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Deformations of Galois
Representations

Gebhard Böckle

Introduction

These lecture notes give an introduction to deformations of Galois representations
with an eye toward the application of this theory in the proof of the Serre con-
jecture [KW1, KW2] by Khare–Wintenberger. There exist several other surveys
such as [DDT, Go, Ki7, Ma2]. We nevertheless hope that with the above scope
in mind and by the arrangement and detail of the material presented we can add
something useful to the existing literature. Clearly, we claim no originality in the
material presented and all errors are to be blamed on the present author.

The idea of studying deformations of Galois representations on their own
right goes back to the seminal article [Maz] of Mazur. Mazur’s motivation was to
give a conceptual if at the time conjectural framework for some discoveries of Hida
[Hid] on ordinary families of Galois representations. It was the work of Wiles on
Fermat’s Last Theorem which made clear the importance of deformation theory
developed by Mazur. The theory was a key technical tool in the proof [Wi2, TW]
by Wiles and Taylor–Wiles of Fermat’s Last Theorem.

Mazur’s theory yields a universal deformation ring which can be thought of as
a parameter space for all lifts of a given residual representation (up to conjugation).
The ring depends on the residual representation and on supplementary conditions
that one imposes on the lifts. If the residual representation is modular and the
deformation conditions are such that the p-adic lifts satisfy conditions that hold for
modular Galois representations, then one expects in many cases that the natural
homomorphism R → T from the universal ring R to a suitably defined Hecke
algebra T is an isomorphism. The proof of such isomorphisms, called R = T
theorems or modularity theorems, is at the heart of the proof of Fermat’s Last
Theorem. It expresses the fact that all p-adic Galois representations of the type
described by R are modular and, in particular, that they arise from geometry.
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4 Introduction

Many refinements of Wiles’ methods have since been achieved and the the-
ory has been vastly generalized to various settings of automorphic forms. R = T
theorems lie at the basis of the proof of the Taniyama–Shimura conjecture by
Breuil, Conrad, Diamond and Taylor; the Sato–Tate conjecture by Clozel, Harris,
Shepherd-Barron and Taylor; and the already mentioned Serre conjecture. The
proof of Fermat’s Last Theorem was also the first strong evidence to the conjec-
ture of Fontaine and Mazur [FM]. The conjecture asserts that if a p-adic Galois
representation satisfies certain local conditions that hold for Galois representations
which arise from geometry, then this representation occurs in the p-adic étale co-
homology of a variety over a number field. In fact, it is a major motivation for the
formulation of the standard conditions on deformation functors. These conditions
should (mostly) be local and reflect a geometric condition on a representation. Due
to work of Emerton and independently Kisin [Ki6], there has been much progress
on the Fontaine–Mazur conjecture over Q.

The present notes are based on an advanced course given jointly with Laurent
Berger at the CRM Barcelona. The course provided basic material on p-adic Hodge
theory and deformation theory of Galois representations, motivated by the proof of
the Serre conjecture by Khare and Wintenberger. The lectures by Berger focused
on p-adic Hodge theory [Ber2] and our part on deformation theory.

The contents of our lectures are as follows: Lecture 1 recalls the foundations of
Mazur’s theory of deformations of Galois representations with some additional ma-
terial added from the work of Kisin. Lecture 2 introduces pseudo-representations
and studies their deformations. Pseudo-representations are functions that have
the formal properties of traces of representations. They are important because
completely reducible representations can be recovered from their traces. More-
over, p-adic Galois representations are often given in terms of traces of Frobenius
automorphisms, i.e., as a pseudo-representation. The representation itself is not
directly accessible.

Lecture 3 considers universal deformations of a mod p representation of the
absolute Galois group of a finite extension of the field Q` for ` 6= p. The corre-
sponding theory of p-adic Galois representations is well understood in terms of
Weil–Deligne representations. It will turn out that also the universal deformation
can be given a natural description in terms of such parameters (or rather iner-
tial Weil–Deligne types). This leads to conditions for deformation functors of a
residual mod p representation at places not above p. Weil–Deligne representations
are naturally linked to p-adic Galois representations ‘arising’ from geometry: for
instance, one may consider the Galois representation on the p-adic Tate module
of an elliptic curve (or an abelian variety) over a number field and restrict this
to a decomposition group at a prime v above `. If the curve has good reduction
at v, by the criterion of Néron–Ogg–Shafarevich, the representation is unramified
and vice versa; moreover the associated inertial Weil–Deligne type is trivial. If it
has potentially good reduction, the representation is potentially unramified and
the inertial Weil–Deligne type is non-trivial but has trivial monodromy operator.
In the remaining case the representation is potentially unipotent and the mon-
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odromy operator is non-trivial. At the end of Lecture 3 (for technical reasons) and
in Lecture 4, we consider the deformation theory of a mod p Galois representa-
tion of the absolute Galois group of a finite extension of Qp. More precisely, we
study some subfunctors of Mazur’s functor that satisfy conditions which hold for
representations arising from geometry. This is technically the by far most subtle
part and we only work out some of the simplest cases. To formulate and study
the resulting deformation functors, p-adic Hodge theory aka Fontaine theory are
needed; see [Ber2]. It enables one to describe local conditions for deformations of
2-dimensional representations arising from

(a) finite flat group schemes, in ordinary and non-ordinary cases;

(b) crystalline Galois representations of low Hodge–Tate weights (0, k), where
1 ≤ k ≤ p− 1;

(c) weight 2 semistable non-crystalline Galois representations.

On the geometric side, such representations arise from

(a) the p-power torsion of an elliptic curve with good ordinary or supersingular
reduction at p;

(b) p-adic Galois representations associated with a modular form of weight k,
where 2 ≤ k ≤ p;

(c) the p-adic Tate module of an elliptic curve with multiplicative reduction at p.

Lecture 5 ends the lecture series with the following result: the global universal
deformation ring R for 2-dimensional totally odd residual representations of the
absolute Galois group of a totally real field with (suitable) geometric conditions
at all primes, fixed determinant and ramification at most at a fixed finite set of
places of the base field, has Krull dimension at least 1. Together with results of
Taylor on potential modularity, covered in a lecture series by J.-P. Wintenberger
during the advanced course, the lower bound in fact suffices in many cases to
show that the p-power torsion elements form a finite ideal I of R such that R/I
is finite flat over Zp. This implies an important lifting result needed in the proof
by Khare and Wintenberger. The result is also in line with the expectation that
typically R should be isomorphic to a Hecke algebra on a finite-dimensional space
of p-adic modular forms, which is clearly finite flat over Zp and thus of exact Krull
dimension 1.

During the lecture series we also cover a number of technically important
issues for the theory of deformations of Galois representations: framed deforma-
tions, deformation functors via groupoids on a category, pseudo-representations
and their deformations, the completion of a deformation functor at closed points
of its generic fiber, and resolutions of deformation functors. Some lectures have
appendices that, for the convenience of the reader, recall technical terms needed
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in the main body. To give a sample: there are appendices on Schlessinger’s axioms,
formal schemes, finite flat group schemes, filtered ϕ-modules, etc.

Much of the current perspective on deformations of Galois representations is
due to work of M. Kisin, as is clear to everyone familiar with the topic. Moreover
we found his lecture notes [Ki7] very helpful in preparing the present lecture series.
Several parts of our exposition follow closely his notes.

Acknowledgments. Let me first thank Mark Kisin for allowing me to base parts of
the present notes on [Ki7] and for helpful correspondence. I would also like to thank
L. Berger, B. Conrad, K. Fujiwara. G. Hein, R. Schoof and J.-P. Wintenberger
for answering some questions regarding the present material, and R. Butenuth,
K. N. Cheraku and H. Verhoek for many suggestions to improve the present notes.
I thank the CRM Barcelona for the invitation to present this lecture series during
an advanced course on modularity from June 14 to June 25, 2010 and for the
pleasant stay at CRM in the spring of 2010, during which much of these lecture
notes was written. I also thank the Postech Winter School 2011 on Serre’s mod-
ularity conjecture for the invitation to give a lecture series based on the present
notes. This very much helped to improve the original draft. I acknowledge financial
support by the Deutsche Forschungsgemeinschaft through the SFB/TR 45.

Notation

The following list can be regarded as a reference page for the notation. Throughout
the notes it will be introduced step by step.

• p will be a rational prime.

• F will denote a finite field of characteristic p and W (F) its ring of Witt
vectors.

• O will denote the ring of integers of some p-adic field which is finite and
totally ramified over W (F)[1/p], so that O has residue field F.

• ArO will denote the category of pairs (A, πA) whereA is a finite local Artinian
O-algebra with a surjective homomorphism πA : A → F and maximal ideal
mA = KerπA.

• ÂrO will denote the category of pairs (A, πA) where A is a complete Noethe-
rian local O-algebra with a surjective homomorphism πA : A→ F and max-
imal ideal mA = KerπA.

• G will denote a profinite group.

• VF will be a (continuous) representation of G over F with d = dimF VF <∞.

• ad = EndF (VF) ∼= VF ⊗F VF
∗ is the adjoint representation of VF; it is again a

G-module.
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• ad0 ⊂ ad is the subrepresentation on trace zero matrices.

• ψ : G→ O∗ will denote a fixed lift of detVF.

• For an arbitrary field K, we let K denote a fixed algebraic closure and
write GK = Gal(K/K) for the absolute Galois group of K. We denote the
GK-representation lim←−n µpn(K) by Zp(1).

• For any ring A and any free finitely generated A-module M , we denote by
M∗ = HomA(M,A) its linear dual. If M carries an A-linear action by G
then so does M∗.

• For A ∈ ÂrW (F) and a continuous representation M of GK on a free finitely
generated A-module, we define its Cartier dual M∨ as HomA(M,A(1)),
where A(1) = A⊗̂ZpZp(1).

In Lecture 5 the following notation pertaining to number fields will be relevant:

• F will be a number field.

• S will denote a finite set of places of F —typically it will contain all places
above p and ∞.

• GF,S or simply GS will denote the Galois group of the maximal outside S
unramified extension of F inside F .

• For a place v of F , we will denote by GFv or simply Gv the absolute Galois
group of the completion of F at v.

• For each place v of F , we fix a homomorphism F alg ↪→ F alg
v extending

F ↪→ Fv, yielding a homomorphism Gv → GF → GS .
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Lecture 1

Deformations of representations
of profinite groups

Throughout this lecture series, p will be a prime and F a finite field of character-
istic p. The ring of Witt vectors of F will be denoted by W (F). By G we denote a
profinite group and by VF a finite F[G]-module on which G acts continuously. We
set d = dimF VF and fix an F-basis βF of VF.

In the first two lectures, G will mostly be arbitrary but subjected to a certain
finiteness condition. Later on, G will either be the absolute Galois group of a finite
extension of Qp or Q` for some ` 6= p, or a quotient of the absolute Galois group
of a number field.

In this lecture we discuss basic definitions, notions and results. The material
is fairly standard, although framed deformations are not treated in older surveys
such as [Ma2]. We mainly follow Kisin’s notation, as in [Ki7]. The lecture ends with
a discussion on groupoids over a category, which can be thought of as an alternative
means to describe deformation functors. This is taken from [Ki4, Appendix].

1.1 Deformation functors

Let ÂrW (F) denote the category of complete Noetherian local W (F)-algebras with
residue field F, and ArW (F) denote the full subcategory of finite local Artinian

W (F)-algebras. The maximal ideal of A ∈ ÂrW (F) is denoted by mA. Note that,

via the W (F)-structure, the residue field A/mA of any A ∈ ÂrW (F) is canonically
identified with F.

Let A be in ArW (F). A deformation of VF to A is a pair (VA, ιA) such that

(a) VA is an A[G]-module which is finite free over A and on which G acts con-
tinuously, and

9



10 Lecture 1. Deformations of representations of profinite groups

(b) ιA is a G-equivariant isomorphism ιA : VA ⊗A F
∼=−→ VF.

A framed deformation of (VF, βF) to A is a triple (VA, ιA, βA), where (VA, ιA) is a
deformation of VF to A and βA is an A-basis of VA which reduces to βF under ιA.

One defines functors DVF , D
2
VF

: ArW (F) → Sets by setting, for A ∈ ArW (F),

DVF(A) = {isomorphism classes of deformations of VF to A},

D2
VF

(A) = {isomorphism classes of framed deformations of (VF, βF) to A},

and with the obvious extension to morphisms.

Remarks 1.1.1. (a) The fixed basis βF identifies the vector space underlying VF
with Fd and thus allows us to view VF as a representation ρ̄ : G → GLd(F).
Then D2

VF
(A) is the set of continuous representations

ρ : G −→ GLd(A)

lifting ρ̄. In terms of representations,DVF(A) is the set of such representations
modulo the action by conjugation of Ker(GLd(A)→ GLd(F)).

(b) It is often useful to consider deformation functors on ArO, where O is the
ring of integers of a finite totally ramified extension of W (F)[1/p], so that F
is still the residue field of O, and where ArO is the category of local Artinian
O-algebras with residue field F. We shall do this in later lectures without
further mentioning.

(c) In Section 1.6 we reformulate deformation functors in terms of groupoids
over a category. This gives a different viewpoint on the theory and will be
important for certain applications.

1.2 A finiteness condition

Definition 1.2.1 (Mazur). A profinite group G satisfies the finiteness condition
Φp if, for all open subgroups G′ ⊂ G, the Fp-vector space Homcont(G

′,Fp) of
continuous group homomorphisms is finite-dimensional.

By the Burnside basis theorem (see Exercise 1.8.1), the group G′ satisfies
dimFp Homcont(G

′,Fp) < ∞ if and only if the maximal pro-p quotient of G′ is
topologically finitely generated.

Examples 1.2.2. The group Homcont(G
′,Fp) is isomorphic to Homcont(G

′ab
,Fp).

Thus class field theory shows that the following groups satisfy Condition Φp:

(a) The absolute Galois group of a finite extension Qp.

(b) The Galois group GF,S = Gal(FS/F ), where F is a number field, S is a
finite set of places of F , and FS ⊂ F denotes the maximal extension of F
unramified outside S.

Both of these examples will be important in later lectures.
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1.3 Representability

Proposition 1.3.1 (Mazur). Assume that G satisfies Condition Φp. Then:

(a) D2
VF

is pro-representable by some R2
VF
∈ ÂrW (F).

(b) If EndF[G](VF) = F then DVF is pro-representable by some RVF ∈ ÂrW (F).

One calls R2
VF

the universal framed deformation ring and RVF the universal
deformation ring of VF.

Remarks 1.3.2. (a) Recall that (pro-)representability (e.g., for D2
VF

) means that
there exists an isomorphism

D2
VF

(A) ∼= HomW (F)(R
2
VF
, A)

which is functorial in A ∈ ArW (F). This universal property implies that
R2
VF

is unique up to unique isomorphism. Moreover the identity map in
Hom(R2

VF
, R2

VF
) gives rise to a universal framed deformation over R2

VF
.

(b) Originally, Mazur only considered the functor DVF . It describes represen-
tations lifting VF up to isomorphism. The additional choice of basis is not
a very interesting datum. However, the functor DVF is not always repre-
sentable. A good way to remedy this problem is to rigidify the situation by
adding a choice of basis to a given representation and thus to consider the
functor D2

VF
instead. This is important for residual representations VF of the

absolute Galois group of a number field F , in the sense that VF may have
trivial centralizer as a representation of GF and yet the restriction of VF to
a decomposition group may no longer share this property.

(c) Without Condition Φp, the universal ring R2
VF

still exists (as an inverse limit
of Artinian rings), but it may no longer be Noetherian.

(d) Due to the canonical homomorphism F ↪→ EndF[G](VF), it is justified to write
“=” in EndF[G](VF) = F.

Proof of Proposition 1.3.1. We prove part (a). Suppose first that G is finite, say
with a presentation 〈g1, . . . , gs | r1(g1, . . . , gs), . . . , rt(g1, . . . , gs)〉. Define

R = W (F)[Xk
i,j | i, j = 1, . . . , d; k = 1, . . . , s]/I,

where I is the ideal generated by the coefficients of the matrices

rl(X
1, . . . , Xs)− id, l = 1, . . . , t,

with Xk the matrix (Xk
i,j)i,j . Let J be the kernel of the homomorphism R → F

defined by mapping Xk to ρ̄(gk) for k = 1, . . . , s, with ρ̄ as in Remark 1.1.1(a).
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Then R2
VF

is the J -adic completion of R and ρ2VF
is the unique representation

G→ GLd(R
2
VF

) mapping gk to the image of Xk in GLd(R
2
VF

).
We may write any profinite group G as a filtered inverse limit G = lim←−iG/Hi

over some index set I of open normal subgroups Hi ⊂ Ker(ρ̄). For each i the above
construction yields a universal pair (R2

i , ρ
2
i ). By the universality of these pairs,

one can form their inverse limit over the index set I. This yields

(R2
VF
, ρ2VF

) = lim←−
i

(R2
i , ρ

2
i ),

which clearly satisfies the required universal property. By definition, R2
VF

lies in

ÂrW (F). It remains to show that R = R2
VF

is Noetherian. Since R is complete, it
suffices to show that mR/(m

2
R, p) is finite-dimensional as a vector space over F. It

is most natural to prove the latter using tangent spaces. We refer to the proof of
Lemma 1.4.3, where we shall see how Condition Φp is used.

The proof of part (b) in [Maz] uses Schlessinger’s representability criterion
(Theorem 1.7.2). Following Kisin, we shall indicate a different proof in Section 2.1.

