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Deformations of (alois
Representations

Gebhard Bockle

Introduction

These lecture notes give an introduction to deformations of Galois representations
with an eye toward the application of this theory in the proof of the Serre con-
jecture [KW1, KW2] by Khare-Wintenberger. There exist several other surveys
such as [DDT, Go, Ki7, Ma2]. We nevertheless hope that with the above scope
in mind and by the arrangement and detail of the material presented we can add
something useful to the existing literature. Clearly, we claim no originality in the
material presented and all errors are to be blamed on the present author.

The idea of studying deformations of Galois representations on their own
right goes back to the seminal article [Maz] of Mazur. Mazur’s motivation was to
give a conceptual if at the time conjectural framework for some discoveries of Hida
[Hid] on ordinary families of Galois representations. It was the work of Wiles on
Fermat’s Last Theorem which made clear the importance of deformation theory
developed by Mazur. The theory was a key technical tool in the proof [Wi2, TW]
by Wiles and Taylor—Wiles of Fermat’s Last Theorem.

Mazur’s theory yields a universal deformation ring which can be thought of as
a parameter space for all lifts of a given residual representation (up to conjugation).
The ring depends on the residual representation and on supplementary conditions
that one imposes on the lifts. If the residual representation is modular and the
deformation conditions are such that the p-adic lifts satisfy conditions that hold for
modular Galois representations, then one expects in many cases that the natural
homomorphism R — T from the universal ring R to a suitably defined Hecke
algebra T is an isomorphism. The proof of such isomorphisms, called R = T
theorems or modularity theorems, is at the heart of the proof of Fermat’s Last
Theorem. It expresses the fact that all p-adic Galois representations of the type
described by R are modular and, in particular, that they arise from geometry.
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4 Introduction

Many refinements of Wiles’ methods have since been achieved and the the-
ory has been vastly generalized to various settings of automorphic forms. R =T
theorems lie at the basis of the proof of the Taniyama—Shimura conjecture by
Breuil, Conrad, Diamond and Taylor; the Sato—Tate conjecture by Clozel, Harris,
Shepherd-Barron and Taylor; and the already mentioned Serre conjecture. The
proof of Fermat’s Last Theorem was also the first strong evidence to the conjec-
ture of Fontaine and Mazur [FM]. The conjecture asserts that if a p-adic Galois
representation satisfies certain local conditions that hold for Galois representations
which arise from geometry, then this representation occurs in the p-adic étale co-
homology of a variety over a number field. In fact, it is a major motivation for the
formulation of the standard conditions on deformation functors. These conditions
should (mostly) be local and reflect a geometric condition on a representation. Due
to work of Emerton and independently Kisin [Ki6], there has been much progress
on the Fontaine-Mazur conjecture over Q.

The present notes are based on an advanced course given jointly with Laurent
Berger at the CRM Barcelona. The course provided basic material on p-adic Hodge
theory and deformation theory of Galois representations, motivated by the proof of
the Serre conjecture by Khare and Wintenberger. The lectures by Berger focused
on p-adic Hodge theory [Ber2] and our part on deformation theory.

The contents of our lectures are as follows: Lecture 1 recalls the foundations of
Mazur’s theory of deformations of Galois representations with some additional ma-
terial added from the work of Kisin. Lecture 2 introduces pseudo-representations
and studies their deformations. Pseudo-representations are functions that have
the formal properties of traces of representations. They are important because
completely reducible representations can be recovered from their traces. More-
over, p-adic Galois representations are often given in terms of traces of Frobenius
automorphisms, i.e., as a pseudo-representation. The representation itself is not
directly accessible.

Lecture 3 considers universal deformations of a mod p representation of the
absolute Galois group of a finite extension of the field Q, for ¢ # p. The corre-
sponding theory of p-adic Galois representations is well understood in terms of
Weil-Deligne representations. It will turn out that also the universal deformation
can be given a natural description in terms of such parameters (or rather iner-
tial Weil-Deligne types). This leads to conditions for deformation functors of a
residual mod p representation at places not above p. Weil-Deligne representations
are naturally linked to p-adic Galois representations ‘arising’ from geometry: for
instance, one may consider the Galois representation on the p-adic Tate module
of an elliptic curve (or an abelian variety) over a number field and restrict this
to a decomposition group at a prime v above £. If the curve has good reduction
at v, by the criterion of Néron—Ogg—Shafarevich, the representation is unramified
and vice versa; moreover the associated inertial Weil-Deligne type is trivial. If it
has potentially good reduction, the representation is potentially unramified and
the inertial Weil-Deligne type is non-trivial but has trivial monodromy operator.
In the remaining case the representation is potentially unipotent and the mon-
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odromy operator is non-trivial. At the end of Lecture 3 (for technical reasons) and
in Lecture 4, we consider the deformation theory of a mod p Galois representa-
tion of the absolute Galois group of a finite extension of Q. More precisely, we
study some subfunctors of Mazur’s functor that satisfy conditions which hold for
representations arising from geometry. This is technically the by far most subtle
part and we only work out some of the simplest cases. To formulate and study
the resulting deformation functors, p-adic Hodge theory aka Fontaine theory are
needed; see [Ber2]. It enables one to describe local conditions for deformations of
2-dimensional representations arising from

(a) finite flat group schemes, in ordinary and non-ordinary cases;

(b) crystalline Galois representations of low Hodge—-Tate weights (0, k), where
1<k<p-1;

(c) weight 2 semistable non-crystalline Galois representations.
On the geometric side, such representations arise from

(a) the p-power torsion of an elliptic curve with good ordinary or supersingular
reduction at p;

(b) p-adic Galois representations associated with a modular form of weight k,
where 2 < k < p;

(c) the p-adic Tate module of an elliptic curve with multiplicative reduction at p.

Lecture 5 ends the lecture series with the following result: the global universal
deformation ring R for 2-dimensional totally odd residual representations of the
absolute Galois group of a totally real field with (suitable) geometric conditions
at all primes, fixed determinant and ramification at most at a fixed finite set of
places of the base field, has Krull dimension at least 1. Together with results of
Taylor on potential modularity, covered in a lecture series by J.-P. Wintenberger
during the advanced course, the lower bound in fact suffices in many cases to
show that the p-power torsion elements form a finite ideal I of R such that R/I
is finite flat over Z,. This implies an important lifting result needed in the proof
by Khare and Wintenberger. The result is also in line with the expectation that
typically R should be isomorphic to a Hecke algebra on a finite-dimensional space
of p-adic modular forms, which is clearly finite flat over Z, and thus of exact Krull
dimension 1.

During the lecture series we also cover a number of technically important
issues for the theory of deformations of Galois representations: framed deforma-
tions, deformation functors via groupoids on a category, pseudo-representations
and their deformations, the completion of a deformation functor at closed points
of its generic fiber, and resolutions of deformation functors. Some lectures have
appendices that, for the convenience of the reader, recall technical terms needed
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in the main body. To give a sample: there are appendices on Schlessinger’s axioms,
formal schemes, finite flat group schemes, filtered p-modules, etc.

Much of the current perspective on deformations of Galois representations is
due to work of M. Kisin, as is clear to everyone familiar with the topic. Moreover
we found his lecture notes [Ki7] very helpful in preparing the present lecture series.
Several parts of our exposition follow closely his notes.

Acknowledgments. Let me first thank Mark Kisin for allowing me to base parts of
the present notes on [Ki7] and for helpful correspondence. I would also like to thank
L. Berger, B. Conrad, K. Fujiwara. G. Hein, R. Schoof and J.-P. Wintenberger
for answering some questions regarding the present material, and R. Butenuth,
K.N. Cheraku and H. Verhoek for many suggestions to improve the present notes.
I thank the CRM Barcelona for the invitation to present this lecture series during
an advanced course on modularity from June 14 to June 25, 2010 and for the
pleasant stay at CRM in the spring of 2010, during which much of these lecture
notes was written. I also thank the Postech Winter School 2011 on Serre’s mod-
ularity conjecture for the invitation to give a lecture series based on the present
notes. This very much helped to improve the original draft. I acknowledge financial
support by the Deutsche Forschungsgemeinschaft through the SFB/TR 45.

Notation

The following list can be regarded as a reference page for the notation. Throughout
the notes it will be introduced step by step.

e p will be a rational prime.

o [ will denote a finite field of characteristic p and W(F) its ring of Witt
vectors.

e O will denote the ring of integers of some p-adic field which is finite and
totally ramified over W (F)[1/p], so that O has residue field F.

e 2. will denote the category of pairs (A, w4 ) where A is a finite local Artinian
O-algebra with a surjective homomorphism 74: A — F and maximal ideal
my = Kermy.

. 5{:0 will denote the category of pairs (A, w4) where A is a complete Noethe-
rian local O-algebra with a surjective homomorphism 74: A — F and max-
imal ideal m4 = Kerm4.

e G will denote a profinite group.
e Vr will be a (continuous) representation of G over F with d = dimyp V§ < oo.

e ad = Endy (VF) = VF ®r VF* is the adjoint representation of Vf; it is again a
G-module.
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ad’ C ad is the subrepresentation on trace zero matrices.
¥ G — O* will denote a fixed lift of det V.

For an arbitrary field K, we let K denote a fixed algebraic closure and
write G = Gal(K/K) for the absolute Galois group of K. We denote the
G i-representation lim  pi,n (K) by Zy(1).

For any ring A and any free finitely generated A-module M, we denote by
M* = Homu (M, A) its linear dual. If M carries an A-linear action by G
then so does M*.

For A € Q/(:W(]F) and a continuous representation M of Gk on a free finitely
generated A-module, we define its Cartier dual MY as Homa (M, A(1)),
where A(1) = ARz, Z,(1).

In Lecture 5 the following notation pertaining to number fields will be relevant:

F will be a number field.

S will denote a finite set of places of F' —typically it will contain all places
above p and oo.

Gr,s or simply Gg will denote the Galois group of the maximal outside S
unramified extension of F inside F.

For a place v of F, we will denote by G, or simply G, the absolute Galois
group of the completion of F' at v.

For each place v of F, we fix a homomorphism F& — F?2le extending
F — F,, yielding a homomorphism G, - Gr — Gg.
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Lecture 1

Deformations of representations
of profinite groups

Throughout this lecture series, p will be a prime and F a finite field of character-
istic p. The ring of Witt vectors of F will be denoted by W(F). By G we denote a
profinite group and by Vg a finite F[G]-module on which G acts continuously. We
set d = dimy V& and fix an F-basis Sr of Vg.

In the first two lectures, G will mostly be arbitrary but subjected to a certain
finiteness condition. Later on, G will either be the absolute Galois group of a finite
extension of @, or Q for some ¢ # p, or a quotient of the absolute Galois group
of a number field.

In this lecture we discuss basic definitions, notions and results. The material
is fairly standard, although framed deformations are not treated in older surveys
such as [Ma2]. We mainly follow Kisin’s notation, as in [Ki7]. The lecture ends with
a discussion on groupoids over a category, which can be thought of as an alternative
means to describe deformation functors. This is taken from [Ki4, Appendix].

1.1 Deformation functors

Let ﬁ:W(F) denote the category of complete Noetherian local W (F)-algebras with
residue field F, and 2.y r) denote the full subcategory of finite local Artinian

W (F)-algebras. The maximal ideal of A € Q/CW(F) is denoted by m4. Note that,

via the W(F)-structure, the residue field A/my of any A € ﬁ:w(F) is canonically
identified with F.
Let A be in ey ). A deformation of Vi to A is a pair (Va,t4) such that

(a) Vg4 is an A[G]-module which is finite free over A and on which G acts con-
tinuously, and
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(b) ta is a G-equivariant isomorphism t4: V4 @4 F =, Vr.

A framed deformation of (Vy, Br) to A is a triple (Va,ta,B4), where (Va,t4) is a
deformation of Vg to A and 4 is an A-basis of V4 which reduces to Sr under ¢ 4.
One defines functors Dy, D‘D/F: ey (r) — Sets by setting, for A € Ay (p),

Dy, (A) = {isomorphism classes of deformations of V§ to A},

Dy, (A) = {isomorphism classes of framed deformations of (V, Br) to A},

and with the obvious extension to morphisms.

Remarks 1.1.1.  (a) The fixed basis Sf identifies the vector space underlying Vi
with F? and thus allows us to view Vi as a representation p: G — GL4(F).
Then D‘D/F(A) is the set of continuous representations

p: G — GL4(A)

lifting p. In terms of representations, Dy, (A) is the set of such representations
modulo the action by conjugation of Ker(GL4(A) — GL4(TF)).

(b) It is often useful to consider deformation functors on 2o, where O is the
ring of integers of a finite totally ramified extension of W (F)[1/p], so that F
is still the residue field of O, and where 2, is the category of local Artinian
O-algebras with residue field F. We shall do this in later lectures without
further mentioning.

(¢) In Section 1.6 we reformulate deformation functors in terms of groupoids
over a category. This gives a different viewpoint on the theory and will be
important for certain applications.

1.2 A finiteness condition

Definition 1.2.1 (Mazur). A profinite group G satisfies the finiteness condition
@, if, for all open subgroups G’ C G, the F,-vector space Homcon(G',Fp) of
continuous group homomorphisms is finite-dimensional.

By the Burnside basis theorem (see Exercise 1.8.1), the group G’ satisfies
dimp, Homeont (G, Fp) < oo if and only if the maximal pro-p quotient of G’ is
topologically finitely generated.

Examples 1.2.2. The group Homeon(G',F,) is isomorphic to Homeont (G’ ab,IFp).
Thus class field theory shows that the following groups satisfy Condition ®,,:

(a) The absolute Galois group of a finite extension Q,.

(b) The Galois group Grs = Gal(Fs/F), where F' is a number field, S is a
finite set of places of F', and Fg C F denotes the maximal extension of F'
unramified outside S.

Both of these examples will be important in later lectures.
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1.3 Representability
Proposition 1.3.1 (Mazur). Assume that G satisfies Condition ®,. Then:
(a) Dy, is pro-representable by some Ry, € ﬂ:W(F).

(b) If Endgi)(Vr) = F then Dy, is pro-representable by some Ry, € él\rW(F).

One calls R‘% the universal framed deformation ring and Ry, the universal
deformation ring of V.

Remarks 1.3.2.  (a) Recall that (pro-)representability (e.g., for Dy, ) means that
there exists an isomorphism

D‘D/]F (A) = Homw(]F) (R‘D/]F, A)

which is functorial in A € Ry ). This universal property implies that
R‘D,F is unique up to unique isomorphism. Moreover the identity map in
Hom(Ry, , Ry,) gives rise to a universal framed deformation over Ry, .

(b) Originally, Mazur only considered the functor Dy;. It describes represen-
tations lifting Vg up to isomorphism. The additional choice of basis is not
a very interesting datum. However, the functor Dy, is not always repre-
sentable. A good way to remedy this problem is to rigidify the situation by
adding a choice of basis to a given representation and thus to consider the
functor D‘D,F instead. This is important for residual representations Vg of the
absolute Galois group of a number field F', in the sense that Vg may have
trivial centralizer as a representation of G and yet the restriction of V& to
a decomposition group may no longer share this property.

(c) Without Condition ®,, the universal ring Ry, still exists (as an inverse limit
of Artinian rings), but it may no longer be Noetherian.

(d) Due to the canonical homomorphism F — Endgig(VE), it is justified to write
“="in EHdF[G](V]F) =TF.

Proof of Proposition 1.3.1. We prove part (a). Suppose first that G is finite, say
with a presentation (g1,...,9s | 71(g1,---,9s),---,7¢(g1,---,9gs)). Define

_ k I A
R=W(F) X} |ij=1,....d; k=1,...,s]/Z,
where 7 is the ideal generated by the coefficients of the matrices
m(Xh . X5 —id, 1=1,...,t,

with X% the matrix (Xlkj)” Let J be the kernel of the homomorphism R — F
defined by mapping X* to p(gy) for k = 1,...,s, with p as in Remark 1.1.1(a).
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Then R‘D,F is the J-adic completion of R and p‘E}W is the unique representation
G — GLg(Ry,) mapping gx to the image of X* in GLq(RY,).

We may write any profinite group G as a filtered inverse limit G = lim, G /H;
over some index set I of open normal subgroups H; C Ker(p). For each i the above
construction yields a universal pair (RY, p7). By the universality of these pairs,
one can form their inverse limit over the index set I. This yields

(R‘D/]F?p\m/g) = h£1( iD7pzl':|)’

?

which clearly satisfies the required universal property. By definition, R\E',[F lies in

Ay (py- It remains to show that R = R‘E}W is Noetherian. Since R is complete, it
suffices to show that mg/(m%, p) is finite-dimensional as a vector space over F. It
is most natural to prove the latter using tangent spaces. We refer to the proof of
Lemma 1.4.3, where we shall see how Condition ®,, is used.

The proof of part (b) in [Maz] uses Schlessinger’s representability criterion
(Theorem 1.7.2). Following Kisin, we shall indicate a different proof in Section 2.1.
The following is a preview of Kisin’s proof. Let ﬁd denote the completion of
the group PGL4 over W(F) along its identity section. Then Pﬁd acts on the
functor D‘D,F by conjugation and hence it acts on the formal scheme Spf R“:}[F . The
condition Endgq (V) = IF ensures that this action is free, and the idea is to define

Spt Ry, = Spt Ry, /PGLy. O

1.4 The tangent space

Let Flg] = F[X]/(X?) denote the ring of dual numbers. The set Dy (F[e]) is
naturally isomorphic to Ext%[G](VF, k), as an element of Dy, (F[e]) gives rise to
an extension!

0— Vs — Vg — VF — 0,

where we have identified € - Vg with Vg, and, conversely, any extension of one copy
of Vg by another Vg can be viewed as an F[e]-module, with multiplication by e
identifying the two copies of Vi. In particular, Dy, (F[¢]) is naturally an F-vector
space.

Definition 1.4.1. The F-vector space Dy, (F[e]) is called the Zariski tangent space
of Dy,. (The same terminology will be used for Dy, and other deformation func-
tors.)

Remark 1.4.2. Recall that, for any A € Q/l\rW(F), its (mod p) Zariski tangent space
is the F-vector space ta = Homyy(r)(4,Fle]). Thus, if Dy; is pro-representable,
then the tangent spaces of Dy, and of the universal ring representing Dy, agree.

1By Ext’ we denote the continuous extension classes.
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Lemma 1.4.3. (a) Defining adVg as the G-representation Endp(Vg), there is a
canonical isomorphism

Dy, (Fle]) = H'(G,adVk). (1.4.1)
(b) If G satisfies Condition ®,, then Dy, (F[e]) is a finite-dimensional F-vector
space.
(c) One has dimp DY, (Fle]) = dimg Dy, (Fle]) + d® — h(G, ad V).
Remark 1.4.4. The symbol h?(...) always denotes dimp H(...).

Proof. Part (a) is immediate from the isomorphism Ext]%‘[G] (Vir, Vi) & HY(G, ad V)
proved in Exercise 1.8.4.

We now prove part (b), thereby completing the proof of Proposition 1.3.1(a).
Let G’ = Ker(p), which is an open subgroup of G. The inflation-restriction se-
quence yields the left exact sequence

0 — HY(G/G' adVe) — HY(G,adVi) — (Hom(G',F,) @, adVe) /<.

The term on the left is finite because G/G’ and adVg are finite. The term on the
right is finite because of Condition @, for G. Hence (b) is proved.

To prove part (c), fix a deformation Vi) of V& to Fle]. The set of F[e] bases
of Vg lifting a fixed basis of V is an F-vector space of dimension d?. Let 8’ and
B" be two such lifted bases. Then there is an isomorphism of framed deformations

(VEpe)» 8) = (Vi 87)

if and only if there is an automorphism 1 + e« of Vi), where a € adVy, which
takes 8’ to 8", so that a € adV#®. Thus the fibers of

D" (Vi) — Dz (Viya))
are a principal homogeneous space under adVi/(adVE)C. O

Definition 1.4.5. Let ¢: D’ — D be a natural transformation of functors from
ey r) to Sets. The map ¢ will be called formally smooth if, for any surjection
A— A e Q[tw(]p), the map

D/(A) — D/(A/) XD(A/) D(A)
is surjective.
Essentially the same proof as that of Lemma 1.4.3(c) implies the following:

Corollary 1.4.6. The natural transformation D“:‘,F — D, (Va,B4) — Va4 is for-

mally smooth. Thus, if Ry, is representable, then R‘E/'[F 18 a power series ring over
Ry, of relative dimension d*> — h°(G, ad V).
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Remark 1.4.7. The above corollary says that the singularities of the two local
W (F)-algebras Ry, and R":'/F are in some sense equivalent, provided that Dy, is
representable. Even if Dy, is not representable, there is a sense in which it has
an intrinsic geometry. However, this is best formulated in terms of groupoids;
cf. Section 1.6.

1.5 Presentations of the universal ring Ry,

By Remark 1.4.2 and Lemma 1.4.3 we have shown part (a) of the following result:

Proposition 1.5.1. Suppose that G satisfies Condition ®,, and Ry is representable.
Then:

(a) dimtg,, = h'(G,adVg) =: h and so there is a surjection

e W(F)[[Xla cee 7Xh]] — RV]T"'

(b) For any w as in (a), the minimal number of generators of the ideal Ker 7 is
bounded above by h?(G,adVy). More precisely, given 7, one has a canonical
monomorphism

(Ker7/(p, X1,. .., Xp) Kern)* — H?*(G,adVk),
where, for a vector space V', we denote its dual by V*.

For the proof of (b) we refer to [Maz] or [B61, Thm 2.4]. A similar proof is
given in Lemma 5.2.2.

Corollary 1.5.2. Assume that the hypotheses of Proposition 1.5.1 hold. Then, if
h?(G,adVy) = 0 —in this case, Vi is called unobstructed—, the ring Ry, is smooth
over W (F) of relative dimension h*(G,adVg).

Remarks 1.5.3. (a) If G = Gp g for a number field F' and a finite set of places
S containing all places above p and oo, all of the scarce evidence is in favor
of the following conjecture: if Endpig)(Vr) = F, then Ry, is a complete
intersection and flat over W (FF) and of relative dimension

MG, adVk) — h°(G, adVk) — h?(G, adVr).
For S not containing all places above p, there are counterexamples [BC2].

(b) Let f = > ang™ be a newform of weight k > 2, level N and character w.
Let S be any finite set of places of Q containing the infinite place and all
primes dividing N. Let K be the number field over Q generated by all the a.,.
Then, by work of Eichler, Shimura, Deligne and Serre, for any prime @ of K
one has a semisimple two-dimensional Galois representation

1ot Gosufpy — GL2(Fy)
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over the residue field F, of K at p associated to f in a natural way. Let V,
denote the corresponding continuous representation of G, := G su(e}- The
representation V|, is known to be absolutely irreducible for almost all .

By work of Mazur for kK = 2 and f associated with an elliptic curve, and by
Weston for general f (cf. [Wes]), the following is shown. If & > 3, then V,
(with respect to G,) is unobstructed for almost all primes p of K. If k = 2,
then V|, is unobstructed outside an exceptional set of density zero.

1.6 Groupoids over categories

Universal deformation rings can be very singular at their unique closed point. The
standard way in algebraic geometry to resolve singularities are blow-ups along the
singular locus. If we apply a formal blow-up to (the formal spectrum of) a universal
ring along a subscheme containing its closed point, the resulting (formal) scheme
may have many closed points. Since we deal with universal rings representing a
functor, it is natural to look for other functors whose representing objects realize
this blow-up. This means that we can no longer consider functors on Artin rings
only. An approach, breaking with all traditions in the area, would be to refor-
mulate the whole local theory developed so far in terms of schemes. Functors of
which one hopes that they are representable (by a formal scheme) could then be
described as stacks over the category of schemes. If we want to stay within the
realm of rings —at least in the description of functors— then one has to reformu-
late the theory of stacks in terms of rings. The spectra of these rings should be
thought of as giving coverings of the schemes that one should have in mind. This
has been done successfully by Kisin. Instead of studying (pre-)stacks, which are
categories (of schemes) fibered in groupoids, he considers categories (of rings with
supplementary structures) cofibered in groupoids. While this introduces the right
level of generality to describe resolutions of the functors one is interested in, the
theory is still close to the original theory of functors on ey ().

In the present section we shall give an outline of this, hoping that it will
be useful for the interested reader who wishes to consult Kisin’s work, e.g. [Ki4].
Moreover we shall make use of this in later parts of these lecture notes.

Let us first recall the definition of a groupoid category: a groupoid category is
a category in which all morphisms are isomorphisms. However, it is not required
that between any two objects there is a morphism. There can be many isomorphism
classes —these are also referred to as the connected components of the groupoid,
thinking of a category as a kind of graph. The set of endomorphisms of an object,
which is the same as the set of its automorphisms, is a group under composition.
The neutral element is given by the identity morphism of this object. One can
easily show that the automorphism groups of any two objects which are connected
are (non-canonically) isomorphic.

We shall now, following Kisin [Ki4], reformulate the theory of deformations
of Galois representations in terms of groupoids over categories.
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Fix a base category € which in many applications will be 2L,y ). We consider
a second category § and a functor ©: § — €, and we say that

o 1 € Ob(F) lies above T € Ob(€) if O(n) =T, and

e (n 5 €) € Morg lies above (T ER S) € More if O(a) = f.

Each object T together with the morphism idy forms a subcategory of €. By
F(T) C § we denote the subcategory over this particular subcategory of €.

Definition 1.6.1. The triple (§,¢,0) is a groupoid over € (or, more officially, a
category cofibered in groupoids over €) if the following hold:

(a) For any pair of morphisms 1 = ¢ and n % ¢ in § over the same morphism
T — S in €, there exists a unique morphism & — & in § over idg such that

!

uoa =o'

(b) For any n € Ob(F) and any morphism T 4, §in € with n over T there exists
a morphism 7 = £ in § over f.

In particular, for any T in €, the category §(7') is a groupoid, i.e., a category
in which all morphisms are isomorphisms. It is natural to specify a groupoid by
specifying for any T in € the category in § over T', and for any morphism T % S
in € the class of morphisms above f, and we shall often do so.

