. Recall that Lw is generated by the roots of the monic degree n polynomial
fw. If p > 0, write fw as gw(x pi

) with gw separable, else set gw := fw. Then
deg gw = n/pi and by Galois theory, the degree of the normal closure of Lw over
L ist bounded by (n/pi )!pi ≤ n!. It suffices therefore to prove the following claim:
For any r ∈ N, there exists M ∈ N such that for all L ′ ⊃ L with [L ′ : L] ≤ r the
roots of unity contained in L ′ have order dividing M .

Suppose first p = 0 and let s := [L : Q]. For a prime p we can have ζp ∈ L ′
only if rs ≥ p − 1, and we can have ζpi ∈ L ′ only if rs ≥ pi−1. Thus M =
∏

p≤rs+1 p[logp(rs)]+1 works. For p > 0 denote by s the degree of the constant
field of L over its prime field Fp. If ζl lies in L ′, we must have

r ≥ [L ′ : L] ≥ [Fps (ζl) : Fps ] ≥ 1

s
[Fp(ζ ) : Fp]

= 1

s
min{k ∈ N | l divides pk − 1}.

Hence l divides M :=∏rs
i=1(p

i − 1). ��
Lemma 4.5. There exists e ∈ N such that emσ ∈ Zn for all σ and such that for all
α ∈ E∗ satisfying the hypotheses of Lemma 4.3 and all τ as in Lemma 4.1, one has

λe
α,τ =

∏

σ∈�
σ(α)emσ .

In particular, the expression on the left is independent of the possible τ provided
by Lemma 4.1

Proof. Let M be as in the previous lemma and let ẽ ∈ N be such that ẽmσ ∈ Zn

for all σ ∈ �. Raising (11) to the power ẽ/eα yields

λẽ
α,τ = ζα,τ

∏

σ∈�
σ(α)emσ

for some root of unity ζα,τ which depends on α and τ . The left hand side lies in Lw.
After division by ζα,τ , the right hand side lies in L . Hence by the previous lemma
ζM
α,τ = 1. Defining e = Mẽ, the lemma is established. ��

Lemma 4.6. For all v /∈ T the divisor [Sv] is a conductor for ρe
v with e as in

Lemma 4.5. In particular there exists s ∈ N, independently of v, such that s[S]+[Sv]
is a conductor for ρv .

Proof. The second assertion is immediate from the first – and for p > 0 it follows
independently and much simpler from Proposition 2.12. To prove the first assertion,
consider the n-tuple of characters

ψ : E∗ → ((K alg)∗)×n, β �→
∏

σ∈�
σ(β)emσ .
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Fix any α as in Lemma 4.3. Lemma 4.5 yields ψ(α) = ψ(αβ) for all β with trivial
divisor, i.e. β ∈ O∗E . Hence by Proposition 2.13 all components of ψ extend to a
Hecke character with trivial conductor.

Let {ρ′′v } be the strictly compatible system of mod v Galois representations
associated to ψ . By construction of ρ′′v , Lemma 4.5 implies that for any α ∈ E∗
satisfying the hypotheses of this lemma, the matrices ρe

v(α) and ρ′′v (α) are conju-
gate. Let m be a divisor which is a common conductor for ρ′′v and ρe

v . Since	D has
density zero, ideles α for α as in Lemma 4.5 generate the kernel of the canonical
homomorphism Clm→ Cl0. Hence the restrictions of ρe

v and ρ′′v to this kernel are
conjugate. We deduce that they have the same conductor. By construction, [Sv] is
a finite conductor of ρ′′v , and the proof is complete. ��
Lemma 4.7. The tuples mσ lie in Z[1/p]n.

Proof. Suppose α satisfies the hypotheses of Lemma 4.3 and in addition the condi-
tion α ≡ 1 modulo the conductor s[S]. For such α, formula (9) holds with sv = 0.
Raising (9) to the power e, as in the proof of Lemma 4.1 we deduce that

{
v ∈ PL � T | ∃τ : λe

α,τ mod v ∈ (Ge
α

)×n mod v
}

has density one in PL . On the other hand, it is a consequence of Lemma 4.5 that
for an arbitrary τ ′, either λe

α,τ ′ = λe
α,τ , or λe

α,τ ′ does not lie in (Gα)
×n
sat . We deduce

from Corollary 3.3 that there is a p-power e′ such that

(
λe
α,τ

)e′ ∈ (Ge
α

)×n
.