The following is a preview of Kisin’s proof. Let P̂GLd denote the completion of

the group PGLd over W (F) along its identity section. Then P̂GLd acts on the
functor D2

VF
by conjugation and hence it acts on the formal scheme Spf R2

VF
. The

condition EndF[G](VF) = F ensures that this action is free, and the idea is to define

Spf RVF = Spf R2
VF
/P̂GLd. �

1.4 The tangent space

Let F[ε] = F[X]/(X2) denote the ring of dual numbers. The set DVF(F[ε]) is
naturally isomorphic to Ext1

F[G](VF, VF), as an element of DVF(F[ε]) gives rise to

an extension1

0 −→ VF −→ VF[ε] −→ VF −→ 0,

where we have identified ε ·VF with VF, and, conversely, any extension of one copy
of VF by another VF can be viewed as an F[ε]-module, with multiplication by ε
identifying the two copies of VF. In particular, DVF(F[ε]) is naturally an F-vector
space.

Definition 1.4.1. The F-vector space DVF(F[ε]) is called the Zariski tangent space
of DVF . (The same terminology will be used for D2

VF
and other deformation func-

tors.)

Remark 1.4.2. Recall that, for any A ∈ ÂrW (F), its (mod p) Zariski tangent space
is the F-vector space tA = HomW (F)(A,F[ε]). Thus, if DVF is pro-representable,
then the tangent spaces of DVF and of the universal ring representing DVF agree.

1By Exti we denote the continuous extension classes.
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Lemma 1.4.3. (a) Defining adVF as the G-representation EndF(VF), there is a
canonical isomorphism

DVF(F[ε])
∼=−→ H1(G, adVF). (1.4.1)

(b) If G satisfies Condition Φp, then DVF(F[ε]) is a finite-dimensional F-vector
space.

(c) One has dimFD
2
VF

(F[ε]) = dimFDVF(F[ε]) + d2 − h0(G, adVF).

Remark 1.4.4. The symbol h?(. . .) always denotes dimFH
?(. . .).

Proof. Part (a) is immediate from the isomorphism Ext1
F[G](VF, VF) ∼= H1(G, adVF)

proved in Exercise 1.8.4.
We now prove part (b), thereby completing the proof of Proposition 1.3.1(a).

Let G′ = Ker(ρ̄), which is an open subgroup of G. The inflation-restriction se-
quence yields the left exact sequence

0 −→ H1(G/G′, adVF) −→ H1(G, adVF) −→ (Hom(G′,Fp)⊗Fp adVF)G/G
′
.

The term on the left is finite because G/G′ and adVF are finite. The term on the
right is finite because of Condition Φp for G. Hence (b) is proved.

To prove part (c), fix a deformation VF[ε] of VF to F[ε]. The set of F[ε] bases
of VF[ε] lifting a fixed basis of VF is an F-vector space of dimension d2. Let β′ and
β′′ be two such lifted bases. Then there is an isomorphism of framed deformations

(VF[ε], β
′) ∼= (VF[ε], β

′′)

if and only if there is an automorphism 1 + εα of VF[ε], where α ∈ adVF, which

takes β′ to β′′, so that α ∈ adVF
G. Thus the fibers of

D2(VF[ε]) −→ DVF(VF[ε])

are a principal homogeneous space under adVF/(adVF)G. �

Definition 1.4.5. Let ϕ : D′ → D be a natural transformation of functors from
ArW (F) to Sets. The map ϕ will be called formally smooth if, for any surjection
A→ A′ ∈ ArW (F), the map

D′(A) −→ D′(A′)×D(A′) D(A)

is surjective.

Essentially the same proof as that of Lemma 1.4.3(c) implies the following:

Corollary 1.4.6. The natural transformation D2
VF
→ DVF , (VA, βA) 7→ VA is for-

mally smooth. Thus, if RVF is representable, then R2
VF

is a power series ring over
RVF of relative dimension d2 − h0(G, adVF).
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Remark 1.4.7. The above corollary says that the singularities of the two local
W (F)-algebras RVF and R2

VF
are in some sense equivalent, provided that DVF is

representable. Even if DVF is not representable, there is a sense in which it has
an intrinsic geometry. However, this is best formulated in terms of groupoids;
cf. Section 1.6.

1.5 Presentations of the universal ring RVF

By Remark 1.4.2 and Lemma 1.4.3 we have shown part (a) of the following result:

Proposition 1.5.1. Suppose that G satisfies Condition Φp and RVF is representable.
Then:

(a) dim tRVF = h1(G, adVF) =: h and so there is a surjection

π : W (F)[[X1, . . . , Xh]] −→ RVF .

(b) For any π as in (a), the minimal number of generators of the ideal Kerπ is
bounded above by h2(G, adVF). More precisely, given π, one has a canonical
monomorphism

(Kerπ/(p,X1, . . . , Xh) Kerπ)∗ −→ H2(G, adVF),

where, for a vector space V , we denote its dual by V ∗.

For the proof of (b) we refer to [Maz] or [Bö1, Thm 2.4]. A similar proof is
given in Lemma 5.2.2.

Corollary 1.5.2. Assume that the hypotheses of Proposition 1.5.1 hold. Then, if
h2(G, adVF) = 0 —in this case, VF is called unobstructed—, the ring RVF is smooth
over W (F) of relative dimension h1(G, adVF).

Remarks 1.5.3. (a) If G = GF,S for a number field F and a finite set of places
S containing all places above p and ∞, all of the scarce evidence is in favor
of the following conjecture: if EndF[G](VF) = F, then RVF is a complete
intersection and flat over W (F) and of relative dimension

h1(G, adVF)− h0(G, adVF)− h2(G, adVF).

For S not containing all places above p, there are counterexamples [BC2].

(b) Let f =
∑
anq

n be a newform of weight k ≥ 2, level N and character ω.
Let S be any finite set of places of Q containing the infinite place and all
primes dividing N . Let K be the number field over Q generated by all the an.
Then, by work of Eichler, Shimura, Deligne and Serre, for any prime ℘ of K
one has a semisimple two-dimensional Galois representation

ρf,℘ : GQ,S∪{℘} −→ GL2(F℘)
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over the residue field F℘ of K at ℘ associated to f in a natural way. Let V℘
denote the corresponding continuous representation of G℘ := GQ,S∪{℘}. The
representation V℘ is known to be absolutely irreducible for almost all ℘.

By work of Mazur for k = 2 and f associated with an elliptic curve, and by
Weston for general f (cf. [Wes]), the following is shown. If k ≥ 3, then V℘
(with respect to G℘) is unobstructed for almost all primes ℘ of K. If k = 2,
then V℘ is unobstructed outside an exceptional set of density zero.

1.6 Groupoids over categories

Universal deformation rings can be very singular at their unique closed point. The
standard way in algebraic geometry to resolve singularities are blow-ups along the
singular locus. If we apply a formal blow-up to (the formal spectrum of) a universal
ring along a subscheme containing its closed point, the resulting (formal) scheme
may have many closed points. Since we deal with universal rings representing a
functor, it is natural to look for other functors whose representing objects realize
this blow-up. This means that we can no longer consider functors on Artin rings
only. An approach, breaking with all traditions in the area, would be to refor-
mulate the whole local theory developed so far in terms of schemes. Functors of
which one hopes that they are representable (by a formal scheme) could then be
described as stacks over the category of schemes. If we want to stay within the
realm of rings —at least in the description of functors— then one has to reformu-
late the theory of stacks in terms of rings. The spectra of these rings should be
thought of as giving coverings of the schemes that one should have in mind. This
has been done successfully by Kisin. Instead of studying (pre-)stacks, which are
categories (of schemes) fibered in groupoids, he considers categories (of rings with
supplementary structures) cofibered in groupoids. While this introduces the right
level of generality to describe resolutions of the functors one is interested in, the
theory is still close to the original theory of functors on ArW (F).

In the present section we shall give an outline of this, hoping that it will
be useful for the interested reader who wishes to consult Kisin’s work, e.g. [Ki4].
Moreover we shall make use of this in later parts of these lecture notes.

Let us first recall the definition of a groupoid category: a groupoid category is
a category in which all morphisms are isomorphisms. However, it is not required
that between any two objects there is a morphism. There can be many isomorphism
classes —these are also referred to as the connected components of the groupoid,
thinking of a category as a kind of graph. The set of endomorphisms of an object,
which is the same as the set of its automorphisms, is a group under composition.
The neutral element is given by the identity morphism of this object. One can
easily show that the automorphism groups of any two objects which are connected
are (non-canonically) isomorphic.

We shall now, following Kisin [Ki4], reformulate the theory of deformations
of Galois representations in terms of groupoids over categories.
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Fix a base category C which in many applications will be ArW (F). We consider
a second category F and a functor Θ: F→ C, and we say that

• η ∈ Ob(F) lies above T ∈ Ob(C) if Θ(η) = T , and

• (η
α→ ξ) ∈ MorF lies above (T

f→ S) ∈ MorC if Θ(α) = f .

Each object T together with the morphism idT forms a subcategory of C. By
F(T ) ⊂ F we denote the subcategory over this particular subcategory of C.

Definition 1.6.1. The triple (F,C,Θ) is a groupoid over C (or, more officially, a
category cofibered in groupoids over C) if the following hold:

(a) For any pair of morphisms η
α→ ξ and η

α′→ ξ′ in F over the same morphism

T → S in C, there exists a unique morphism ξ
u→ ξ′ in F over idS such that

u ◦ α = α′.

(b) For any η ∈ Ob(F) and any morphism T
f→ S in C with η over T there exists

a morphism η
α→ ξ in F over f .

In particular, for any T in C, the category F(T ) is a groupoid, i.e., a category
in which all morphisms are isomorphisms. It is natural to specify a groupoid by

specifying for any T in C the category in F over T , and for any morphism T
f→ S

in C the class of morphisms above f , and we shall often do so.

Remark 1.6.2. Let Θ: F → C be a functor and Θo : Fo → Co the induced functor
between the opposite categories. Then Θ defines a category cofibered in groupoids
over C if and only if Θo defines a category fibered in groupoids over C. The latter
structure is well known in the theory of stacks. This is no accident: in the theory
of stacks, the base category is typically the category of schemes. Now the opposite
category of affine schemes is the category of rings —and we may look at a subclass
of schemes corresponding to a subclass of rings. Since one base category will be the
ring category ArW (F), it is natural to work with categories cofibered over it. Note
also that stacks have to satisfy some gluing conditions. The corresponding opposite
conditions are not imposed in the present (admittedly very simple) setting.

If for each T ∈ Ob(C) the isomorphism classes of F(T ) form a set, we associate
to the category F over C a functor |F| : C → Sets by sending T to the set of
isomorphism classes of F(T ).

Example 1.6.3. Let C = ArW (F). To the representation VF of G we associate a
groupoid DVF over C as follows:

(a) For A ∈ ArW (F), the objects of DVF over A are pairs (VA, ιA) in DVF(A).

(b) A morphism (VA, ιA)→ (V ′A′ , ιA′) over a morphism A→ A′ in ArW (F) is an
isomorphism class

{α : VA ⊗A A′
∼=−→ V ′A′ an isomorphism | ιA′ ◦ α = ιA}/(A′)∗.
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In the terminology now introduced, the functor previously denoted by DVF would
be the functor |DVF |. For simplicity, we shall often omit the absolute value signs,
if no confusion is likely.

When VF has non-trivial automorphisms, then so do the objects in the cat-
egories DVF(A). In this situation, the groupoid DVF captures the geometry of the
deformation theory of VF more accurately than its functor of isomorphism classes.

1.6.1 Representability of a groupoid Θ: F → C

For η ∈ Ob(F), define the category η̃ (the category under η) as the category whose

objects are morphisms with source η and whose morphisms from an object η
α→ ξ

to η
α′→ ξ′ are morphisms ξ

u→ ξ′ in F such that u ◦ α = α′. (We do not assume
that ξ and ξ′ lie over the same object of C and so u may not be an isomorphism.)

Definition 1.6.4. The groupoid F over C is called representable if there is an object
η in F such that the canonical functor η̃ → F is an equivalence of categories.

In the same way as η̃, one defines the category T̃ for any T ∈ C. One has a
natural commutative diagram of categories

η̃ //

��

F

��

Θ̃(η) // C.

(1.6.1)

Both η̃ and Θ̃(η) are groupoids over C and the top horizontal and left vertical
homomorphisms are homomorphisms of groupoids over C. Because of the axioms
of a groupoid over a category, the left vertical homomorphism is an equivalence of
categories.

If F is representable, say by η, the equivalence η̃ → Θ̃(η) implies that η, as
well as Θ(η), are well-defined up to canonical isomorphism. One says that Θ(η)
represents F over C. Under the same hypothesis, any two objects of F(Θ(η)) are
canonically isomorphic and there is an isomorphism of functors

HomC(T,−)
∼=−→ |F|,

so that T represents |F| in the usual set theoretic sense. Conversely, if |F| is rep-
resentable and for any T in C any two isomorphic objects of F(T ) are related by
a unique isomorphism, then F is representable.

Remark 1.6.5. The groupoid of Example 1.6.3 is usually not representable. To

have a representability result, one needs to extend it to the category ÂrW (F). This
can be done canonically and is explained in [Ki4, A.7].
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The main reason why, in some circumstances, one needs to introduce the
language of groupoids, is that formation of fiber products is not compatible with
the passage from a groupoid F over C to its associated functor |F|. This is a serious
technical issue, since Definition 2.4.4 of relative representability depends on the
formation of fiber products. We illustrate this with a simple example taken from
[Ki4, A.6].

Following Example 1.6.3, we define the groupoid D2
VF

on C = Arw(F) as fol-
lows. An object over A ∈ ArW (F) is a triple (VA, ιA, βA), where (VA, ιA) ∈ DVF(A)
and βA is an A-basis of VA mapping under ιA to the basis βF of VF. A morphism

(VA, ιA, βA)→ (VA, ιA, βA′) over A→ A′ is an isomorphism α : VA ⊗A A′
∼=−→ VA′

taking βA to βA′ . There is an obvious morphism of groupoids D2
VF
→ DVF .

Consider now the situation when the group G is trivial and fix η = (VA, ιA) ∈
DVF(A) for some A ∈ ArW (F). Then η̃×DVF D

2
VF

can be identified with quadruples

(V ′A′ψ
′
A′ , ϕ : VA ⊗A A′

∼=−→ V ′A′ , βA′), where (V ′A′ψ
′
A′ , βA′) ∈ D2

VF
(A′) and mor-

phisms over idA′ are isomorphisms of V ′A′ reducing to the identity of VF. It follows
that this category is a principal homogeneous space for the formal group obtained
by completing PGLd/W (F) along its identity section. Hence |η̃×DVFD

2
VF
|(A′) is iso-

morphic to the kernel Ker(PGLd(A
′)→ PGLd(F)). On the other hand, |D2

VF
(A′)|

is a singleton and hence the same holds for |η̃| ×|DVF | |D
2
VF
|(A′).

1.7 Appendix

1.7.1 Schlessinger’s axioms

Definition 1.7.1. Let D : ArW (F) → Sets be a functor such that D(F) is a point.
For any A,A′, A′′ ∈ ArW (F) with morphisms A′ → A and A′′ → A, we have a map

D
(
A′ ×A A′′

)
−→ D(A′)×D(A) D(A′′). (1.7.1)

The axioms of Schlessinger in [Sch] are as follows:

(H1) If A′′ → A is small surjective, then (1.7.1) is surjective.

(H2) If A′′ → A is F[ε]→ F, then (1.7.1) is bijective.

(H3) dimFD(F[ε]) is finite.

(H4) If A′′ → A is small surjective and A′ = A′′, then (1.7.1) is bijective.

Note that D(F[ε]) carries a natural structure of F-vector space. An epimorph-
ism A′′ → A in ArW (F) is called small surjective if its kernel is a principal ideal
which is annihilated by mA′′ .

The following is one of the main theorems of [Sch]:

Theorem 1.7.2 (Schlessinger). If D satisfies (H1) to (H4), then D is pro-represen-
table.
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1.8 Exercises

Exercise 1.8.1. Show that for a profinite group G the following conditions are
equivalent:

(a) For all open subgroups G′ ⊂ G the maximal pro-p quotient of G′ is topolog-
ically finitely generated.

(b) For all open subgroups G′ ⊂ G the vector space dimFp Homcont(G
′,Fp) is

finite.

(c) For all open subgroups G′ ⊂ G and finite continuous F[G]-modules M one
has dimFH

1(G′,M) <∞.

Exercise 1.8.2. Give a proof of Proposition 1.3.1 by verifying Schlessinger’s axioms
(see Definition 1.7.1).

Exercise 1.8.3. Show that the natural transformation D2
VF
→ DVF is formally

smooth.

Exercise 1.8.4. Show that Ext1
G(VF, VF)

∼=−→ H1(G, adVF).

Exercise 1.8.5. Show that the groupoid DVF of Example 1.6.3 is representable if
EndF[G](VF) ∼= F.

Exercise 1.8.6. Describe the groupoid corresponding to the functor D2
VF

. What are

its morphism sets? For G the trivial group, show that W (F)
d

with its standard

basis and the canonical homomorphism W (F)
d → Fd represent D2

VF
.

Exercise 1.8.7. Fill in the details of the remarks following Definition 1.6.4. In
particular, show that if F is representable then Aut(η) = id for all η ∈ Ob(F).