Remark 1.6.2. Let ©: § — € be a functor and ©°: §° — €° the induced functor
between the opposite categories. Then © defines a category cofibered in groupoids
over € if and only if ©° defines a category fibered in groupoids over €. The latter
structure is well known in the theory of stacks. This is no accident: in the theory
of stacks, the base category is typically the category of schemes. Now the opposite
category of affine schemes is the category of rings —and we may look at a subclass
of schemes corresponding to a subclass of rings. Since one base category will be the
ring category 2leyy (), it is natural to work with categories cofibered over it. Note
also that stacks have to satisfy some gluing conditions. The corresponding opposite
conditions are not imposed in the present (admittedly very simple) setting.

If for each T' € Ob(€) the isomorphism classes of F(T") form a set, we associate
to the category § over € a functor |§|: € — Sets by sending T to the set of
isomorphism classes of F(7T').

Example 1.6.3. Let € = 2y ). To the representation Vr of G we associate a
groupoid Dy, over € as follows:

(a) For A € Ay (r), the objects of Dy, over A are pairs (Va,t4) in Dy, (A).

(b) A morphism (V4,t4) — (V4s,1ar) over a morphism A — A" in Aeyy(p) is an
isomorphism class

{a: Vi ®4 A" =5 V), an isomorphism | 14 0 a = 14}/(A")*.
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In the terminology now introduced, the functor previously denoted by Dy, would
be the functor |Dys|. For simplicity, we shall often omit the absolute value signs,
if no confusion is likely.

When V& has non-trivial automorphisms, then so do the objects in the cat-
egories Dy, (A). In this situation, the groupoid Dy, captures the geometry of the
deformation theory of V& more accurately than its functor of isomorphism classes.

1.6.1 Representability of a groupoid ®: §F — &€

For nn € Ob(F), define the category 77 (the category under n) as the category whose
objects are morphisms with source 7 and whose morphisms from an object 7 = &

ton % ¢ are morphisms ¢ = ¢ in § such that u o a = o’. (We do not assume
that & and £’ lie over the same object of € and so u may not be an isomorphism.)

Definition 1.6.4. The groupoid § over € is called representable if there is an object
7 in § such that the canonical functor 7 — § is an equivalence of categories.

In the same way as 7, one defines the category T for any T € €. One has a
natural commutative diagram of categories

n—

1

Omn) —

(1.6.1)

@<

—_—

Both 77 and ©(n) are groupoids over € and the top horizontal and left vertical
homomorphisms are homomorphisms of groupoids over €. Because of the axioms
of a groupoid over a category, the left vertical homomorphism is an equivalence of
categories.

—_—

If F is representable, say by 7, the equivalence 77 — ©(n) implies that 7, as
well as ©(n), are well-defined up to canonical isomorphism. One says that ©(n)
represents § over €. Under the same hypothesis, any two objects of F(O(n)) are
canonically isomorphic and there is an isomorphism of functors

Home (T, —) — |3,

so that T represents |§| in the usual set theoretic sense. Conversely, if |§] is rep-
resentable and for any T in € any two isomorphic objects of §(T') are related by
a unique isomorphism, then § is representable.

Remark 1.6.5. The groupoid of Example 1.6.3 is usually not representable. To
have a representability result, one needs to extend it to the category 2y (). This
can be done canonically and is explained in [Ki4, A.7].
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The main reason why, in some circumstances, one needs to introduce the
language of groupoids, is that formation of fiber products is not compatible with
the passage from a groupoid § over € to its associated functor |§|. This is a serious
technical issue, since Definition 2.4.4 of relative representability depends on the
formation of fiber products. We illustrate this with a simple example taken from
[Ki4, A.6].

Following Example 1.6.3, we define the groupoid D‘D,F on € = Ay r) as fol-
lows. An object over A € 2.y () is a triple (Va, 14, 84), where (Va,14) € Dy, (A)
and (4 is an A-basis of V4 mapping under ¢4 to the basis g of V. A morphism
(Vayta,B4) = (Va,ta,Ba) over A — A’ is an isomorphism a: V4 ®4 A’ = Var
taking B4 to Sa/. There is an obvious morphism of groupoids D‘D,[F — Dvy;,.

Consider now the situation when the group G is trivial and fix n = (Va,t4) €
Dy (A) for some A € ey g). Then 77 X p,, Dy, can be identified with quadruples

(VAAs,o: Va @4 A = Vi, Bar), where (V4. Bar) € DY (A') and mor-
phisms over id 4+ are isomorphisms of V}, reducing to the identity of Vg. It follows
that this category is a principal homogeneous space for the formal group obtained
by completing PGL4/W (F) along its identity section. Hence [77x p,, Dy, [(A’) is iso-
morphic to the kernel Ker(PGL;(A") — PGL4(F)). On the other hand |Dy. (A)]
is a singleton and hence the same holds for [7)] xp, | |Dy. |(A").

1.7 Appendix

1.7.1 Schlessinger’s axioms

Definition 1.7.1. Let D: Ry — Sets be a functor such that D(F) is a point.
For any A, A’, A” € Ay (r) with morphisms A" — A and A” — A, we have a map

D(A" x4 A") — D(A") x p(ay D(A"). (1.7.1)
The axioms of Schlessinger in [Sch] are as follows:
(H1) If A” — A is small surjective, then (1.7.1) is surjective.
(H2) If A” — Ais Fle] — T, then (1.7.1) is bijective.
(H3) dimp D(F[e]) is finite.
(H4) If A” — A is small surjective and A’ = A”, then (1.7.1) is bijective.

Note that D(F[e]) carries a natural structure of F-vector space. An epimorph-
ism A” — Ain ey (r) is called small surjective if its kernel is a principal ideal
which is annihilated by m 4.

The following is one of the main theorems of [Sch]:

Theorem 1.7.2 (Schlessinger). If D satisfies (H1) to (H4), then D is pro-represen-
table.
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1.8 Exercises

Exercise 1.8.1. Show that for a profinite group G the following conditions are
equivalent:

(a) For all open subgroups G’ C G the maximal pro-p quotient of G’ is topolog-
ically finitely generated.

(b) For all open subgroups G’ C G the vector space dimp, Homeon (G', F)p) is
finite.

(c) For all open subgroups G’ C G and finite continuous F[G]-modules M one
has dimp H'(G', M) < cc.

Exercise 1.8.2. Give a proof of Proposition 1.3.1 by verifying Schlessinger’s axioms
(see Definition 1.7.1).
Ezercise 1.8.3. Show that the natural transformation Dy, — Dy, is formally
smooth.
Ezercise 1.8.4. Show that Extg (Ve, Vi) = H(G, adVg).
Exercise 1.8.5. Show that the groupoid Dy, of Example 1.6.3 is representable if
Endgg) (Vi) 2 F.
Ezercise 1.8.6. Describe the groupoid corresponding to the functor D‘E}[F . What are
its morphism sets? For G the trivial group, show that W(IF)d with its standard
basis and the canonical homomorphism W(IF)d — 4 represent D‘D,[F.
Exercise 1.8.7. Fill in the details of the remarks following Definition 1.6.4. In
particular, show that if § is representable then Aut(n) = id for all € Ob(F).
Exercise 1.8.8. Let ®': §F — F and ®”: §’ — § be morphisms of categories.
Define §’ x5 §” as the category whose objects over T are triples (7', 1", 0), where
n € Ob(F(T)), n”" € Ob(F"(T)) and 6 is an isomorphism ®'(n') — ®"(n")
over idy, and whose morphisms (7', n”,0) — (¢/,¢”,7) above T — S are pairs
(' o &n’ o &"”) over T — S such that the following diagram in § commutes:

() —2— (&)

[
(I)N(n”) o @//(5//)_

For example, if §' — § is a morphism of groupoids over ¢ and § € §, one
can form {§’§ =3 x5&

Let now S be a scheme. Then using the construction in 1.6.1 we may consider
an S-scheme X as a groupoid X over S-schemes. Suppose that X — Y and
X' — Y are morphisms of S-schemes. Show that there is an isomorphism

o

)N(XYX’%XXYX’.
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Lecture 2

Deformations of
pseudo-representations

We start this lecture by giving a proof of the representability of Dy, under the
hypothesis that Endg(q(Vr) = F, following [Ki7, Lecture III]. Then we turn to
pseudo-representations and their deformations. Pseudo-representations as consid-
ered here were introduced in [Tay1]. Their deformation theory was first studied in
[Nys] and [Rou]. The treatment of the deformation theory here is taken from [Ki7].

The material is not directly needed in relation to the proof of Serre’s conjec-
ture, but it is foundational and deserves further attention. Pseudo-representations
are useful when a representation is not absolutely irreducible. They appeared first
in work of Wiles (in somewhat different form; see Appendix 2.7.2). The present
definition goes back to Taylor [Tayl]. In both instances, they were used in the
construction of p-adic Galois representations by a patching argument which re-
lied on the existence of a sequence f,, of mod p™ modular forms such that
fm = fm+1 mod p™ for all m. More relevant in relation to deformation the-
ory is their use in the construction of p-adic families of Galois representations in
the work of Bellaiche-Chenevier [BC1], Buzzard [Buz] or Coleman-Mazur [CM].
Pseudo-representations also play an important role in Kisin’s work [Ki6] on the
Fontaine-Mazur conjecture. If the dimension is larger than the characteristic,
pseudo-representations do not behave well. We shall not discuss a recent variant
introduced by Chenevier [Che], which works well in all characteristics.

In the appendix to this chapter, we provide a short introduction to formal
schemes and recall the definition of pseudo-representations in the sense of Wiles.

2.1 Quotients by group actions

Quotients by finite (formal) group actions are often representable, and indeed
there are general results which guarantee this in certain situations. In this section

21
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we assume that G satisfies Condition ®,. Our first aim is the proof of Proposi-
tion 1.3.1(b) from Lecture 1, whose proof had been postponed.

Theorem 2.1.1. Suppose Endgiq)(VF) = F. Then Dy, is representable.

Proof. We saw that D‘E‘,F is representable by the formal scheme® Xy, := Spf R‘D,F,
where Ry is in Q/EW(F). Let PGLy denote the formal completion of the W(IF)-
group scheme PGLy along its identity section, i.e., the formal neighborhood of
PGLg4 of the closed point id € PGL4(F). The formal group PGLy acts on the
formal scheme Xy, :

P/G\Ld X Xy, — Xw, (9,2) — gx.

The action can most easily be understood if the schemes involved are considered as
functors on rings A € ™Ay (py: to every matrix g in ﬁd(/l) = Ker(PGL4(A) —
PGL4(F)) and representation pa: G — GLg(A) (given by (Va,ta,84)), one as-
signs gpg~'. This action can be converted into the following equivalence relation:

PTG\Ld x Xv, :; Xvg, (g,x) — (m,gm).

A pair (z,y) € X x X lies in the image of the relation if and only if x and y lie in
the same PGLg-orbit. o

By the hypothesis Endgiq)(VF) = F, the action of PGLg on Xvy; is free. This
implies that the induced map

PGLy x Xy, — Xy, x Xvi, (9,2) — (@, g2) (2.1.1)

is a monomorphism as a functor of points, and thus a closed immersion of formal
schemes; see Exercise 2.8.1.

Constructing Xy, / ﬁ(ﬁ,d as a formal scheme amounts to the same as con-
structing a formal scheme representing the above equivalence relation; indeed,
both schemes parameterize orbits of the action of P/G\Ld. To see that the latter is
possible we need to recall a result from [SGA3].

Recall that él\tw(ﬂ;) is the category of complete local Noetherian W (F)-alge-

o~

bras. Thus, the opposite category (e (r))° is equivalent to the category of formal
Noetherian spectra of such W (F)-algebras with underlying space consisting of one
point and residue field F.

Definition 2.1.2. An equivalence relation R { X in (Q/l\tw(]p))" is a pair of mor-

phisms such that
(a) R — X x X is a closed embedding, and

—

(b) for all T" € (Aeyy(ry)° the subset R(T) C (X x X)(T) is an equivalence

relation.

1See Appendix 2.7.1 for some background on formal schemes.
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—~

We have seen above that, for a group object G in (%yy())° and a free action
G x X — X, the map

GxX *é X, (g,2) — (z, gx)

defines an equivalence relation.

—~

Definition 2.1.3. A flat morphism X — Y in (. (r))° is said to be a quotient of
X by R, and one also writes Y = X/R, if the embedding R — X x X induces an
isomorphism R = X xy X.

Theorem 2.1.4 ([SGA3, VIIb, Thm. 1.4]). Let po,p1: R ——X X be an equivalence

relation in (QltW(F))O such that the first projection p1: R — X is flat. Then the
quotient of X by R exists. It represents the functor on points defined by the equiv-
alence relation. If X = Spf B and R = Spf C, then X/R = Spf A, where

A={be B|[pyb) =pi(b) in C}.

Theorem 2.1.4 applied to the equivalence relation PTG\Ld x Xy i Xy,
completes the proof of Theorem 2.1.1. O

2.2 Pseudo-representations

Absolutely irreducible representations of finite groups are determined by their
trace functions. A result of Carayol [Car| and Mazur [Maz] says that the analogous
result holds also for deformations:

Theorem 2.2.1 (Carayol, Mazur). Suppose that Vi is absolutely irreducible. If A is
in Aewwy and Va, V€ Dy, (A) are deformations such that Tr(o|Va) = Tr(o|V})
for all o € G, then V4 and V), are isomorphic deformations.

Proof. The following proof is due to Carayol. Fix bases for V4 and V) and extend
the resulting representations to A-linear maps

pa, pa: AG] — Ma(A).

We have to show that the bases can be chosen so that pa = p/s.

Let ma be the radical of A € ™Ay ), and I = (a) C A be an ideal such
that maa = 0. By induction on the length of A, we may assume that pg = p/y
modulo I, and write p4 = py + 0, where for o € A[G] the matrix §(c) € My(I)
has trace 0.

As p4 and p/y are multiplicative, we find that, for 1,0, € A[G],

0(0102) = p(o1v)d(02) + 0(01v)p(02). (2.2.1)

If o9 € Ker(p), we have that §(o102) = p(o1)d(o2) for all o1 € A[G]; therefore
Tr(p(o1)d(02)) = 0 for all 01 € A[G]. But by Burnside’s theorem p(F[G]) = My(F)
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as p is absolutely irreducible. Hence, Tr(Xd(o2)) = 0 for any X € My(F), so
6((72) =0.

It follows that 0: My(F) — My(I) & My(F) ®@p I = My(F) is an F-linear
derivation on My(F). Such a derivation is always inner; see e.g. [Wei, Lemma 9.2.1,
Thm. 9.2.11]. Hence there exists U € My(I) such that é(c) = p(o)U — Up(o) and
py=0-=U)pa(1+70). O

The above result gives a clue that in many important cases also the repre-
sentation theory of profinite groups is governed by traces. The idea of pseudo-
representations, introduced by Wiles [Wil] for odd two-dimensional representa-
tions and by Taylor [Tayl] for an arbitrary group, is to try to characterize those
functions on G which are traces and to study deformation theory via deformations
of the trace functions.

Definition 2.2.2. Let R be a (topological) ring. A (continuous) R-valued pseudo-
representation of dimension d, for some d € Ny, is a continuous function T: G — R
with the following properties:

(a) T(id) = d where id € G is the identity element and d! is a non-zero-divisor
of R.

(b) For all g1, 92 € G one has T(g192) = T(g291) (T is central).

(¢) d > 0 is minimal such that the following condition holds. Let Sg1 denote
the symmetric group on d + 1 letters and let sign: Sg41 — {£1} denote its

sign character. Then, for all g1,...,944+1 € G,
Z sign(o) T (g1, - -, ga+1) = 0,
UGSlH,l

where T,,: G¥*! — R is defined as follows. Suppose that o € Sqy; has cycle
decomposition

o= (ign, . ,z-gp) (i&s), . ,i&?) —0y...0,. (2.2.2)

Then To—(gl, ce ,gd+1> = T(gi(ll) . 'gi(rll)) et T(gi(ls) .. .gig‘s)).
Remarks 2.2.3. Let T be a pseudo-representation of G of dimension d.

(a) It is shown in [Rou, §2] that, if condition (c) holds for some d, then it holds
for all d’ > d. It is also shown in [Rou, Prop. 2.4] that conditions (b) and (c)
for d minimal imply T'(id) = d, provided that R is a domain.

(b) The condition that d! is a non-zero-divisor of R is suggested by the work
of Bellaiche and Chenevier [BC1]. In fact, they require that d! be a unit
of R. Being somewhat restrictive, this condition does avoid a number of
pathologies. For instance, we shall make use of it in Lemma 2.3.4. In [BC1,
Footnote 13] it is also observed that the condition d! € R* is needed for
Lemma 2.14, Lemma 4.1 and Theorem 5.1 in the article [Rou].
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(¢) In Taylor’s work [Tayl] he is primarily interested in rings R of characteristic
zero. Then d! is automatically a non-zero-divisor in R.

(d) In the recent preprint [Che], Chenevier replaces the notion of pseudo-rep-
resentation by that of a determinant —a notion defined in [Che]. Its main
advantage is that it requires no condition on d!, and hence it is a good notion
over rings of any characteristic. The preprint [Che] also studies deformations
of such and applies this theory to rigid analytic Galois representation arising
from p-adic families of modular forms.

(e) It is often convenient to consider the R-linear extension T: R[G] — R of a
pseudo-representation. The relations in Definition 2.2.2(c) are then satisfied
for all (g1,...,94+1) € R[G]?F1.

Theorem 2.2.4 (Taylor, Rouquier). (a) If p: G — GL4(R) is a representation,
then Tr p is a pseudo-representation of dimension at most d.

(b) Suppose R is an algebraically closed field® of characteristic Char(R) > d or
Char(R) = 0. Then for any pseudo-representation T of dimension d there
exists a unique semisimple representation p: G — GLg(R) with Trp =T.

(¢) If G is (topologically) finitely generated, then for every integer d > 1 there
is a finite subset S C G, depending on d, such that a pseudo-representation
T: G — R of dimension d is determined by its restriction to S. (Recall that
our hypotheses imply that d! is a non-zero-divisor in R.)

Except for the level of generality of part (b), the above theorem is due to
Taylor; cf. [Tay1]. In op. cit., part (b) is only proved for algebraically closed fields of
characteristic zero. Taylor’s arguments are based on results of Procesi on invariant
theory; see [Pro]. Part (b) as stated is from Rouquier [Rou, §4], who also gives
a direct and self-contained proof of part (a) independent of the results in [Pro].
Below we follow Rouquier.

Proof. We only give the arguments for part (a). We let T = Trp and define
©: My(R) — R as the map

091, gar1) = Y, sign(0)Ty (g1, -, gar)-

0ESqt1

We shall show that © = 0. It suffices to prove this for G = GL4(R) and p = id.
Writing R as a quotient of a domain R’ of characteristic 0, it suffices to prove the

2By [Rou, Thm. 4.2] it is necessary and sufficient to assume that R is a field with trivial
Brauer group. As an example, consider D # K a division algebra over a p-adic field K with
Op a maximal order and G the group of units of Op. Then the reduced trace is a pseudo-
representation G = 0% — Ok C K of dimension d such that d> = [D : K]. However, the
asserted representation in (b) only exists over a splitting field L D K of D. For another hypothesis
under which (b) holds, see Theorem 2.4.1 due to Nyssen and Rouquier.
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result for R’; this case is then easily reduced to that where R is an algebraically
closed field of characteristic 0. This we assume from now on.

Let V = R* and define W = V@ V* = Endy V. Note that © is invariant un-
der the action of S4y1 (since, if one applies T, to the permutation of g1, ..., ga+1
under some § € Sg41, one obtains T¢-1,¢). Hence, if we extend © to a multilinear
map ©: W@+ 5 R it is determined by its values on Sym®! W ¢ W@+ Ag
we are in characteristic zero, a simple argument based on homogeneous polynomi-
als of degree d+ 1 in dim W variables shows that as an R-vector space Sym®™* W
is spanned by the image of the diagonal map

AW — WO s we-- @ w.

Thus it suffices to show that ©(A(w)) = 0 for all w € W. As the semisimple
elements in Autr(V) are Zariski dense in W, it is enough to show ©(A(w)) = 0
for all semisimple w € W. For small values of d, this can be verified explicitly. For
general d, one has the following argument:

Choose a basis {e1,...,eq} of V in which w is diagonal and consider the
action of Z = w3} g  sign(c)o on Wed+D)  where Sqy1 acts by permuting
the factors and w acts as A(w). We claim that Tr= = O(A(w)). Assuming the
claim, we observe that obviously

< 3 sign(a)a> (V®<d+1>) c d/+\1 V=0,

O'ESd+1

and so the proposition follows.

We now prove the claim: suppose that w has diagonal entries A1, ..., A\gq with
respect to ey, ..., eq. The trace of = is then given by
Z <’LU< Z sign(a)a) (ei1 Q- ®eid+1)7 (61'1 Q- ®€id+1)>
1:(i1,...,id)E{l,A..,d}di’l c€Sqt1

= Z sign() Z <w(60(i1) ®"'®60(id+1))’(611 ®"'®eid+1)>’

c€Sq41 ie{l,...,d}a+1

where (—, —) is 1 if both entries are the same and zero otherwise. Thus if we write
o in its cycle decomposition o ...o as in (2.2.2) on page 24, the expression

(oot @@ extias): (o0 ©- i)

is non-zero (and thus equal to 1) exactly if the tuple i is constant on the support
of each of the cycles 0. Moreover on each such support we can choose the value
of i freely. Moreover if (j1,...,Js) denotes the tuple of values on the s supports of
these cycles (cycles may have length one), then w applied to e,(;,) ® - ®e

o(id+1)



2.3. Deformations of pseudo-representations 27

results in multiplication by )\‘;1”‘ s )\‘j‘:‘s‘, where |0y is the length of the cycle.
Summing over all 7 (for fixed o) yields

Tr (wl‘”l) <o T (wlgsl).

This expression clearly agrees with Tr,(w) and so the claim is shown. O

2.3 Deformations of pseudo-representations
Let 77: G — F be a pseudo-representation. For A in 2y ) define
D..(A) = {pseudo—representations Ta: G — A lifting T[F}.

Proposition 2.3.1. Suppose G satisfies Condition ®,. Then D, is pro-representable
by a complete local Noetherian W (FF)-algebra R, .

For an example of a universal pseudo-deformation, see Exercise 2.8.2. We
note that there is no simple expression of the tangent space of the functor D,
similar to that given in Lemma 1.4.3 for Dy, . So interesting results on this can be
found in [Bel].

For the proof of Proposition 2.3.1, we need some preparation:

Definition 2.3.2. For any pseudo-representation T: G — R, define
KerT={heG|VgeG:T(gh)=T(g)}.
If we view T as an R-linear map T': R[G] — R, then we set
KerT = {h € R[G] | Yg € R[G] : T(gh) = 0}.
Lemma 2.3.3. (a) KerT is a closed normal subgroup of G.
(b) KerT is an ideal of R[G].
(¢) If R is finite, then KerT is open in G.

Proof. We leave parts (a) and (b) as exercises. Let us prove (c). For each r € R,
denote U, = {g € G | T(g) = r}. Since T is continuous and R is finite, the U,
form a partition of G by open subsets. Now note that the condition T'(gh) = T'(g)
for all g € G is equivalent to Upgh C Up(y for all g € G. Thus

KerT = () {heG|UhCU,}.
rER

The latter is clearly open in G and this proves (c). |
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Inspired by [Ki7, (2.2.3)], we show the following, where 77 is as in Propo-
sition 2.3.1. For a profinite group G and m € N, we denote by G™ the closed
subgroup generated by {¢™ | g € G}. It is clearly normal in G.

Lemma 2.3.4. Set G' = Ker1p. Then for any A € Uy (g there exists a constant
ma € N such that for all o € D,,(A) one has (G')P"* C Ker7a. In particular, if
H C G’ denotes the closed normal subgroup such that G’ /H is the mazimal pro-p
quotient of G', then Ker T4 contains H.

Proof. For any g € G', h € G and i > 1, one has 74((g — 1)*h) € ma. Taking
g; = (g —1)% and g44+1 = (g — 1)%+1h with all i; > 1 in Definition 2.2.2(c), and
using the centrality of Definition 2.2.2(b), one finds that d! - 74((g — 1)h) € m%
forallg € G', h € G and i > (d+1). Since d! is a non-zero-divisor, we may cancel.
Proceeding by induction yields

Fa((g—1)h) em? forall g€ G, he Gand j > 1and i > (d+ 1)J.

Since A is Artinian, we can find m € N such that 74((g — 1)?"h) = 0 for all
g € G' and h € G. By enlarging m if necessary we also assume that p™A = 0.
In particular, it follows that (p sz) = 0 in A for all i« < p™. But then binomial
expansion yields

2m

p 2m
- 2m, - 2m, - i P
Rl = D0 = Fal(((g = D+ 0P = ) = X Falta = (7)) <o
i=pm™m
where in the last step we use 74((g — 1)*h) = 0 for all i > p™, g € G’ and h € G.
The first part of the lemma follows with m 4 = 2m, since Ker 74 is a closed normal
subgroup of G. For the second part, observe that H is a subgroup of (G")P"*, since
G'/(G)P"* is a finite p-group. Hence, by the first part, H C Ker 7. O

Proof of Proposition 2.3.1. Suppose first that G is finite. Let Rg be the quotient
of W(F)[X, : g € G] by the ideal I generated by the relations X, —d, Xg, — Xy,
for all g, h € G, and the relations

E sign(o) Xgi§1) o o ng'{s) g

ocESqt1

where each o is given in its cycle decomposition as in (2.2.2) on page 24. By the
definition of I, mapping X,u to 7w(g) yields a well-defined homomorphism Rg — F
in Q/EW(F). The completion éz; of Rg at the kernel of this homomorphism is the
wanted universal ring; the corresponding universal deformation of 7y is the induced
map .
7¢: G — Rg, g— gH — Xyp.