Computing mσ via (10) yields ee′mσ ∈ 1
evw,σ /w,σ

(eZn). Since for generic w the

index evw,σ /w,σ is the degree of inseparability of σ : E → L , and thus a p-power,
the assertion follows. ��

We now complete the proof of Theorem 2.21:
We partition {1, . . . , n} into sets M1, . . . ,Mt , such that whenever i, i ′ are in the

same M j , the tuples (mσ,i )σ∈� and (mσ,i ′)σ∈� agree, and if they are in different
M j , they do not agree.

As in the proof of Lemma 4.6, we can apply Proposition 2.13 to obtain Hecke
characters χ j , j = 1, . . . , t , with χ j having set of Hodge-Tate weights given by
(mσ,i )σ∈� for any i ∈ M j .

Define {ρ′v} to be the strictly compatible system attached to the sum of Hecke
characters⊕t

j=1(χ j )
#M j . Let m be a common conductor for all χ j which moreover

satisfies s[S] ≤ m. Restricted to the closed subgroup of Gab
E that is defined as the

image of E∗Um(E∗ar)
o, this system is isomorphic to {ρ′v} by the Čebotarov density

theorem. (Both systems have the same traces on allw not in	D∪T ′◦�.) Arranging
the matrix representations of the ρv suitably, we may assume that the restrictions
are equal. Hence the system {ρv} can be written simultaneously as a direct sum of
strictly compatible systems of sizes #M j , j = 1, . . . , t . (At this point we may have
to enlarge T by finitely many v ∈ PL .)
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Thus it suffices to continue the proof for one of these systems. By twisting by
the inverse of χ j , we may furthermore assume that all mσ are identically zero, so
that the ρv are representations of H := E∗\A∗E/Um(E∗ar)

o. In the number field case
the latter is a finite group, and as explained in [11], a result by Deligne and Serre,
c.f. [4, § 8], then implies that the system {ρv} arises from an Artin representation ρ0.
Finally any abelian Artin representation arises from a direct sum of characters of
some strict m-class group and thus from a direct sum of Hecke characters.

Suppose from now on that E is a function field and let h be the exponent of its
strict class group Cl0. Fix w0 ∈ PE � 	D such that �−1(w0) is disjoint from T ′.
Let w be any other place with these properties and such that �−1(w) is disjoint
from �−1(w0)—thus we only exclude places in a set of density zero. By the defi-
nition of h, we can find α ∈ E∗ with divisor h(degw[w0] − degw0[w]). Then by
Lemma 4.5 we can find a permutation τ of {1, . . . , n} such that

λ
he degw0
w,τ = λhe degw

w0 .

After yet again enlarging T by a finite amount, we can uniquely partition the rep-
resentations ρv into a direct sum ⊕iρv,i of subrepresentations ρv,i with dim ρv,i
independent of v, such that

(a) there is a bijection between the indices i and the different eigenvalues λi of
λeh
w0

(b) dim ρv,i is the multiplicity of λeh
i .

(c) ρv,i (Frobeh
w0
) ≡ λeh

i (mod v).

There are obvious characters on 〈Frobw0〉 ⊂ H mapping Frobw0 to λi . Because
the characters take values in the divisible group (K alg)∗, we may extend them to
Hecke characters χi with Hodge-Tate weight 0, i.e., with � = ∅. Twisting ρv,i
by χ−1

i , and restricting our attention to a single i , we may assume that the strictly
compatible system {ρv} is trivial when restricted to 〈Frobeh

w0
〉.

Since the ρv are semisimple and abelian, they all factor via the maximal quotient
of H/〈Frobeh

w0
〉 of order prime to p. Let h′ be its exponent. Then all λh′

w reduce to 1

at almost all places v. Thus all λw lie in (Falg
p )
∗. Therefore reduction mod v is the

identity on these, and so under this identification all ρv are the same representation.
This is a semisimple Artin representation ρ0 which is a representation of some strict
m-class group and hence a direct sum of Hecke characters.

At this point we have left aside finitely many exceptional v ∈ PL which were
not in the original set T . For these v note that if we have two strictly compatible sys-
tems which are conjugate for almost all v, then they are conjugate for all v at which
they are defined. This completes the proof of the main assertion of Theorem 2.21.

The remaining assertions of Theorem 2.21 are rather obvious, since if some
place w is finite for {ρχ,v}, it is so for χ . A similar comment applies to being of
∞-type. ��
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