Exercise 1.8.8. Let Φ′ : F′ → F and Φ′′ : F′′ → F be morphisms of categories.
Define F′ ×F F′′ as the category whose objects over T are triples (η′, η′′, θ), where

η′ ∈ Ob(F′(T )), η′′ ∈ Ob(F′′(T )) and θ is an isomorphism Φ′(η′)
∼=−→ Φ′′(η′′)

over idT , and whose morphisms (η′, η′′, θ) −→ (ξ′, ξ′′, τ) above T → S are pairs

(η′
α′→ ξ′, η′′

α′′→ ξ′′) over T → S such that the following diagram in F commutes:

Φ′(η′)

θ

��

α′ // Φ′(ξ′)

τ

��

Φ′′(η′′)
α′′ // Φ′′(ξ′′).

For example, if F′ → F is a morphism of groupoids over C and ξ ∈ F, one
can form F′ξ := F′ ×F ξ̃.

Let now S be a scheme. Then using the construction in 1.6.1 we may consider
an S-scheme X as a groupoid X̃ over S-schemes. Suppose that X → Y and
X ′ → Y are morphisms of S-schemes. Show that there is an isomorphism

X̃ ×Ỹ X̃
′ ∼=−→ ˜X ×Y X ′.
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Lecture 2

Deformations of
pseudo-representations

We start this lecture by giving a proof of the representability of DVF under the
hypothesis that EndF[G](VF) = F, following [Ki7, Lecture III]. Then we turn to
pseudo-representations and their deformations. Pseudo-representations as consid-
ered here were introduced in [Tay1]. Their deformation theory was first studied in
[Nys] and [Rou]. The treatment of the deformation theory here is taken from [Ki7].

The material is not directly needed in relation to the proof of Serre’s conjec-
ture, but it is foundational and deserves further attention. Pseudo-representations
are useful when a representation is not absolutely irreducible. They appeared first
in work of Wiles (in somewhat different form; see Appendix 2.7.2). The present
definition goes back to Taylor [Tay1]. In both instances, they were used in the
construction of p-adic Galois representations by a patching argument which re-
lied on the existence of a sequence fm of mod pm modular forms such that
fm ≡ fm+1 mod pm for all m. More relevant in relation to deformation the-
ory is their use in the construction of p-adic families of Galois representations in
the work of Belläıche–Chenevier [BC1], Buzzard [Buz] or Coleman–Mazur [CM].
Pseudo-representations also play an important role in Kisin’s work [Ki6] on the
Fontaine–Mazur conjecture. If the dimension is larger than the characteristic,
pseudo-representations do not behave well. We shall not discuss a recent variant
introduced by Chenevier [Che], which works well in all characteristics.

In the appendix to this chapter, we provide a short introduction to formal
schemes and recall the definition of pseudo-representations in the sense of Wiles.

2.1 Quotients by group actions

Quotients by finite (formal) group actions are often representable, and indeed
there are general results which guarantee this in certain situations. In this section

21
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we assume that G satisfies Condition Φp. Our first aim is the proof of Proposi-
tion 1.3.1(b) from Lecture 1, whose proof had been postponed.

Theorem 2.1.1. Suppose EndF[G](VF) = F. Then DVF is representable.

Proof. We saw that D2
VF

is representable by the formal scheme1 XVF := Spf R2
VF

,

where R2
VF

is in ÂrW (F). Let P̂GLd denote the formal completion of the W (F)-
group scheme PGLd along its identity section, i.e., the formal neighborhood of

PGLd of the closed point id ∈ PGLd(F). The formal group P̂GLd acts on the
formal scheme XVF :

P̂GLd ×XVF −→ XVF , (g, x) 7−→ gx.

The action can most easily be understood if the schemes involved are considered as

functors on rings A ∈ ArW (F): to every matrix g in P̂GLd(A) = Ker(PGLd(A)→
PGLd(F)) and representation ρA : G → GLd(A) (given by (VA, ιA, βA)), one as-
signs gρg−1. This action can be converted into the following equivalence relation:

P̂GLd ×XVF
//
// XVF ,

(
g, x
)
7−→

(
x, gx

)
.

A pair (x, y) ∈ X ×X lies in the image of the relation if and only if x and y lie in

the same P̂GLd-orbit.
By the hypothesis EndF[G](VF) = F, the action of P̂GLd on XVF is free. This

implies that the induced map

P̂GLd ×XVF −→ XVF ×XVF ,
(
g, x
)
7−→ (x, gx) (2.1.1)

is a monomorphism as a functor of points, and thus a closed immersion of formal
schemes; see Exercise 2.8.1.

Constructing XVF/P̂GLd as a formal scheme amounts to the same as con-
structing a formal scheme representing the above equivalence relation; indeed,

both schemes parameterize orbits of the action of P̂GLd. To see that the latter is
possible we need to recall a result from [SGA3].

Recall that ÂrW (F) is the category of complete local Noetherian W (F)-alge-

bras. Thus, the opposite category (ÂrW (F))
o is equivalent to the category of formal

Noetherian spectra of such W (F)-algebras with underlying space consisting of one
point and residue field F.

Definition 2.1.2. An equivalence relation R
//
// X in (ÂrW (F))

o is a pair of mor-
phisms such that

(a) R→ X ×X is a closed embedding, and

(b) for all T ∈ (ÂrW (F))
o the subset R(T ) ⊂ (X × X)(T ) is an equivalence

relation.
1See Appendix 2.7.1 for some background on formal schemes.
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We have seen above that, for a group object G in (ÂrW (F))
o and a free action

G×X → X, the map

G×X //
// X, (g, x) 7−→ (x, gx)

defines an equivalence relation.

Definition 2.1.3. A flat morphism X → Y in (ÂrW (F))
o is said to be a quotient of

X by R, and one also writes Y = X/R, if the embedding R→ X ×X induces an
isomorphism R ∼= X ×Y X.

Theorem 2.1.4 ([SGA3, VIIb, Thm. 1.4]). Let p0, p1 : R
//
// X be an equivalence

relation in (ÂrW (F))
o such that the first projection p1 : R → X is flat. Then the

quotient of X by R exists. It represents the functor on points defined by the equiv-
alence relation. If X = Spf B and R = Spf C, then X/R = Spf A, where

A = {b ∈ B | p∗0(b) = p∗1(b) in C}.

Theorem 2.1.4 applied to the equivalence relation P̂GLd × XVF
//
// XVF

completes the proof of Theorem 2.1.1. �

2.2 Pseudo-representations

Absolutely irreducible representations of finite groups are determined by their
trace functions. A result of Carayol [Car] and Mazur [Maz] says that the analogous
result holds also for deformations:

Theorem 2.2.1 (Carayol, Mazur). Suppose that VF is absolutely irreducible. If A is
in ArW (F) and VA, V

′
A ∈ DVF(A) are deformations such that Tr(σ|VA) = Tr(σ|V ′A)

for all σ ∈ G, then VA and V ′A are isomorphic deformations.

Proof. The following proof is due to Carayol. Fix bases for VA and V ′A and extend
the resulting representations to A-linear maps

ρA, ρ
′
A : A[G] −→Md(A).

We have to show that the bases can be chosen so that ρA = ρ′A.
Let mA be the radical of A ∈ ArW (F), and I = (a) ⊂ A be an ideal such

that mAa = 0. By induction on the length of A, we may assume that ρA ≡ ρ′A
modulo I, and write ρA = ρ′A + δ, where for σ ∈ A[G] the matrix δ(σ) ∈ Md(I)
has trace 0.

As ρA and ρ′A are multiplicative, we find that, for σ1, σ2 ∈ A[G],

δ(σ1σ2) = ρ̄(σ1v)δ(σ2) + δ(σ1v)ρ̄(σ2). (2.2.1)

If σ2 ∈ Ker(ρ̄), we have that δ(σ1σ2) = ρ̄(σ1)δ(σ2) for all σ1 ∈ A[G]; therefore
Tr(ρ̄(σ1)δ(σ2)) = 0 for all σ1 ∈ A[G]. But by Burnside’s theorem ρ̄(F[G]) = Md(F)
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as ρ̄ is absolutely irreducible. Hence, Tr(Xδ(σ2)) = 0 for any X ∈ Md(F), so
δ(σ2) = 0.

It follows that δ : Md(F) → Md(I) ∼= Md(F) ⊗F I ∼= Md(F) is an F-linear
derivation on Md(F). Such a derivation is always inner; see e.g. [Wei, Lemma 9.2.1,
Thm. 9.2.11]. Hence there exists U ∈Md(I) such that δ(σ) = ρ̄(σ)U −Uρ̄(σ) and
ρ′A = (1− U)ρA(1 + U). �

The above result gives a clue that in many important cases also the repre-
sentation theory of profinite groups is governed by traces. The idea of pseudo-
representations, introduced by Wiles [Wi1] for odd two-dimensional representa-
tions and by Taylor [Tay1] for an arbitrary group, is to try to characterize those
functions on G which are traces and to study deformation theory via deformations
of the trace functions.

Definition 2.2.2. Let R be a (topological) ring. A (continuous) R-valued pseudo-
representation of dimension d, for some d ∈ N0, is a continuous function T : G→ R
with the following properties:

(a) T (id) = d where id ∈ G is the identity element and d! is a non-zero-divisor
of R.

(b) For all g1, g2 ∈ G one has T (g1g2) = T (g2g1) (T is central).

(c) d ≥ 0 is minimal such that the following condition holds. Let Sd+1 denote
the symmetric group on d+ 1 letters and let sign: Sd+1 → {±1} denote its
sign character. Then, for all g1, . . . , gd+1 ∈ G,∑

σ∈Sd+1

sign(σ)Tσ(g1, . . . , gd+1) = 0,

where Tσ : Gd+1 → R is defined as follows. Suppose that σ ∈ Sd+1 has cycle
decomposition

σ =
(
i
(1)
1 , . . . , i(1)

r1

)
. . .
(
i
(s)
1 , . . . , i(s)rs

)
= σ1 . . . σs. (2.2.2)

Then Tσ(g1, . . . , gd+1) = T
(
g
i
(1)
1
. . . g

i
(1)
r1

)
· . . . · T

(
g
i
(s)
1
. . . g

i
(s)
rs

)
.

Remarks 2.2.3. Let T be a pseudo-representation of G of dimension d.

(a) It is shown in [Rou, §2] that, if condition (c) holds for some d, then it holds
for all d′ ≥ d. It is also shown in [Rou, Prop. 2.4] that conditions (b) and (c)
for d minimal imply T (id) = d, provided that R is a domain.

(b) The condition that d! is a non-zero-divisor of R is suggested by the work
of Belläıche and Chenevier [BC1]. In fact, they require that d! be a unit
of R. Being somewhat restrictive, this condition does avoid a number of
pathologies. For instance, we shall make use of it in Lemma 2.3.4. In [BC1,
Footnote 13] it is also observed that the condition d! ∈ R∗ is needed for
Lemma 2.14, Lemma 4.1 and Theorem 5.1 in the article [Rou].
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(c) In Taylor’s work [Tay1] he is primarily interested in rings R of characteristic
zero. Then d! is automatically a non-zero-divisor in R.

(d) In the recent preprint [Che], Chenevier replaces the notion of pseudo-rep-
resentation by that of a determinant —a notion defined in [Che]. Its main
advantage is that it requires no condition on d!, and hence it is a good notion
over rings of any characteristic. The preprint [Che] also studies deformations
of such and applies this theory to rigid analytic Galois representation arising
from p-adic families of modular forms.

(e) It is often convenient to consider the R-linear extension T̃ : R[G] → R of a
pseudo-representation. The relations in Definition 2.2.2(c) are then satisfied
for all (g1, . . . , gd+1) ∈ R[G]d+1.

Theorem 2.2.4 (Taylor, Rouquier). (a) If ρ : G → GLd(R) is a representation,
then Tr ρ is a pseudo-representation of dimension at most d.

(b) Suppose R is an algebraically closed field 2 of characteristic Char(R) > d or
Char(R) = 0. Then for any pseudo-representation T of dimension d there
exists a unique semisimple representation ρ : G→ GLd(R) with Tr ρ = T .

(c) If G is (topologically) finitely generated, then for every integer d ≥ 1 there
is a finite subset S ⊂ G, depending on d, such that a pseudo-representation
T : G→ R of dimension d is determined by its restriction to S. (Recall that
our hypotheses imply that d! is a non-zero-divisor in R.)

Except for the level of generality of part (b), the above theorem is due to
Taylor; cf. [Tay1]. In op. cit., part (b) is only proved for algebraically closed fields of
characteristic zero. Taylor’s arguments are based on results of Procesi on invariant
theory; see [Pro]. Part (b) as stated is from Rouquier [Rou, §4], who also gives
a direct and self-contained proof of part (a) independent of the results in [Pro].
Below we follow Rouquier.

Proof. We only give the arguments for part (a). We let T = Tr ρ and define
Θ: Md(R)→ R as the map

Θ(g1, . . . , gd+1) =
∑

σ∈Sd+1

sign(σ)Tσ(g1, . . . , gd+1).

We shall show that Θ ≡ 0. It suffices to prove this for G = GLd(R) and ρ = id.
Writing R as a quotient of a domain R′ of characteristic 0, it suffices to prove the

2By [Rou, Thm. 4.2] it is necessary and sufficient to assume that R is a field with trivial
Brauer group. As an example, consider D 6= K a division algebra over a p-adic field K with
OD a maximal order and G the group of units of OD. Then the reduced trace is a pseudo-
representation G = O∗D → OK ⊂ K of dimension d such that d2 = [D : K]. However, the
asserted representation in (b) only exists over a splitting field L ⊃ K of D. For another hypothesis
under which (b) holds, see Theorem 2.4.1 due to Nyssen and Rouquier.
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result for R′; this case is then easily reduced to that where R is an algebraically
closed field of characteristic 0. This we assume from now on.

Let V = Rd and define W = V ⊗V ∗ = EndR V . Note that Θ is invariant un-
der the action of Sd+1 (since, if one applies Tσ to the permutation of g1, . . . , gd+1

under some ξ ∈ Sd+1, one obtains Tξ−1σξ). Hence, if we extend Θ to a multilinear

map Θ: W⊗(d+1) → R, it is determined by its values on Symd+1W ⊂W⊗(d+1). As
we are in characteristic zero, a simple argument based on homogeneous polynomi-
als of degree d+ 1 in dimW variables shows that as an R-vector space Symd+1W
is spanned by the image of the diagonal map

∆: W 7−→W⊗(d+1), w 7−→ w ⊗ · · · ⊗ w.

Thus it suffices to show that Θ(∆(w)) = 0 for all w ∈ W . As the semisimple
elements in AutR(V ) are Zariski dense in W , it is enough to show Θ(∆(w)) = 0
for all semisimple w ∈W . For small values of d, this can be verified explicitly. For
general d, one has the following argument:

Choose a basis {e1, . . . , ed} of V in which w is diagonal and consider the
action of Ξ := w

∑
σ∈Sd+1

sign(σ)σ on W⊗(d+1), where Sd+1 acts by permuting

the factors and w acts as ∆(w). We claim that Tr Ξ = Θ(∆(w)). Assuming the
claim, we observe that obviously( ∑

σ∈Sd+1

sign(σ)σ

)(
V ⊗(d+1)

)
⊂
d+1∧

V = 0,

and so the proposition follows.

We now prove the claim: suppose that w has diagonal entries λ1, . . . , λd with
respect to e1, . . . , ed. The trace of Ξ is then given by

∑
i=(i1,...,id)∈{1,...,d}d+1

〈
w

( ∑
σ∈Sd+1

sign(σ)σ

)(
ei1 ⊗ · · · ⊗ eid+1

)
,
(
ei1 ⊗ · · · ⊗ eid+1

)〉
=

∑
σ∈Sd+1

sign(σ)
∑

i∈{1,...,d}d+1

〈
w
(
eσ(i1) ⊗ · · · ⊗ eσ(id+1)

)
,
(
ei1 ⊗ · · · ⊗ eid+1

)〉
,

where 〈−,−〉 is 1 if both entries are the same and zero otherwise. Thus if we write
σ in its cycle decomposition σ1 . . . σs as in (2.2.2) on page 24, the expression〈(

eσ(i1) ⊗ · · · ⊗ eσ(id+1)

)
,
(
ei1 ⊗ · · · ⊗ eid+1

)〉
is non-zero (and thus equal to 1) exactly if the tuple i is constant on the support
of each of the cycles σk. Moreover on each such support we can choose the value
of i freely. Moreover if (j1, . . . , js) denotes the tuple of values on the s supports of
these cycles (cycles may have length one), then w applied to eσ(i1)⊗ · · · ⊗ eσ(id+1)
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results in multiplication by λ
|σ1|
j1
· . . . · λ|σs|js

, where |σk| is the length of the cycle.
Summing over all i (for fixed σ) yields

Tr
(
w|σ1|

)
· . . . · Tr

(
w|σs|

)
.

This expression clearly agrees with Trσ(w) and so the claim is shown. �

2.3 Deformations of pseudo-representations

Let τF : G→ F be a pseudo-representation. For A in ArW (F) define

DτF(A) =
{

pseudo-representations τA : G −→ A lifting τF
}
.

Proposition 2.3.1. Suppose G satisfies Condition Φp. Then DτF is pro-representable
by a complete local Noetherian W (F)-algebra RτF .

For an example of a universal pseudo-deformation, see Exercise 2.8.2. We
note that there is no simple expression of the tangent space of the functor DτF

similar to that given in Lemma 1.4.3 for DVF . So interesting results on this can be
found in [Bel].