Let now G be arbitrary. Write G = lim,_, G /H; for a basis of the identity by

open normal subgroups H;, i € I. By the universality of the (ITGE,TR/HJ, they



2.4. Deforming a representation p and the pseudo-representation Tr p 29

form an inverse system and their inverse limit is the wanted universal deformation
(Ra,7¢). It remains to see that under Condition ®, the ring R¢ is Noetherian.
By the previous lemma, the elements in D, (F[e]) factor via R¢ /(grypm for some
fixed m € N. Condition ®, implies that the group G/(G’)?" is finite, and hence
dimp D, (Fe]) < oo. |

Unlike for the case of deformations of representations, finding an exact for-
mula for dimp D, (F[e]) seems difficult in general. For some recent partial results,
see [Bel].

2.4 Deforming a representation p and the pseudo-
representation Tr p

For absolutely irreducible representations we have the following:

Theorem 2.4.1 (Nyssen-Rouquier). Suppose that G satisfies Condition ®, and
that p: G — GL(VF) is absolutely irreducible. Set 7 = Trp. Then there is an

isomorphism of functors Dy, = Dr. on ey (p) -

This theorem does not require that d! be invertible in R. However, note that
p is given a priori.

The theorem has the following consequences, the first of which is due to
Carayol:

(a) Let A be in Q/l:w(]p) and V4 be a representation over A with reduction Vg
such that Vg is absolutely irreducible. Let Ag C A be the subring generated
by Tr(V4)(G). Then Vy is defined over Ay, i.e., there exists Va, € Dy, (Ao)
such that V4 = Vy, ®4, A: by the above theorem, it suffices to prove the
analogous statement for pseudo-representations. There it is trivial.

(b) Suppose that A € ﬁ:W(F) and 7: G — A is a pseudo-representation such
that 7 mod m4 arises from some p as in the theorem. Then there exists a
representation p: G — GL4(A) whose trace is equal to 7. It is unique up to
isomorphism by Theorem 2.2.1.

(c) Lastly it gives another proof of the representability of the functor Dy, in the
case where Vf is absolutely irreducible.

The situation becomes more involved if the initial residual representation
is no longer absolutely irreducible —which was one of the main reasons for in-
troducing pseudo-representations. Suppose therefore that p: G — GL(Vf) is ar-
bitrary and set 7 = Trp. One still has the canonical morphism of functors
.D‘D/W — D.,—[F, Vi TrVy.
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Let us look at the following concrete example. Let x1, x2: G — F* be char-
acters and c¢q,co € Extl(xg, x1) —or rather ¢; € Z(G, ngfl). Then

x1 c1+Tey
0 X2

is a representation G — GLo(F[T]), i.e., a family of representations over Al. More
naturally, one obtains a family of representations of G over P(Ext'(x2, 1)), the
projectivization of Ext' (2, x1), which all have the pseudo-character x + x2. Note
that the projectivized representation consists of a vector bundle of rank 2 over
P(Ext! (x2, x1)), which carries an action of a finite quotient of G such that, over
any sufficiently small affine Spec R C P(Ext* (2, x1)), the action is isomorphic to
a true representation G — GLa(R).

To fully express the relationship between the deformations of V¢ and those of
the pseudo-representations 7 = Tr Vg, it will be convenient to work with groupoids.
The underlying category will however not be 2.y (r): the point is that, as we have
seen above, the fiber over Vg of the natural transformation D‘D,F — D, is no longer
a single point!

Following Kisin, we consider the category 2Augyy (). Its objects are morphisms
A — B where A is in 2.y ) and B is an A-algebra with no finiteness condition
assumed. Morphisms (A — B) — (A’ — B’) are pairs of homomorphisms A — A’
and B — B’ which yield a commutative diagram

A——B

|

A — B

So, even if A =T, the second entry B can be any F-algebra, e.g. the coordinate
ring of an affine subvariety of P(Ext!(x2, x1)).

Remarks 2.4.2. There are several variants of the category Augyy ).

a e may also consider /u\g . Its objects are pairs (B, A) where A € /\tW F

W 1 ider 2lugyy gy Its ob B, A) where A € 2.y )
and B is an A-algebra which is topologically complete with respect to the
topology defined by maB.

(b) Another natural category to consider is that of pairs (S, A) where S is an
A-scheme —or even the inverse limit category of it, as described in part (a).
The point is that the pro-representing object of a groupoid fibered over
2ugyy (r) may not be an affine scheme. In the example above it is suggested
that this scheme could be projective. Working therefore with schemes instead
of rings, the universal object would still be within the category considered.

(c) For instance, in [Ki4] Kisin works with yet another definition of Augy ).
The definition here emphasizes the underlying ring A in A — B. But for
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other purposes phrasing the deformation problem in such a relative way is
unnecessary.

Definition 2.4.3. Fix a pseudo-representation 77: G' — F. Define a groupoid Rep,,
over Augy ) by

Rep,, (A — B) ={(VB,74) | T4 € Dr(A),
Vg = B? a G-representation, Tr (VB) = TA)}/ >~
Similarly we define ReplT:'TF (A — B) as the groupoid over Augy, ) with
Rep,, (A— B) = {(Vg.Bs,7a) | (VB,74) € Rep,. (A — B),
Bp a B-basis of VB}/ =
Finally we extend D, to a groupoid on 2lugyy, gy by setting
D..(A— B)= D, (A).

We shall indicate in Remark 2.6.3 why it is desirable and useful to study the
functor RepE]F.
We introduce the following notion:

Definition 2.4.4. A morphism ®: § — § of groupoids over € is called relatively
representable if for each n € Ob(F’) the 2-fiber product

gn = ﬁ X5 ‘3
is representable.

Note that if § is representable and ®: § — § is relatively representable,
then § is representable.

Proposition 2.4.5. If G satisfies Condition ®,, then RepEF 18 representable by a
morphism of affine formal schemes Spf REF — Spf R, which is formally of finite
type.

By Theorem 2.2.4(b) we know that RepEF # & only if p > d.
Proof. This is Exercise 2.8.6. (]

Suppose that 7 is the trace of a semisimple representation p, and so that
RepE}F is non-empty. We give an explicit description of RepL:.']F above the point
r =T € D'r]p(]F)
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Proposition 2.4.6. The functor%xDW RepEF 1s representable by the same F-algebra
as the functor on F-algebras which to any such algebra S assigns the set

{p: G — GL4(S) | Trp = 15}

Any such representation p: G — GL4(S) factors via G/(G’)pd, where G’ is the
kernel of p. Furthermore the semisimplification of p is isomorphic to p.

If G is finite, then the ring Ry = RETF ®r,, F representing T X p,_ RepETF 18
given as follows. Let R = W(F)[ X!, | i,j = 1,...,d;g € G]. Then Ry = R/T
for T C R the ideal generated by the elements 2?21 X/, —(9), g € G, together
with the components of the d X d-matrices r(X 9, ... X9 ) —id, where r(g1,...,9gs)
ranges over all relations among the elements of G and X9 = (Xﬁj)i,jzl,...,d-

2.5 Representable subgroupoids of Rep,,

The groupoid Rep,, will not be representable in general. This is for instance the
case in the situation of page 29. In this section we shall investigate a resolution of
a particular subgroupoid of Rep,, which will turn out to be representable. The
material follows [Ki7, § 3.2]. Further details will appear in a planned future version
of [Ki7]. In this section, we require for all A — B in 2lugyy () that the ring B be of
finite type over A.

We consider the following situation: suppose that fori = 1,..., s we are given
pairwise distinct absolutely irreducible representations p;: G — GLg, (F). We set
7 = Y., Trp;. Let Rep.” C Rep;, be the full subgroupoid over Augyy ()
on objects (Vg,Bp,74) € Rep, (A — B) such that the following holds: there
exists an affine cover of Spec B/m4B by Spec B; such that

P1 C1
Vg ®p Bi ~ ZE (2.5.1)
N Cs—1
Ds
with nowhere vanishing extension classes ¢; € Ext! (Pix1,pi) foralli=1,...,s—1.

Remark 2.5.1. The condition on the ¢; has the following consequence: since the p;
are absolutely irreducible and pairwise non-isomorphic, the centralizer of the ma-
trix on the right of (2.5.1) is contained in the set of diagonal matrices which are
scalar along the blocks p;. The non-triviality of ¢; implies that the scalar along
p; is the same as the scalar along p;11. Therefore the centralizer of the repre-
sentation on the left is precisely the set of scalar matrices. One deduces that the
isomorphism in (2.5.1) is unique up to a scalar.

Remark 2.5.2. In (2.5.1) the diagonal blocks of the matrix on the right will always
occur in the order indicated. This will be important in the sequel; see for instance
Corollary 2.6.2.
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Theorem 2.5.3. There exists a locally closed formal subscheme, formally of finite
type, X'2 — Spf R, which represents Rep." on Augyy ().

Idea of proof: The special fiber of RepETF is a scheme of finite type over F. Any
specialization REF — k for k a finite field containing F admits an isomorphism, as
in (2.5.1), for at least one permutation of the p; and without the non-vanishing
requirement for the ¢;. The condition that the chosen order occurs along the di-
agonal defines a closed subscheme of the special fiber Spec R,, ®pr, F. Similarly,
one argues that the additional conditions 0 # [¢;] € Ext'(p;41, p;) under any such
specialization define an open condition. Details will appear in the final version
of [Ki7, §3.2]. |

In Remark 2.5.1 we observed that the action of PGLy on the special fiber

of Rep’TFD is free. It easily follows that the conjugation action of ﬁd on f{;‘;‘
is free. Even though %’Tg is typically not a formal local scheme, the quotient

X=X /Pﬁd still exists. The proof is formally similar to that of Theo-
rem 2.1.1. However, here a theorem on representability of free group actions on
formal schemes over Artin rings is needed. Such a result fits well the framework
of Mumford’s book on geometric invariant theory, but over Artin rings is not to
be found there. An application of Schlessinger’s criterion is not possible, as }CEF, is
typically not local. Nevertheless, the result holds. One proof is due to B. Conrad;
details will appear in the final version of [Ki7] by Kisin.

As was explained to us by Kisin, it is not so straightforward to define the
functor which is represented by X’ . Over X’T']? — Spf R, there is a universal
object represented by this arrow: on 35;? we have a trivial vector bundle with a
basis and a representation

(Vae;g" B0, Px;r'?);

on Spf R, we have the universal pseudo-representation 7%, and the morphism

XY — Spf Ry, is induced from the pseudo-representation Trp/Y on X77. While

ITG\Ld has a well-defined and free action on X’Tﬁ, it does not act on the universal
triple. Only the group C/}id acts on this triple. Since its center acts trivially on the
base X7, the quotient Vi, o /GLyg is a projective bundle over X/ (if X/, is local, it
carries up to isomorphism a unique vector bundle of rank d and one can take it as
the quotient). In the global situation the Picard group of the special fiber of X’
need not be trivial. Then it is not clear whether a vector bundle quotient should
exist. Therefore one cannot expect that the universal object on X! is given by a
vector bundle with a G-action up to isomorphism.

One natural way to bypass the above problem —the final version of [Ki7]
might follow a different approach— is to consider projective bundles equipped
with a G-action instead of vector bundles with a G-action, and to ensure that the
projective action does lift locally to a linear one. This allows one to give a natural

interpretation of X/_ as a formal moduli space as follows.
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oy 12 .
Definition 2.5.4. For p > d = ) d;, denote by Rep’_ Ehe groupoid on Augyy )
which for any (A — B) € Augy, g is the category Rep;, (A — B) whose objects
are tuples (733, PB,s—1,---,PB,1, TA) satisfying the following conditions:

(a) Pg is a projective bundle on Spec B with a continuous action G — Autg(Pg).

(b) Setting Pp s =Pp®p B/maB, the Pg,,i=1,...,s, are projective G-bun-
dles on Spec B/m4 B of rank dy +- - -+d; — 1 and they form a flag of G-stable
projective subbundles P C P2 C ... C Pp,s of Pps.

(¢c) Ta: G — A is a pseudo-representation lifting Tr p.

(d) For any affine open Spec C' C Spec B/my4 over which, disregarding the G-ac-
tion, Pp1 C P2 C ... C Pp,s is isomorphic to Proj of Ch ¢ gdhtd
... C C?, the induced action of G on

@ chttdi jodittdici modulo scalars

i=1,...,s
is conjugate under GLg, (C) X - -+ x GLq, (C) to ®;(p; ®¢ C') modulo scalars.

(e) In the notation of (d), for any i =1, ..., s—1 there is a well-defined extension
class in
EX’GE[G] (piv1 ®r C, p; @ C)

and we assume that its specialization to any closed point Speck — SpecC
is non-trivial.

(f) Let the notation be as in (d) and let Spec B¢ C Spec B denote the pullback
of SpecC' C Spec B/m B —it is affine because myB is nilpotent. Then
under the above hypotheses one can show that

(i) there exists a unique linear representation pc: G — GLg(C) with
det pc = det p and attached projective representation equal to G —
Aute(Pp ®@p C), and

(ii) there exists a unique linear representation pc: G — GL4(Bc¢) with pe
(mod maB¢) = pc, det pc = det 74 and attached projective represen-
tation equal to G — Autp,(Pp ®p Be).

In addition to (a)—(e), we also require that Tr pc = 74 under A — Be.
The definition of morphisms on the so-defined objects is left to the reader.

Remarks 2.5.5. (i) By a projective bundle we mean Proj of a vector bundle. By
a flag of projective bundles we mean that, Zariski locally on the base, there
exists a flag of vector bundles (with all factors being again vector bundles)
to which Proj associates a flag isomorphic to the given flag of projective
bundles.



2.5. Representable subgroupoids of Rep,, 35

(i) As we assume p > d = ). d;, the concept of pseudo-deformation is well
behaved. By our hypotheses, p is multiplicity free in the terminology of
[BC1]. Thus, by [Che, Remark 1.28] any pseudo-representation 74: G — A
for A € ﬁ:w(m and with 74 ® 4 F = Trp has a well-defined determinant
detty4: G — A*.

~—

(iii) It might be necessary to strengthen the condition Endgg(p;) = F, which
follows from the absolute irreducibility of p;, to the condition that the cen-
tralizer of the projective representation attached to p; is F* C GLg, (F).
This notion of projective absolute irreducibility is in general stronger than
absolute irreducibility; cf. Exercise 2.8.8. If there exists a subgroup G; of
G such that p;|g, is absolutely irreducible and such that the d;-torsion of

Hom(G;, F*) is trivial, then p; is projectively absolutely irreducible.

We leave the assertions in (f) as an exercise (perhaps a non-trivial one) to
the reader. Observe however that from the existence and uniqueness of the
local linear representations pc one cannot deduce the existence of a global
linear representation on some vector bundle: the uniqueness of po implies
that the transition maps on the level of vector bundles are unique only up
to units in BE. Thus, one can only glue the local patches if the Picard group
of the special fiber of X/ is trivial.

(iv

~—

The following result will, in some form, be fully explained in the final version
of [KiT].

Theorem 2.5.6. The groupoid Repg.F — D, is representable by the proper formal
scheme X_ over Spf R,.

Sketch of proof: Consider the universal object (Vy:0, B30, px:0) on X'2 together
TR TF TF

with the universal pseudo-representation 7* on Spf R,, and the universal filtration

by sub-vector-bundles

Vx;[E‘@RTFF:‘ZDVS,lD...DVl

on f{’TE ®r,, F given by (2.5.1). These objects carry natural actions by @m C C/}\Ld.

The central action of @m takes us from vector bundles to projective bundles and
a flag of such on the special fiber X/ ® R., I; the center G, acts trivially on X

The free action of P/CE@ on XQ;' yields the object
PV%f"k = (Vx;]l:—‘ ) ‘78—17 ey ‘71) Tu)/(/}id

in Rep,, (X’ — Spf R..). Assuming assertion (ii) in Definition 2.5.4(f), it is not
hard to see that PV, is the universal object for Rep’, over X/ — Spf R, as
follows. Let PVp be in Rep;F(A — B). Choose an affine cover Spec B; of Spec B
such that on each Spec B; we have a representation pc, as in Definition 2.5.4(f)
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for PVp ®p B;. The pe, yield a unique morphism Spec B; — }ﬁ’Tg The induced
morphisms Spec B; — X’ agree on overlaps since by construction they are unique.
This shows the universality of (PVX’Tva/m)' O

2.6 Completions of Rep’’

Proposition 2.6.1. Let x be in RepEF(]F — ) and let Vg be the corresponding
representation of G.

(a) The canonical surjection EE'\M —» Ry, is an isomorphism.
(b) For z € Rep.?(F — F) the surjection from (a) induces an isomorphism

TF

Oxlﬂwx — RVF'

Proof. For part (a) observe that the completion of RepE[F at x can be described
as follows: it is given by the functor on 2,y r) which maps any A € 2y ) to

{(74,84,p4) € Repy (A — A) | pa € Dy, (A)}.

The datum 74 is clearly superfluous and hence this functor is isomorphic to D“:',F.
This proves (a). Part (b) follows from the construction of the rings as quotients
under the same group action. ]

Corollary 2.6.2. Let E/W(F)[1/p] be a finite extension and z: Rep,, — E a
point3 such that the corresponding E-valued pseudo-representation x is absolutely
irreducible. Then the map

Rep,, — Spf R,

s an isomorphism over a formal neighborhood of 7.

Proof. We first observe that z is the only point of Rep/ﬁF lying over 7,. To see
this, suppose that z’ is another such point. Denote by V, and V. the correspond-
ing G-representations. By the properness of Rep’TF over D.., the points x and
x' arise from Og-valued points, which in turn correspond to G-stable lattices
L, C V, and L, C V.. Since V, and Vs are absolutely irreducible with the
same trace, they are isomorphic. We choose an isomorphism so that it induces a
G-homomorphism L, — L, whose reduction modulo me,, is non-zero. The repre-
sentations L, /mo, L, and L, /mo, L, are both of the type described in (2.5.1).
Since the order of the p; is fixed and the extension of pry1 by p; is never trivial
(see Remark 2.5.2), the semisimplification of the image of L,/mo, L, is of the
form p; ® --- @ ps while the semisimplification of the image as a submodule of
L, /mo, Ly is of the form p1 @ - - @ pj. Since the p; are pairwise non-isomorphic,

3Talking about an E-valued point of a formal scheme over W (F) is a slight abuse of notation.
What is meant is the point on the generic fiber attached to the formal scheme; see Appendix 2.7.1.
On this analytic space one considers the completion of the stalk at E.
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and the image is non-trivial, we deduce that the morphism of the reductions is an
isomorphism. It follows that L, = L.

Next, let E;Tm be the completion of R, at 7, and (9/3%\3C be that of %’W at x.
Denote by V& the mod mep, reduction of L,. We need to show that the canonical
homomorphism

_ S o 26.1(b)

Rpep, — Ox o= 0x v = Ry,

in i[: g 1s an isomorphism. This follows from the theorem of Carayol and Mazur
(Theorem 2.2.1), which can easily be adapted to the case of residue field E instead
of F. |

Remark 2.6.3. Suppose p is reducible and is the reduction of a p-adic represen-
tation attached to a modular form f. If one wants to study mod p congruences
of f, then one is interested in all modular forms f’ whose attached p-adic Ga-
lois representation has a mod p reduction p’ whose semisimplification is equal to
the semisimplification of p. From this perspective it is natural to consider the
deformation space of the pseudo-representation 7w = Tr p.

Next, suppose that the p-adic representation V attached to f is absolutely
irreducible; for cusp forms this is a natural hypothesis. Suppose further that V is
residually multiplicity free. Then we can always find a lattice L C V whose mod p
reduction Vg satisfies condition (2.5.1) for a suitable ordering of the irreducible
constituents of p*. The results in this section show that infinitesimally near V
the universal pseudo-representation space, the universal deformation of V& and
the completion of Rep’TIF at V agree. Moreover, the completion of Rep’TlF at Vg is
isomorphic to Ry;.

Suppose now that X7 has large dimension (as a formal scheme). Then we
expect R, to be highly singular at its closed point: each closed point V&’ of Rep'ﬁF
has a different universal ring Ry;; in R, all these rings are glued together at the
special fiber, while irreducible representations p-adic deformations lie in only one
of the spaces Spec Ry;. Thus, Rep’ﬂF appears to be a partial desingularization of a
part of R,,: partial because the rings Ry, which occur for V' in the special fiber
of Rep'TF by completion of Repﬁ.}F at V&' may themselves still be singular. But by
gluing them one expects to create a more difficult singularity. Note that in the par-
ticular case in which the semisimplification of p consists of two (non-isomorphic)
summands only, one can in fact regard Rep’TF as a partial desingularization of all
of R,,. In this case, any p-adic representation V' contains a lattice whose reduction
orders the two irreducible constituents in any given order.

To recapitulate the above, in order to study all mod p congruences of a
residually reducible representation, one needs to consider R,,. However, it is to be
expected that its geometry is highly singular at the closed point. A formal scheme
with a less singular special fiber that sees many congruences is X/, . However, in
general it will not contain all representations with congruent mod p Frobenius
eigenvalue systems. This can only be guaranteed if the p* is a direct sum of
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exactly two absolutely irreducible non-isomorphic representations. An alternative,
but also highly singular candidate that would in its generic fiber see all p-adic
representations which have congruent mod p Frobenius eigenvalue systems is the
versal hull that arises from the deformation functor of p*. Here the reason is
that, at least after enlarging the coefficient field, any p-adic representation V' with
residually reducible mod p reduction contains a lattice whose mod p reduction is
semisimple.

A second reason for choosing Rep’m instead of D, is that the former groupoid
allows it to impose local conditions quite easily in the case where G is the absolute
Galois group of a global field. This can be done as in the case of Dy;, which we
shall discuss in the following three sections. For D, it is perhaps slightly more
difficult to impose and study local conditions.

2.7 Appendix

2.7.1 Formal schemes

In this appendix we recall the definition of a Noetherian formal scheme. In the
following, we fix a Noetherian ring R and an ideal a of R. We assume that R is
a-adically complete, i.e., that the canonical homomorphism

R — Ry =limR/a"

to the a-adic completion of R is an isomorphism.
We define a topological space Spf R (with respect to a), which will soon also
be given a structure sheaf:

e A prime ideal p of R is called open (with respect to a) if p contains a.

e The underlying set of the topological space Spf R consists of the open prime
ideals of R, so that it is in bijection with Spec R/a.

e The topology on Spf R is the topology induced from the bijection between
Spf R and Spec R/a.

For instance, if R € 2y () and a = mp is the maximal ideal of R, then Spf R
consists of a single point.

To define a structure sheaf on Spf R, let us recall the Zariski topology on
Spec R/a: for f € R denote by f its image in R := R/a. Define D(f) as the set of
prime ideals p of R such that f is non-zero at p. This set is in bijection with the
set of open prime ideals p of R at which f is non-zero (under reduction). The sets

D(f) define a basis for the topology on Spf.
Now, for f € R define

R(f~) =lim R[f 1) /a"



2.7. Appendix 39

It is not difficult to verify that the assignment D(f) ~ R(f~!) defines a sheaf
on Spf R. (The main task is to verify the sheaf property by coverings of an open
subset D(f) by sets D(f;).)

Let us see that the sheaf defined above is locally ringed, i.e., that its stalks
are local rings. Suppose for this that z € Spf R corresponds to the open ideal
p = p, of R. Then the stalk at z is

O, = lim R(f™").
z€D(f)

It is a good exercise to show that O, is a local ring with maximal ideal pO,. (To
see the latter one needs that p be finitely generated, which is true in our case since
R is Noetherian.)

Definition 2.7.1. The formal scheme Spf R of R (with respect to a) is the locally
ringed space (X, Ox ) where X = Spec R/a as a topological space and the structure
sheaf Oy is defined by Ox (D(f)) = R{f!), for all f € R.

We ignore all subtleties necessary for the definition of non-Noetherian formal
schemes.

Example 2.7.2. Let X = PGLy4/W (F). Its affine coordinate ring consists of the set
of homogeneous rational functions of degree zero in the ring

R=W(F)[X;; det((X;;)"") [i,5=1,....d].

Consider the morphism mq: R — F, X, ; — §; ; corresponding to the identity ele-
ment of PGL4(F). The completion of PGL, along the kernel of 7iq is a Noetherian

affine formal scheme, denoted by ITG\Ld in the proof of Theorem 2.1.1.

Definition 2.7.3. A Noetherian formal scheme is a locally topologically ringed space
(X, Ox) such that each point x € X admits an open neighborhood U such that
(U,Ox|v) is isomorphic to an affine formal scheme Spf R, as defined above.

Morphisms of formal schemes are morphisms of topologically ringed spaces.
So a morphism from (X, Ox) to (Y,Oy) is a pair (f, f#) where f: X — Y is a
morphism of topological spaces and f#: Oy — f,Ox is a continuous homomorph-
ism of sheaves, i.e., locally such a homomorphism is given as a ring homomorphism
A — B mapping a power of the defining ideal a of A into the defining ideal b C B.

A particular construction of a formal scheme is the following. Let X be a
scheme and Z C Ox be an ideal sheaf. Then the completion of X along 7 is a
formal scheme whose underlying topological space is the closed subscheme Z of
X defined by Z. On an affine cover of Z one applies the construction indicated
in page 38, and then one glues the so obtained formal affine schemes. We write
X for it, or X7 if the need arises to indicate the ideal sheaf. A formal scheme
constructed in this way is called algebraizable.
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Example 2.7.4. Let R be in ﬁ:W(F). Consider the closed immersion A — AL

obtained by pulling back Al along SpecF — Spec R. Let A r be the formal scheme
obtained as completion along this closed immersion. Its underlying topological
space is Ap. However, its structure sheaf can be quite enormous. For instance, its
ring of global sections is R(z) = lim R[z]/m}[x]. To describe the latter ring, define
ht(r) = max{i € N | r ¢ m%}. Then R(z) is the subring of R[[z]] of series ) r;z?
such that ht(r;) — oo for i — co.

Example 2.7.5. Let R be in ﬁ:W(F) and consider the projective scheme P}, =2
P}, xzSpec R over Spec R. The maximal ideal of R defines an ideal sheaf on Spec R
and via pullback an ideal sheaf on ]P’}%. The completion of P}, along this pullback is
a formal scheme with a natural homomorphism to Spf R. It is the formal projective
line over Spf R. It can be obtained by gluing two copies of A from the previous
example along G, r. Carry out the construction in detail to make sure that you
fully understand the corresponding formal scheme and the morphism of formal
schemes.