For the proof of Proposition 2.3.1, we need some preparation:

Definition 2.3.2. For any pseudo-representation T : G→ R, define

KerT =
{
h ∈ G | ∀g ∈ G : T (gh) = T (g)

}
.

If we view T as an R-linear map T̃ : R[G]→ R, then we set

Ker T̃ =
{
h ∈ R[G] | ∀g ∈ R[G] : T (gh) = 0

}
.

Lemma 2.3.3. (a) KerT is a closed normal subgroup of G.

(b) Ker T̃ is an ideal of R[G].

(c) If R is finite, then KerT is open in G.

Proof. We leave parts (a) and (b) as exercises. Let us prove (c). For each r ∈ R,
denote Ur = {g ∈ G | T (g) = r}. Since T is continuous and R is finite, the Ur
form a partition of G by open subsets. Now note that the condition T (gh) = T (g)
for all g ∈ G is equivalent to UT (g)h ⊂ UT (g) for all g ∈ G. Thus

KerT =
⋂
r∈R

{
h ∈ G | Urh ⊂ Ur

}
.

The latter is clearly open in G and this proves (c). �
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Inspired by [Ki7, (2.2.3)], we show the following, where τF is as in Propo-
sition 2.3.1. For a profinite group G and m ∈ N, we denote by Gm the closed
subgroup generated by {gm | g ∈ G}. It is clearly normal in G.

Lemma 2.3.4. Set G′ = Ker τF. Then for any A ∈ ArW (F) there exists a constant

mA ∈ N such that for all τA ∈ DτF(A) one has (G′)p
mA ⊂ Ker τA. In particular, if

H ⊂ G′ denotes the closed normal subgroup such that G′/H is the maximal pro-p
quotient of G′, then Ker τA contains H.

Proof. For any g ∈ G′, h ∈ G and i ≥ 1, one has τ̃A((g − 1)ih) ∈ mA. Taking
gj = (g − 1)ij and gd+1 = (g − 1)id+1h with all ij ≥ 1 in Definition 2.2.2(c), and
using the centrality of Definition 2.2.2(b), one finds that d! · τ̃A((g − 1)ih) ∈ m2

A

for all g ∈ G′, h ∈ G and i ≥ (d+1). Since d! is a non-zero-divisor, we may cancel.
Proceeding by induction yields

τ̃A((g − 1)ih) ∈ m2j

A for all g ∈ G′, h ∈ G and j ≥ 1 and i ≥ (d+ 1)j .

Since A is Artinian, we can find m ∈ N such that τ̃A((g − 1)p
m

h) = 0 for all
g ∈ G′ and h ∈ G. By enlarging m if necessary we also assume that pmA = 0.

In particular, it follows that
(
p2m

i

)
= 0 in A for all i < pm. But then binomial

expansion yields

τ̃A((gp
2m

− 1)h) = τ̃A((((g − 1) + 1)p
2m

− 1)h) =

p2m∑
i=pm

τ̃A((g − 1)ih)

(
p2m

i

)
= 0,

where in the last step we use τ̃A((g − 1)ih) = 0 for all i ≥ pm, g ∈ G′ and h ∈ G.
The first part of the lemma follows with mA = 2m, since Ker τA is a closed normal
subgroup of G. For the second part, observe that H is a subgroup of (G′)p

mA , since
G′/(G′)p

mA is a finite p-group. Hence, by the first part, H ⊂ Ker τA. �

Proof of Proposition 2.3.1. Suppose first that G is finite. Let RG be the quotient
of W (F)[Xg : g ∈ G] by the ideal I generated by the relations Xe − d, Xgh −Xhg

for all g, h ∈ G, and the relations∑
σ∈Sd+1

sign(σ)Xg
i
(1)
1

...g
i
(1)
r1

· . . . ·Xg
i
(s)
1

...g
i
(s)
rs

,

where each σ is given in its cycle decomposition as in (2.2.2) on page 24. By the
definition of I, mappingXgH to τF(g) yields a well-defined homomorphismRG → F
in ÂrW (F). The completion R̂G of RG at the kernel of this homomorphism is the
wanted universal ring; the corresponding universal deformation of τF is the induced
map

τG : G −→ R̂G, g 7−→ gH 7−→ XgH .

Let now G be arbitrary. Write G = lim←−i∈I G/Hi for a basis of the identity by

open normal subgroups Hi, i ∈ I. By the universality of the (R̂G/Hi , τR/Hi), they



2.4. Deforming a representation ρ̄ and the pseudo-representation Tr ρ̄ 29

form an inverse system and their inverse limit is the wanted universal deformation
(R̂G, τG). It remains to see that under Condition Φp the ring R̂G is Noetherian.
By the previous lemma, the elements in Dτ (F[ε]) factor via RG/(G′)pm for some

fixed m ∈ N. Condition Φp implies that the group G/(G′)p
m

is finite, and hence
dimFDτ (F[ε]) <∞. �

Unlike for the case of deformations of representations, finding an exact for-
mula for dimFDτ (F[ε]) seems difficult in general. For some recent partial results,
see [Bel].

2.4 Deforming a representation ρ̄ and the pseudo-
representation Tr ρ̄

For absolutely irreducible representations we have the following:

Theorem 2.4.1 (Nyssen–Rouquier). Suppose that G satisfies Condition Φp and
that ρ̄ : G → GL(VF) is absolutely irreducible. Set τF = Tr ρ̄. Then there is an

isomorphism of functors DVF

∼=−→ DτF on ArW (F).

This theorem does not require that d! be invertible in R. However, note that
ρ̄ is given a priori.

The theorem has the following consequences, the first of which is due to
Carayol:

(a) Let A be in ÂrW (F) and VA be a representation over A with reduction VF
such that VF is absolutely irreducible. Let A0 ⊂ A be the subring generated
by Tr(VA)(G). Then VA is defined over A0, i.e., there exists VA0

∈ DVF(A0)
such that VA ∼= VA0

⊗A0
A: by the above theorem, it suffices to prove the

analogous statement for pseudo-representations. There it is trivial.

(b) Suppose that A ∈ ÂrW (F) and τ : G → A is a pseudo-representation such
that τ mod mA arises from some ρ̄ as in the theorem. Then there exists a
representation ρ : G→ GLd(A) whose trace is equal to τ . It is unique up to
isomorphism by Theorem 2.2.1.

(c) Lastly it gives another proof of the representability of the functor DVF in the
case where VF is absolutely irreducible.

The situation becomes more involved if the initial residual representation
is no longer absolutely irreducible —which was one of the main reasons for in-
troducing pseudo-representations. Suppose therefore that ρ̄ : G → GL(VF) is ar-
bitrary and set τF = Tr ρ̄. One still has the canonical morphism of functors
D2
VF
→ DτF , VA 7→ TrVA.
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Let us look at the following concrete example. Let χ1, χ2 : G→ F× be char-
acters and c1, c2 ∈ Ext1(χ2, χ1) —or rather ci ∈ Z1(G,χ2χ

−1
1 ). Then(

χ1 c1 + Tc2
0 χ2

)
is a representation G→ GL2(F[T ]), i.e., a family of representations over A1

F. More
naturally, one obtains a family of representations of G over P(Ext1(χ2, χ1)), the
projectivization of Ext1(χ2, χ1), which all have the pseudo-character χ1 +χ2. Note
that the projectivized representation consists of a vector bundle of rank 2 over
P(Ext1(χ2, χ1)), which carries an action of a finite quotient of G such that, over
any sufficiently small affine SpecR ⊂ P(Ext1(χ2, χ1)), the action is isomorphic to
a true representation G→ GL2(R).

To fully express the relationship between the deformations of VF and those of
the pseudo-representations τ = TrVF, it will be convenient to work with groupoids.
The underlying category will however not be ArW (F): the point is that, as we have
seen above, the fiber over VF of the natural transformation D2

VF
→ DτF is no longer

a single point!
Following Kisin, we consider the category AugW (F). Its objects are morphisms

A → B where A is in ArW (F) and B is an A-algebra with no finiteness condition
assumed. Morphisms (A→ B)→ (A′ → B′) are pairs of homomorphisms A→ A′

and B → B′ which yield a commutative diagram

A

��

// B

��

A′ // B′.

So, even if A = F, the second entry B can be any F-algebra, e.g. the coordinate
ring of an affine subvariety of P(Ext1(χ2, χ1)).

Remarks 2.4.2. There are several variants of the category AugW (F).

(a) We may also consider ÂugW (F). Its objects are pairs (B,A) where A ∈ ÂrW (F)

and B is an A-algebra which is topologically complete with respect to the
topology defined by mAB.

(b) Another natural category to consider is that of pairs (S,A) where S is an
A-scheme —or even the inverse limit category of it, as described in part (a).
The point is that the pro-representing object of a groupoid fibered over
AugW (F) may not be an affine scheme. In the example above it is suggested
that this scheme could be projective. Working therefore with schemes instead
of rings, the universal object would still be within the category considered.

(c) For instance, in [Ki4] Kisin works with yet another definition of AugW (F).
The definition here emphasizes the underlying ring A in A → B. But for
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other purposes phrasing the deformation problem in such a relative way is
unnecessary.

Definition 2.4.3. Fix a pseudo-representation τF : G→ F. Define a groupoid RepτF
over AugW (F) by

RepτF
(
A→ B

)
=
{(
VB , τA

)
| τA ∈ DτF(A),

VB ∼= Bd a G-representation, Tr
(
VB
)

= τA)
}
/ ∼= .

Similarly we define Rep2
τF

(A→ B) as the groupoid over AugW (F) with

Rep2
τF

(
A→ B

)
=
{(
VB , βB , τA

)
|
(
VB , τA

)
∈ RepτF

(
A→ B

)
,

βB a B-basis of VB
}
/ ∼= .

Finally we extend DτF to a groupoid on AugW (F) by setting

DτF(A→ B) = DτF(A).

We shall indicate in Remark 2.6.3 why it is desirable and useful to study the
functor Rep2

τF
.

We introduce the following notion:

Definition 2.4.4. A morphism Φ: F → F′ of groupoids over C is called relatively
representable if for each η ∈ Ob(F′) the 2-fiber product

Fη = η̃ ×F′ F

is representable.

Note that if F′ is representable and Φ: F → F′ is relatively representable,
then F is representable.

Proposition 2.4.5. If G satisfies Condition Φp, then Rep2
τF

is representable by a
morphism of affine formal schemes Spf R2

τF
→ Spf RτF which is formally of finite

type.

By Theorem 2.2.4(b) we know that Rep2
τF
6= ∅ only if p > d.

Proof. This is Exercise 2.8.6. �

Suppose that τF is the trace of a semisimple representation ρ̄, and so that
Rep2

τF
is non-empty. We give an explicit description of Rep2

τF
above the point

x = τF ∈ DτF(F).
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Proposition 2.4.6. The functor x̃×DτF Rep2
τF

is representable by the same F-algebra
as the functor on F-algebras which to any such algebra S assigns the set

{ρ : G −→ GLd(S) | Tr ρ = τF}.

Any such representation ρ : G → GLd(S) factors via G/(G′)p
d

, where G′ is the
kernel of ρ̄. Furthermore the semisimplification of ρ is isomorphic to ρ̄.

If G is finite, then the ring R2
F := R2

τF
⊗RτF F representing x̃×DτF Rep2

τF
is

given as follows. Let R = W (F)[Xg
i,j | i, j = 1, . . . , d; g ∈ G]. Then R0 = R/I

for I ⊂ R the ideal generated by the elements
∑d
i=1X

g
i,i − τF(g), g ∈ G, together

with the components of the d×d-matrices r(Xg1 , . . . , Xgs)− id, where r(g1, . . . , gs)
ranges over all relations among the elements of G and Xg = (Xg

i,j)i,j=1,...,d.

2.5 Representable subgroupoids of RepτF
The groupoid RepτF will not be representable in general. This is for instance the
case in the situation of page 29. In this section we shall investigate a resolution of
a particular subgroupoid of RepτF which will turn out to be representable. The
material follows [Ki7, § 3.2]. Further details will appear in a planned future version
of [Ki7]. In this section, we require for all A→ B in AugW (F) that the ring B be of
finite type over A.

We consider the following situation: suppose that for i = 1, . . . , s we are given
pairwise distinct absolutely irreducible representations ρ̄i : G → GLdi(F). We set
τF =

∑s
i=1 Tr ρ̄i. Let Rep′τF

2 ⊂ Rep2
τF

be the full subgroupoid over AugW (F)

on objects (VB , βB , τA) ∈ Rep2
τF

(A → B) such that the following holds: there
exists an affine cover of SpecB/mAB by SpecBi such that

VB ⊗B Bi ∼



ρ̄1 c1 . . .

ρ̄2
. . .

...
. . . cs−1

ρ̄s


(2.5.1)

with nowhere vanishing extension classes ci ∈ Ext1(ρ̄i+1, ρ̄i) for all i = 1, . . . , s−1.

Remark 2.5.1. The condition on the ci has the following consequence: since the ρ̄i
are absolutely irreducible and pairwise non-isomorphic, the centralizer of the ma-
trix on the right of (2.5.1) is contained in the set of diagonal matrices which are
scalar along the blocks ρ̄i. The non-triviality of ci implies that the scalar along
ρ̄i is the same as the scalar along ρ̄i+1. Therefore the centralizer of the repre-
sentation on the left is precisely the set of scalar matrices. One deduces that the
isomorphism in (2.5.1) is unique up to a scalar.

Remark 2.5.2. In (2.5.1) the diagonal blocks of the matrix on the right will always
occur in the order indicated. This will be important in the sequel; see for instance
Corollary 2.6.2.
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Theorem 2.5.3. There exists a locally closed formal subscheme, formally of finite

type, X′τF
2 → Spf Rτ which represents Rep′τF

2 on ÂugW (F).

Idea of proof: The special fiber of Rep2
τF

is a scheme of finite type over F. Any
specialization R2

τF
→ k for k a finite field containing F admits an isomorphism, as

in (2.5.1), for at least one permutation of the ρ̄i and without the non-vanishing
requirement for the ci. The condition that the chosen order occurs along the di-
agonal defines a closed subscheme of the special fiber SpecRτF ⊗Rτ F. Similarly,
one argues that the additional conditions 0 6= [ci] ∈ Ext1(ρ̄i+1, ρ̄i) under any such
specialization define an open condition. Details will appear in the final version
of [Ki7, §3.2]. �

In Remark 2.5.1 we observed that the action of PGLd on the special fiber

of Rep′τF
2 is free. It easily follows that the conjugation action of P̂GLd on X′τF

2

is free. Even though X′τF
2 is typically not a formal local scheme, the quotient

X′τF := X′τF
2/P̂GLd still exists. The proof is formally similar to that of Theo-

rem 2.1.1. However, here a theorem on representability of free group actions on
formal schemes over Artin rings is needed. Such a result fits well the framework
of Mumford’s book on geometric invariant theory, but over Artin rings is not to
be found there. An application of Schlessinger’s criterion is not possible, as X2′

τF
is

typically not local. Nevertheless, the result holds. One proof is due to B. Conrad;
details will appear in the final version of [Ki7] by Kisin.

As was explained to us by Kisin, it is not so straightforward to define the
functor which is represented by X′τF . Over X′τF

2 → Spf RτF there is a universal
object represented by this arrow: on X′τF

2 we have a trivial vector bundle with a
basis and a representation (

VX′τF
2 , βX′τF

2 , ρX′τF
2

)
;

on Spf RτF we have the universal pseudo-representation τu, and the morphism
X′τF

2 → Spf RτF is induced from the pseudo-representation Tr ρ′τF
2 on X′τF

2. While

P̂GLd has a well-defined and free action on X′τF
2, it does not act on the universal

triple. Only the group ĜLd acts on this triple. Since its center acts trivially on the
base X′τF

2, the quotient VX′τF
2/ĜLd is a projective bundle over X′τF (if X′τF is local, it

carries up to isomorphism a unique vector bundle of rank d and one can take it as
the quotient). In the global situation the Picard group of the special fiber of X′τF
need not be trivial. Then it is not clear whether a vector bundle quotient should
exist. Therefore one cannot expect that the universal object on X′τF is given by a
vector bundle with a G-action up to isomorphism.

One natural way to bypass the above problem —the final version of [Ki7]
might follow a different approach— is to consider projective bundles equipped
with a G-action instead of vector bundles with a G-action, and to ensure that the
projective action does lift locally to a linear one. This allows one to give a natural
interpretation of X′τF as a formal moduli space as follows.
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Definition 2.5.4. For p > d =
∑
di, denote by Rep′τF the groupoid on AugW (F)

which for any (A→ B) ∈ AugW (F) is the category Rep′τF(A→ B) whose objects

are tuples
(
PB ,PB,s−1, . . . ,PB,1, τA

)
satisfying the following conditions:

(a) PB is a projective bundle on SpecB with a continuous actionG→AutB(PB).

(b) Setting PB,s = PB ⊗B B/mAB, the PB,i, i = 1, . . . , s, are projective G-bun-
dles on SpecB/mAB of rank d1 + · · ·+di−1 and they form a flag of G-stable
projective subbundles PB,1 ⊂ PB,2 ⊂ . . . ⊂ PB,s of PB,s.

(c) τA : G→ A is a pseudo-representation lifting Tr ρ̄.