The generic fiber of a formal scheme over W (FF)

Given a formal scheme X with a morphism to Spf W (IF), one can, following Berth-
elot, associate a rigid space over W(F)[1/p] to it. The detailed construction can

be found in [de], §7]. Let us give the idea for Spf R with R € ﬁ:W(F). Suppose
first that R = W (F)[[X4,..., X}]]. Then

W(E)[1/p{ Xy, ..., X} € W(E)[Xy,...., Xi]] @w (e W(F)[1/p]
c (WIE)[1/pDI[X1, - -, Xil],

where on the left we have the Tate algebra over W( )[1/p], i.e., the ring of those
power series which converge on the closed disc OF of radius one. The ring in the
middle consists of power series whose coefﬁmentb have uniformly bounded norm.
These converge on the “open” unit disc of dimension k of radius one, i.e., on

(?)ép:{(xh...,xk)e(’)(’ép | Ja;| <1 fori=1,...,k}.

It is a rigid analytic space. The affinoid discs of radius 1 — % around 0 form an
admissible cover.
A general R € .y () can be written as

R=WE)[Xy,. .., Xe]l/(fr,- -, fn)-

Then the zero locus of the functions f;, 7 = 1,...,m, defines a rigid analytic
subspace of the open unit disc. This will be the rigid analytic space (Spf R)"&

associated to Spf R. As a next example, one could work out the case of Py and

[e]
show that the associated rigid analytic space is the projective line over O{EP.
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Functors on formal schemes

Representability of functors is also an important question for formal schemes.
Schlessinger’s representability criterion (Theorem 1.7.2) —or the theorem of Gro-
thendieck behind it— can be regarded as a theorem on the representability of
formal schemes: Schlessinger’s criterion studies the pro-representability of a co-
variant functor 2.y ) — Sets by an object in Q/CW(F).

Formally passing to opposite categories, we obtain a functor from (Ueyy (g))°
to Sets”. The category (2. (r))° is the category of formal Artin schemes on one
point over Spf W (F) with residue field Spf F. In this sense, Schlessinger’s criterion
provides necessary and sufficient conditions for a functor on such formal Artin

—

schemes (to Sets) to be representable by a Noetherian formal scheme in (e (g))°.

2.7.2 Pseudo-representations according to Wiles

The first occurrence of pseudo-representations in the theory of Galois representa-
tions was in the work of Wiles [Wil] for 2-dimensional odd Galois representations
of the absolute Galois group of a number field. His definition appears to be differ-
ent from Definition 2.2.2. In the presence of a complex conjugation whose image
is ((1) _(1) ), Wiles’ definition can easily seen to be equivalent to Definition 2.2.2 for
d=2.

Definition 2.7.6. A pseudo-representation in the sense of Wiles consists of contin-
uous functions a,d: G — R and z: G x G — R such that for all g,¢’,h,h/ € G
one has

(a) a(gh) = a(g) +a(h) + z(g,h), d(gh)=d(g) +d(h) + z(h,g),
z(gh, g'W') = a(g)a(h)z(h,g') + a(h')d(h)z(g,9") + a(g)d(g")z(h, k')
+d(h)d(g")z(g, ).
(b) a(1) =d(1) =1, z(1,h) = x(g,1) =1 for all g,h € G.
(c) z(g,h)z(g", 1) = z(g,h")z(g", h).

Proposition 2.7.7. Suppose that p: G — GLa(R), g — (ng)) 283) is a continuous

representation. Then

(a) (a,d,z(g,h) =b(g)c(h)) forms a pseudo-representation in the sense of Wiles.

b) If there exists ¢ € G such that p(c) = (§ _V), then the pseudo-representation
0 -1
from (a) depends only on the trace of p, because

alg) = %(Tr p(g) — Tr p(ge)),

d(g) = %(Tr p(g) + Tr p(ge)),
z(h,g) = a(gh) — a(g)a(h).
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Note that part (a) is in fact the motivation for the axioms of a pseudo-
representation in the sense of Wiles. They simply arise from the rules for multi-
plying two matrices.

2.8 Exercises

Ezercise 2.8.1.  (a) Show that ITG\Ld(A) = Ker(PGL4(A) — PGLg4(F)) for all
Ae Q[tW(]F) —cf. Example 2.7.2.

(b) Verify that the morphism (2.1.1) on page 22 is a closed immersion by using
the following criterion (which is actually not hard to prove): a morphism of
affine formal schemes Spf A = X — Y = Spf B is a closed immersion if and
only if it is a monomorphism (of functors); cf. [SGA3, VIIA.1.3].

(¢c) Verify that the quotient constructed in the proof of Theorem 2.1.1 does
indeed represent Ry;.

Ezercise 2.8.2. Let p > 2, let G = Z, considered as an additive profinite group
and let 77: G — F, g — 2 be the trivial 2-dimensional pseudo-representation.

(a) Show that the tangent space of D, is at most 2-dimensional. (Hint: Deduce
from condition (b) of Definition 2.2.2 for d = 2 that any 7 € D, (F[e]) is
determined by its values on 1 and 2; use the continuity of 79.)

(b) Consider p: Z, — GLa(W (F)[[X,Y]]), 2 — ('3 ﬁif )z‘ By studying Tr(p),
show that W (F)[[X,Y]] is a quotient of the universal pseudo-representation
ring for 7y.

(c) Prove that Tr(p) is the universal pseudo-deformation of 7.

(d) Prove that p is the universal deformation of p := p mod (X,Y’) —despite
the fact that the representability criterion of Proposition 1.3.1 fails

Ezercise 2.8.3 ([Ki6, §1.4]). (a) Give an example where Vf is not absolutely ir-
reducible and there exist non-isomorphic deformations Va,V) € Dy, (A)
with the same traces. (Hint: Consider two characters x1,x2: G — F* with
dimp Ext!(x2,x1) > 1.)

(b) Show that if x1,x2: G — F* are distinct characters such that Eth(Xg, X1)
is 1-dimensional and Vg is a non-trivial extension of x; by x2, then the
analogue of Carayol’s theorem holds for Vg: two deformations in Dy, (A) are
non-isomorphic if and only if their traces are different.

Ezercise 2.8.4. Show that if ®: §F — § is a relatively representable morphism of
groupoids over €, and §’ is representable, then so is §.

Exercise 2.8.5. A morphism of groupoids ®: § — § over € is formally smooth
if the induced morphism of functors |®|: |§| — |§'| is formally smooth, i.e., if for
any surjective morphism 7" — S in €, the map

[B1(T) — B1(S) x15719) F'(T)
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is surjective. Show that ®: §F — §F is formally smooth if and only if for every
n € § the morphism |§,| — || is formally smooth.

Ezercise 2.8.6. Prove Proposition 2.4.5. (Strategy: To establish relative represen-
tability, fix Ag € Aeyy(r), Bo some A-algebra and 79: G — Ag a pseudo-represen-
tation lifting 7w. This defines an element 7 in D, (A9 — Bp). Describe the groupoid
RepEW]. Show that all representations described by it are representations of a fixed
finite quotient G of the originally given group G —the quotient depends on 7. It
suffices to consider the case By = Agp. Then write down the universal object for
G in a way similar to the proof of Proposition 2.3.1 or Proposition 1.3.1(a). The
wanted formal scheme is obtained by an inverse limit of such situations. To see that
the morphism is of finite type, it suffices to consider the case Ay = By = R/ m%ﬁ )

Ezercise 2.8.7.  (a) Show that for A € .y (r) one has Al = 1@1 and P =~ E/Dg
as locally ringed topological spaces.

(b) Work out all details in Examples 2.7.4 and 2.7.5.

Exercise 2.8.8. Let p be the characteristic of an algebraically closed field k. Fix
n > 4 prime to p and denote by Do, the dihedral group of order 2n. Consider the
representation p: Do, — GLa(k) sending a generator of the rotations in Da,, to

¢ o
0¢t
that p is absolutely irreducible but not projectively absolutely irreducible.

) for ¢ € k a primitive n-th root of unity and a reflection to ( _{ ). Show
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Lecture 3

Deformations at places not
above p and ordinary
deformations

The material on generic fibers is from [Ki4, §2.3]. The results on deformations at
¢ # p can either be found in the lecture notes [Pil], in [KW2, §3.3] or in [Ki4, §2.6].
For the last section on ordinary deformations we refer to [Ki5, §2.4] or [KW2, §3.2].

In the appendix to this chapter we recall various topics used in the main
body. We recall the canonical subgroups of the absolute Galois group of a local
field, we present basic results on Galois cohomology, we give a short introduction
to Weil-Deligne representations and we provide some basic results on finite flat
group schemes.

3.1 The generic fiber of a deformation functor

A deformation functor D may have difficult singularities at its closed point. If
the functor is representable, this means that the corresponding universal ring R
is highly singular at its maximal ideal. However, in many concrete and impor-
tant situations it turns out that the generic fiber of the formal scheme Spf R'®
associated with R (see Appendix 2.7.1) has no singularity or at most very mild
singularities. Moreover, in the cases we have in mind, closed points on the generic
fiber are of utmost interest: a closed point of Spf R'® is a W (F)-algebra homo-
morphism R — E for some finite extension E of W(F)[1/p]. Thus if R = R‘E',F7
as in Lecture 1, such points are precisely the p-adic representations G — GL4(FE)
which possess a conjugate G — GL4(Og) whose mod mp,-reduction is p. A sim-
ilar interpretation holds for the closed points of (Spf Ryz)"e. Using functors on
Artin rings (over finite extensions of W[1/p]), one cannot recover Spf R"8. How-
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ever, given any closed point £ on Spf R'®, starting from D one can construct such
a functor D, which describes the infinitesimal neighborhood of £ on the generic
fiber. Moreover, in many concrete examples, this functor can be easily written
down explicitly; cf. Theorem 3.1.2. In particular, this often gives a simple way to
compute the tangent space at such a point, e.g. Remark 3.1.3, and to check for
smoothness. Let me finish this introduction by giving one example why it should
be simpler to work on the generic fiber. Suppose G is a finite group. Then the
representation theory of G over a field of characteristic zero, as is any finite exten-
sion of Q, is completely dominated by Wedderburn’s theorem. It says that the
abelian category of finite-dimensional representations is semisimple. On the other
hand, if p divides the order of G, then the category of finite A[G]-modules for any
finite Z,-algebra is a rather complicated object.

The above observations regarding the generic fiber have been exploited cru-
cially by Kisin in several instances, e.g. [Ki4]. In this section, we briefly recall
Kisin’s constructions and some basic results. We shall consistently work with
groupoids.

Groupoids for closed points on the generic fiber

Let E be a finite extension of W (F)[1/p] with ring of integers Og. Define A, g as
the category of finite, local W (F)[1/p]-algebras B with residue field E. Since B is
a finite W(F)[1/p]-module, the residue homomorphism 7: B — E is canonically
split! and thus B is an E-algebra in a canonical way.

For B € 2. denote by Intp the category of finite Og-subalgebras A C B
such that A[1/p] = B. The morphisms in Intp are the natural inclusions. The cat-
egory Int g is ordered by inclusion and filtering, i.e., any two objects are contained
in a third one. For the (filtered) direct limit of the A € Intp one obtains

: -1
A;%B A s (OE)
The limit is Eken in the category of rings.
Define 2.y (r),0,, as the category of W (IF)-algebra homomorphisms A — Op,

where A lies in ey gy, as A[1/p] need not be Artinian. In particular, Intz may

—

be regarded as a subcategory of ™y (r), 0, for all B € 2, . If F' is totally ramified
over W (IF)[1/p], so that O has residue field IF, then the last assertion is true in the
obvious sense. Otherwise one proceeds as follows. Denote by 7o, : O — O /me,
the homomorphism to the residue field, which is a finite extension of F and define
O’ C Og as the inverse image wé}lg (F). Then, given (A C B) € Intg, the pair

(AN7T=1(0’) C B) lies in ﬁ:w(moE-

ILacking a reference, here is an indication of proof. The key is that E is algebraic over
W (F)[1/p]; so, for x € E, consider its minimal polynomial f over the other field. Pick an arbitrary
lift to B. Use the Newton method to find the unique lift which is a root of f. This defines a
canonical lift.
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Let § be a groupoid over 2y (). Extend it canonically to ﬁ:W(F) (so that
F has some continuity property with regard to inverse limits). Fix £ € F(Og) and

define a groupoid on Ay ()0, by
S (A5 Op) = {n € F(A) | n — & lies over A 5 O}

for (A S Op) € ﬁ:W(F),OE, i.e., we consider deformations of £ to objects A — Og
with A still in ﬁ;W(F). This groupoid gives rise to a groupoid over 2., again
denoted §(¢), by setting

S©(B) = lim F)(A)

€lntp
for B € A, .

Lemma 3.1.1. Suppose § is pro-represented by a complete local W (F)-algebra R
and § is given by a: R — Op. Then the groupoid §¢) on U, is pro-represented by
the complete local W (IF)[1/p]-algebra Re obtained by completing R @w ) E along
a® E
It =Ker(R@wm E ———5 E) .
Proof. When discussing representability of groupoids, we observed that a groupoid
is representable if and only if isomorphic objects over the identity are isomorphic
via a unique isomorphism and the functor |§| is representable (see the comments

below Definition 1.6.4). Using this fact, the lemma is a simple exercise left to the
reader. O

Application to the generic fiber of Dy, and D‘D,F

To see a first example for the usefulness of §(¢), we consider the case § = D":',]F (or
§ = Dy;). We define two groupoids related to £ = (Vo,, Bo,) € Dy, (Og). Set
Ve = Vo, ®o, E, which is a continuous representation of G, and the basis So,
canonically extends to a basis 3¢ of V;. Define Dy, and D‘D/g as groupoids on 2, g
as follows. For any B € ., let Dy, (B) denote the set of deformations of Vg to a
free B-module Vg with a continuous G g-action. Similarly, let D‘D,5 (B) denote the
set of deformations of (Vg, B¢) to a free B-module Vi with a continuous G g-action
together with a choice of basis g lifting S¢.

Theorem 3.1.2. There are natural isomorphisms of groupoids over 2, g
DV]F,(&) — DV{ a/nd D‘D/F7(§) — D‘D/£

Proof. We sketch the proof in the first case (in fact, we shall only sketch the proof

for the functors associated to the groupoids). We begin by defining the natural

transformation. Let B be in %, z. Then an element in Dy, (¢)(B) is an element in
lim  Dyg)(A),

A€Intp
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where in turn an element of D(¢)(A) is a continuous G g-representation on a free
A-module V4 together with an isomorphism V4 ®4 O = Vo, under the homo-
morphism A — Op for A € Intp. So an element of Dy, (¢)(B) is a direct system
of (Va)aeint, of such. We have observed earlier that h*mAehltB A=7"Y0Og) for
7: B — E the structure map of B. Hence (liL)nAelntB VA) @r-1(0) B defines an
element in Dy, (B).

To prove surjectivity, suppose Vg € Dy, (B). Since V¢ arises from Vo, via
— ®oy F, the representation Vp contains a natural subrepresentation V;-1(0 ) on
a free finitely generated m~!(Op)-module. Since the A € Intp exhaust 7~ 1(Op)
and since the action of G is continuous, and B is Artinian, we can find A €
Intp and a subrepresentation Vi C Vi-1(0,) which is free as an A-module and
with a canonical homomorphism onto Vi, . This completes the proof of essential
surjectivity. The proof of injectivity is left as an exercise; see [Ki4, (2.3.5)]. O

Remark 3.1.3. One has the isomorphism Dy, (E[e]) = H*(G, ad V) for the tangent
space of Dy, ¢, i.e., for that of Spec Ry;[1/p] at &.
3.2 Weil-Deligne representations

Let F be a finite extension of QQ; with uniformizer m and residue field k. Set
q = #k. Consider the diagram

1 Ip Gr 7= Gal(k/k) — 1
1 Ip We ° 7 = (Frobk) —1

defining the Weil group Wg, where the bottom row is the pullback of the top row
along the inclusion on the right. We regard n as a homomorphism Wr — Z and
fix an inverse image 0 € Wr of 1 € Z (where 1 is identified with Froby).

Consider a compatible system ?y/7 of p-power roots of w. This induces an
isomorphism from Z, to the Galois group of |J,, F((pn, *v/m) over U, F'((pn)-
The action of G on this copy of Z, is via the cyclotomic character and whence
we write Z,(1). The action of Ir on this compatible system defines a surjective
G p-equivariant homomorphism

tpi IF — Zp(l)

From the above and standard results about tame ramification of local fields one
deduces the isomorphism

(Gr)P = Z,(1) X Z,

for the pro-p completion of G'r with the Z, on the right being the pro-p completion
of Z = Gal(k/k). More explicitly, one can find ¢ € Z,(1) and s € (Gr)P mapping
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to Frobenius in Z,, such that (é;)p is the pro-p-completion of
(s,t]sts™! =19). (3.2.1)

Let E/Q, be a finite extension and p a continuous representation of G on
a finite-dimensional E-vector space V.

Theorem 3.2.1 (Grothendieck). There exists a unique nilpotent N € End(V), the
logarithm of monodromy, and a finite index subgroup Iy of I'r such that, for all
g€ Il7

p(g) = exp(ty(g)N).

One can verify that for g € I'r and n € Z one has p'(c"g)N = ¢"Np/'(c"g).

Proof. We indicate the construction of N. By continuity of p, one can find a free
Og-submodule A C V with V' = A[1/p] which is preserved under Gg. Let F’ O F
be the fixed field of the kernel of the representation Gp — GL4(A/2pA) induced
from p. The kernel of GLg(A) — GLg(A/2pA) is a pro-p group. Thus the action
of Gp/ on V is via its pro-p completion. Denote by A, and A; the matrices of the
images of s,t from (3.2.1) for the field F’. The relation sts~! = ¢4 implies that A,
and (A;)? have the same eigenvalues. Thus, the finite set of eigenvalues is invariant
under A — A7, and so its elements must be roots of unity. Since Z, — Z,/2pZ,
is injective on roots of unity, all eigenvalues of A; must be one. Define N as the
logarithm of the nilpotent endomorphism A; — idy. Then the assertion of the
theorem holds for Iy = Ip. O

The above result yields immediately the following bijection.

Corollary 3.2.2. There is a bijection between isomorphism classes of representa-
tions p: Gr — GL4(Q,) and isomorphism classes of pairs (p’, N) (Weil-Deligne
representations; cf. Appendiz 3.9.3) such that

(a) p': Wp — GL4(Q,) is a continuous representation with the discrete topology

on Q,;

(b) N € My(Q,) is nilpotent and satisfies p'(c™g)N = ¢q™Np'(c™g) for all
g€ lp andm € Z;
(c) p'(o) is bounded (see Appendizx 3.9.3).

The bijection sets the pair (p', N) in correspondence with p if and only if for all
m € Z and g € Ir one has

p(c™g) =p'(c™g) exp (t,(g)N).
Remark 3.2.3.  (a) By the continuity of p’, it is clear that p/(Ir) is finite.

(b) The representation p’ depends on the choice of o. Its restriction to Ir does
(obviously) not.
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Definition 3.2.4. Given p, we call the pair (piIF,N) its inertial WD-type.
Corollary 3.2.5. If d = 2, then either

(a) N =0 (this happens if and only if p(Ir) is finite; note that in this case p is
semisimple), or

(b) N has rank 1. This happens if and only if p(Ir) is infinite. Then p is a
non-split extension of some character \: Ggp — E* by \(1), the twist of A
by the cyclotomic character; cf. Corollary 3.9.6.

Definition 3.2.6. If V has dimension 2 and N # 0, we call V' a representation of
(twisted) Steinberg type.

Let now R be in il\to for O the ring of integers of a finite ramified extension
of W(F)[1/p]. Let Vg be a free finitely generated R-module carrying a continuous
R-linear action by Gr. Let 0 € G be as above. Denote by Vg1, the represen-
tation Vg ®g R[1/p].

Theorem 3.2.7. There exists a unique nilpotent N € End(Vgpi/p) and a finite
index subgroup Iy of Ir such that, for all g € I,

p(g) = exp (tp(9)N).
The assignment
p': Wrp — GL4(Vg{i/p), 0"g — plo"g) exp(—t,(g)N)

forn € Z and g € Ir defines a continuous representation of Wg where we regard
VR(1/p) a8 a topological vector space with the discrete topology; in particular, P (Ir)
1s finite.

Proof. The argument is basically the same as that for the proof of Theorem 3.2.1.
Define F’ as the fixed field of the kernel of Gp — GL4(R[1/p]/2pR[1/p]). One
verifies that p(¢) —id modulo the nilradical of R[1/p] is nilpotent for ¢ any generator
of Ir/. But then p(t) — id itself is nilpotent. Define, as before, N = log(p(t)) and
L =1Ip. O

Corollary 3.2.8. Suppose Spec R[1/p] is geometrically irreducible over W (IF)[1/p].
Let x,y € X = Spec R[1/p| be closed geometric points. Let p, and p, denote the
representations on V, and V, obtained from Vg by base change. Then pl, and p;
are isomorphic as representations of Ip.

Another way to paraphrase the corollary is to say that on geometrically
irreducible components of (Spf R)"® the representation p| 1, 18 constant. This result
will be applied in Theorem 3.3.1 to a universal deformation ring.
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Proof. By the construction of (¢’, N) in the previous theorem, the representation
(pz)’ of the specialization at x (or y) is the specialization of the representation
p' for R[1/p]. (It may however happen that N for p is non-zero while N, for p,
it is zero.) Hence it suffices to consider the representation p’. As the image of
Ir under p' is finite, we may regard p’ as a representation of the finite group
G =1Ip/Ker(p'|1;).

Since the nilradical of R[1/p] is contained in the kernels of the specializations
at z and y, we may assume that R[1/p] is reduced and hence a domain. Let m
be the exponent of G. Let E’ be the extension of W[1/p] obtained by adjoining
all m-th roots of unity, and let R’ = R[1/p] ®w1/p E'. Then R’ is an E’-algebra
and by geometric irreducibility it is still an integral domain. We need to show
that, for any two homomorphisms z,y: R’ — @p, the specializations pi, and p),
of p': G — GLg4(R') are isomorphic. By the choice of E’ and ordinary character
theory for representations of finite groups, it suffices to show that p/, and p; have
the same traces.

Now the FE’-algebra structure of R’ is inherited by all specializations. But
then it is obvious that under specialization the traces of p! and p; will be the
same. (]

Example 3.2.9. The following example shows that geometric irreducibility is nec-
essary in the above corollary. Suppose that £ = 1 (mod p) and let F' be Q. By
local class field theory, the abelianization G3P has a tamely ramified quotient iso-
morphic to F}. Since £ = 1 (mod p), it has a quotient of order p. Hence there is
a surjective homomorphism 7: Ggp — Z/(p), g — ©(g) such that the fixed field of
its kernel is totally and tamely ramified. Let ¢,(X) = (X? —1)/(X —1). Consider
the representation

The ring R = W(F)[X]/(¢p(1+X))[1/p] = Q,((p) is not geometrically irreducible
over Q. In fact, one has p — 1 different embeddings Q(¢,) < Q, over Q,. Clearly
each embedding gives rise to a different representation of Ir on GLl(@p).

3.3 Deformation rings for 2-dimensional residual
representations of Gy and their generic fiber

We continue to denote by F' a finite extension of Q; for some ¢ # p. Let Vg be
a F[GF]-module on which Gr acts continuously. let O be the ring of integers
of a finite extension of W (F)[1/p], and let ¢»: Gp — O* be a character whose
reduction modulo my agrees with det V.
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We define subgroupoids D#}F C Dy, and D&’D C D‘D,F over Ay ) by

DY, (A) = {(Va,ta) € De(A) | det (Va) = ¥},
D7(A) = {(Va,1a, Ba) € DE(A) | det(Va) = ¥},

for A € Ay r). By showing that these functors are relatively representable
as subfunctors, one deduces that D%’D is pro-representable (by R%}[;D) and, if
Endg(c)(VF) = F, then also D‘de is pro-representable (by R?}};D).

Let (p’, N) denote the Weil-Deligne representation attached to pV[;D by Theo-
rem 3.2.7 and assume that O contains all p™-th roots of unity if p™ is the maximal
p-power divisor of the exponent of the finite group p'(Ir) (so that Corollary 3.2.8
is applicable). The following is the main theorem concerning D‘d/’F’D.

Theorem 3.3.1. The following hold (where component always means of the generic

fiber):

(a) The generic fiber (Spf .R;ﬁ%;m)rig is the union of finitely many smooth compo-
nents of dimension 3.

(b) The restriction of p’IF to any component is constant (in the sense of Corol-
lary 3.2.8).

(¢) The components are in bijection with the inertial WD-types which arise from
p-adic representations of Gg that possess a conjugate reducing to p.

(d) There is at most one component, which we call C, whose inertial WD-type
has non-trivial monodromy (at some point). This component occurs if and
only if Vg is an extension of a mod p character A by A(1).

(e) There is at most one component C). whose inertial WD-type is of the form
(vid, 0) for some character . This component occurs if and only if a twist
of Vi is unramified.

(f) The only generic components which can possibly intersect are Cn and CY)..

(g) Spf Rl‘ljﬂ;m s covered by Spt R; for domains R; which are in bijection to its
generic components.

(h) dimKrull R%}H‘ZD =4.

Remarks 3.3.2.  (a) If Endp, (VF) = F, then, using that the tangent space dimen-
sion drops by three if we pass from framed deformations to deformations, it
follows that dimguy R&[l /p] = 0. Hence, by generic smoothness, the ring

R%[l /p] is a product of fields.
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(b) The theorem tells us that the natural and only possible subfunctors of D%’D
are those given by selecting a finite number of components of the generic
fiber, i.e., a finite number of inertial WD-types.

(¢) The theorem makes no distinction between p = 2 and p > 2. The case p > 2
is somewhat simpler, in the sense that, independently of the global choice of
determinant, one can read of from the residual representation whether the
components Cy or C}). appear. For p = 2, the added complication is that
not every character Gp — O* with trivial reduction possesses a square root.