(d) For any affine open SpecC ⊂ SpecB/mA over which, disregarding the G-ac-
tion, PB,1 ⊂ PB,2 ⊂ . . . ⊂ PB,s is isomorphic to Proj of Cd1 ⊂ Cd1+d2 ⊂
. . . ⊂ Cd, the induced action of G on⊕

i=1,...,s

Cd1+···+di/Cd1+···+di−1 modulo scalars

is conjugate under GLd1(C)×· · ·×GLds(C) to ⊕i
(
ρ̄i⊗FC

)
modulo scalars.

(e) In the notation of (d), for any i = 1, . . . , s−1 there is a well-defined extension
class in

Ext1
C[G](ρ̄i+1 ⊗F C, ρ̄i ⊗F C)

and we assume that its specialization to any closed point Spec k ↪→ SpecC
is non-trivial.

(f) Let the notation be as in (d) and let SpecBC ⊂ SpecB denote the pullback
of SpecC ⊂ SpecB/mAB —it is affine because mAB is nilpotent. Then
under the above hypotheses one can show that

(i) there exists a unique linear representation ρC : G → GLd(C) with
det ρC = det ρ̄ and attached projective representation equal to G →
AutC(PB ⊗B C), and

(ii) there exists a unique linear representation ρ̃C : G→ GLd(BC) with ρ̃C
(mod mABC) = ρC , det ρ̃C = det τA and attached projective represen-
tation equal to G→ AutBC (PB ⊗B BC).

In addition to (a)–(e), we also require that Tr ρ̃C = τA under A→ BC .

The definition of morphisms on the so-defined objects is left to the reader.

Remarks 2.5.5. (i) By a projective bundle we mean Proj of a vector bundle. By
a flag of projective bundles we mean that, Zariski locally on the base, there
exists a flag of vector bundles (with all factors being again vector bundles)
to which Proj associates a flag isomorphic to the given flag of projective
bundles.
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(ii) As we assume p > d =
∑
i di, the concept of pseudo-deformation is well

behaved. By our hypotheses, ρ̄ is multiplicity free in the terminology of
[BC1]. Thus, by [Che, Remark 1.28] any pseudo-representation τA : G → A

for A ∈ ÂrW (F) and with τA ⊗A F = Tr ρ̄ has a well-defined determinant
det τA : G→ A∗.

(iii) It might be necessary to strengthen the condition EndF[G](ρ̄i) = F, which
follows from the absolute irreducibility of ρ̄i, to the condition that the cen-
tralizer of the projective representation attached to ρ̄i is F∗ ⊂ GLdi(F).
This notion of projective absolute irreducibility is in general stronger than
absolute irreducibility; cf. Exercise 2.8.8. If there exists a subgroup Gi of
G such that ρ̄i|Gi is absolutely irreducible and such that the di-torsion of
Hom(Gi,F∗) is trivial, then ρ̄i is projectively absolutely irreducible.

(iv) We leave the assertions in (f) as an exercise (perhaps a non-trivial one) to
the reader. Observe however that from the existence and uniqueness of the
local linear representations ρ̃C one cannot deduce the existence of a global
linear representation on some vector bundle: the uniqueness of ρ̃C implies
that the transition maps on the level of vector bundles are unique only up
to units in B∗C . Thus, one can only glue the local patches if the Picard group
of the special fiber of X′τF is trivial.

The following result will, in some form, be fully explained in the final version
of [Ki7].

Theorem 2.5.6. The groupoid Rep′τF → DτF is representable by the proper formal
scheme X′τF over Spf RτF .

Sketch of proof: Consider the universal object
(
VX′τF

2 , βX′τF
2 , ρX′τF

2

)
on X′τF

2 together

with the universal pseudo-representation τu on Spf RτF and the universal filtration
by sub-vector-bundles

VX′τF
2 ⊗RτF F = V̄s ⊃ V̄s−1 ⊃ . . . ⊃ V̄1

on X′τF
2⊗RτF F given by (2.5.1). These objects carry natural actions by Ĝm ⊂ ĜLd.

The central action of Ĝm takes us from vector bundles to projective bundles and
a flag of such on the special fiber X′τF

2⊗RτF F; the center Ĝm acts trivially on X′τF
2.

The free action of P̂GLd on X′τF
2 yields the object

PVX′τF
=
(
VX′τF

2 , V̄s−1, . . . , V̄1, τ
u
)
/ĜLd

in Rep′τF(X
′
τF
→ Spf RτF). Assuming assertion (ii) in Definition 2.5.4(f), it is not

hard to see that PVX′τF
is the universal object for Rep′τF over X′τF → Spf RτF , as

follows. Let PVB be in Rep′τF(A→ B). Choose an affine cover SpecBi of SpecB
such that on each SpecBi we have a representation ρ̃Ci as in Definition 2.5.4(f)
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for PVB ⊗B Bi. The ρ̃Ci yield a unique morphism SpecBi → X′τF
2. The induced

morphisms SpecBi → X′τF agree on overlaps since by construction they are unique.
This shows the universality of (PVX′τF

,X′τF). �

2.6 Completions of Rep′
τF
2

Proposition 2.6.1. Let x be in Rep2
τF

(F → F) and let VF be the corresponding
representation of G.

(a) The canonical surjection R̂2
τFx
−−→→ R2

VF
is an isomorphism.

(b) For x ∈ Rep′τF
2(F → F) the surjection from (a) induces an isomorphism

ÔX′τF
, x � RVF .

Proof. For part (a) observe that the completion of Rep2
τF

at x can be described
as follows: it is given by the functor on ArW (F) which maps any A ∈ ArW (F) to

{(τA, βA, ρA) ∈ Rep2
τF

(A −→ A) | ρA ∈ D2
VF

(A)}.

The datum τA is clearly superfluous and hence this functor is isomorphic to D2
VF

.
This proves (a). Part (b) follows from the construction of the rings as quotients
under the same group action. �

Corollary 2.6.2. Let E/W (F)[1/p] be a finite extension and x : Rep′τF → E a
point 3 such that the corresponding E-valued pseudo-representation x is absolutely
irreducible. Then the map

Rep′τF −→ Spf RτF

is an isomorphism over a formal neighborhood of τx.

Proof. We first observe that x is the only point of Rep′τF lying over τx. To see
this, suppose that x′ is another such point. Denote by Vx and Vx′ the correspond-
ing G-representations. By the properness of Rep′τF over DτF , the points x and
x′ arise from OE-valued points, which in turn correspond to G-stable lattices
Lx ⊂ Vx and Lx′ ⊂ Vx′ . Since Vx and Vx′ are absolutely irreducible with the
same trace, they are isomorphic. We choose an isomorphism so that it induces a
G-homomorphism Lx → Lx′ whose reduction modulo mOE is non-zero. The repre-
sentations Lx/mOELx and Lx′/mOELx′ are both of the type described in (2.5.1).
Since the order of the ρi is fixed and the extension of ρI+1 by ρi is never trivial
(see Remark 2.5.2), the semisimplification of the image of Lx/mOELx is of the
form ρ̄i ⊕ · · · ⊕ ρ̄s while the semisimplification of the image as a submodule of
Lx′/mOELx′ is of the form ρ̄1⊕· · ·⊕ ρ̄j . Since the ρi are pairwise non-isomorphic,

3Talking about an E-valued point of a formal scheme over W (F) is a slight abuse of notation.
What is meant is the point on the generic fiber attached to the formal scheme; see Appendix 2.7.1.
On this analytic space one considers the completion of the stalk at E.
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and the image is non-trivial, we deduce that the morphism of the reductions is an
isomorphism. It follows that Lx ∼= Lx′ .

Next, let R̂τFτx be the completion of RτF at τx and ÔX′τF
, x be that of X′τF at x.

Denote by VF the mod mOE reduction of Lx. We need to show that the canonical
homomorphism

R̂τFτx −→ ÔX′τF
, x
∼= ÔX′τF

,VFx

2.6.1(b)∼= R̂VFx

in ÂrE is an isomorphism. This follows from the theorem of Carayol and Mazur
(Theorem 2.2.1), which can easily be adapted to the case of residue field E instead
of F. �

Remark 2.6.3. Suppose ρ̄ is reducible and is the reduction of a p-adic represen-
tation attached to a modular form f . If one wants to study mod p congruences
of f , then one is interested in all modular forms f ′ whose attached p-adic Ga-
lois representation has a mod p reduction ρ̄′ whose semisimplification is equal to
the semisimplification of ρ̄. From this perspective it is natural to consider the
deformation space of the pseudo-representation τF = Tr ρ̄.

Next, suppose that the p-adic representation V attached to f is absolutely
irreducible; for cusp forms this is a natural hypothesis. Suppose further that V is
residually multiplicity free. Then we can always find a lattice L ⊂ V whose mod p
reduction VF satisfies condition (2.5.1) for a suitable ordering of the irreducible
constituents of ρ̄ss. The results in this section show that infinitesimally near V
the universal pseudo-representation space, the universal deformation of VF and
the completion of Rep′τF at V agree. Moreover, the completion of Rep′τF at VF is
isomorphic to RVF .

Suppose now that X′τF has large dimension (as a formal scheme). Then we
expect RτF to be highly singular at its closed point: each closed point VF

′ of Rep′τF
has a different universal ring RVF′ ; in RτF all these rings are glued together at the
special fiber, while irreducible representations p-adic deformations lie in only one
of the spaces SpecRVF′ . Thus, Rep′τF appears to be a partial desingularization of a
part of RτF : partial because the rings RVF′ which occur for VF

′ in the special fiber
of Rep′τF by completion of Rep′τF at VF

′ may themselves still be singular. But by
gluing them one expects to create a more difficult singularity. Note that in the par-
ticular case in which the semisimplification of ρ̄ consists of two (non-isomorphic)
summands only, one can in fact regard Rep′τF as a partial desingularization of all
of RτF . In this case, any p-adic representation V contains a lattice whose reduction
orders the two irreducible constituents in any given order.

To recapitulate the above, in order to study all mod p congruences of a
residually reducible representation, one needs to consider RτF . However, it is to be
expected that its geometry is highly singular at the closed point. A formal scheme
with a less singular special fiber that sees many congruences is X′τF . However, in
general it will not contain all representations with congruent mod p Frobenius
eigenvalue systems. This can only be guaranteed if the ρ̄ss is a direct sum of
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exactly two absolutely irreducible non-isomorphic representations. An alternative,
but also highly singular candidate that would in its generic fiber see all p-adic
representations which have congruent mod p Frobenius eigenvalue systems is the
versal hull that arises from the deformation functor of ρ̄ss. Here the reason is
that, at least after enlarging the coefficient field, any p-adic representation V with
residually reducible mod p reduction contains a lattice whose mod p reduction is
semisimple.

A second reason for choosing Rep′τF instead ofDτF is that the former groupoid
allows it to impose local conditions quite easily in the case where G is the absolute
Galois group of a global field. This can be done as in the case of DVF , which we
shall discuss in the following three sections. For DτF it is perhaps slightly more
difficult to impose and study local conditions.

2.7 Appendix

2.7.1 Formal schemes

In this appendix we recall the definition of a Noetherian formal scheme. In the
following, we fix a Noetherian ring R and an ideal a of R. We assume that R is
a-adically complete, i.e., that the canonical homomorphism

R −→ R̂a = lim←−
n

R/an

to the a-adic completion of R is an isomorphism.
We define a topological space Spf R (with respect to a), which will soon also

be given a structure sheaf:

• A prime ideal p of R is called open (with respect to a) if p contains a.

• The underlying set of the topological space Spf R consists of the open prime
ideals of R, so that it is in bijection with SpecR/a.

• The topology on Spf R is the topology induced from the bijection between
Spf R and SpecR/a.

For instance, if R ∈ ArW (F) and a = mR is the maximal ideal of R, then Spf R
consists of a single point.

To define a structure sheaf on Spf R, let us recall the Zariski topology on
SpecR/a: for f ∈ R denote by f̄ its image in R̄ := R/a. Define D(f̄) as the set of
prime ideals p̄ of R̄ such that f̄ is non-zero at p̄. This set is in bijection with the
set of open prime ideals p of R at which f is non-zero (under reduction). The sets
D(f̄) define a basis for the topology on Spf.

Now, for f ∈ R define

R〈f−1〉 = lim←−R[f−1]/an.
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It is not difficult to verify that the assignment D(f̄) 7→ R〈f−1〉 defines a sheaf
on Spf R. (The main task is to verify the sheaf property by coverings of an open
subset D(f̄) by sets D(f̄i).)

Let us see that the sheaf defined above is locally ringed, i.e., that its stalks
are local rings. Suppose for this that x ∈ Spf R corresponds to the open ideal
p = px of R. Then the stalk at x is

Ox = lim−→
x∈D(f̄)

R〈f−1〉.

It is a good exercise to show that Ox is a local ring with maximal ideal pOx. (To
see the latter one needs that p be finitely generated, which is true in our case since
R is Noetherian.)

Definition 2.7.1. The formal scheme Spf R of R (with respect to a) is the locally
ringed space (X,OX) where X = SpecR/a as a topological space and the structure
sheaf OX is defined by OX(D(f̄)) = R〈f−1〉, for all f ∈ R.

We ignore all subtleties necessary for the definition of non-Noetherian formal
schemes.

Example 2.7.2. Let X = PGLd/W (F). Its affine coordinate ring consists of the set
of homogeneous rational functions of degree zero in the ring

R = W (F)
[
Xi,j ,det((Xi,j)

−1) | i, j = 1, . . . , d
]
.

Consider the morphism πid : R→ F, Xi,j 7→ δi,j corresponding to the identity ele-
ment of PGLd(F). The completion of PGLd along the kernel of πid is a Noetherian

affine formal scheme, denoted by P̂GLd in the proof of Theorem 2.1.1.

Definition 2.7.3. A Noetherian formal scheme is a locally topologically ringed space
(X,OX) such that each point x ∈ X admits an open neighborhood U such that
(U,OX |U ) is isomorphic to an affine formal scheme Spf R, as defined above.

Morphisms of formal schemes are morphisms of topologically ringed spaces.
So a morphism from (X,OX) to (Y,OY ) is a pair (f, f#) where f : X → Y is a
morphism of topological spaces and f# : OY → f∗OX is a continuous homomorph-
ism of sheaves, i.e., locally such a homomorphism is given as a ring homomorphism
A→ B mapping a power of the defining ideal a of A into the defining ideal b ⊂ B.

A particular construction of a formal scheme is the following. Let X be a
scheme and I ⊂ OX be an ideal sheaf. Then the completion of X along I is a
formal scheme whose underlying topological space is the closed subscheme Z of
X defined by I. On an affine cover of Z one applies the construction indicated
in page 38, and then one glues the so obtained formal affine schemes. We write
X̂ for it, or X̂I if the need arises to indicate the ideal sheaf. A formal scheme
constructed in this way is called algebraizable.
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Example 2.7.4. Let R be in ÂrW (F). Consider the closed immersion A1
F → A1

R

obtained by pulling back A1
F along SpecF→ SpecR. Let ÂR be the formal scheme

obtained as completion along this closed immersion. Its underlying topological
space is AF. However, its structure sheaf can be quite enormous. For instance, its
ring of global sections is R〈x〉 = lim←−R[x]/mnR[x]. To describe the latter ring, define
ht(r) = max{i ∈ N | r /∈ miR}. Then R〈x〉 is the subring of R[[x]] of series

∑
rix

i

such that ht(ri)→∞ for i→∞.

Example 2.7.5. Let R be in ÂrW (F) and consider the projective scheme P1
R
∼=

P1
Z×ZSpecR over SpecR. The maximal ideal of R defines an ideal sheaf on SpecR

and via pullback an ideal sheaf on P1
R. The completion of P1

R along this pullback is
a formal scheme with a natural homomorphism to Spf R. It is the formal projective
line over Spf R. It can be obtained by gluing two copies of ÂR from the previous
example along Ĝm,R. Carry out the construction in detail to make sure that you
fully understand the corresponding formal scheme and the morphism of formal
schemes.

The generic fiber of a formal scheme over W (F)

Given a formal scheme X with a morphism to Spf W (F), one can, following Berth-
elot, associate a rigid space over W (F)[1/p] to it. The detailed construction can

be found in [deJ, §7]. Let us give the idea for Spf R with R ∈ ÂrW (F). Suppose
first that R = W (F)[[X1, . . . , Xk]]. Then

W (F)[1/p]{X1, . . . , Xk} ⊂W (F)[[X1, . . . , Xk]]⊗W (F) W (F)[1/p]

⊂ (W (F)[1/p])[[X1, . . . , Xk]],

where on the left we have the Tate algebra over W (F)[1/p], i.e., the ring of those
power series which converge on the closed disc OkCp of radius one. The ring in the
middle consists of power series whose coefficients have uniformly bounded norm.
These converge on the “open” unit disc of dimension k of radius one, i.e., on

◦
OkCp = {(x1, . . . , xk) ∈ OkCp | |xi| < 1 for i = 1, . . . , k}.

It is a rigid analytic space. The affinoid discs of radius 1 − 1
n around 0 form an

admissible cover.
A general R ∈ ÂrW (F) can be written as

R = W (F)[[X1, . . . , Xk]]/(f1, . . . , fm).