We shall in the following three sections indicate parts of the proof of the
above theorem. For convenience we assume p > 2. For a complete proof, see
[Pil]. We begin in Section 3.4 with a brief discussion of the very simple case of
unramified representations (up to twist). This corresponds to (f) in the theorem
above. In the subsequent section we treat, rather completely, the case of (twisted)
Steinberg type lifts. This concerns part (e). Due to formal similarities, the case
of Steinberg type deformations is also helpful for the investigation of ordinary
deformations above p later in Section 3.7. Section 3.6 indicates many of the steps
toward the proof of Theorem 3.3.1.

3.4 Unramified deformations for £ # p

Throughout Sections 3.4 to 3.6 we shall keep the hypotheses of the previous section.

Proposition 3.4.1. Suppose Vg is unramified. Denote by D"@}F’%’D the subgroupoid of

D%’D over Uvo of unramified framed deformations, i.e., of (Va,1a84) € D%’D(A)
such that Ir acts trivially on V4. Then this subgroupoid is representable by a ring
R@;%’D € Ao which is smooth over O of relative dimension 3.

The case where Vf is a twist of the trivial representation can easily be reduced
to Proposition 3.4.1. We denote by (R%nr’k’u,p%m’km) the pair

(Raénr,lil’ A ® p‘d}]l;nr,k,lj)

for some character A\: Ggp — O*.

Proof. Because I'p := Gal(F™/F) = Z is a free group topologically generated by
the Frobenius automorphism o, the functor D\D/ip is smooth: representations of I'p
are determined by the image of o and the only requirement for the image is that
it lies in a compact subgroup, which is vacuous for images in GLg(A4), A € Aso.
Now for any surjection A — A’ and representation to A’ one can lift the image of
o to A and with determinant equal to ¢ (o). Alternatively, one can simply appeal
to the fact that H2(I'p, adVi) = 0.
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nr,

By smoothness, the relative dimension of Rl‘@[;’om can be computed from that
of the tangent space:

dimg DY"6" (Fle]) = dimp D% (Fle]) + (d? — 1) — h(Tp, adVk)
=34+ h'(Tp,adVg) — h°(Tp,adVE) = 3.

The last equality uses that Z is free so that hi(...) = hP(...). One can also give a

short direct argument proving that D‘%%D(F[E]) is a principal homogenous space
under Ker(PGLy(F[e]) — PGLo(F)) = F3. O

3.5 Deformations of Steinberg type for £ # p

In this section, we analyze following [Ki4, §2.6] the deformation functor for defor-
mations where the monodromy N is typically non-zero. Thus Vy has a basis Op
such that

p: Gp — GLy(F), g — (A(lg(g) A&)) . (3.5.1)

Remarks 3.5.1.  (a) Writing (1) indicates that A is twisted by the mod p cyclo-
tomic character.

(b) Since £ # p, the mod p cyclotomic character is unramified and depending on
£ it may be trivial.

(c) If the lift is of Steinberg type, then the character A lifting X can be ramified,
even if \ is not. This is possible precisely if the ramification subgroup of G4P
contains non-trivial p-torsion, i.e., if ¢ =1 (mod p).

After twisting by the inverse of A, we shall for the remainder of this section
assume the following:

(a) dim V]F =2.
(b) det VF is equal to the mod p reduction of the cyclotomic character

x: Gr — Zj,.

(c) Ve(—1)¥F #£ 0, i.e., there is a subrepresentation of dimension at least one
(and exactly one unless x mod p is trivial) on which G acts via x modulo p.

We now define the groupoid L%ﬁfFD (resp. L%ﬁw) over 2Aug —see page 30 for the
definition of the base category. The groupoid Liﬁl’f maps naturally to D%ﬁf over
2ug and serves, as we shall see, as a smooth resolution of the subgroupoid of D"ﬁf
of deformations of Steinberg type. It can only be understood over 2ugy, ) and
not over Ay (r); cf. Exercise 3.10.3. For (A — B) € Augyy (), so that A € Ay ()
and B is an A-algebra, the set of objects in L%D over (A — B) is the set of tuples
(Va,ta,Ba,Lp), where
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L4 (VAvLA7ﬁA) € D\%’FD(A)v

e Lp C Vg :=V,®4 Bis a B-line, i.e., a submodule such that Vg/Lp is a
projective B-module of rank 1,

e L C Vg is a subrepresentation on which Gg acts via x.

Lemma 3.5.2. The functor Lé};m is represented by a projective algebraizable morph-
ism, which we denote by

Ov,: L~ — Spf R

Proof. We abbreviate R = R%ﬁf. Consider the projective space PL. It classifies
R-lines L inside Vg = (R)®2. (Since R is local, these lines, as well as the quotients
by them, are free of rank one and not just projective.) Denote by @R the com-
pletion of the above space along its specialization under R — F. This is a formal
scheme. It classifies R-lines of Vz over an/E—line of Vg.

Let E%C/[’FD be the closed subscheme of Pl defined by the equations gv — x(g)v
for all v in the universal line over IE’IR and all ¢ € Gp. By formal GAGA it is
a projective scheme over the formal scheme Spf R. Algebraizability is automatic
from Grothendieck’s existence theorem in formal geometry; cf. [Ill]. But it can also
be shown directly, as in [KW2, Proof of Proposition 3.6]. From the construction
of E@J’FD, one deduces its universal property. O

Lemma 3.5.3. L%ﬁf is formally smooth over W(FF). Its generic fiber (E%D)rig is
connected.

Proof. To prove smoothness, consider a surjective homomorphism B — B’ with
nilpotent kernel of algebras over A — A’ in .y () and let (Vas, Bas, Lp:) be an
object of |L§]’FD (A" — B’)|. Note that we want to show that Eé}’f is smooth over
W (F) and not over Diﬁf. Hence it suffices to find A — A in ey ry with AcB
and A mapping to A" and (V3, 87, Lp) lifting the above triple.

Set Vg = Var @ B'. Since P! is smooth (over any base), the pair (Vp:, Lp/)
lifts to the pair (Vp, Lp) consisting of a free rank 2 module over B together with
a B-line. The next step is to show that the extension

0— Lp — Vp — Vp//Lp — 0
lifts. This amounts to proving that the natural homomorphism
Extpg,(Ve/Le, Lp(1)) — Extpig, (Ve /Le, Lp(1)) (3.5.2)
is surjective. Clearly the map P := Ly ® (Vg/Lp)* = P’ := L ® (Vg//Lp/)* is

a surjective homomorphism of B-modules. Identifying the Ext! with an H', the
surjectivity of (3.5.2) follows from the next lemma.
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Lemma 3.5.4. For any A € 2.y wy and any A-module M (which is not necessarily
finitely generated), the natural homomorphism

HY(Gp,Z,(1)) ®z, M — H'(Gp, M(1))
is an isomorphism.

Proof. Using the commutativity of H* with direct limits, it suffices to prove this
for A= M = Z/(p™). Then the latter homomorphism arises from the long exact
cohomology sequence for 0 — Z,, — Z, — Z/(p"™) — 0, which yields that the map
is injective with cokernel H?(Gr,Z,(1))[p"]. By local Tate duality, the H? is the
Pontryagin dual of Q,/Z,, i.e., Z,, which has no p-power torsion. (I

To complete the proof of smoothness, we apply the following lemma:

Lemma 3.5.5. Suppose that (A — B) 5 (A’ — B') is a homomorphism in Augyy (r)
such that B — B’ is surjective with nilpotent kernel. Suppose also that Vg is a
continuous representation of G on a free B-module and V4 € Dy, (A’) such that
Va @4 B' = Vg ®p B’. Then there exists a factorization of w in Augyy gy s

(A— B) — (Ap —» B) — (A" = B'),
and a Va, in Dy, (Ag) such that Va, @4, B2 Vp and Vi, @4, A’ = Vy.

Proof. We first observe that

lim A=A xp BDKer(B— B'),

—

A
where the limit ranges over all subrings A€ A, of A X/ B which contain the
image of A under the homomorphism A — A xp/ B deduced from the universal
property of A x g B. The continuous representation Vg restricts to a continuous
representation Vax ,,p and, by linearity, to a continuous representation Vy for
all A. We need to find A such that Vi ®; B = Vp. Since Va ®a B = Vg,
we have Vax ., B ®ax, B B = Vp, and hence it suffices to find Zo such that
Vi, ®1, (A xpr B) = Vax,,p = limz Vz. Choose m’ such that mZ’,/ =0 and m”
such that Ker(B — B’) has m’-th power equal to zero. Then for m = m’+m' one
has m}l =0 for all A. By the universal property of R (we equip V4 with a basis
which induces one on all V3), there exist (unique) compatible homomorphisms

R/mpg — A such that Vz induce Vi, where the A range over the above direct
system. Now take Ag as the subring of A X B generated by the images of A —

Axp Band R/mfp - A xp B. O

It remains to prove connectivity. By smoothness of ﬁ"ﬁf over W(F), the
idempotent sections of Ei‘/[’FD[l/p}, of E"SL;D and of E%E Qw @ F are in béjection.
Next, as a scheme over the local scheme SpfR, the idempotents of L:)“/[F are in
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bijection with those of Z := C){/[’FD ®r F; see [GD, 111, 4.1.5]. The scheme Z (which
is not formal) is isomorphic to a closed subscheme of P*. Depending on whether
the image of p is scalar or not, this subscheme is all of P! or a single point;
cf. Exercise 3.10.3(a), and thus in either case it has no non-trivial idempotent
sections. Finally one observes (see [Ki4, 2.4.1] based on [deJ, 7.4.1]) that one has
a bijection between the idempotents of AC)‘(,W"D[I /p] and those of (E"ﬁf)rig. O

Lemma 3.5.6. Let E/Q, be a finite extension, let & be in L%‘,[’FD(OE), and denote
by & also its image in D%D (Og).

The morphism of groupoids Lé’;] — Dé’? on ey is fully faithful. If the
E-representation Ve of Gg corresponding to & is indecomposable, then this morph-
ism is an equivalence, Dé) is representable and its tangent space is 0-dimensional.

Note that, on the level of functors, full faithfulness means that |Lé;j is a

subfunctor of |DE<§’)D |

Proof. We first prove full faithfulness. Since both functors are representable, the
homomorphism sets of objects are singletons or empty. Suppose we have two ob-
jects of LXP. Tt is clear that if there is a morphism between them, then there
will be one between the images. What we need to rule out is the possibility that
there is a homomorphism between the images but no homomorphism between the
objects.

To see this, let B be in A, and (Vp, fp) in Dé’? (B). We have to show that
if Vg admits a B-line Lp such that Lg(—1) is G p-invariant, then Lp is the unique
such line. Since detp Vp = x, we have Homp(q,(B(1),Vs/Lp) = 0 —we are in
characteristic zero—, so that Homp(q,)(B(1),Vs) = Homp|g,(B(1), Lg), and
the uniqueness of Lp follows. (The point is simply that while the mod p reduction
of x can be zero, x itself is never trivial.)

Suppose further that Vg is indecomposable. Then V satisfies Endg(Ve) = E,
so that Dé) is representable. We have to show that any Vp contains at least
one B-line Ly C Vi on which G acts via . For this, it suffices to show that
the tangent space of Dé) is trivial, since then Vg =2 Ve ®g B, for £ — B the
canonical splitting, is the trivial deformation which inherits the required B-line
from Vg. However, the dimension of this tangent space is computed by

dimp H' (Gr,ad"Ve) = dimp H*(Gr,ad"Ve) + dimp H (G, ad Ve(1)) "=" 0,
where the zero at the end follows from the indecomposability of &. O

For £ as above, define a groupoid over 2, z by defining D%ﬁg (B) (resp. D%Z?B))
for B € AU, as the category whose objects are deformations of V¢ to B with

determinant y (and in addition a basis lifting the given one.)

Proposition 3.5.7. Let Spf R%‘,}’Fl’m denote the scheme theoretic image of the morph-
ism Oy, of Lemma 3.5.2. Then
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(a) R%I’D is a domain of dimension 4 and R@;I’D[l/p] is formally smooth over

W(F)[1/p].

b) Let E/Q, be a finite extension. Then a morphism &: RSY — E factors
P Vr

through R%‘,[’Fl’u if and only if the corresponding two-dimensional E-represen-
tation Ve is an extension of E by E(1).

One way to avoid formal schemes in the definition of Spf RX’ P proceeds
as follows. Since LX’ — Spf RX’ is relatlvely representable, for any Artinian
quotient A of RX’ the pullback of EX’ to A is a honest scheme, say Kﬁ’ /A"
The morphism @VF of Lemma 3.5.2 mduces a projective morphism of schemes
Eiﬁl’; 4 — Spec A. Its scheme theoretic image thus defines a closed subscheme of

Spec A, say Spf R’(/’ e These are schemes in 2,y (py which form an inverse limit

system and their inverse limit is precisely Spf Ri‘él’u

Proof. The scheme E%C/[’FD is smooth over W (IF) and connected. The ring R%LD is
the ring of global sections of this scheme over Spf R%‘,f and hence it must be a
domain.

Since E%ﬁf is projective over Spf R%D, it surjects onto Spf R%‘,;LD. If we invert
p, then by the previous lemma E%ﬁf [1/p] is a closed subscheme of Spec R%‘,;D (1/p]
and hence it is isomorphic to Spec R%l’u[l /p], which shows that the latter is
formally smooth over W (F)[1/p].

By construction, R% s p-torsion free. To compute its dimension it there-
fore suffices to compute the dimension of its generic fiber (and add 1). This we may
do at an indecomposable V;. By Lemma 3.5.6, the functor Dé) is representable
by Spf E. Hence Dé’;j is formally smooth over Spf E of dimension 3.

The last assertion follows essentially from Lemma 3.5.6, as 5 factors through
Riﬁl 2 if and only if it lifts to a (necessarily unique) point of LX , i.e., if and only
if Ve admits an E-line Lg such that Lg(—1) is Gp-invariant. O

Let O be the ring of integers of a finite extension E of W (F)[1/p]. By twisting
the rings in the previous proposition with any global characters A: Ggp — O*, one
obtains:

Corollary 3.5.8. Define R‘E}F’O = R‘D,F @w ) O. Then there exists a unique quotient
R%ﬁ;"’é’m of R‘D/mo with the following properties:

(a) Riﬁ;"‘é’u is a domain of dimension 4 and RX)‘)‘ “[1/p] is formally smooth
over O.

b) Let E/Q, be a finite extension. Then a morphism &: R)‘X o — E factors
( b

through RX A’D if and only if the corresponding two-dimensional E-represen-
tation Vg is an extension of X by A(1).
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3.6 On the proof of Theorem 3.3.1

Proof of Theorem 3.3.1. Parts (b), (d) and (e) follow directly from Corollary 3.2.8
and our results in Sections 3.4 and 3.5, respectively. We now prove (f). Let E
be a finite extension field of O[1/p] and ¢&: R%"?O[l/p] — E be an O-algebra
homomorphism. The smoothness at ¢ in the generic fiber, i.e., the smoothness of
(R$;?07)57 certainly holds if H?(GF, adng) = 0 and in this case the tangent space
dimension is

dimg H'(Gr,ad"Ve) + dimp ad’Ve — dimp H°(Gp,ad’V;) = 3.

Suppose now that £ is such that H2(Gp,ad0V5) # 0 and recall that, by local
duality,
dimg H?(Gr,ad"Ve) = dimg H°(Gr,ad"(1)).

This last group is non-trivial if and only if V¢ is isomorphic to a sum of characters
A @ A(1). Moreover, in this case dimp H?(Gp,ad’V;) = 1 and the tangent space
has dimension 4.

Our particular point £ lies on the components

Spec R &7 [1/p] and Spec Ry;™ 7 [1/p].

The containment in the second is obvious. For the containment in the first, ob-
serve that £ has deformations with N non-trivial: take any non-zero class of
H'(Gp, E(1)) which is thus ramified and consider the corresponding deformation
to Ele].

In fact, the two components identified are the only ones through &. By twist-
ing the entire situation by A\~! we may assume that & is an extension of E by
E(1). Let C be an irreducible component through it. If C' contains a point where
N is non-zero, then C' = Cy, else N = 0 on all of C. Now the triviality of piIF at
& implies that pi 1, is zero on all of C' and hence p is unramified on C. Thus C'is
the other component we have already identified.

For the proof of (c) and (g) one defines deformation functors for all inertial
WD-types that can occur. (Their classification is not difficult.) In several cases
one needs to consider a resolution by adding the datum of an additional line such
as in the analysis we gave in the (twisted) Steinberg case. In each case one directly
shows that the functor is representable by a domain which proves the bijection
in (c) between inertial WD-types and components. To see (g) one shows that any
deformation is described by one of the functors so-defined. See [Pil] for details.

We now prove (a). The finiteness of the number of components is clear, since
R‘d}f is Noetherian. By the proof of (f), all (closed) points on the generic fiber
except for those in the intersection of Cy and C7, are smooth and have tangent
dimension 3. But we also know that C and C, are smooth of dimension 3. Hence
(a) is proved.



60 Lecture 3. Deformations at places not above p

The proof of (h) is now simple. By (g) the rings R; are p-torsion free and
thus their dimension is one more than the dimension of their generic fiber. Hence
(h) follows from (a). O

3.7 Ordinary deformation at p

In this section, we let K be a finite extension of Q,. We shall investigate the
ordinary flat deformation ring of a two-dimensional representation of G follow-
ing [Ki5]. Let x: Gp — Z,, denote the cyclotomic character. The deformation
functor and its resolution are very similar to those used in the Steinberg case
in Section 3.5. One key difference occurs in the proof of the smoothness of the
resolution. In the Steinberg case this relied on the surjectivity of the homomorph-
ism (3.5.2). Here we need a different argument. The first results of this section
recall the necessary background for this. Then we closely follow the discussion in
the Steinberg case.

Set K™ = K and 'y = Gk /Ix = Gal(K™/K). Let M be a discrete
possibly infinite I' gx-module over Z, on which p is nilpotent.

For any finite subrepresentation M’ C M consider the twist

M'(1) = M ®, Z,(1).

Since Z,(1) arises from a p-divisible group over Ok and since M’ is unramified, the
representation M’(1) arises from a finite flat group scheme over O (we shall give
some background on this in Appendix 3.9.4). A proof is given in Corollary 3.9.14.
We now introduce the group H}(G x,M'(1)). It classifies, for any n € N such
that M’ is annihilated by p”, extensions of Z/p™ by M’(1) which arise from the
generic fiber of a finite flat group scheme over Og. The group H}(G K, M(1)) is
then defined as the direct limit lim,, ,, H} (Gg,M'(1)), where M’ ranges over
the finite I' x-submodules of M.

To define H}(GK,]\/I’(l)), we first consider H(Gg, M’'(1)). Restriction in
cohomology yields a homomorphism

Res : H (G, M' (1)) — H'(Ixc, M'(1))F%.

If M'(1)x =0, 1i.e.,if y (mod p) is non-trivial on I, then the inflation restriction
sequence shows that the above map is an isomorphism — it is also an isomorphism
if M’ is a free Z,-module. To obtain an alternative expression for H' (I, M’(1))
suppose that p™ annihilates M’. Then

HY(Ige, M'(1)) = H (I, ppn) @z M' 22 lim HY(Gp, ppn) @z M’
Hp Hp
—
L/K nr

Kummer

~ lim L*/L* @z M'= lim L* @z M' = (K™)* @z M.
— —
L/K nr L/K nr
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Denote this isomorphism by 1 and define H}(GK, M’'(1)) as the kernel of

HY (G, M'(1)) =2y HY (I, M (1)) /=Y (One @2 M), (3.7.1)
Observe that by Kummer theory one has H}(GK, Z/pZ(1)) = O JOFF.
If x is non-trivial on Ik, then H}(GK, M'(1)) 2 (Ofenr @7 M')V'5 . In general,
by [Ki5, Lem. 2.4.2] the group H}(GK, M’(1)) is isomorphic to

(O @z, Mo)'™ /image ((Ofcnr ®z, M1)"* = (Ofcne ®z, Mo)'™),  (3.7.2)

where 0 — M; — My — M’ — 0 is a short exact sequence of Z,[[I'k|]-modules
such that My (and hence also M) is free and finitely generated over Z,.? To
obtain (3.7.2), one first considers the long exact Tor-sequence for the resolution of
M’ and O%. Since OF is divisible and My is free over Zy, it yields the short exact
sequence 0 — Tory (M, O%) — M1 ®z, 0% — Mo®z,OF — 0. Using the Kummer
sequence for O — O,z — 2" with n such that p" M’ = 0, the Tor-term can
be evaluated as M’(1). One now obtains

oo = (One @7 Mo)'E = (One @7 Mp)TE
— HY(Gg,M'(1)) = H (G, Ofcnr @7 My) — ...

from the long exact G x-cohomology sequence. Kisin shows that
HY (G, Ofur @z My) — H' (Ie, Oene @7 M)

is injective and that a class lies in H} (Gg, M'(1)) if its image in H!(Ix, Ofn: @2z
M) is zero.

Lemma 3.7.1. On discrete Z, (I i]-modules M on which p is nilpotent, the functor
M — H}(GK,M(I)) is Tight ezxact.

Proof. The assertion is immediate from formula (3.7.2), since it suffices to verify
right exactness for sequences of finite Z,[I"x]-modules. O

Suppose now that Vg is two-dimensional, flat and ordinary. As before, let
D"%;D be the full subgroupoid of D‘D/F consisting of those framed deformations

(Va,ta,B4) such that det V4 = y. Define the groupoid D?;Fd’x’m over Augy )

as follows: an object of D?,;d’x"j over (A — B) is a quadruple (Va,ta,84,LB),
where

7D .
(a) (Va,ta,Ba) € D (A);
2Note that given any short exact sequence 0 — M7 — Mg — M’ — 0 of Zp-modules, with

My free and finitely generated over Zp, one can always extend the I'x action from M’ to a
continuous action on Mj.
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(b) L C Vg := V4 ®4 B is a B-line, i.e., a projective B-submodule of rank 1
such that Vg /Lp is projective;

(¢) Lp is Gi-stable subrepresentation and Ik acts on Lp via x;

(d) the extension class of 0 = Ly — Vg — Vi /L — 0 in
EthB[GK](VB/LB7LB) = Hl(GK,LB XpB (VB/LB)*)
lies in H}(GK,LB ®B (VB/LB)*)

Proposition 3.7.2. The functor D“),;d’x’m of groupoids over 2lugyy gy is representable
by a projective algebraizable morphism of formal schemes, which we denote by
rd,x,0 | rd,x,0 ,0

(9(‘),LW X .E(‘)/W X —>Spr§LF .
The morphism @c",;d’x’m becomes a closed embedding after inverting p. The scheme
Egrd’X’D is formally smooth over W (F).
Proof. The proof of the first part is more or less the same as that of Lemma 3.5.2.
For the second assertion one proceeds as in Lemma 3.5.6. For any closed point 7 on
the generic fiber of R, one proves that the completion of @(‘),gd’x’m at 7 is either zero
or an infinitesimal isomorphism (by showing that the respective functor is fully
faithful). Because the morphism @“D}I;d’X’D is also projective, it must be a closed
immersion.

It remains to verify formal smoothness. The proof proceeds as the proof of
Lemma 3.5.3. The key input is Lemma 3.7.1. It provides the desired lifting of an
extension 0 — Lg,; — Vg = Vp/r/Lp/r — 0 over B/I to an extension over B
for B — B/I surjective with nilpotent kernel. O

Corollary 3.7.3. Define Spr%er’X’D as the scheme theoretic image of @?,;d’x’m.
Then:

(a) If E/W(F)[1/p] is a finite extension and x: R@I’FD — E is an E-valued
point, then x factors through R%d’x’u if and only if the two-dimensional
E-representation of G corresponding to x is crystalline and has the form
( xon nfl ) with n: Gxg — E* an unramified character.

(b) R“)/;d’x’u[l/p] is formally smooth over W (F)[1/p].

(c) R(‘)};d“’ﬂ 18 a domain unless Vi = x1Px2 for distinct characters x;: Gx — F*
such that 1|1, = Xa|rx = X1k -

Proof. Let Of denote the ring of integers of . Then z arises from an Opg-valued
point and V,, has the properties listed in part (a) if and only if z lifts to an Og-
valued point of L(‘),]];d’x’m. By the previous proposition and the valuative criterion
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for properness, the Og-valued points of Spec RC‘};d’X’D and of E“)/;d’x’m are in bijec-

tion. Taking into account the relation between flat deformations and crystalline
representations with weights in {0, 1}, cf. Proposition 4.2.1, this proves part (a).
Part (b) follows directly from the previous proposition.

The arguments used to prove connectivity in Lemma 3.5.3 can be applied

to part (c¢). Thus the number of connected components of R%d’x’m is in bijection

with the number of connected components of E(‘)/]er’X’D ®px0 F. The latter is a
Vr

subscheme of IP’]lF. If V& is not semisimple, it is a point, and if Vf is scalar then it
is all of P!. If V¢ is semisimple but the characters after restriction to inertia are
different, then again the subscheme is a point. In the remaining case, it consists
of two points. O

Proposition 3.7.4. Let E be a finite totally ramified extension of W(F)[1/p] with
ring of integers O. Let ¥: G — O*. Consider now all groupoids over Aro (or
Adugen ). Then there exists a quotient R“),;d’X’D of Ry, such that:

(a) If E'/E is a finite extension and x: R — E’ is an E'-valued point, then x

ord,x,0

factors through Ry, if and only if the two-dimensional E'-representation

of Gk corresponding to x is crystalline and has the form (XBW? nfl ) with

n: Gg — E* an unramified character.

(b) R("/de’X’D[l/p] is formally smooth over W (F)[1/p] of relative dimension equal
to 3+ [K : Q).

(c) R%‘d’x’m 18 a domain unless Vi = x1®x2 for distinct characters x;: Gxg — F*
such that x1l1, = Xalix = X1k -

Proof. We only give the proof for p > 2. Twisting Vg with a square root of ¢
reduces us to the case ¥ = 1 treated in the previous corollary. The only claim that
remains to be proved is that on the dimension of R“),]’gd’x’u [1/p]. The computation
will be indicated later; cf. Proposition 4.2.4. For ordinary crystalline deformations,
so that V is an extension of two one-dimensional crystalline representations, the
computation is particularly simple. O

3.8 Complements

The methods of the previous section on flat (hence weight 2) ordinary defor-
mations may be generalized to ordinary deformations of arbitrary weight. Ex-
cept for the computation of the Ext-group describing extensions of a twist of the
(k —1)-th power of the cyclotomic character by an unramified character, there are
few changes. One again uses an auxiliary functor Lz}f. Therefore we only describe

the setting and the result —note however that the computation of the Ext!-groups
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and in particularly the surjectivity analogues to Lemmas 3.5.4 and 3.7.1 is in cer-
tain cases quite involved.

We fix K/Q, an unramified finite extension. We suppose Vi = (x01 N )

with yo for a basis Br of Vp. We let ¢: Gxg — O* be an unramified character
with ©'/? well-defined. Let R@I’Fw’u be the universal ring for framed deformations

of determinant try* !

Theorem 3.8.1 ([KW2, §3.2]). Suppose 2 < k < p is an integer or that k =p+ 1,
K =T, and p > 2. Then:
(a) R has a quotient R%d’k’u for k > 2; R%d’ﬂat’u for k = 2 if Vg is flat
and Rc{/;d’x’m for k = 2 if Vi is non-flat, such that, for all E/O[1/p] finite
and for all x: R"C/I’Fw’u — E, the following equivalences hold:

with x the p-adic cyclotomic character.

(i) If k > 2, then x factors through R%d’k’m if and only if V, ~ ( X1 % )
with Xo unramified.
ii) If k =2 and Vi is flat, then z factors through RO*1% if and only if
1%

Vi ~ (%1 ;2 ) and V, is flat.

(iii) If k = 2 and Vr is non-flat, then x factors through R“),;d’x’m if and only

1/2

Ve (07 00 ).

Note that, as a quotient of R*%:9, one automatically has det V,, = ¢x*~1.

(b) Except for k > 2 and X1X2—1 = X, the rings R“)/;d’?’u just defined are formally
smooth over Q, and of relative dimension 3 + [K : Q,], unless they are 0.

(¢) The number of components of R?,]er’?’D is given as follows:

(i) Case ? =k > 2: the number is 2 if x1 is unramified and * = triv, else
it is 1.

(ii) Case ? = flat: the number is 2 if x1 is unramified and * = triv, else it
15 1.

(iii) Case ? = x: the number is one.

3.9 Appendix
3.9.1 The canonical subgroups of the absolute Galois group of a
local field

Let k be the residue field of the finite extension F' O Q. The extension F** O F
is Galois and one has

Gal (F™ /F) = Gal (k/k) = Z,
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where the first isomorphism is the canonical one arising from reduction.

The absolute Galois group G of F admits two canonical subgroups. First
there is the inertia subgroup Ir of F, which is the kernel of the surjective homo-
morphism Gg — Gal(F™/F), i.e., one has the short exact sequence

1 —Ip — Gp — Gal (k/k) — 1.

Second, by the structure theory of I, the pro-¢ Sylow subgroup Pr of I is a closed
normal subgroup, the wild ramification subgroup of F. The quotient It := Ir/Pp
is the tame quotient of Ip; it is isomorphic to Hq# Z4 where the product is over
all rational primes ¢ # ¢. Thus, one has a short exact sequence

1—>PF—>IF—>HZq—>1.
a7t

The subgroup Pp is also normal in Gp: it is the pro-¢ Sylow subgroup of Ig.

Suppose now that ¢ # p. In order to focus on representations of G into
GLq over rings in 2y () it is convenient to introduce the subgroup Pr,, of I as
follows. From the structure theory of Ir it is apparent that there is a surjective
homomorphism t,: Ir — Z,. Introduce P, as the kernel, so that one has the
exact sequence

1— Ppp — Ip — Zp — 1.

The quotient Z, carries an action of Gal(F™"/F) via the cyclotomic character;
this is immediate from the Kummer isomorphism

zp = Gal (| JF™ (2 ) /F™).

n

3.9.2 Galois cohomology

We recall some results on the cohomology of Gp for FF O Q finite, where ¢
can be equal to or different from p; see [NSW]. For ¢ # p we set [F : Q,] = 0
—for £ = p it is, as usual, the extension degree of F' over Q,. Let E be either a
finite extension of F,, or Q,, and let V' be a continuous representation of G on
a finite-dimensional E-vector space. Recall that VV = Hom(V, E(1)). We write

Theorem 3.9.1 (Tate). The groups H'(Gp,V) are finite-dimensional E-vector
spaces for i € Z and zero for i ¢ {0,1,2}. Moreover:

RO(F, V) — hY(F, V) + h*(F,V) = —[F : Q| dimg V, and h*(F,V) = h°(F,V"Y).

Corollary 3.9.2. Suppose dimg V = 1. Then h'(F,V) = [F : Q,] unless V is trivial
or Gr acts via the (mod p) cyclotomic character (if E is finite).
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Let p: Gp — GLa(E), g — ( a f’\ ) be a reducible continuous representation
for characters n, \: Gp — E*. Then

b€ Bxtg, (0, \) = Extg, (1, ™Y = HY(Gr, ).

The class b is trivial if and only if the extension splits, i.e., if and only if p is
semisimple.

Corollary 3.9.3. Suppose £ # p. If p is non-split, then n\~" is trivial or the cyclo-
tomic character (mod p).

Let F™ be the maximal unramified extension of F' inside a fixed algebraic
closure F' of F.

Proposition 3.9.4. Suppose that dimgV = 1 and V' is unramified, i.e., Ir acts
trivially on V. Then the groups H (Gal(F™ /F),V), i € Z, are finite-dimensional
over E. Moreover H'(Gal(F™/F),V) = 0 unless V is trivial, in which case
1 (Gal(F™/F),V) = 1.

Corollary 3.9.5. Any unramified 2-dimensional representation is either split or an
extension of an unramified character by itself.

Combining the previous two corollaries, one deduces:

Corollary 3.9.6. Suppose £ # p. If p as above is non-split and not unramified up
to twist, then n\~! is the cyclotomic character (mod p).

3.9.3 Weil-Deligne representations

Let F' be a finite extension of Q; as above with £ £ p and residue field k. Consider
the canonical homomorphism 7: Gg — Gj. The arithmetic Frobenius automor-
phism o is a canonical topological generator of G. The Weil group of W is defined
as 71'_1(02), so that one has a short exact sequence 1 — Ip — Wp — 0% — 1. Let
q = |k| and define

=1l Wp —Q, d"g+—¢"

for g € Ir and n € Z.

Definition 3.9.7. Let L be a field of characteristic 0 equipped with the discrete
topology. A Weil-Deligne representation® over L is a triple (Vz,p’, N) such that

(a) Vi is a finite-dimensional L-vector space,

(b) p': Wrp — Autr (VL) is a continuous representation with respect to the dis-
crete topology on Vi, and

3We follow the conventions of [Tat2, §4] except that we express everything in terms of an
arithmetic Frobenius.
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(c) N is a nilpotent endomorphism of V7, such that p’(w)Np'(w)~! = ||w||N for
all w e Wg.

If L is a complete discretely valued field, then A € Auty(Vy) is called bounded if all
its eigenvalues have valuation zero, or equivalently if the characteristic polynomials
of A and A~! have coefficients in the ring of integers of L. The Weil-Deligne
representation (Vr, p’, N) is called bounded if p'(o) is bounded.

Observe that condition (b) is equivalent to the assertion that Ker(p'|r,) is
finite.

Let E be a p-adic field. For any continuous representation p: Gp — Aut(Vg),
where Vg is a finite-dimensional E-vector space, we may consider its restriction
to Wg. One has the following important and elementary result due to Deligne:

Theorem 3.9.8 (Deligne). The following assignment sets up a bijection between
pairs (Vg, p), where Vi is a finite-dimensional E-vector space with the p-adic topol-
ogy and p: Wi — Autg(Vg) is a continuous representation, and Weil-Deligne
representations (Vg, p', N) over E (where, as in (b) above, Vg is given the dis-
crete topology). Given (Vg,p', N), one defines

p(c"g) = p'(c"g) exp(t,(g)N) for g € Ip, n € Z.

The key step in the proof is Theorem 3.2.1, due to Grothendieck. The as-
signment (Vg, p’, N) — (Vg, p) is less explicit. It can be deduced from the proof
of Theorem 3.2.1.

The advantage of the Weil-Deligne representation associated to a p-adic rep-
resentation is that it can be expressed without any use of the p-adic topology
involved —at the expense of introducing N. The concept is enormously impor-
tant in the definition of a strictly compatible system of Galois representations to
have a good description also at the ramified places! For instance, let £/Q be an
elliptic curve with semistable but bad reduction at the prime /. For any prime
p # ¢, consider the representation V,, of Gg on the p-adic Tate module of A. Then
the action of Ig, on V,, is unipotent and non-trivial, i.e., it is a non-trivial action
via the unique quotient Z, of Ig,. In particular, the representation depends on p.

However, as the reader may verify, the associated Weil-Deligne representation is

independent of p. One has p'(I,) =1 and N ~ ( 8 é )

It is possible to describe a Weil-Deligne representation also as a represen-
tation between algebraic groups. For this, one needs to define the Weil-Deligne
group WDp. As a group one has Wp = lim ; 1. WF /J, where J ranges over the
open subgroups of Ir. For any discrete group H (which may be infinite) and any
ring R, denote by H  the constant group scheme on R with group H. Then the
group schemes

WF/JQ, J C Ir an open subgroup,

form an inverse system. One defines

@Q:r%nwp/(]@.
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Suppose F is any field of characteristic zero. Then a homomorphism of algebraic
groups Wp . — Autg(Vg) will factor via Wg/J for some open J C Ir and hence
is nothing else but a continuous representation Wr — Aut(Vg), where Vg carries
the discrete topology.

Definition 3.9.9. The Weil-Deligne group is the semidirect product

(WDr)g =G % Wi g = Ga % [ J 0" Ir g,
neZ

where multiplication is obtained as the inverse limit of the action of Wg/J on G,
defined by

(a,w) - (a',w'") = (a + d||w|], ww"), where a,a’ € G4(R), w,w’ € Wg/J.
The following result is straightforward:

Proposition 3.9.10. For any (discrete) field E of characteristic zero, there is a
canonical bijection between d-dimensional Weil-Deligne representations and alge-
braic representations (WDp)g — GLqg E.

For further background we refer to [Tat2].

3.9.4 Finite flat group schemes

Let R be a commutative ring (or a scheme). By a finite flat group scheme over
R one means a group scheme G which is finite flat over R. In particular G is
affine. Let A denote its coordinate ring. It is a locally free (sheaf of) algebra(s)
over R. The rank of G is the rank of A over R. The group scheme structure on G
translates into a cocommutative Hopf algebra structure on A. This means that A
is an R-algebra equipped with R-linear maps pu: A - A®p A (comultiplication),
e: A — R (counit), t: A — A (coinverse) satisfying axioms which are dual to
those satisfied by a group (scheme).

Example 3.9.11. (a) For an abstract finite group T, the ring A = Maps(T, R)
is naturally an R-algebra. Moreover, with u(f)(s,t) = f(st) as comultipli-
cation, e(f)(s) = f(1) as counit and «(f)(s) = f(s7!) as coinverse, it is a
cocommutative Hopf algebra.

(b) Let A = R[X]/(X™ —1) with u(X) = X ® X, +«(X) = X! and ¢(X) = 1.
This defines the multiplicative group scheme p,,. It is étale over R if and
only if m is invertible in R.

For a fixed finite extension K of Q, we now present some basic properties on
finite flat group schemes over Ok and flat representations of G .

A flat representation of Gk is a continuous representation of Gk on a finite
abelian group V such that there exists a finite flat group scheme G over O so that
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V 2 G(K) as a Z[Gk]-module. Such a representation on V can be decomposed
into its primary parts. Flatness for components of order prime to p is characterized
by the following result —it will not be needed in the main part of the lecture, but
we include it for completeness:

Proposition 3.9.12 ([Sha, §4, Corollary 3]). Suppose G is a finite flat group scheme
over Ok of order prime to p. Then the following three equivalent conditions hold:

(a) G is étale.
(b) The action of G on G(K) is via 71 (Spec Ok).
(¢) The action of Gk is unramified.

Conversely (see Exercise 3.10.5), any unramified continuous representation of Gg
on a finite abelian group is flat.

From now on we assume that V is of p-power order. The following descent
result is presumably well known. Lacking a reference, we give a proof. Its idea was
suggested to us by J.-P. Wintenberger.

Lemma 3.9.13. Suppose that V is a continuous linear representation of Gk on a
finite abelian p-group. If V is flat over K™, then it is flat over K.

Proof. The Hopf algebra over O giving the flatness of V restricted to Ggnr is
already defined over a finite unramified extension L/K such that G, acts trivially
on V. Let Ap, denote a Hopf algebra over O, whose associated finite flat group
scheme Gp, satisfies Go, (K) 2 V as Z[G]-modules. Define Ay, as Ao, ®o, L.
By Exercise 3.10.5(c), the invariants of Az under Gal(L/K) form a finite Hopf
algebra A over K such that Gx(K) =2 V as Z[G k]-modules for the associated
group scheme G .

Define Ao, = (Ao, )¥/K). We shall prove that
Ao, ®o, O =2 Ao, (3.9.1)

is an isomorphism under the naturally given homomorphism (which regards Ao,
as a subring of Ap, and Ap, as a Op-algebra). In other words, we shall show
that Ap, satisfies Galois descent for Gal(L/K); see for example [Wa, §17]. By
Galois descent one also shows that the Hopf algebra structure descends from Ap,
to Ao, = Ax N Ap, . For instance, to see that the comultiplication descends to
Ao, , one may proceed as follows. Since comultiplication on A7, arises by base
change from Ag, the comultiplication u: Ap ®p A — A is Galois equivariant.
Its restriction to Ao, ®p, Ao, maps to Ap,. Hence it induces an Og-linear
homomorphism (Ao, ®o, Ao, ) E/K) - (Ap, ) S/ E) However (3.9.1) allows
us to identify the left-hand side with Ao, ®o, Ao, . Further details are left to
the reader.
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We now prove (3.9.1). Let 7 denote a uniformizer of Og. Because L/K is
unramified, 7 is also a uniformizer of Or. We shall prove by induction on n that
for all n one has a natural isomorphism

(Ao, /7" Ao, ) M) @6, 1noe OL/T"OL = Ao, /7" Ao, . (3.9.2)

For n = 1 recall that, by Hilbert 90, or rather the normal basis theorem, one has
kL = ki [Gal(L/K)] as Galois modules, where k, and kx denote the residue fields
of L and K, respectively. Since Ao, is a free Op-module, say of rank r, it follows
that

Ao, /mAo, 2k} = kK[Gal(L/K)}T > kT Qi kx|[Gal(L/K)]

as ki [G]-modules. One immediately deduces (3.9.2) for n = 1. For the induction
step, consider the sequence

0— Ao, /TAo, N Ao, /" Ao, — Ao, /m" Ao, — 0.

Abbreviate G = Gal(L/K). Observe first that taking G-invariants is exact. This
is so because the group H(G, Ap, /7 Ao, ) vanishes —again by the normal ba-
sis theorem. Tensoring the resulting short exact sequence with O over Ok and
comparing it with the given sequence yields

(AOL /WAOL)G Rok OL LT; (AOL /TFTH—IAOL)G Rok O — (AOL/WnAOL)G Rox OL

| | |

n

Ao, /TAo, ————— Ao, /7" Ao, ————— Ao, /7" Ao, .

By induction hypothesis, the right and left vertical arrows are isomorphisms. By
the Snake Lemma, the same follows for the middle term. This proves (3.9.2). The
isomorphism (3.9.1) now follows by taking the inverse limit of (3.9.2). O

Corollary 3.9.14. If M is a finite continuous Z|Gal(K""/K)|-module and G is a
finite flat group scheme over Ok, then the representation M ® G(K) arises from
a finite flat group scheme. In particular, M arises from a finite flat group scheme.

Proof. Let V be the representation of Gk on G(K) ® M. Because M is discrete
and unramified, there is a finite unramified extension L/K over which M becomes
trivial. Since G, being flat over O, will also be flat over O, we may apply the
previous result to V.

For the second assertion, note that for any n € N the trivial Gx-module
Z/(p™) arises from a finite flat group scheme G over O cf. Exercise 3.10.5(d). O

Write T = Gal(K™/K). Our next aim is to provide some background on
H}(GK, M (1)) as defined in (3.7.1) for M a discrete (possibly infinite) representa-
tion of Z,[Gal(K™ /K)]. Recall that the group schemes p,» are flat over any ring.
The following result follows from [KM, Prop. 8.10.5] and its proof.
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Proposition 3.9.15 ([KM]). The group H}(Gk,Zyn (1)) = O}/(’)}pn is naturally
1somorphic to the group of flat extensions

0— ppnx —V —Z/p"Z —0
of G -modules such that V' is p™-torsion within the group
HY(Gr,Zypn(1)) = K*/K*P"
of all such extensions of G g -modules.

Note that the identification of the group of all extensions 0 — fi,n (K) —
V — Z/p"Z — 0 of G g-modules with H(Gg,Z,~(1)) is via Kummer theory.

The result in [KM] is based on the construction of a universal flat extension
of Z/p™ by pn over Z[z*1]. To have such a flat extension defined over a ring R,
such as R = O, the image of = has to be a unit in R.

Proposition 3.9.16. Let M be any finite discrete I i -module which is p™-torsion, so
that in particular M is flat. Then the group H}‘ (G, M(1)) is naturally isomorphic
to the group of flat extensions

0— pprnx —V — M —0

of G -modules as a subgroup of the group H'(Gy, M (1)) of all such extensions
of G -modules.

If M = lim,_, M; for finite abelian p-groups M; with a linear action of I'r,
the lemma gives a corresponding interpretation for H} (G, M(1)).

Proof. By [Tatl, § 4.2], the map that associates to any flat extension 0 —
fpn ik — V. —> M — 0 the corresponding extension of G x-modules on the
generic fiber is injective. Hence any flat extension is described by a unique class ¢
in HY(Gg,M(1)). By Lemma 3.9.13, the extension is flat if and only if it is flat
over some, or any unramified extension of K. Passing to a suitable such extension,
we may assume that I'x acts trivially on M. So then M is a finite direct sum
of trivial group schemes Z/p‘Z. But then by Proposition 3.9.15, flatness of ¢ is
equivalent to being a class in O} ®z M C K* ®z M. Again by Lemma 3.9.13 we
can pass to the limit over all unramified extensions of K, and hence c is flat if and
only if its image lies Ofenr ®7 M C K™ @z M. By the definition of H}, the latter
condition is equivalent to ¢ € Hj(Gx.M(1)). O

3.10 Exercises

Ezercise 3.10.1. Let ¢ # p and R = Zy|[[x]]. Construct a continuous representation

p: (C/J(\@e)p — GL2(R) such that there are two closed points z,y on the generic
fiber Spec R[1/p] whose logarithmic monodromy satisfies N, = 0 and N, # 0.
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Ezercise 3.10.2. Let p: Gg, = GLa(IF,) be the trivial representation. Determine,

depending on the (non-zero) residue of £ mod p, the set of all bounded Weil-Deligne

representations (V@ ,p's N) whose corresponding p-adic representation admits a
44

model Gg, — GL2(Z,) whose mod p reduction is p.

Ezercise 3.10.3. (a) Let Augp be the full subcategory of 2ugyy ) whose objects
are pairs (A — B) in Augy, ) with A = F. Prove that the restriction of
the groupoid L"C/J’FD to Augp is either the scheme SpecF or the scheme Pf,
depending on V.

(b) Let 2lugp be the full subcategory of ugy whose objects are pairs (F — B) in
2lugp such that B is in Ay (). Prove that if Lﬁm over 2ugy is represented
by the scheme P}, then L%‘/;D over 2ugy is represented by the 0-dimensional
scheme lim Pl X, where X runs over the zero-dimensional (not necessarily

reduced) subscheme of P}.

Ezercise 3.10.4. Compute h'(K,Q,(n)) and hl . (K,Q,(n)) for a finite extension

K of Q,, for all n € Z. Hints: Use without proof the following results; cf. [Nek].

(a) The dimension formulae derived from Tate’s local duality theory; cf. Theo-
rem 3.9.1.

(b) For V a crystalline representation and D.,s(V) its associated filtered ¢-mod-
ule* one has
hiris(Kv V) = dim@p EXt}:ris(]lv V)

= hY(K,V) + K : Qp)(dimg, V — dimf Fil®(Deyis(V))).

(c) For Ky C K the maximal subfield unramified over Q, and ¢ the Frobenius
automorphism of Ky one has Deis(Qp(n)) = (Ko, ¢ =p "0, FiIT" = K,
Fil™"! = 0).

Ezercise 3.10.5. Let K be a finite extension of QQ, and let V' be a finite abelian
group carrying a continuous linear action of Gi. Let L/K be a finite Galois exten-
sion where G, acts trivially on V. Define a flat Op-algebra An, = Maps(V,Op,)
as in Example 3.9.11(a). Show the following:

(a) The algebra Ap, is the cocommutative Hopf algebra underlying a finite flat
group scheme Gp, over Or..

(b) If for f: V — Op and g € Gal(L/K) one defines (gf)(v) = g(f(g~'v)), then
this defines an action of Gal(L/K) on Ap, which is compatible with the
Hopf algebra structure.

4See Section 4.2 and Appendix 4.6.2.
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(¢) The L-algebra A, = Ao, ®o, L inherits a Hopf algebra structure from Ap, .
The invariants (Ag)S(E/%) form a cocommutative Hopf algebra over K
defining a finite flat group scheme Gy over Spec K such that G (K) =V as
a Z|Gk]-module and Gx Xgpec k Spec L = Go, Xspec 0, Spec L.

(d) Suppose L/K is unramified. Then Ao, = (Ap, ) /K) is the cocommu-
tative Hopf algebra underlying a finite flat group scheme Go,. over Spec Ok
with generic fiber Gi and base change to Or, isomorphic to Go, .

Hint: Part (c) is proved by étale descent: one may use the additive Hilbert 90
theorem for L/K, which implies that L & K[Gal(L/K)] as a Galois module. For
(d) one needs to show that the canonical homomorphism Ap, ®o, O — Ao,
is an isomorphism, i.e., that Ap, descends to Ok . The argument is similar to the
proof of Proposition 3.9.13.

Ezercise 3.10.6. Adapt the proof of Theorem 2.2.1 to show the following. Let
E/Q, be finite, Vi a continuous absolutely irreducible G-representation of E, and
B € AU, g. Suppose that Vg,V are deformations of Vi to B such that Tr(o|Vp) =
Tr(o|Vp/) for all o € G. Then Vi and V}; are isomorphic deformations.
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Lecture 4

Flat deformations

We follow mostly [Ki7]. Some parts are motivated by the course of L. Berger on
p-adic Galois representation and discussions with K. Fujiwara and J.-P. Winten-
berger during the course. As a reference for much of the p-adic Galois representa-
tions, the lecture notes [Berl] by L. Berger are highly recommended.

The appendix for this chapter summarizes very briefly some basic results and
definitions on p-divisible groups, on (weakly admissible) filtered ¢-modules and on
Fontaine—Laffaille modules.

4.1 Flat deformations

Let K/Q, be a finite extension field with residue field k; write W = W (k) and

Ko = W[1/p]; fix an algebraic closure K of K, and let Gx = Gal(K/K). Denote

by Vr a continuous representation of G on a finite-dimensional F-vector space.
A representation V' of G on a finite abelian p-group is called flat if it arises

from a finite flat group scheme G over Ok, i.e., if V = G(K) as Z|G k]-modules.
The following result is essentially due to Ramakrishna [Ram].

Proposition 4.1.1. Let A be in Aeyy ) and Va in Dy, (A). There exists a quotient
Aflat of A such that, for any morphism A — A’ in Aewwy, Var =Va®a A is flat
if and only if A — A’ factors through Afiat.

Proof. Let V denote any flat representation of Gx on a finite abelian p-group,
say V=G (f), and let V' be any subrepresentation. Define G’ C G as the scheme
theoretic closure of V' C G(K); cf. [Ray, §2.1]. Then G’ is a finite flat group
scheme over Ok and V' = G(K). Moreover the functor G/G’ is representable by a
finite flat group scheme over Ok with generic fiber V/V’. Let us give some details.
Let A be the affine coordinate ring of G. It is a free Ox-module of finite rank
and carries the structure of a cocommutative Hopf algebra. The K-points of V'

correspond to Og-homomorphisms A4 — K. The intersection of the kernels of
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these homomorphisms is an ideal Z of A. Since it is the same as the intersection
of the corresponding ideal Zx of the generic Hopf algebra Ax = A®p, K with A,
the ideal Z is saturated as an Og-submodule of A. Over Spec K the subgroup
V' is represented by the finite flat subscheme Spec A/Z of G . This shows that
Tk C Ak is a Hopf ideal. The latter property is inherited by Z. Hence A’ = A/Z
is a Hopf algebra which is finite flat over Og. One verifies that G’ = Spec A’ is
the desired subgroup scheme of G.

The above shows that, if 6: A — A’ is a morphism in Acyy (r), then Vi is
flat if and only if Vj 4 is flat. (For one direction use that, if 6(A)" — A" is a
0(A)-module epimorphism, then V4 is a quotient of Var( A).) Similarly, if I,J C A
are ideals such that V,,; and Vy,; are flat, then V4, rny) C Vayr @ Va, s is flat.
The second assertion implies the existence of a largest quotient Ag of A such that
Va4, is flat. By the first assertion, this Ag is the desired Aftat O

Corollary 4.1.2. Let D%;t C Dy, denote the subfunctor corresponding to flat de-

formations. Then D?,?t C Dy, is relatively representable.