Then the zero locus of the functions fj , j = 1, . . . ,m, defines a rigid analytic
subspace of the open unit disc. This will be the rigid analytic space (Spf R)rig

associated to Spf R. As a next example, one could work out the case of P̂1
R and

show that the associated rigid analytic space is the projective line over
◦
OkCp .
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Functors on formal schemes

Representability of functors is also an important question for formal schemes.
Schlessinger’s representability criterion (Theorem 1.7.2) —or the theorem of Gro-
thendieck behind it— can be regarded as a theorem on the representability of
formal schemes: Schlessinger’s criterion studies the pro-representability of a co-

variant functor ArW (F) → Sets by an object in ÂrW (F).
Formally passing to opposite categories, we obtain a functor from (ArW (F))

o

to Setso. The category (ArW (F))
o is the category of formal Artin schemes on one

point over Spf W (F) with residue field Spf F. In this sense, Schlessinger’s criterion
provides necessary and sufficient conditions for a functor on such formal Artin

schemes (to Sets) to be representable by a Noetherian formal scheme in (ÂrW (F))
o.

2.7.2 Pseudo-representations according to Wiles

The first occurrence of pseudo-representations in the theory of Galois representa-
tions was in the work of Wiles [Wi1] for 2-dimensional odd Galois representations
of the absolute Galois group of a number field. His definition appears to be differ-
ent from Definition 2.2.2. In the presence of a complex conjugation whose image
is
(

1 0
0 −1

)
, Wiles’ definition can easily seen to be equivalent to Definition 2.2.2 for

d = 2.

Definition 2.7.6. A pseudo-representation in the sense of Wiles consists of contin-
uous functions a, d : G → R and x : G × G → R such that for all g, g′, h, h′ ∈ G
one has

(a) a(gh) = a(g) + a(h) + x(g, h), d(gh) = d(g) + d(h) + x(h, g),

x(gh, g′h′) = a(g)a(h′)x(h, g′) + a(h′)d(h)x(g, g′) + a(g)d(g′)x(h, h′)

+ d(h)d(g′)x(g, h′).

(b) a(1) = d(1) = 1, x(1, h) = x(g, 1) = 1 for all g, h ∈ G.

(c) x(g, h)x(g′, h′) = x(g, h′)x(g′, h).

Proposition 2.7.7. Suppose that ρ : G→ GL2(R), g 7→
(
a(g) b(g)
c(g) d(g)

)
is a continuous

representation. Then

(a) (a, d, x(g, h) = b(g)c(h)) forms a pseudo-representation in the sense of Wiles.

(b) If there exists c ∈ G such that ρ(c) =
(

1 0
0 −1

)
, then the pseudo-representation

from (a) depends only on the trace of ρ, because

a(g) =
1

2

(
Tr ρ(g)− Tr ρ(gc)

)
,

d(g) =
1

2

(
Tr ρ(g) + Tr ρ(gc)

)
,

x(h, g) = a(gh)− a(g)a(h).
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Note that part (a) is in fact the motivation for the axioms of a pseudo-
representation in the sense of Wiles. They simply arise from the rules for multi-
plying two matrices.

2.8 Exercises

Exercise 2.8.1. (a) Show that P̂GLd(A) = Ker(PGLd(A) 7→ PGLd(F)) for all
A ∈ ArW (F) —cf. Example 2.7.2.

(b) Verify that the morphism (2.1.1) on page 22 is a closed immersion by using
the following criterion (which is actually not hard to prove): a morphism of
affine formal schemes Spf A = X → Y = Spf B is a closed immersion if and
only if it is a monomorphism (of functors); cf. [SGA3, VIIA.1.3].

(c) Verify that the quotient constructed in the proof of Theorem 2.1.1 does
indeed represent RVF .

Exercise 2.8.2. Let p > 2, let G = Zp considered as an additive profinite group
and let τF : G→ F, g 7→ 2 be the trivial 2-dimensional pseudo-representation.

(a) Show that the tangent space of DτF is at most 2-dimensional. (Hint: Deduce
from condition (b) of Definition 2.2.2 for d = 2 that any τ2 ∈ DτF(F[ε]) is
determined by its values on 1 and 2; use the continuity of τ2.)

(b) Consider ρ : Zp → GL2(W (F)[[X,Y ]]), z 7→
(

1+X 1+X
Y 1+Y

)z
. By studying Tr(ρ),

show that W (F)[[X,Y ]] is a quotient of the universal pseudo-representation
ring for τF.

(c) Prove that Tr(ρ) is the universal pseudo-deformation of τF.

(d) Prove that ρ is the universal deformation of ρ̄ := ρ mod (X,Y ) —despite
the fact that the representability criterion of Proposition 1.3.1 fails

Exercise 2.8.3 ([Ki6, §1.4]). (a) Give an example where VF is not absolutely ir-
reducible and there exist non-isomorphic deformations VA, V

′
A ∈ DVF(A)

with the same traces. (Hint: Consider two characters χ1, χ2 : G → F× with
dimF Ext1(χ2, χ1) > 1.)

(b) Show that if χ1, χ2 : G→ F× are distinct characters such that Ext1(χ2, χ1)
is 1-dimensional and VF is a non-trivial extension of χ1 by χ2, then the
analogue of Carayol’s theorem holds for VF: two deformations in DVF(A) are
non-isomorphic if and only if their traces are different.

Exercise 2.8.4. Show that if Φ: F → F′ is a relatively representable morphism of
groupoids over C, and F′ is representable, then so is F.

Exercise 2.8.5. A morphism of groupoids Φ: F → F′ over C is formally smooth
if the induced morphism of functors |Φ| : |F| → |F′| is formally smooth, i.e., if for
any surjective morphism T → S in C, the map∣∣F∣∣(T ) −→ ∣∣F∣∣(S)×|F′|(S)

∣∣F′∣∣(T )
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is surjective. Show that Φ: F → F′ is formally smooth if and only if for every
η ∈ F′ the morphism |Fη| → |η| is formally smooth.

Exercise 2.8.6. Prove Proposition 2.4.5. (Strategy: To establish relative represen-
tability, fix A0 ∈ ArW (F), B0 some A-algebra and τ0 : G→ A0 a pseudo-represen-
tation lifting τF. This defines an element η in DτF(A0 → B0). Describe the groupoid
Rep2

τF,η
. Show that all representations described by it are representations of a fixed

finite quotient G of the originally given group G —the quotient depends on η. It
suffices to consider the case B0 = A0. Then write down the universal object for
G in a way similar to the proof of Proposition 2.3.1 or Proposition 1.3.1(a). The
wanted formal scheme is obtained by an inverse limit of such situations. To see that
the morphism is of finite type, it suffices to consider the case A0 = B0 = Rη̄/m

2
Rη̄

.)

Exercise 2.8.7. (a) Show that for A ∈ ArW (F) one has A1
A
∼= Â1

A and P1
A
∼= P̂1

A

as locally ringed topological spaces.

(b) Work out all details in Examples 2.7.4 and 2.7.5.

Exercise 2.8.8. Let p be the characteristic of an algebraically closed field k. Fix
n > 4 prime to p and denote by D2n the dihedral group of order 2n. Consider the
representation ρ : D2n → GL2(k) sending a generator of the rotations in D2n to(
ζ 0

0 ζ−1

)
for ζ ∈ k a primitive n-th root of unity and a reflection to

(
0 1
−1 0

)
. Show

that ρ is absolutely irreducible but not projectively absolutely irreducible.
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Lecture 3

Deformations at places not
above p and ordinary
deformations

The material on generic fibers is from [Ki4, §2.3]. The results on deformations at
` 6= p can either be found in the lecture notes [Pil], in [KW2, §3.3] or in [Ki4, §2.6].
For the last section on ordinary deformations we refer to [Ki5, §2.4] or [KW2, §3.2].

In the appendix to this chapter we recall various topics used in the main
body. We recall the canonical subgroups of the absolute Galois group of a local
field, we present basic results on Galois cohomology, we give a short introduction
to Weil–Deligne representations and we provide some basic results on finite flat
group schemes.

3.1 The generic fiber of a deformation functor

A deformation functor D may have difficult singularities at its closed point. If
the functor is representable, this means that the corresponding universal ring R
is highly singular at its maximal ideal. However, in many concrete and impor-
tant situations it turns out that the generic fiber of the formal scheme Spf Rrig

associated with R (see Appendix 2.7.1) has no singularity or at most very mild
singularities. Moreover, in the cases we have in mind, closed points on the generic
fiber are of utmost interest: a closed point of Spf Rrig is a W (F)-algebra homo-
morphism R → E for some finite extension E of W (F)[1/p]. Thus if R = R2

VF
,

as in Lecture 1, such points are precisely the p-adic representations G→ GLd(E)
which possess a conjugate G→ GLd(OE) whose mod mOE -reduction is ρ̄. A sim-
ilar interpretation holds for the closed points of (Spf RVF)

rig. Using functors on
Artin rings (over finite extensions of W[1/p]), one cannot recover Spf Rrig. How-
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46 Lecture 3. Deformations at places not above p

ever, given any closed point ξ on Spf Rrig, starting from D one can construct such
a functor Dξ which describes the infinitesimal neighborhood of ξ on the generic
fiber. Moreover, in many concrete examples, this functor can be easily written
down explicitly; cf. Theorem 3.1.2. In particular, this often gives a simple way to
compute the tangent space at such a point, e.g. Remark 3.1.3, and to check for
smoothness. Let me finish this introduction by giving one example why it should
be simpler to work on the generic fiber. Suppose G is a finite group. Then the
representation theory of G over a field of characteristic zero, as is any finite exten-
sion of Qp, is completely dominated by Wedderburn’s theorem. It says that the
abelian category of finite-dimensional representations is semisimple. On the other
hand, if p divides the order of G, then the category of finite A[G]-modules for any
finite Zp-algebra is a rather complicated object.

The above observations regarding the generic fiber have been exploited cru-
cially by Kisin in several instances, e.g. [Ki4]. In this section, we briefly recall
Kisin’s constructions and some basic results. We shall consistently work with
groupoids.

Groupoids for closed points on the generic fiber

Let E be a finite extension of W (F)[1/p] with ring of integers OE . Define ArE as
the category of finite, local W (F)[1/p]-algebras B with residue field E. Since B is
a finite W (F)[1/p]-module, the residue homomorphism π : B → E is canonically
split1 and thus B is an E-algebra in a canonical way.

For B ∈ ArE denote by IntB the category of finite OE-subalgebras A ⊂ B
such that A[1/p] = B. The morphisms in IntB are the natural inclusions. The cat-
egory IntB is ordered by inclusion and filtering, i.e., any two objects are contained
in a third one. For the (filtered) direct limit of the A ∈ IntB one obtains

lim−→
A∈IntB

A = π−1(OE).

The limit is taken in the category of rings.

Define ÂrW (F),OE as the category of W (F)-algebra homomorphisms A→ OE ,

where A lies in ÂrW (F), as A[1/p] need not be Artinian. In particular, IntB may

be regarded as a subcategory of ÂrW (F),OE for all B ∈ ArE . If E is totally ramified
over W (F)[1/p], so that OE has residue field F, then the last assertion is true in the
obvious sense. Otherwise one proceeds as follows. Denote by πOE : OE → OE/mOE
the homomorphism to the residue field, which is a finite extension of F and define
O′ ⊂ OE as the inverse image π−1

OE (F). Then, given (A ⊂ B) ∈ IntB , the pair

(A ∩ π−1(O′) ⊂ B) lies in ÂrW (F),OE .

1Lacking a reference, here is an indication of proof. The key is that E is algebraic over
W (F)[1/p]; so, for x ∈ E, consider its minimal polynomial f over the other field. Pick an arbitrary
lift to B. Use the Newton method to find the unique lift which is a root of f . This defines a
canonical lift.
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Let F be a groupoid over ArW (F). Extend it canonically to ÂrW (F) (so that
F has some continuity property with regard to inverse limits). Fix ξ ∈ F(OE) and

define a groupoid on ÂrW (F),OE by

F(ξ)(A
α→ OE) = {η ∈ F(A) | η −→ ξ lies over A

α−→ OE}

for (A
α→ OE) ∈ ÂrW (F),OE , i.e., we consider deformations of ξ to objects A→ OE

with A still in ÂrW (F). This groupoid gives rise to a groupoid over ArE , again
denoted F(ξ), by setting

F(ξ)(B) = lim−→
A∈IntB

F(ξ)(A)

for B ∈ ArE .

Lemma 3.1.1. Suppose F is pro-represented by a complete local W (F)-algebra R
and ξ is given by α : R→ OE. Then the groupoid F(ξ) on ArE is pro-represented by

the complete local W (F)[1/p]-algebra R̂ξ obtained by completing R⊗W (F) E along

Iξ = Ker(R⊗W (F) E
α⊗W (F)E

// E) .

Proof. When discussing representability of groupoids, we observed that a groupoid
is representable if and only if isomorphic objects over the identity are isomorphic
via a unique isomorphism and the functor |F| is representable (see the comments
below Definition 1.6.4). Using this fact, the lemma is a simple exercise left to the
reader. �

Application to the generic fiber of DVF and D2
VF

To see a first example for the usefulness of F(ξ), we consider the case F = D2
VF

(or
F = DVF). We define two groupoids related to ξ = (VOE , βOE ) ∈ D2

VF
(OE). Set

Vξ = VOE ⊗OE E, which is a continuous representation of G, and the basis βOE
canonically extends to a basis βξ of Vξ. Define DVξ and D2

Vξ
as groupoids on ArE

as follows. For any B ∈ ArE , let DVξ(B) denote the set of deformations of Vξ to a
free B-module VB with a continuous GK-action. Similarly, let D2

Vξ
(B) denote the

set of deformations of (Vξ, βξ) to a free B-module VB with a continuous GK-action
together with a choice of basis βB lifting βξ.

Theorem 3.1.2. There are natural isomorphisms of groupoids over ArE

DVF,(ξ) −→ DVξ and D2
VF,(ξ)

−→ D2
Vξ
.

Proof. We sketch the proof in the first case (in fact, we shall only sketch the proof
for the functors associated to the groupoids). We begin by defining the natural
transformation. Let B be in ArE . Then an element in DVF,(ξ)(B) is an element in

lim−→
A∈IntB

D(ξ)(A),
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where in turn an element of D(ξ)(A) is a continuous GK-representation on a free
A-module VA together with an isomorphism VA ⊗A OE ∼= VOE under the homo-
morphism A → OE for A ∈ IntB . So an element of DVF,(ξ)(B) is a direct system
of (VA)A∈IntB of such. We have observed earlier that lim−→A∈IntB A = π−1(OE) for

π : B → E the structure map of B. Hence
(

lim−→A∈IntB VA
)
⊗π−1(OE) B defines an

element in DVξ(B).
To prove surjectivity, suppose VB ∈ DVξ(B). Since Vξ arises from VOξ via

−⊗OE E, the representation VB contains a natural subrepresentation Vπ−1(OE) on
a free finitely generated π−1(OE)-module. Since the A ∈ IntB exhaust π−1(OE)
and since the action of G is continuous, and B is Artinian, we can find A ∈
IntB and a subrepresentation VA ⊂ Vπ−1(OE) which is free as an A-module and
with a canonical homomorphism onto VOE . This completes the proof of essential
surjectivity. The proof of injectivity is left as an exercise; see [Ki4, (2.3.5)]. �

Remark 3.1.3. One has the isomorphism DVξ(E[ε]) ∼= H1(G, adVξ) for the tangent
space of DVF,ξ, i.e., for that of SpecRVF [1/p] at ξ.

3.2 Weil–Deligne representations

Let F be a finite extension of Q` with uniformizer π and residue field k. Set
q = #k. Consider the diagram

1 // IF // GF // Ẑ ∼= Gal(k̄/k) // 1

1 // IF // WF

?�

OO

n // Z ∼= 〈Frobk〉
?�

OO

// 1

defining the Weil group WF , where the bottom row is the pullback of the top row
along the inclusion on the right. We regard n as a homomorphism WF → Z and
fix an inverse image σ ∈WF of 1 ∈ Z (where 1 is identified with Frobk).

Consider a compatible system pn
√
π of p-power roots of π. This induces an

isomorphism from Zp to the Galois group of
⋃
n F (ζpn , p

n√
π) over

⋃
n F (ζpn).

The action of GF on this copy of Zp is via the cyclotomic character and whence
we write Zp(1). The action of IF on this compatible system defines a surjective
GF -equivariant homomorphism

tp : IF −→ Zp(1).

From the above and standard results about tame ramification of local fields one
deduces the isomorphism

(ĜF )p
∼=−→ Zp(1) o Zp

for the pro-p completion of GF with the Zp on the right being the pro-p completion

of Ẑ = Gal(k/k). More explicitly, one can find t ∈ Zp(1) and s ∈ (ĜF )p mapping
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to Frobenius in Zp, such that (ĜF )p is the pro-p-completion of

〈s, t | sts−1 = tq〉. (3.2.1)

Let E/Qp be a finite extension and ρ a continuous representation of GF on
a finite-dimensional E-vector space V .

Theorem 3.2.1 (Grothendieck). There exists a unique nilpotent N ∈ End(V ), the
logarithm of monodromy, and a finite index subgroup I1 of IF such that, for all
g ∈ I1,

ρ(g) = exp(tp(g)N).

One can verify that for g ∈ IF and n ∈ Z one has ρ′(σng)N = qnNρ′(σng).

Proof. We indicate the construction of N . By continuity of ρ, one can find a free
OE-submodule Λ ⊂ V with V = Λ[1/p] which is preserved under GF . Let F ′ ⊃ F
be the fixed field of the kernel of the representation GF → GLd(Λ/2pΛ) induced
from ρ. The kernel of GLd(Λ) → GLd(Λ/2pΛ) is a pro-p group. Thus the action
of GF ′ on V is via its pro-p completion. Denote by As and At the matrices of the
images of s, t from (3.2.1) for the field F ′. The relation sts−1 = tq implies that At
and (At)

q have the same eigenvalues. Thus, the finite set of eigenvalues is invariant
under λ 7→ λq, and so its elements must be roots of unity. Since Zp → Zp/2pZp
is injective on roots of unity, all eigenvalues of At must be one. Define N as the
logarithm of the nilpotent endomorphism At − idV . Then the assertion of the
theorem holds for I1 = IF ′ . �

The above result yields immediately the following bijection.

Corollary 3.2.2. There is a bijection between isomorphism classes of representa-
tions ρ : GF → GLd(Qp) and isomorphism classes of pairs (ρ′, N) (Weil–Deligne
representations; cf. Appendix 3.9.3) such that

(a) ρ′ : WF → GLd(Qp) is a continuous representation with the discrete topology

on Qp;

(b) N ∈ Md(Qp) is nilpotent and satisfies ρ′(σmg)N = qmNρ′(σmg) for all
g ∈ IF and m ∈ Z;

(c) ρ′(σ) is bounded (see Appendix 3.9.3).

The bijection sets the pair (ρ′, N) in correspondence with ρ if and only if for all
m ∈ Z and g ∈ IF one has

ρ
(
σmg

)
= ρ′

(
σmg

)
exp

(
tp(g)N

)
.

Remark 3.2.3. (a) By the continuity of ρ′, it is clear that ρ′(IF ) is finite.

(b) The representation ρ′ depends on the choice of σ. Its restriction to IF does
(obviously) not.
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Definition 3.2.4. Given ρ, we call the pair (ρ′|IF , N) its inertial WD-type.

Corollary 3.2.5. If d = 2, then either

(a) N = 0 (this happens if and only if ρ(IF ) is finite; note that in this case ρ is
semisimple), or

(b) N has rank 1. This happens if and only if ρ(IF ) is infinite. Then ρ is a
non-split extension of some character λ : GF → E∗ by λ(1), the twist of λ
by the cyclotomic character; cf. Corollary 3.9.6.

Definition 3.2.6. If V has dimension 2 and N 6= 0, we call V a representation of
(twisted) Steinberg type.

Let now R be in ÂrO for O the ring of integers of a finite ramified extension
of W (F)[1/p]. Let VR be a free finitely generated R-module carrying a continuous
R-linear action by GF . Let σ ∈ GF be as above. Denote by VR[1/p] the represen-
tation VR ⊗R R[1/p].

Theorem 3.2.7. There exists a unique nilpotent N ∈ End(VR[1/p]) and a finite
index subgroup I1 of IF such that, for all g ∈ I1,

ρ(g) = exp
(
tp(g)N

)
.

The assignment

ρ′ : WF −→ GLd(VR[1/p]), σ
ng 7−→ ρ(σng) exp(−tp(g)N)

for n ∈ Z and g ∈ IF defines a continuous representation of WF where we regard
VR[1/p] as a topological vector space with the discrete topology; in particular, ρ′(IF )
is finite.

Proof. The argument is basically the same as that for the proof of Theorem 3.2.1.
Define F ′ as the fixed field of the kernel of GF → GLd(R[1/p]/2pR[1/p]). One
verifies that ρ(t)−id modulo the nilradical of R[1/p] is nilpotent for t any generator
of IF ′ . But then ρ(t) − id itself is nilpotent. Define, as before, N = log(ρ(t)) and
I1 = IF ′ . �

Corollary 3.2.8. Suppose SpecR[1/p] is geometrically irreducible over W (F)[1/p].
Let x, y ∈ X = SpecR[1/p] be closed geometric points. Let ρx and ρy denote the
representations on Vx and Vy obtained from VR by base change. Then ρ′x and ρ′y
are isomorphic as representations of IF .

Another way to paraphrase the corollary is to say that on geometrically
irreducible components of (Spf R)rig the representation ρ′|IF is constant. This result
will be applied in Theorem 3.3.1 to a universal deformation ring.
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Proof. By the construction of (ϕ′, N) in the previous theorem, the representation
(ρx)′ of the specialization at x (or y) is the specialization of the representation
ρ′ for R[1/p]. (It may however happen that N for ρ is non-zero while Nx for ρx
it is zero.) Hence it suffices to consider the representation ρ′. As the image of
IF under ρ′ is finite, we may regard ρ′ as a representation of the finite group
G = IF /Ker(ρ′|IF ).

Since the nilradical of R[1/p] is contained in the kernels of the specializations
at x and y, we may assume that R[1/p] is reduced and hence a domain. Let m
be the exponent of G. Let E′ be the extension of W [1/p] obtained by adjoining
all m-th roots of unity, and let R′ = R[1/p]⊗W[1/p] E

′. Then R′ is an E′-algebra
and by geometric irreducibility it is still an integral domain. We need to show
that, for any two homomorphisms x, y : R′ → Qp, the specializations ρ′x and ρ′y
of ρ′ : G → GLd(R

′) are isomorphic. By the choice of E′ and ordinary character
theory for representations of finite groups, it suffices to show that ρ′x and ρ′y have
the same traces.

Now the E′-algebra structure of R′ is inherited by all specializations. But
then it is obvious that under specialization the traces of ρ′x and ρ′y will be the
same. �

Example 3.2.9. The following example shows that geometric irreducibility is nec-
essary in the above corollary. Suppose that ` ≡ 1 (mod p) and let F be Q`. By
local class field theory, the abelianization Gab

F has a tamely ramified quotient iso-
morphic to F∗` . Since ` ≡ 1 (mod p), it has a quotient of order p. Hence there is
a surjective homomorphism π : GF → Z/(p), g 7→ ı̄(g) such that the fixed field of
its kernel is totally and tamely ramified. Let ϕp(X) = (Xp−1)/(X−1). Consider
the representation

GF −→ GL1

(
W (F)[X]/

(
ϕp
(
1 +X

)))
, g 7−→

(
1 +X

)ı̄(g)
.

The ring R = W (F)[X]/(ϕp(1+X))[1/p] ∼= Qp(ζp) is not geometrically irreducible
over Qp. In fact, one has p− 1 different embeddings Q(ζp) ↪→ Qp over Qp. Clearly

each embedding gives rise to a different representation of IF on GL1(Qp).

3.3 Deformation rings for 2-dimensional residual
representations of GF and their generic fiber

We continue to denote by F a finite extension of Q` for some ` 6= p. Let VF be
a F[GF ]-module on which GF acts continuously. let O be the ring of integers
of a finite extension of W (F)[1/p], and let ψ : GF → O∗ be a character whose
reduction modulo mO agrees with detVF.
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We define subgroupoids Dψ
VF
⊂ DVF and Dψ,2

VF
⊂ D2

VF
over ArW (F) by

Dψ
VF

(A) = {(VA, ιA) ∈ DF(A) | det
(
VA) = ψ},

Dψ,2
VF

(A) = {(VA, ιA, βA) ∈ D2
F (A) | det(VA) = ψ},

for A ∈ ArW (F). By showing that these functors are relatively representable

as subfunctors, one deduces that Dψ,2
VF

is pro-representable (by Rψ,2VF
) and, if

EndF[G](VF) = F, then also Dψ
VF

is pro-representable (by Rψ,2VF
).

Let (ρ′, N) denote the Weil–Deligne representation attached to ρψ,2VF
by Theo-

rem 3.2.7 and assume that O contains all pm-th roots of unity if pm is the maximal
p-power divisor of the exponent of the finite group ρ′(IF ) (so that Corollary 3.2.8

is applicable). The following is the main theorem concerning Dψ,2
VF

.

Theorem 3.3.1. The following hold (where component always means of the generic
fiber):

(a) The generic fiber (Spf Rψ,2VF
)rig is the union of finitely many smooth compo-

nents of dimension 3.

(b) The restriction of ρ′IF to any component is constant (in the sense of Corol-
lary 3.2.8).

(c) The components are in bijection with the inertial WD-types which arise from
p-adic representations of GF that possess a conjugate reducing to ρ̄.

(d) There is at most one component, which we call CN , whose inertial WD-type
has non-trivial monodromy (at some point). This component occurs if and
only if VF is an extension of a mod p character λ̄ by λ̄(1).

(e) There is at most one component Cγnr whose inertial WD-type is of the form
(γ id, 0) for some character γ. This component occurs if and only if a twist
of VF is unramified.

(f) The only generic components which can possibly intersect are CN and Cγnr.

(g) Spf Rψ,2VF
is covered by SpfRi for domains Ri which are in bijection to its

generic components.

(h) dimKrullR
ψ,2
VF

= 4.

Remarks 3.3.2. (a) If EndFF (VF) = F, then, using that the tangent space dimen-
sion drops by three if we pass from framed deformations to deformations, it
follows that dimKrullR

ψ
VF

[1/p] = 0. Hence, by generic smoothness, the ring

RψVF
[1/p] is a product of fields.
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(b) The theorem tells us that the natural and only possible subfunctors of Dψ,2
VF

are those given by selecting a finite number of components of the generic
fiber, i.e., a finite number of inertial WD-types.

(c) The theorem makes no distinction between p = 2 and p > 2. The case p > 2
is somewhat simpler, in the sense that, independently of the global choice of
determinant, one can read of from the residual representation whether the
components CN or Cγnr appear. For p = 2, the added complication is that
not every character GF → O∗ with trivial reduction possesses a square root.

We shall in the following three sections indicate parts of the proof of the
above theorem. For convenience we assume p > 2. For a complete proof, see
[Pil]. We begin in Section 3.4 with a brief discussion of the very simple case of
unramified representations (up to twist). This corresponds to (f) in the theorem
above. In the subsequent section we treat, rather completely, the case of (twisted)
Steinberg type lifts. This concerns part (e). Due to formal similarities, the case
of Steinberg type deformations is also helpful for the investigation of ordinary
deformations above p later in Section 3.7. Section 3.6 indicates many of the steps
toward the proof of Theorem 3.3.1.

3.4 Unramified deformations for ` 6= p

Throughout Sections 3.4 to 3.6 we shall keep the hypotheses of the previous section.

Proposition 3.4.1. Suppose VF is unramified. Denote by Dψ,nr,2
VF,O the subgroupoid of

Dψ,2
VF

over ArO of unramified framed deformations, i.e., of (VA, ιAβA) ∈ Dψ,2
VF

(A)
such that IF acts trivially on VA. Then this subgroupoid is representable by a ring

Rψ,nr,2
VF,O ∈ ÂrO which is smooth over O of relative dimension 3.

The case where VF is a twist of the trivial representation can easily be reduced
to Proposition 3.4.1. We denote by (Rψ,nr,λ,2

VF
, ρψ,nr,λ,2
VF

) the pair

(Rψ,nr,2
VF

, λ⊗ ρψ,nr,λ,2
VF

)

for some character λ : GF → O∗.

Proof. Because ΓF := Gal(F nr/F ) ∼= Ẑ is a free group topologically generated by
the Frobenius automorphism σ, the functor D2

VF
is smooth: representations of ΓF

are determined by the image of σ and the only requirement for the image is that
it lies in a compact subgroup, which is vacuous for images in GLd(A), A ∈ ArO.
Now for any surjection A→ A′ and representation to A′, one can lift the image of
σ to A and with determinant equal to ψ(σ). Alternatively, one can simply appeal
to the fact that H2(ΓF , adVF) = 0.
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By smoothness, the relative dimension of Rψ,nr,2
VF,O can be computed from that

of the tangent space:

dimFD
ψ,nr,2
VF,O (F[ε]) = dimFD

ψ,nr
VF,O(F[ε]) + (d2 − 1)− h0(ΓF , adVF)

= 3 + h1(ΓF , adVF)− h0(ΓF , adVF) = 3.

The last equality uses that Ẑ is free so that h1(. . .) = h0(. . .). One can also give a

short direct argument proving that Dψ,nr,2
VF,O (F[ε]) is a principal homogenous space

under Ker(PGL2(F[ε])→ PGL2(F)) ∼= F3. �

3.5 Deformations of Steinberg type for ` 6= p

In this section, we analyze following [Ki4, §2.6] the deformation functor for defor-
mations where the monodromy N is typically non-zero. Thus VF has a basis βF
such that

ρ̄ : GF −→ GL2(F), g 7−→
(
λ̄(1)(g) ∗

0 λ̄(g)

)
. (3.5.1)

Remarks 3.5.1. (a) Writing (1) indicates that λ̄ is twisted by the mod p cyclo-
tomic character.

(b) Since ` 6= p, the mod p cyclotomic character is unramified and depending on
` it may be trivial.

(c) If the lift is of Steinberg type, then the character λ lifting λ̄ can be ramified,
even if λ̄ is not. This is possible precisely if the ramification subgroup of Gab

F

contains non-trivial p-torsion, i.e., if q ≡ 1 (mod p).

After twisting by the inverse of λ̄, we shall for the remainder of this section
assume the following:

(a) dimVF = 2.

(b) detVF is equal to the mod p reduction of the cyclotomic character

χ : GF −→ Z∗p.

(c) VF(−1)GF 6= 0, i.e., there is a subrepresentation of dimension at least one
(and exactly one unless χ mod p is trivial) on which GF acts via χ modulo p.

We now define the groupoid Lχ,2VF
(resp. LχVF

) over Aug —see page 30 for the

definition of the base category. The groupoid Lχ,2VF
maps naturally to Dχ,2

VF
over

Aug and serves, as we shall see, as a smooth resolution of the subgroupoid of Dχ,2
VF

of deformations of Steinberg type. It can only be understood over AugW (F) and
not over ArW (F); cf. Exercise 3.10.3. For (A→ B) ∈ AugW (F), so that A ∈ ArW (F)

and B is an A-algebra, the set of objects in Lχ,2VF
over (A→ B) is the set of tuples

(VA, ιA, βA, LB), where
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• (VA, ιA, βA) ∈ Dχ,2
VF

(A),

• LB ⊂ VB := VA ⊗A B is a B-line, i.e., a submodule such that VB/LB is a
projective B-module of rank 1,

• LB ⊂ VB is a subrepresentation on which GF acts via χ.

Lemma 3.5.2. The functor Lχ,2VF
is represented by a projective algebraizable morph-

ism, which we denote by

ΘVF : Lχ,2VF
−→ Spf Rχ,2VF

.

Proof. We abbreviate R = Rχ,2VF
. Consider the projective space P1

R. It classifies

R-lines L inside VR ∼= (R)⊕2. (Since R is local, these lines, as well as the quotients

by them, are free of rank one and not just projective.) Denote by P̂1R the com-
pletion of the above space along its specialization under R → F. This is a formal
scheme. It classifies R-lines of VR over an F-line of VF.

Let Lχ,2VF
be the closed subscheme of P̂1R defined by the equations gv−χ(g)v

for all v in the universal line over P̂1R and all g ∈ GF . By formal GAGA it is
a projective scheme over the formal scheme SpfR. Algebraizability is automatic
from Grothendieck’s existence theorem in formal geometry; cf. [Ill]. But it can also
be shown directly, as in [KW2, Proof of Proposition 3.6]. From the construction
of Lχ,2VF

, one deduces its universal property. �

Lemma 3.5.3. Lχ,2VF
is formally smooth over W (F). Its generic fiber (Lχ,2VF

)rig is
connected.

Proof. To prove smoothness, consider a surjective homomorphism B → B′ with
nilpotent kernel of algebras over A → A′ in ArW (F) and let (VA′ , βA′ , LB′) be an
object of |Lχ,2VF

(A′ → B′)|. Note that we want to show that Lχ,2VF
is smooth over

W (F) and not over Dχ,2
VF

. Hence it suffices to find A → Ã in ArW (F) with Ã ⊂ B

and Ã mapping to A′ and (VÃ, βÃ, LB) lifting the above triple.
Set VB′ = VA′⊗A′B′. Since P1 is smooth (over any base), the pair (VB′ , LB′)

lifts to the pair (VB , LB) consisting of a free rank 2 module over B together with
a B-line. The next step is to show that the extension

0 −→ LB′ −→ VB′ −→ VB′/LB′ −→ 0

lifts. This amounts to proving that the natural homomorphism

Ext1
B[GF ](VB/LB , LB(1)) −→ Ext1

B′[GF ](VB′/LB′ , LB′(1)) (3.5.2)

is surjective. Clearly the map P := LB ⊗ (VB/LB)∗ → P ′ := LB′ ⊗ (VB′/LB′)
∗ is

a surjective homomorphism of B-modules. Identifying the Ext1 with an H1, the
surjectivity of (3.5.2) follows from the next lemma.
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Lemma 3.5.4. For any A ∈ ArW (F) and any A-module M (which is not necessarily
finitely generated), the natural homomorphism

H1(GF ,Zp(1))⊗Zp M −→ H1(GF ,M(1))

is an isomorphism.

Proof. Using the commutativity of Hi with direct limits, it suffices to prove this
for A = M = Z/(pn). Then the latter homomorphism arises from the long exact
cohomology sequence for 0→ Zp → Zp → Z/(pn)→ 0, which yields that the map
is injective with cokernel H2(GF ,Zp(1))[pn]. By local Tate duality, the H2 is the
Pontryagin dual of Qp/Zp, i.e., Zp, which has no p-power torsion. �

To complete the proof of smoothness, we apply the following lemma:

Lemma 3.5.5. Suppose that (A→ B)
π→ (A′ → B′) is a homomorphism in AugW (F)

such that B → B′ is surjective with nilpotent kernel. Suppose also that VB is a
continuous representation of G on a free B-module and VA′ ∈ DVF(A

′) such that
VA′ ⊗A′ B′ ∼= VB ⊗B B′. Then there exists a factorization of π in AugW (F),

(A→ B) −→ (A0 → B) −→ (A′ → B′),

and a VA0 in DVF(A0) such that VA0 ⊗A0 B
∼= VB and VA0 ⊗A0 A

′ ∼= VA′ .