Proof. Relative representability for groupoids over categories was defined in Def-
inition 2.4.4. It simply means that for all £ in Dy, the functor (D), is repre-
sentable. The latter is the functor of flat representations arising from £ € Dy, (A)
via a homomorphism A — A’. The corollary follows from Lemma 4.1.1. O

4.2 Weakly admissible modules and smoothness of the
generic fiber

Proposition 4.2.1. Let E/W (F)[1/p] be a finite extension and & € DI (Og) with

corresponding representation Ve over E. Then there is a natural isomorphism of

groupoids over A, g,
flat flat
Dyiie) — Dves

where D%?t is the subgroupoid of Dy, of representations which are crystalline with
Hodge—Tate weights in {0,1}. In particular, one has
D?/Ej,t(g) (E[E]) = EXt}:ris (Vvﬁ’ va)

Moreover, for any (A% Og) in ﬁ:w(m such that A is flat over Og and o becomes
B — E in U, p after inverting p, and for any Va € Dy, (A) mapping to Ve under
«a, one has

Va € D%?t(A) <= V4 = Tate, G for G/Ok a p-divisible group (4.2.1)
<= V4 ®4 B is crystalline with weights in {0,1}. (4.2.2)

Proof. The equivalence in (4.2.1) is a result of Raynaud: V4 lies in D?,?t (A) if and
only if for all n € N the representation Vi ®4 A/mg_A is finite flat. By [Ray,
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2.3.1], the latter is equivalent to V4 being isomorphic to the Tate module of a
p-divisible group.

The equivalence in (4.2.2) uses Breuil’s result that a crystalline representation
with all Hodge-Tate weights equal to 0 or 1 arises from a p-divisible group [Bre,
Thm. 5.3.2], [Ki2, 2.2.6].

From (4.2.1) and (4.2.2) and the definition of D{l/;t(gy the equivalence of
functors is immediate, as is then the identification of the tangent space. O

Suppose that Dy, is pro-represented by Ry, and let R?/?t be the quotient of

Ry, which pro-represents D?,?t. For ¢ as above, denote by ﬁ?at the completion
(after — @y (r) F) along the kernel of {. The equivalence in the above proposition

allows one to use Fontaine theory to show that }A%gat is formally smooth over E
and to compute its relative dimension; see Corollary 4.2.4. If K/Q, is ramified,
the difficulty of R%;“ lies in its special fiber. As shown in [Ki4], its analysis may
require delicate arguments.

To compute Ext. ;. (Ve, Vi), we recall some facts on weakly admissible filtered
p-modules from the lectures of L. Berger; cf. [Ber2] —see also Appendix 4.6.2.
Consider the fully faithful functor

Deyis - {crystalline representations of Gk } =: Repgﬁs (Gk)
— Fil}, := {ﬁltered p-modules on K}

It is elementary to extend this equivalence to an equivalence with F-coefficients
for any finite extension E/Q,

Dcris: Rep%is (GK) — Fllﬁ,E

Denote by D¢ the image of V; under Deis. From the definitions and properties of
D5 one deduces that
Hj(Gic,adVe) = Bxteg, (Ve, Ve) 2 Extyyg | (De, De).

cris

For the definition of H}, see [Ber2]. Using the period rings Beis and Bger in
[Ber2], the following formula is derived:

dimp H}(Gk,adVe) = dimp HY (G, adVe) + d* — dimg Fil’adDe.  (4.2.3)

Let us rederive the latter dimension formula by an elementary approach given, for
instance, in [Ki7]. For any weakly admissible filtered ¢-module D over K, denote
by C*(D) the complex

1—¢,id
DY b Dy /FiDy (4.2.4)

concentrated in degrees 0, 1.
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Lemma 4.2.2. There is a canonical isomorphism
Extl , (1,D) = H'(C*(D))
where 1 = Ky denotes the unit object in the category of weakly admissible modules.

Proof. Consider an extension
0—D—D—1-—0 (4.2.5)

of weakly admissible filtered modules. Let d € D be alift of 1 € 1 = K. Since
(4.2.5) is short exact, so is the sequence of Fil’-terms of the induced sequence
obtained by base change from Ky to K (by the definition of exactness for filtered
modules). This shows that

Dy /Fil°Dg —3 Dy /Fil® Dy

is an isomorphism, and so we may regard d as an element of Dy / Fil’ Dy . Moreover

(1 —¢)(d) € D (because 1 = ¢q(1)). We thus associate the class

(1 - ¢)d.d) € H'(C*(D))

to the given extension.

Suppose now that (dy,d;) € D@ D /Fil° Dg. To construct a corresponding
extension of 1 by D, set D =D& K, on underlying Ky-vector spaces, define ¢
on D by ¢((d,1)) = (¢p(d) + do, 1), and a filtration by

Fil'Dg = Fil'Dg + K - dy for alli < 0

and Filif)K = Fil'D i for i > 0. The extensions which arise from elements in the
image of (1 —¢,id) in (4.2.4) are split extensions. It is the content of Exercise 4.7.2
to show that these two constructions induce the asserted isomorphism and its
inverse. (Note: The proof uses that the category of weakly admissible filtered
p-modules is closed under extensions within the category filtered of ¢-modules.
Hence any extension of weakly admissible modules is again weakly admissible.) O

Let the notation be as in Proposition 4.2.1 and let D¢ = Dgs(Ve) be in
Fil}'}’ g For B € 2, g, following Kisin one defines the category Filf(’ g of filtered ¢-
modules on K over B: the objects are free and finitely generated K¢®q, B-modules
Dp with a 0, ®id g-linear automorphism ¢ together with a filtration on Dp® g, K
such that the associated graded pieces are free over B (but not necessarily over
K ® B). An object is weakly admissible if and only it is so if considered in Fil%..
One now defines the groupoid D%}?S over A, g by defining D‘{};S (B) as the category
of crystalline deformations of V¢ to B, and similarly Dgf' over 2. g by defining

Dg‘:"(B) as the category of all weakly admissible deformations of D¢ to B.
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Lemma 4.2.3. The functor D.s induces an equivalence of groupoids D%}?S — Dg'&a'
over U g. Moreover, each of these groupoids is formally smooth.

Proof. For the proof of the first statement, see Exercise 4.7.5 below. The proof
of the second statement for Dy is rather straightforward. Indeed, one lifts the
free K ®q, B/I-module Dp/; to a free K ®q, B-module Dg. The isomorphism
wp/1: " Dp/r — Dpyp lifts (non-uniquely) to a K ®q, B-linear isomorphism
pp: ¢*Dp — Dpg. To lift the filtration, one can use a complete set of idempotents
for K ®q, FE; via the canonical E-module structure of B, these idempotents lift
uniquely to K ®q, B. O

Corollary 4.2.4. Let the notation and hypotheses be as in Proposition 4.2.1 and
let D¢ = Dqyis(Ve). Then the E-algebra Rgat is formally smooth of dimension

1 + dimp adDg i /Fil’ad Dg g .
The corollary assumes that Dy, is representable. One could instead work
with D“:‘/F and Dg;t’u. The functor D¥*2 is then formally smooth of dimension

Ve, ()
d? 4 dimp ad D¢ g /Fil’adDg .

Proof. By Proposition 4.2.1 and the previous lemma, formal smoothness is clear.
The complex (4.2.4) shows that

hl . (Gk,adD¢) — B . (Gk,adD¢) = dimg adDg x /Fil’ad Dy g

As we assume the representability of the groupoid Dy, it has no extra automor-
phisms and so Endg7)(Ve) = Vi, which implies that hd, , (Gk,adDg¢) = 1. Now
use that

dimp Extl, (Ve, Vi) = dimp Exty, , (De, D)
= dimp Exty, , (1,adD¢) = dimg H' (C*(adDy))

to obtain the assertion on the dimension from Lemma 4.2.2. Alternatively one can
simply use (4.2.3). O

4.3 The Fontaine—Laffaille functor and smoothness
when e = 1

So far we have seen that the generic fiber of D{i,;“ is smooth. In general its special
fiber may have a complicated structure. However, in the case where K/Q, is
unramified the groupoid is smooth over W (IF). The principal tool to prove this is
Fontaine—Laffaille theory, which we now recall.

The Fontaine-Laffaille category MF},_ is defined as follows. Its objects are
finite, torsion W-modules M together with a submodule M! C M and Frobenius
semilinear maps

@: M — M and ¢': M' — M
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such that
(a) @lar = po’;
(b) p(M) + " (M') = M.

The category MFtlor is an abelian subcategory of the category of filtered W-mod-
ules of finite length [FL, 9.1.10]. In particular, any morphism on MF}, is strict
for filtrations.

Note that, if p- M = 0, then p(M') = 0, and so comparing the lengths of

the two sides of (b) above shows that ¢! is injective and
o(M) ® " (M) = M. (4.3.1)

Theorem 4.3.1 (Fontaine-Laffaille, Raynaud). Suppose that K = Ky and p > 2.
Then there exist (covariant) equivalences of abelian categories

MF}

tor

o Uimite flt group schemes/ W} s {fat reps. of G}

Raynau

Proof. The first equivalence is obtained by composing the anti-equivalence [FL,
9.11] with Cartier duality. The second follows from Raynaud’s result [Ray, 3.3.6]
that, when e(K/Ky) < p — 1, the functor G — G(K) is fully faithful and the
category of finite flat group schemes over Ok is abelian. O

Remark 4.3.2. For A € erWSF), one defines a category MF}AI as follows: its objects
are quadruples (M, M*, p, '), where M is a finitely generated W ®z, A-module,
M!' Cc MisaW ®z, A-submodule, and ¢: M — M and ol: MY — M are
ow ® id4-linear homomorphisms such that (a) and (b) hold. This is an A-linear
abelian category; see Exercise 4.7.5.

Theorem 4.3.3. Suppose K = Ky and p > 2. Then D?/;t is formally smooth.

Independently of the condition End[g[GK](VF) = F, the proof below will also

show the formal smoothness of D?/?t’u. Without using frames it is considerably

more difficult to study D?,?t and its properties if Endgig,1(VF) 2 F. This problem

had been considered by K. Fujiwara.

Proof. Let My € MF%M denote the object corresponding to Vg. Then My lies
naturally in MF]% by the full faithfulness of Theorem 4.3.1. Its underlying module
is free and finite over W ®z, F, and the submodule MF% is a W ®z, F-direct
summand by (4.3.1). Let Dy, denote the groupoid over 2.y ) such that Dy, (A)
is the category of tuples (Ma, M}, 04,04, ta) such that (Ma, MY, ¢a,¢Y) lies in
MF}4 and M, is a finite free W ®z, A-module, M}‘ is a W ®z, A-direct summand,
and conditions (a) and (b) hold, and moreover ¢4 is an isomorphism

(Ma, M}, 0a,04) ®aF =% (Mg, Mg', or, 0r').
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Note that W ®z, IF will in general not be a local ring —because in fact k ®p, F will
not be a field whenever the fields k and F over F, are not linearly disjoint inside F,,.
However, observe that, since W (F) is a ring of Witt vectors, the complete set of

indecomposable idempotents ey, ..., e, for k ®@p, F will lift to the unique such set
over W ®z, W(F) and in turn induce the unique such set on W ®z, A for any
Ae QltW(]F)

The following result is immediate from Exercise 4.7.5.

Lemma 4.3.4. The Fontaine—Laffaille functor of Theorem 4.3.1 induces an equiv-
alence of categories

FL: Dy, —» D2,

Having the lemma at our disposal, to prove the formal smoothness of D?,?t
it suffices to prove the formal smoothness of Dyys,. Let A be in 2.y ), I C A an
ideal and My in Dy (A/T). We have to show that My, lifts to an object of
Dy (A). Consider first the given data displayed in the following diagram:

Ma,r Lan, May;

TP'
1
Pasr

M,}X/I *)MA/L

The module M}x /1 is a direct summand of M4, as a W®z, A-module, by definition
of Dyy,. The homomorphism ¢ /1 is injective, because this holds true for op. This
in turn implies that L,/ := ‘»0114/1(Mix/1) is a projective W ®z, A/I-module of
finite rank. Using the idempotents mentioned above and the fact that any free
submodule of a local Artin ring is a direct summand, one can see that L4,y is a
direct summand of My ;.

We can thus choose a free W @z, A-module My, and projective W @z, A-
modules M}‘ and Ly lifting My, M}l/[v L 4,1, respectively, and in such a way
that M} and L, are direct summands of My4. By the projectivity of M}, one can
lift the oy ®id 4 /7-linear homomorphism @}4/[ to an isomorphism ¢l : M} S La.

Using a complement to M} inside M4 it is also straightforward to show that ¢ 4 /1
can be lifted. O

4.4 The dimension of D%‘t

We wish to compute the dimension of the mod p tangent space of D?,]?t in the case
K = Kjy. A direct way using Fontaine-Laffaille theory is described in [Ki7, 5.3.3].
We take a different route by working over the generic fiber. There it amounts to
finding a more explicit form of the formula in Corollary 4.2.4. The computation
here is valid for all K and is taken from [Ki4]. For K = Kj one can relate the
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final result via Fontaine-Laffaille theory to the filtered torsion ¢-module My,
associated to Vg. Moreover, in that case D?/;}t is smooth and so the result also
yields its dimension.

Let £ be a closed point on the generic fiber of R%j?t, say with values in
the finite extension F of Q, and associated E-representation V. Let D¢ be the
corresponding filtered p-module and G a p-divisible group over Og whose Tate
module TateG = G(K) satisfies Ve =2 Vg = TateG ®z, Q, (see the proof of
Proposition 4.2.1).

Denote by tg the tangent space of G and by GV its Cartier dual. Clearly,
tg is the tangent space of the connected component G° of G. By [Tat1, Prop. 1],
the p-divisible group G° arises as the p-power torsion from a unique p-divisible
smooth formal Lie group A over W. The dimension dim G of G is defined to be the
dimension of A or, equivalently, the dimension of tg.

Let C,, denote the completion of K. The following isomorphism of continuous
G kg-modules is taken from [Tatl, p. 180, Corollary 2]:

Vg ®q, Cp = t(C,)(1) & tgv (C,)". (4.4.1)

Here, for any complete field L C C, containing K, one has tg(L) = L4mY as
L[Gk]-modules and similarly for tgv. Hence Vg has Hodge—Tate weights —1 and 0
with multiplicities dim G and dim GV.

To relate this to the functor MF},, = {finite flat group schemes/W} from
Theorem 4.3.1, we observe that the inverse of this functor, extended to the isogeny
category of p-divisible groups, takes the form

G — Dg = Deris(Vg(—1)) — Homg, (VpG", Bexis)-
In particular, as K-vector spaces, we have
Fil' Dg x = tgv (K)*. (4.4.2)

However this is not quite sufficient for the desired dimension calculation! The
point is that, so far, on the side of the p-divisible group we have ignored the action
of E (or its ring of integers). The action of E on V¢ induces an action on G and
hence on tg as well, as its Cartier dual. This makes tgv (K)* into a K ® F-module
and the isomorphism (4.4.2) one of K ® E-modules.

To unify the arguments, we assume that E contains the Galois closure of
K/Q,. Then K ® E = Hw: kg E, where v ranges over the embeddings of K

into K —these factor via E. Let ey be the corresponding idempotents. Write d,
for dimpg ey tg(K). From equation (4.4.1) one deduces that
d— d¢ = dimE ewfg(K) = dimE ewté(K)*.

Theorem 4.4.1.
dimp DY (Ele]) = 1+ Y dy(d — dy).
P
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Proof. By Proposition 4.2.4, we need to compute dimg adDgyK/FﬂOadDgyK. Now
adDg k = Dg x @xer Dg . The filtration of Dg g satisfies Fil® = Dgx D
Fil' 5 Fil* = 0. The filtration on D} j is given by Fil'(D} ) = (Fil'"*Dg x)*
where D+ C D  denotes the annihilator of D C Dg k under the duality pairing
from linear algebra. Thus

Fil™'Dg jc = D§ ¢ D Fil’D ¢ = (Fil' Dg k)" D Fil "' D ;¢ = 0,

and it follows that Fil’adDg x = Fil' Dg x ® D§ ;c + Dg x ® (Fil' Dg g)*. We
deduce that
adDg ¢ /Fil’adDg
~ (Dg,x /Fil'Dg,x ® D§ )/ (Dg,k /Fil' Dg i @ (Fil' Dg x)*)
~ (Dg,k /Fil'Dg k) ® (D§ i /(Fil' Dg x)*)
(Dg,k [Fil' Dg i) @ Fil' D .

1

Using the idempotents introduced above and the isomorphism in (4.4.2), the as-
serted dimension for dimp D?/?t(E[E]) can easily be verified. O

Suppose now that K = Kj. Then D?,?t is smooth. In particular there is
a unique finite flat group scheme G; mod p which gives rise to Vg. Moreover
we can assume that G has coefficients W (F)[1/p]. One has G; = G[p| and the
dimension of the tangent space tg (as well as its decomposition into ¥-equivariant
parts) only depend on G;. Moreover, by the theory of Fontaine-Laffaille modules,
My' agrees with tg(F) as an F-module. We introduce integers dy, as above for
the automorphisms ¢ of Ky = K. The following is an immediate corollary of
Theorems 4.3.3 and 4.4.1.

Corollary 4.4.2. If K = Ky and p > 2, so that D{l,v;‘t s formally smooth, then

dimg DY (Fle) = 1+ Y dy(d — dy).
P

For arbitrary K/Q,, an important result of Kisin [Ki4, Cor. 2.1.13] constructs
a projective F-scheme GRy; ¢ such that, for any finite extension F’ of F, the finite
flat group scheme models of Vg @ F/ are in bijection with the F'-valued points of
this scheme. The connected components of the scheme GRy; o are in bijection with
the connected components of the generic fiber Spec R2t[1/p], by [Ki4, Cor. 2.4.10].
The latter components are smooth and their dimension is given by Theorem 4.4.1.
Since the tangent space of a p-divisible group G depends on G[p] only, the dimension
can be computed from any model from GRy; ¢ in the corresponding component.
Different components for the same Vg can have different dimensions. The tuple
(dy) is called a p-adic Hodge type in [Kid]. If K is unramified over Qp, then
GRv, 0 = SpecF —which follows already from Raynaud’s results.
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Suppose again that K/Q, is an arbitrary finite extension. Assume now that
G is isogenous to GV, at least after restriction to a finite extension of K, i.e., that G
is potentially (Cartier) self-dual. This happens in the following situations relevant
to deformations of Galois representations associated to weight 2 Hilbert modular
forms:

(a) G is the p-divisible group associated with an abelian variety over Ok (i.e.,
with good reduction): a polarization exists over Ok for a finite extension
K’ of K. It induces an isomorphism G¥ 2 G over O.

(b) G is the p-divisible group associated with a parallel weight 2 Hilbert modu-
lar Hecke eigenform f whose level is prime to p. At least if f arises from a
Shimura curve C over a totally real field F', then the p-adic Galois represen-
tation of f arises from a subfactor of the Jacobian Jo of C' over F, which
has good reduction at p. Essentially by part (a) the associated p-divisible
group is potentially self-dual.

From the isogeny over K’ it follows that tgv(K') = tg(K’) and that this iso-
morphism is compatible with extra endomorphisms such as those coming from F.
In particular, d is even and dy, = d/2 for all ¢. Thus

dimp D (B[E)) = 1+ [K : Q,)(d/2)".

For d = 2 one recovers the expected result dimg D?/?t (Ele]) =1+ [K : Q).
Note that the argument basically rests on the fact that the Hodge—Tate
weight is invariant under finite extensions of the base field.

4.5 Complements

Suppose that Vg is an irreducible 2-dimensional representation of Gg, of any Serre
weight 2 < k(Vg) < p. Then the methods of the present lecture on flat (hence
weight 2) deformations can be generalized to study (low weight) crystalline defor-
mations. The reason is simply that in this range of weight (2 < k < p), the theory
of Fontaine—Laffaille is still applicable. On the Fontaine-Laffaille side, one consid-
ers 2-dimensional filtered torsion modules of weight at most k. An A-representation
(A € Ry (ry) is then said to be crystalline of weight k if it arises via the (inverse)
Fontaine—Laffaille functor from an FL-module of weight k. In this perspective, the
analogue of Lemma 4.3.4 is no longer an assertion but a definition. We simply
state the results from [KW2], in particular [KW2, 3.2.3]. (Analogous results hold
whenever K/Q, is unramified.)

Theorem 4.5.1 ([KW2, §3.2]). Suppose that 2 < k < p, that Vg is irreducible of
Serre weight k, and that p > 2. Then the deformation functor for framed weight k
crystalline deformations of Vi of determinant x*~' is formally smooth over W (F)
of relative dimension 4.
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There is one further deformation condition considered in [KW2, §3.2] for
Vr irreducible and of weight 2: semistable deformations with associated Weil—
Deligne parameter (in the sense of Fontaine and for p-adic lifts) given by the pair
((xmod p)®1,N) and with N non-trivial. The result in this case is due to Savitt
[Sav, Thm. 6.2.2(3)].

Theorem 4.5.2 ([KW2, §3.2]). Suppose that Vi is irreducible of Serre weight 2
and p > 2. Let O be the ring of integers of a totally ramified extension of K.
Then the deformation functor for framed weight 2 semistable deformations of Vi

of determinant x on A.p is representable. Provided that O is sufficiently large, it
is isomorphic to O[[X1,...,X5]]/(XsX5 — p).

4.6 Appendix

4.6.1 p-divisible groups
We only recall the most basic notions on p-divisible groups. As a reference we

recommend Tate’s seminal article [Tat1] and his notes [Tat3].

Definition 4.6.1. Let A~ > 0 be an integer and let S be a scheme. A p-divisible
group G of height h over a scheme S is an inductive system

g = (gna L’n)nzo
where, for each n,
(a) G, is a finite flat commutative group scheme over S of order p™", and

(b) the sequence
00— gn L} gn+1 p—> gn+1

is exact (i.e., (Gn,tn) can be identified with the kernel of the homomorphism
multiplication by p™ on G, 41).

A homomorphism f: G — H of p-divisible groups G = (G, tp), H = (Hn, 1))
is a compatible system f = (f)n>0 of S-group homomorphisms f,: G, — H,
such that ¢}, f, = fnt1tn for all n > 0.

If G = (G,) is a p-divisible group, we shall often use the perhaps more intuitive
notation G[p"] for G, (see Examples 4.6.2 below).
Note that, if p is invertible in S, then the G,, will be étale over S.

Examples 4.6.2. Let A — S be an abelian scheme over S. Then multiplication

by p" is a finite flat homomorphism A - A of group schemes. Thus the kernel,
denoted by A[p"], is a finite flat commutative group scheme over S. Denote by
tn: Alp"] < A[p™T1] the canonical inclusion. If g denotes the dimension of A, then
A[p™] := (A[p™], tn)n>0 is a p-divisible group of height 2g.
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Consider the particular case where A = E is an elliptic curve over a finite
extension K of Q,. Then E[p™] is a p-divisible group over K. It is completely
determined by the Tate module of FE at p. Suppose that F has good reduction and
denote by E a model over the ring of integers O of K. Then E[p®] is a p-divisible
group over Spec O of height 2.

4.6.2 Weakly admissible filtered ¢-modules

Much of the material of this and the following section goes back to Fontaine and his
coauthors. We suggest [Berl] and [BC3, Ch. 8, §12.4] as references. They contain
many further references.

Fix an algebraic closure @p of Q, and let K, E be finite extensions of Q,

inside @p. The field K will take the role of the base and the field FE that of a
coefficient ring. Suppose k is the residue field of K, so that K contains Ky :=
W (k)[1/p]. Let v be the valuation on @, such that v(p) = 1. Let o: Ko — K be
the Frobenius automorphism induced on k, e.g. via the Witt vector construction.

Definition 4.6.3. A filtered p-module of rank n on K over E is a tuple
D = (Do, {Fil Dic} )
consisting of
(a) a free Ky ®q, E-module D of rank r,

(b) an isomorphism ¢: (c®idg)*D — D, i.e., a Ky-semilinear automorphism ¢,
and

(c) an exhaustive separating decreasing filtration
(FiI'D K)zEZ
of Dk := D ®k, K by K ®q, E-submodules.

A morphism ¢: D — Q’ between filtered p-modules D = (D, ¢p, {FiliDK}ieZ)
and D' = (D', ppr, {Fil' D }iez) is a Ko ®g, E-linear homomorphism ¢: D — D’
which is compatible with the action of ¢ and preserves the filtration.

The category of all filtered ¢-modules on K over F is denoted by MF?}’ B

Note that the filtration in (c) need not satisfy any compatibilities with the
previous data. However, the filtration datum imposes a strong restriction on the
morphisms in the category MF¥%. .. In particular it limits the set of subobjects of a

given filtered p-module. Note also that the Fil’ Dy need not be free over K ®q, F.
Definition 4.6.4. Suppose a: D' — D and 3: D — D" are morphisms in MF% 5.

Then D' % D E) D" is a short ezact sequence, written

0—D —D-—D"—0,
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if0 =D % DA D" 0is an exact sequence of Kjy-vector spaces and for all

i € Z the induced sequences 0 — Fil'D), — Fil'Dg — Fil'DY, — 0 are exact as
sequences of K-vector spaces.

One says that D is an extension of D" by D' if there exists a short exact
sequence 0 - D' - D — D" — 0.

For D € MF% g one can define exterior and symmetric powers as well as
duals, where one takes the induced endomorphisms and filtrations.

If D is in MF% k.5 it 18 clearly also in MF, K.Q," Under this forgetful functor,
the dimension will increase by a factor of dlmQ E. By detg, D we denote the

element
dim K D
A D
Ko =

in MF%, g, of rank one. By the previous remark,
dimKO D= ding@ng D- dime FE.
Definition 4.6.5. The Hodge slope of D € MF¥, x5 1s defined as
tr(D) = max{i € Z : Fil'(det, D)x # 0},

and its Newton slope is defined as
tn (D) = v(detg, o(z)/x), for any x € detg, D ~ {0}.
The Newton slope is well-defined, since detg, D is of rank one over Ky and since
for any « € Ko ~ {0} one has v(o(z)) = v(x).
Hodge and Newton slopes are used to define a semistability condition on
filtered p-modules:
Definition 4.6.6. A filtered (p, K, E)-module is called (weakly) admissible if

ta(D) =tn(D)
and for all subobjects D’ C D in the category MFf{,Qp one has ty(D') < tn(D").

This is a priori a rather tricky definition, since the subobjects to be considered
for weak admissibility are subobjects in MF}?,%;:' However, one has the following

[BM, Prop. 3.1.1.5]:
Proposition 4.6.7. A filtered (p, K, E)-module is admissible iff tH(D) = tn(D)
and for all p-stable sub-Ko ®q, E-modules D' C D one has ty(D') < tn(D'),
where D’ carries the induced @ and filtration.

Note that the test objects D’ need not be free over Ky ®q, F, and so they

may not lie in MF%
Categorlcally, the introduction of the semistability concept has the following
remarkable consequence (for a proof, see [BC3, Thm. 8.2.11]):

Theorem 4.6.8 (Fontaine). The full subcategory of MF?E of weakly admissible
objects is abelian and closed under extensions.
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4.6.3 Fontaine—Laffaille modules
We assume that K = Ky and so we drop the subscript K at Dg. Let
D = (D, ¢, {Fil'Dp}icz)

be an admissible filtered p-module with coefficients in E. Let W = Ok, = W (k).
Suppose that D is effective, i.e., that Fil’D = D, and moreover Fil’D = 0.

Definition 4.6.9. A strongly divisible Og-lattice in D is a free W @z, Og-submodule
A C D such that

(a) All/p] =

(b) A is stable under ¢,
(c)

(d) Yisop @(Fil'A) = A.

A strongly divisible lattice A is called connected if @, is topologically nilpotent
for the p-adic topology on A.

a

@(Fil’A) C p’A for all i > 0, where Fil'A = A NFil'D, and

For the following, see [FL] or [BC3, Thm. 12.4.8]:

Theorem 4.6.10 (Fontaine-Laffaille). There are exact quasi-inverse anti-equiva-
lences between the category of strongly divisible lattices A with Fil’A = 0 and the
category of Op|Gk]-lattices in crystalline G g -representations with Hodge—Tate
weights in the set {0,...,p — 1}.

Definition 4.6.11. A Fontaine-Laffaille module M = (M, pas, (FiliM)ieZ) over W
is a finite length W-module M equipped with a finite and separated decreasing
filtration (Fil'M) and o-semilinear endomorphisms ¢, : Fil' M — M such that

(a) for all ¢ > 0, the following diagram commutes:

. @t
Fil'M —— M

j Tp-(—)
i+1

Bl s IR M,

(b) >, Im(ph,) = M, and
(c) Fil%, =

The category of such is denoted by MF;,. If the filtration step 1 is non-zero, but

2 is zero, then we write MF{,,. One says that M is connected if 9, is nilpotent.
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Example 4.6.12. If A is a strongly divisible lattice, then for each n > 0 we obtain
a Fontaine-Laffaille module M by setting M = A/p™A, taking Fil'M to be the
image of Fil'A under the natural quotient map, and letting ¢ be the reduction
of p~ipp restricted to Fil,.

This Fontaine—Laffaille module is connected if and only if A is connected.

The following result is stated in [BC3, Thm. 12.4.12] —unfortunately without
proof.

Theorem 4.6.13. Consider the contravariant functor
M — HomFil,Lp(M7 Acris ® Qp/Zp)

from the category of Fontaine—Laffaille modules M with one-step filtration that
satisfies Fil°M = M and FilPM = 0 to the category of p-power torsion discrete
G -modules. If p > 2, this is an exact and fully faithful functor into the category
Rep,,, Gk, i.e., continuous p-torsion Gi-modules. If p = 2, the same statement
holds if one restricts the functor to connected Fontaine—Laffaille modules.

4.7 Exercises

Ezercise 4.7.1. Formulate and prove Proposition 4.2.1 for framed deformations
and verify the assertion made after Corollary 4.2.4 .

Exercise 4.7.2. Check that the two constructions in the proof of Proposition 4.2.2
of the isomorphism

Extl, . (1,D) — H(C*(D))
are well-defined and inverse.

Ezercise 4.7.3. Give an explicit description of the isomorphism
Exty, . (D¢, D¢) = Exty, , (1,adDy)

used in the proof of Corollary 4.2.4.
Exercise 4.7.4. Prove that the functor Dy 2 in Corollary 4.2.3 is formally smooth.

Ezercise 4.7.5. Let C be a ring (commutative with 1). Recall that an additive
category € is C-linear if for all M € € one has a homomorphism ¢y : C —
Ende (M) such that for all M, N € € and all 1) € Home(M, N) diagram (4.7.1)
commutes (this also makes Homg (M, N) into a C-module). This exercise provides
a categorical approach to equipping suitable subcategories of a C-linear category
with a larger endomorphism ring than C. It will be applied to several of the
categories in this lecture.

Let now € be a C-linear abelian category in which all objects have finite
length over C.
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(a)

Lecture 4. Flat deformations

For A € ¢, define a category €4 as follows. Objects of €4 are pairs (M, ¢)
with M € € and ¢: A — Ende(M) a C-linear homomorphism. Morphisms
¢ from (M, ppr) to (N, on) in €4 are morphisms ¢: M — N such that for
all a € A the following diagram commutes:

oum(a)

M——" M (4.7.1)

% f"
en(a)

N ——N.

Show that €4 is abelian and A-linear. Show also that for any finitely gener-
ated A-module N the tensor product — ® 4 IV is well-defined.

Hint: If N is free over A, this is obvious. Else use a 2-step resolution of N
by free finitely generated A-modules.

For C = Z, and € = MF},, describe €4 for A € A.c. An object of €4
contains in particular an inclusion M!' C M of A-modules. Show that M*

must be a direct summand.

Hint: Use the notion of pure submodule from [Mat, Appendix to §7] and the
abelianness of €.

Suppose that © is a second C-linear abelian category in which all objects
are of finite C-length and that F': € — ® is an exact C-linear functor. Show
that for all A € . it induces via the construction in (a) an exact C-linear
functor Fa: €4 — D 4.

The functor F4 from (c) is compatible with the operation — ® 4 N for any
finitely generated A-module N and it restricts to an exact subfunctor on
objects which are A-flat.

For C a finite extension of Q, and € the category of weakly admissible
p-modules on K over C, describe €5 for B € 2. An object of €p is
equipped with a filtration (over K ®q, B). Show that the subobjects of this
filtration are direct summands as K ®gq, B-modules.



Lecture 5

Presenting global over local
deformation rings

A p-adic Galois representation of the absolute Galois group of a number field is
called geometric if it is unramified outside finitely many places and at all places
above p it is de Rham in the sense of Fontaine. When the number field F is
totally real and the representation is into GLo, one typically also requires the
representation to be totally odd. Conjecturally, the latter should automatically be
satisfied if not all Hodge-Tate weights are equal —but no proof is known. By the
Fontaine-Mazur conjecture, geometric 2-dimensional odd Galois representations
over totally real fields should (up to twisting by powers of the cyclotomic character)
arise from Hilbert modular forms. Then they are called modular. This is proven
in some instances. But even for Q the proof of the Fontaine-Mazur conjecture is
not complete.

In practice, it is important to construct geometric Galois representations,
even in situations when it is not known that they are modular. An important
method is to combine the proof of the potential modularity theorem by Taylor
[Tay2, Tay3], i.e., an R = T theorem over an enlarged (totally real) base field,
with a technique from deformation theory. The method has proved useful in many
instances beyond GLg, such as Galois representations of unitary or symplectic
type, e.g. [BGGT, BGHT].

In the present lecture, the focus will be on the deformation theoretic part:

we shall construct and analyze universal deformations rings EZ) for representa-
tions of Galois groups of global fields which locally satisfy conditions that en-
sure that the deformations are geometric in the above sense. Concretely, one re-
quires that the deformations are unramified outside finitely many places and odd.
At those primes £ # p where ramification is allowed, one fixes a finite set of inertial
WD-types and imposes these on the deformations. Finally, at places above p one
chooses deformation conditions that lead to p-adic Galois representations which

91
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are crystalline or ordinary of low weight, semistable of weight 2, or of potential
Barsotti-Tate type (for instance).
The main result of this lecture —see Theorem 5.4.1 for a precise statement—

is the following dimension bound: if Eig is non-zero, then

dimgran By > 1. (5.0.1)

Let us indicate how to derive from Taylor’s results on potential modularity,
e.g. [Tay2, Tay3], the existence of lifts of mod p Galois representations satisfying
the conditions in the definition of RZ. If Taylor’s result is applicable, then it implies
that Rﬁ/(p) is finite. Since the length of Rg/(p") is at most n times the length

of Ez /(p), and since Ez is p-adically complete, one deduces that Ei«} is a finitely
generated Z,-module. The lower bound (5.0.1) thus implies that

(R, = 55

for suitable p-adic fields E; (i.e., finite extensions of Q). The defining properties of

RZ yield geometric Galois representations Gr — GLo(E;) satisfying the conditions
prescribed by the corresponding functor at all places above p and oo and possibly
at some further places.

Lower bounds as in (5.0.1) were first obtained in [B61]; cf. also [B62] —and in
fact the results therein were sufficient for the proof of Serre’s conjecture in the level
one case [Kh|. However, the results in [B61] required the local deformation rings
to be complete intersections. In recent work [Kil], Kisin gave a different approach
to obtain such bounds. This greatly enlarged the range where a lower bound as in
(5.0.1) can be proved. Moreover it simplified the arguments considerably. So here
we follow Kisin’s approach. As a further reference we recommend [KW2, Ch. 1-4].

In this lecture we fix the following notation pertaining to number fields:

e F will be a number field and S will denote a finite set of places of F' containing
all places v | p and v | co.

e By Gp,s, or simply G, we denote the Galois group of the maximal outside
S unramified extension of F' inside a fixed algebraic closure F' of F.

e For any place v of F, we denote by G, the absolute Galois group of the
completion F,, of F' at v. We fix for each v a homomorphism F — F,,
extending F' — F),. This yields a group homomorphism G, — Gg.

e By 1k we denote a continuous F[G g s|-module of finite dimension d over F.
We write ad® C ad = adVj for the subrepresentation on trace zero matrices.

e All deformation functors (or categories of groupoids) considered will be func-

tors on either the category 2. or Q/Eo, where O is the ring of integers of a
totally ramified extension field of W[1/p] and thus with residue field F.
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e We fix a lift ¢: Gg — O* of det V. This defines subfunctors DY and D¥"
of D and D by requiring det V4 = 1 for lifts.

5.1 Tangent spaces

We provide some complements to Section 1.4. Here G stands either for Gp g or G,
and Vg for V. As in Lecture 1, one proves:

Proposition 5.1.1. (a) The functor DY — DY of groupoids over 551:0 is for-
mally smooth. The functor D¥'7 is always representable and the functor DY
is representable when h°(G,ad) = 1.

(b) The tangent space DY (F[e]) is isomorphic to

HY(G,ad®) :=Im (H'(G,ad") — H'(G,ad)).

(¢) There is a short exact sequence
0 — ad’/H°(G,ad’) — D¥" (Fle]) — DY (Fle]) — 0.
Remark 5.1.2. If p does not divide the degree d of Vi, then ad = ad’ & F as a

G-representation, and in this case H'(...)’ = H(...). However, for d = 2 and

p = 2 (for instance) one needs H!(...)".

Applying Proposition 5.1.1(b) and (c) to the first five terms in the long exact
cohomology sequence obtained from 0 — ad® — ad — F — 0, one finds

Corollary 5.1.3. One has
dimp D¥P(Fle]) = d*> — 1+ h' (G, ad’) — h°(G,ad?).

If in the deformation problem one fizes m bases of V4 instead of just one, then
one has to add (m — 1)d? to the right-hand side of the above formula.

5.2 Relative presentations
We now turn to a situation which is closer to our final aim. Thus, from now on,
e the representation p: Gg — Auty (Vi) is absolutely irreducible, and

e we fix a subset ¥ of S which is assumed to contain all places v of F' dividing
P Or 00.

Corresponding to the above set-up, we introduce the following deformation
functors and associated universal deformation rings:
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deformation functor <— universal ring

Vwex: D,=D¥P =Dy «  R¥O
FiGo
D% =DV, — RY,
Flag
$,0
Dg's — Rz s>

where the functor Dg:g: 51:0 — Sets is defined by the assignment

(Va,ia) € DY(A), (By)ves are bases) ; ~
AH{WA,LA,(@,)vez) ST A eE }/_.

The functor Dgig provides the crucial link between the global and local situation:

(Va,ta, (Bo)ves) = ((Va) |G, ta: Bv)ves

O
Dg’,s [T,ex Do

z?rlr‘l’ﬁ;‘ r_elllm, va, (Bu)ves) = (Va,ta)

DY.

The formal smoothness of D%:g over Dg follows from Proposition 5.1.1(a). The for-
mula for the relative dimension is proved in the same way as Proposition 5.1.1(c).

Corollary 5.2.1. (a) Rg g = Rw[[ycl7 o Ty -]

(b) There is a natural homomorphism Rioc := ®v€2R‘/’ O R%g

The ring Rg was first studied by Mazur in [Maz]. It is an interesting object,
since, for F' totally real and p odd, it can be naturally compared with a big Hecke
algebra of Hilbert modular forms. On the other hand, it can be recovered from

the universal representation pg: Gg — GLd(Rgig) as the ring generated by the

traces of pg over O. Ultimately it is a quotient of Rg’ which will be of interest
to us. The local rings at the places in ¥ will be useful in order to pass from
R%:g to this quotient. The use of framed deformations is a clean way to deal with
non-representability issues of the functors Da‘cci .

Key Lemma 5.2.2. Consider the canonical homomorphisms

plus] 1,0
DY S(Ele)) ——— DD (FleD:
2 2 0
H2(Gs,ad) 0 P H* (G, ad’).
vEX

Set r = dimy Ker %! and t = dimp Ker % + dimy Coker %1, Then R%’g has a

presentation
Rioe[[x1, .-y a,]l/(fiy- -\ fr) = RES
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Remarks 5.2.3.  (a) The proof will be given in Section 5.6.

(b)

(c)

(d)

5.3

The lemma makes no assumption about the shape of the f;. Some of the f;
could be zero. Therefore ¢ is only an upper bound for the minimal number
of relations.

The value of  is optimal, since 8! is the homomorphism of mod me tangent
spaces induced from Spec Rg:g — Spec Rjoc.

Before we compute r — t in the following section, let us determine the di-
mension of Coker §2. The diagram defining 62 is part of the terms 7-9 of the
9-term Poitou—Tate sequence

2 e
H2(Gg,ad%) 22 P H* G, ad’) — H(Gs, (ad’)Y)* — 0.
vEXU(S\X)

Using local Tate duality H?(G,,ad’) = H°(G,, (ad”)V)* and some elemen-
tary linear algebra, we find (indeed!)

§ :=dimp Coker 62
=dimp Ker (HO(GS, (ado)v) — @ HO(Gv» (ado)v))-

vESNYE

If H°(Gg,(ad”)V) = 0, which is for instance the case whenever the image
of p is non-solvable, or if S \ ¥ # &, and thus by our hypothesis on ¥ the
difference contains a finite prime, then § = 0.

The analogous computation for Spec Rg g requires actually more bookkeep-
ing due to the infinite places. For Spec R% g, the set 3 is supposed to only

contain places at which ad’ V% = 0; however, the infinite places do not
satisfy this requirement.

Numerology

Lemma 5.3.1. If ¥ contains all places above p and co, thenr —t + 0 = |X| — 1.

Proof. Tate’s duality theory for global (and local) fields gives us the following
formulas for the Euler-Poincaré characteristic of Galois cohomology (which is
defined to be the alternating sum of the dimension of the zeroth, first and second
term of Galois cohomology):

X(Gs,ad’) = —[F : Q] dim(ad”) + Y " h%(G,,ad’), (5.3.1)

v|oo
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—dim(ad?)[F, : Q,] ifv]|p,
x(Gy,ad’) = hO(G,,ad”) if v | oo, (5.3.2)
0 otherwise.
We deduce that

r—t+ 6 = dimp Ker 7' — dimp Coker 67! — dimp Ker % 4+ dimp Coker 62
= dimp DEG(F Z dimg D, (Fle]) — h?(Gg,ad®) + Z h*(G,,ad")
vEX IS
I2[d% — 14 h'(Gs,ad®) — h°(Gs,ad’) — h2(Gg,ad”)
— ) (@ = 14 h(Gy,ad’) — h0(Gy, ad”) — h*(Gy,ad"))
vEXD

= —X(Gs,ad’) + > x(Gy,ad’) + ] — 1
VEX

Cor.5.1.3

(5:3.1),(5.3.2)

dim(ad®)[F : Q] = Y h°(G, ad”)

v|oo
=Y dim(ad®)[F, : Q)] + > h(Gy,ad’) +0+[S[—1 = |3 -1,
vlp v|oo

since [F : Q] = Zv\p[Fv : @p]. Note that after the third and fifth “=" the first line
contains the global and the second the local contribution. O

5.4 Geometric deformation rings
In this and in the following section we assume the following:
e [ is totally real.
e pis odd and of degree 2 over F (and still absolutely irreducible).

e 3 contains all places above p and oo (as before).

For each place v in ¥, choose a relatively representable subfunctor 5f’u c D,

such that the corresponding universal ring Rf’m (a quotient of R¥:") satisfies:

o BV is O-flat,

o 3 if v fp, 00
e R’ [%] is regular of dimension ¢ 3+ [F, : Q,] ifv|p,
2 if v oo.

Suitable deformation conditions for v /p, 0o were described in Lecture 3. The nat-
ural choice is to fix a set of inertial WD-types for lifts to the generic fiber.
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Rings of the above type for v | p were constructed at the end of Lecture 3 and

in Lecture 4. Possible deformation conditions are: low weight crystalline at v if p
is absolutely irreducible, low weight ordinary at v for ordinary p, and potentially
Barsotti-Tate. In some cases, F,, = Qy, is required; in others, that F,, is unramified
over Q,, etc. Here we shall simply assume that we do have (framed) deformation
functors at places above p which satisfy the above requirements.

For v | oo we shall shortly describe the deformations and the corresponding

rings. They describe odd deformations.

(a)

(b)

The above hypotheses on Ef’m have the following consequences:

The ring Rjoc := ®U€EE;[)’D is O-flat. Its generic fiber is regular of dimension
3|2 (this uses the fact that >-, [F, : Q] = 3,1 = [F : Q]). Hence

dimgun Rioe > 3|%] + 1.

v|oo

The corresponding functors ﬁg and 5%:2 (where the latter again includes

a choice of || bases of V) are representable, where (for instance) 5;:2 is
defined as the pullback in

,0
D%,S E— HUEE D,

T

HUGE ﬁv‘

The global universal ring R;”fq is isomorphic to R%g@ R Rloc, and therefore
Lemma 5.2.2 yields

Ro's = Rigelle1, - )/ (1,0 1)

with r, ¢ as in that lemma. Since r —¢ = |¥| —1—0 by Lemma 5.3.1, part (a)
vields dimycun Ra'g > 4|3 — 6.

By Remark 5.1.2(d), the map ﬁ;f‘g — ﬁg is formally smooth of relative

dimension 4|X| — 1. We deduce the following from part (c):

Theorem 5.4.1. If § = 0, then dimg,,) Eig > 1.

9.9

0Odd deformations at real places

At a real place, any two-dimensional odd residual representation is of the form

with

Poo: Gal(C/R) — GLo(IF),
det poo(c) = —1 in F, for ¢ the complex conjugation in Gal(C/R). Up to

conjugation, one of the following three cases occurs:
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M) p>2 @)= (6 1) () p=2pul0)=(51):

(i) p=2, pn(c) = (4 7).

Any framed representation of Gal(C/R) is determined by the image M of ¢
and the latter is subject to the condition that M? = id. If we further want to ensure
that M has eigenvalues 1 and —1, we need to fix its characteristic polynomial to be
X2 —1. Let M(X?—1) denote the moduli space of 2 x 2 matrices of characteristic
polynomial X2 — 1. Its completion at the matrix po(c) is the wanted universal
ring (as may be checked easily). This is precisely the construction that was used in
the proof of existence of R‘D/F in Proposition 1.3.1. Let us carry out this procedure
explicitly for case (iii) (the other ones being similar but simpler):

If we start with M = ( 1Jga 1id ), then the conditions Tr = 0 and det = —1
lead to

M(X? —1) = SpecOla, b,c,d]/((1 +a) + (1 +d), (1 +a)(1 +d) +1—bc)
= Spec Ola, b, c]/(—(1 + a)* + 1 — be)
= Spec Ola, b, ]/ (—2a — a® — be)

and hence Eiﬁidd =~ O[la, b, c]]/(2a+ a® + be). The latter is a domain with generic
regular fiber of dimension 2.

In cases (i) and (ii), similar calculations lead to Ei;idd = Oz, z2]]-

5.6 Proof of Key Lemma 5.2.2

Note that we now work again with representations of general degree d. To simplify
notation, we set Ry = Rgg For r as in Lemma 5.2.2, we choose a surjective ring
homomorphism B

¢: R:= Rioe[[z1,...,2:]] — Rl

We set J = Ker ¢ and denote the maximal ideals of R, Rioc and R by mg1, Mg,
m, respectively. By Nakayama’s lemma, we need to show that dimp J/mJ < t. The
module J/mJ appears as the kernel in the sequence

0 — J/mJ — R/J — R/J =~ Ry — 0. (5.6.1)

The argument to bound the dimension of J/mJ is similar to the one given by
Mazur in [Maz] to bound the number of relations in presentations of universal
deformation rings as quotients of power series rings over O. The idea is to con-
sider the lifting problem associated to the above sequence for the universal lift
pgl: Gs — GLg(Rg). The difference with Mazur’s argument is that some lifting
problems do have a solution and one needs to properly interpret this.
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Formally, we shall construct a homomorphism a: Hom(J/mJ,F) — Ker 62
and show that the kernel of o can be interpreted as a subspace of Coker §7-'. This
will imply the lemma, since then

dimg J/mJ = dimg Ker(a) + dimp Im(a) < dimg Coker 67! + dimp Ker 6% = t.

Fix v € Homp (J/mJ,F). Then pushout under u of the sequence (5.6.1)
defines an exact sequence

0— I, — Ry, 2% Ry — 0,

where I,, & F. It is not hard to construct a set-theoretic lift p,, so that the diagram

GS L GLd (Ru)
Pal JGLd(‘Pu)
GL4(Rg1)

commutes, and so that det p,, = v. (Regarding GL4(R,,) as the set-theoretic prod-
uct of diagonal matrices with diagonal entries (r,,1,1,...,1) with SLy(R,), it
suffices to construct a continuous splitting of SLg(R,,) — SLq(Rg). This can be
done using the smoothness of SLy.)

The kernel of GLg(¢y) is (1 + My4(I,),-) and can thus be identified with
ad ®p I, = ad. Via these identifications, the set-theoretic lift yields a continuous
2-cocycle

cu € Z%(Gg,ad”)

given by 14 cy (g1, 92) = pulg1, 92)pulg2) " pulgr) ™" Its image [c,] € H*(Gg,ad’)
is independent of the choice of the set-theoretic lifting. The representation pg can
be lifted to a homomorphism Gg — GL4(R,,) precisely if [¢,] = 0. The existence
of homomorphisms Rioc — R, — Rgl together with the universality of R, imply
that the restrictions [c,|q,] € H?*(G,,ad") are zero for all v € ¥. Thus we have
constructed the desired homomorphism

a: Hom(J/mJ,F) — Ker 02, u — [c,].

It remains to analyze the kernel of . Let u be in the kernel, so that [c,] =0
and pg) can be lifted. By the universality of R4 we obtain a splitting s of R,, = Rg.
Consider the surjective map of mod mp cotangent spaces

cty, : mp, /(my +mo) — mgl/(mzl + mp).

Any surjective homomorphism A — B in Q/l\to which induces an isomorphism on
mod me cotangent spaces and which has a splitting is an isomorphism (exercise!).
In our situation, this implies that I, can be identified with the kernel of ct,, .
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The map ct,, itself is induced from the homomorphism R/(J®) — Ry by
pushout and from the analogous map

ct,: m/(m? +mp) — mgl/(mﬁl +mp).

Because m/(m* +mp) — mpg, /(m% +mp) is surjective, the induced homomorph-
ism yy,: Ker(av,) — I, of F-vector spaces is non-zero. Remembering that I, is
really just another name for F to indicate that it is an ideal in R,,, we have thus
constructed an injective F-linear monomorphism

Ker(a) — Homg (Ker(ct,),F). (5.6.2)

By the choice of 7 and its minimality, it follows that we have Ker(ct,) = Ker(ct,)
for the canonical homomorphism

CtSD: mlOC/(mIQOC + mo) — mgl/(mgl + mO)'

Since ct, = (7')*, the map (5.6.2) is the desired homomorphism Ker(a)
Coker 71, The proof of Lemma 5.2.2 is thus complete. O
Remark 5.6.1. For each v € S, define a subspace L, of H'(G,,ad’) by L, =
HY(G,,ad") for v € S\ ¥ and by L, = Ker(H'(G,,ad"’) = H'(G,,ad’)’) for
v € 3, and denote by Hé . (Gs, (ad®)V) the corresponding dual Selmer group (cf.
[KW2, Ch. 4] for a precise definition). It naturally sits in a short exact sequence

0 — Coker 67! — H}. (Gg, (ad”)¥)* — Ker > — 0.

In [KW2, proof of Prop. 4.4], it is proved directly that there is an injective homo-
morphism

Hom(J/mJ,F) — H}. (Gs, (ad”)V)*.
This gives an alternative, more conceptual method to derive the desired bound
dim J/mJ < t.

5.7 Exercises

Exercise 5.7.1. Verify all unproven assertions in Section 5.1.

Ezercise 5.7.2. Check the assertions made about the cocycle ¢, in the proof of
Lemma 5.2.2: that [c,] does not depend on the set-theoretic lifting p,, and that
the class is trivial if and only if p,, can be chosen to be a homomorphism.

Ezercise 5.7.3. Prove that any surjective homomorphism A — B in gl:o which
has a splitting (as O-algebras) and induces an isomorphism c¢t4 — c¢tg on mod me
cotangent spaces is an isomorphism.

Exercise 5.7.4. Let O be the ring of integers of a finite totally ramified extension
of W(F)[1/p] and let R be an O-algebra which is finite over O. Show that R is
flat over O if and only if R is p-torsion free. Hint: Deduce from Tor{ (R, O/p) =0
that Tor{ (R, F) = 0 and hence the assertion.
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