Proof. We first observe that

lim−→
Ã

Ã = A×B′ B ⊃ Ker(B → B′),

where the limit ranges over all subrings Ã ∈ Ar of A ×B′ B which contain the
image of A under the homomorphism A → A ×B′ B deduced from the universal
property of A×B′ B. The continuous representation VB restricts to a continuous
representation VA×B′B and, by linearity, to a continuous representation VÃ for

all Ã. We need to find Ã such that VÃ ⊗Ã B = VB . Since VA′ ⊗A′ B′ = VB′ ,

we have VA×B′B ⊗A×B′B B ∼= VB , and hence it suffices to find Ã0 such that

VÃ0
⊗Ã0

(A×B′ B) = VA×B′B = lim−→Ã VÃ. Choose m′ such that mm
′

A′ = 0 and m′′

such that Ker(B → B′) has m′′-th power equal to zero. Then for m = m′+m′′ one

has mm
Ã

= 0 for all Ã. By the universal property of R (we equip VA with a basis

which induces one on all VÃ), there exist (unique) compatible homomorphisms

R/mmR → Ã such that VR induce VÃ, where the Ã range over the above direct
system. Now take A0 as the subring of A×B′ B generated by the images of A→
A×B′ B and R/mmR → A×B′ B. �

It remains to prove connectivity. By smoothness of Lχ,2VF
over W (F), the

idempotent sections of Lχ,2VF
[1/p], of Lχ,2VF

and of Lχ,2VF
⊗W (F) F are in bijection.

Next, as a scheme over the local scheme SpfR, the idempotents of Lχ,2VF
are in
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bijection with those of Z := Lχ,2VF
⊗R F; see [GD, III, 4.1.5]. The scheme Z (which

is not formal) is isomorphic to a closed subscheme of P1. Depending on whether
the image of ρ is scalar or not, this subscheme is all of P1 or a single point;
cf. Exercise 3.10.3(a), and thus in either case it has no non-trivial idempotent
sections. Finally one observes (see [Ki4, 2.4.1] based on [deJ, 7.4.1]) that one has
a bijection between the idempotents of Lχ,2VF

[1/p] and those of (Lχ,2VF
)rig. �

Lemma 3.5.6. Let E/Qp be a finite extension, let ξ be in Lχ,2VF
(OE), and denote

by ξ also its image in Dχ,2
VF

(OE).

The morphism of groupoids Lχ,2(ξ) → Dχ,2
(ξ) on ArE is fully faithful. If the

E-representation Vξ of GF corresponding to ξ is indecomposable, then this morph-
ism is an equivalence, Dχ

(ξ) is representable and its tangent space is 0-dimensional.

Note that, on the level of functors, full faithfulness means that |Lχ,2(ξ) | is a

subfunctor of |Dχ,2
(ξ) |.

Proof. We first prove full faithfulness. Since both functors are representable, the
homomorphism sets of objects are singletons or empty. Suppose we have two ob-
jects of Lχ,2(ξ) . It is clear that if there is a morphism between them, then there

will be one between the images. What we need to rule out is the possibility that
there is a homomorphism between the images but no homomorphism between the
objects.

To see this, let B be in ArE and (VB , βB) in Dχ,2
(ξ) (B). We have to show that

if VB admits a B-line LB such that LB(−1) is GF -invariant, then LB is the unique
such line. Since detB VB = χ, we have HomB[GF ](B(1), VB/LB) = 0 —we are in
characteristic zero—, so that HomB[GF ](B(1), VB) = HomB[GF ](B(1), LB), and
the uniqueness of LB follows. (The point is simply that while the mod p reduction
of χ can be zero, χ itself is never trivial.)

Suppose further that Vξ is indecomposable. Then Vξ satisfies EndE(Vξ) ∼= E,
so that Dχ

(ξ) is representable. We have to show that any VB contains at least

one B-line LB ⊂ VB on which GF acts via χ. For this, it suffices to show that
the tangent space of Dχ

(ξ) is trivial, since then VB ∼= Vξ ⊗E B, for E → B the

canonical splitting, is the trivial deformation which inherits the required B-line
from VE . However, the dimension of this tangent space is computed by

dimE H
1
(
GF , ad0Vξ

)
= dimE H

0
(
GF , ad0Vξ

)
+ dimE H

0
(
GF , ad0Vξ(1)

) Exer.
= 0,

where the zero at the end follows from the indecomposability of ξ. �

For ξ as above, define a groupoid over ArE by defining Dχ
Vξ

(B) (resp. Dχ,2
Vξ(B))

for B ∈ ArE as the category whose objects are deformations of Vξ to B with
determinant χ (and in addition a basis lifting the given one.)

Proposition 3.5.7. Let Spf Rχ,1,2VF
denote the scheme theoretic image of the morph-

ism ΘVF of Lemma 3.5.2. Then
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(a) Rχ,1,2VF
is a domain of dimension 4 and Rχ,1,2VF

[1/p] is formally smooth over
W (F)[1/p].

(b) Let E/Qp be a finite extension. Then a morphism ξ : Rχ,2VF
→ E factors

through Rχ,1,2VF
if and only if the corresponding two-dimensional E-represen-

tation Vξ is an extension of E by E(1).

One way to avoid formal schemes in the definition of Spf Rχ,1,2VF
proceeds

as follows. Since Lχ,2VF
→ Spf Rχ,2VF

is relatively representable, for any Artinian

quotient A of Rχ,2VF
, the pullback of Lχ,2VF

to A is a honest scheme, say Lχ,2VF/A
.

The morphism ΘVF of Lemma 3.5.2 induces a projective morphism of schemes
Lχ,2VF/A

→ SpecA. Its scheme theoretic image thus defines a closed subscheme of

SpecA, say Spf Rχ,1,2VF/A
. These are schemes in ArW (F) which form an inverse limit

system and their inverse limit is precisely Spf Rχ,1,2VF
.

Proof. The scheme Lχ,2VF
is smooth over W (F) and connected. The ring Rχ,1,2VF

is

the ring of global sections of this scheme over Spf Rχ,2VF
and hence it must be a

domain.
Since Lχ,2VF

is projective over Spf Rχ,2VF
, it surjects onto Spf Rχ,1,2VF

. If we invert

p, then by the previous lemma Lχ,2VF
[1/p] is a closed subscheme of SpecRχ,2VF

[1/p]

and hence it is isomorphic to SpecRχ,1,2VF
[1/p], which shows that the latter is

formally smooth over W (F)[1/p].
By construction, Rχ,1,2VF

is p-torsion free. To compute its dimension it there-
fore suffices to compute the dimension of its generic fiber (and add 1). This we may
do at an indecomposable Vξ. By Lemma 3.5.6, the functor Dχ

(ξ) is representable

by Spf E. Hence Dχ,2
(ξ) is formally smooth over Spf E of dimension 3.

The last assertion follows essentially from Lemma 3.5.6, as ξ factors through
Rχ,1,2VF

if and only if it lifts to a (necessarily unique) point of Lχ,2VF
, i.e., if and only

if Vξ admits an E-line LE such that LE(−1) is GF -invariant. �

Let O be the ring of integers of a finite extension E of W (F)[1/p]. By twisting
the rings in the previous proposition with any global characters λ : GF → O∗, one
obtains:

Corollary 3.5.8. Define R2
VF,O = R2

VF
⊗W (F)O. Then there exists a unique quotient

Rχλ,λ,2VF,O of R2
VF,O with the following properties:

(a) Rχλ,λ,2VF,O is a domain of dimension 4 and Rχλ,λ,2VF,O [1/p] is formally smooth
over O.

(b) Let E/Qp be a finite extension. Then a morphism ξ : Rλχ,2VF,O → E factors

through Rχλ,λ,2VF,O if and only if the corresponding two-dimensional E-represen-
tation Vξ is an extension of λ by λ(1).
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3.6 On the proof of Theorem 3.3.1

Proof of Theorem 3.3.1. Parts (b), (d) and (e) follow directly from Corollary 3.2.8
and our results in Sections 3.4 and 3.5, respectively. We now prove (f). Let E

be a finite extension field of O[1/p] and ξ : Rψ,2VF,O[1/p] → E be an O-algebra
homomorphism. The smoothness at ξ in the generic fiber, i.e., the smoothness of
(Rψ,2VF,O,)ξ, certainly holds if H2(GF , ad0Vξ) = 0 and in this case the tangent space
dimension is

dimE H
1
(
GF , ad0Vξ

)
+ dimE ad0Vξ − dimE H

0
(
GF , ad0Vξ

)
= 3.

Suppose now that ξ is such that H2(GF , ad0Vξ) 6= 0 and recall that, by local
duality,

dimE H
2
(
GF , ad0Vξ

)
= dimE H

0
(
GF , ad0(1)

)
.

This last group is non-trivial if and only if Vξ is isomorphic to a sum of characters
λ ⊕ λ(1). Moreover, in this case dimE H

2(GF , ad0Vξ) = 1 and the tangent space
has dimension 4.

Our particular point ξ lies on the components

SpecRχλ,λ,2VF,O [1/p] and SpecRψ,nr,λ,2
VF

[1/p].

The containment in the second is obvious. For the containment in the first, ob-
serve that ξ has deformations with N non-trivial: take any non-zero class of
H1(GF , E(1)) which is thus ramified and consider the corresponding deformation
to E[ε].

In fact, the two components identified are the only ones through ξ. By twist-
ing the entire situation by λ−1 we may assume that ξ is an extension of E by
E(1). Let C be an irreducible component through it. If C contains a point where
N is non-zero, then C = CN , else N = 0 on all of C. Now the triviality of ρ′|IF at

ξ implies that ρ′|IF is zero on all of C and hence ρ is unramified on C. Thus C is
the other component we have already identified.

For the proof of (c) and (g) one defines deformation functors for all inertial
WD-types that can occur. (Their classification is not difficult.) In several cases
one needs to consider a resolution by adding the datum of an additional line such
as in the analysis we gave in the (twisted) Steinberg case. In each case one directly
shows that the functor is representable by a domain which proves the bijection
in (c) between inertial WD-types and components. To see (g) one shows that any
deformation is described by one of the functors so-defined. See [Pil] for details.

We now prove (a). The finiteness of the number of components is clear, since

Rψ,2VF
is Noetherian. By the proof of (f), all (closed) points on the generic fiber

except for those in the intersection of CN and Cγnr are smooth and have tangent
dimension 3. But we also know that CN and Cγnr are smooth of dimension 3. Hence
(a) is proved.
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The proof of (h) is now simple. By (g) the rings Ri are p-torsion free and
thus their dimension is one more than the dimension of their generic fiber. Hence
(h) follows from (a). �

3.7 Ordinary deformation at p

In this section, we let K be a finite extension of Qp. We shall investigate the
ordinary flat deformation ring of a two-dimensional representation of GK follow-
ing [Ki5]. Let χ : GF → Z∗p denote the cyclotomic character. The deformation
functor and its resolution are very similar to those used in the Steinberg case
in Section 3.5. One key difference occurs in the proof of the smoothness of the
resolution. In the Steinberg case this relied on the surjectivity of the homomorph-
ism (3.5.2). Here we need a different argument. The first results of this section
recall the necessary background for this. Then we closely follow the discussion in
the Steinberg case.

Set Knr = K
IK

and ΓK = GK/IK = Gal(Knr/K). Let M be a discrete
possibly infinite ΓK-module over Zp on which p is nilpotent.

For any finite subrepresentation M ′ ⊂M consider the twist

M ′(1) = M ⊗Zp Zp(1).

Since Zp(1) arises from a p-divisible group over OK and since M ′ is unramified, the
representation M ′(1) arises from a finite flat group scheme over OK (we shall give
some background on this in Appendix 3.9.4). A proof is given in Corollary 3.9.14.
We now introduce the group H1

f (GK ,M
′(1)). It classifies, for any n ∈ N such

that M ′ is annihilated by pn, extensions of Z/pn by M ′(1) which arise from the
generic fiber of a finite flat group scheme over OK . The group H1

f (GK ,M(1)) is

then defined as the direct limit lim−→M ′⊂M H1
f (GK ,M

′(1)), where M ′ ranges over
the finite ΓK-submodules of M .

To define H1
f (GK ,M

′(1)), we first consider H1(GK ,M
′(1)). Restriction in

cohomology yields a homomorphism

Res : H1(GK ,M
′(1)) −→ H1(IK ,M

′(1))ΓK .

If M ′(1)IK = 0, i.e., if χ (mod p) is non-trivial on IK , then the inflation restriction
sequence shows that the above map is an isomorphism – it is also an isomorphism
if M ′ is a free Zp-module. To obtain an alternative expression for H1(IK ,M

′(1))
suppose that pn annihilates M ′. Then

H1(IK ,M
′(1)) ∼= H1(IK , µpn)⊗Z M

′ ∼= lim
−→

L/K nr

H1(GL, µpn)⊗Z M
′

Kummer∼= lim
−→

L/K nr

L∗/L∗p
n

⊗Z M
′ ∼= lim

−→
L/K nr

L∗ ⊗Z M
′ ∼= (Knr)∗ ⊗Z M

′.
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Denote this isomorphism by ψ and define H1
f (GK ,M

′(1)) as the kernel of

H1(GK ,M
′(1))

Res // H1(IK ,M
′(1))/ψ−1(O∗Knr ⊗Z M

′). (3.7.1)

Observe that by Kummer theory one has H1
f (GK ,Z/pZ(1)) ∼= O∗K/O

∗p
K .

If χ is non-trivial on IK , then H1
f (GK ,M

′(1)) ∼= (O∗Knr⊗ZM
′)ΓK . In general,

by [Ki5, Lem. 2.4.2] the group H1
f (GK ,M

′(1)) is isomorphic to

(O∗Knr ⊗Zp M0)ΓK/image
(
(O∗Knr ⊗Zp M1)ΓK → (O∗Knr ⊗Zp M0)ΓK

)
, (3.7.2)

where 0 → M1 → M0 → M ′ → 0 is a short exact sequence of Zp[[ΓK ]]-modules
such that M0 (and hence also M1) is free and finitely generated over Zp.2 To
obtain (3.7.2), one first considers the long exact Tor-sequence for the resolution of
M ′ and O∗

K̄
. Since O∗

K̄
is divisible and M0 is free over Zp, it yields the short exact

sequence 0→ Tor1(M,O∗
K̄

)→M1⊗ZpO∗K̄ →M0⊗ZpO∗K̄ → 0. Using the Kummer

sequence for O∗
K̄
→ O∗

K̄
, x 7→ xp

n

with n such that pnM ′ = 0, the Tor-term can
be evaluated as M ′(1). One now obtains

. . .→(O∗Knr ⊗Z M0)ΓK → (O∗Knr ⊗Z M1)ΓK

→ H1(GK ,M
′(1))→ H1(GK ,O∗Knr ⊗Z M1)→ . . .

from the long exact GK-cohomology sequence. Kisin shows that

H1(GK ,O∗Knr ⊗Z M1) ↪→ H1(IK ,O∗Knr ⊗Z M1)

is injective and that a class lies in H1
f (GK ,M

′(1)) if its image in H1(IK ,O∗Knr ⊗Z
M1) is zero.

Lemma 3.7.1. On discrete Zp[ΓK ]-modules M on which p is nilpotent, the functor
M 7→ H1

f (GK ,M(1)) is right exact.

Proof. The assertion is immediate from formula (3.7.2), since it suffices to verify
right exactness for sequences of finite Zp[ΓK ]-modules. �

Suppose now that VF is two-dimensional, flat and ordinary. As before, let
Dχ,2
VF

be the full subgroupoid of D2
VF

consisting of those framed deformations

(VA, ιA, βA) such that detVA ∼= χ. Define the groupoid Dord,χ,2
VF

over AugW (F)

as follows: an object of Dord,χ,2
VF

over (A → B) is a quadruple (VA, ιA, βA, LB),
where

(a) (VA, ιA, βA) ∈ Dχ,2
VF

(A);

2Note that given any short exact sequence 0 → M1 → M0 → M ′ → 0 of Zp-modules, with
M0 free and finitely generated over Zp, one can always extend the ΓK action from M ′ to a
continuous action on M0.
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(b) LB ⊂ VB := VA ⊗A B is a B-line, i.e., a projective B-submodule of rank 1
such that VB/LB is projective;

(c) LB is GK-stable subrepresentation and IK acts on LB via χ;

(d) the extension class of 0→ LB → VB → VB/LB → 0 in

Ext1
B[GK ](VB/LB , LB) ∼= H1(GK , LB ⊗B (VB/LB)∗)

lies in H1
f (GK , LB ⊗B (VB/LB)∗).

Proposition 3.7.2. The functor Dord,χ,2
VF

of groupoids over AugW (F) is representable
by a projective algebraizable morphism of formal schemes, which we denote by

Θord,χ,2
VF

: Lord,χ,2
VF

−→ Spf Rχ,2VF
.

The morphism Θord,χ,2
VF

becomes a closed embedding after inverting p. The scheme

Lord,χ,2
ξ is formally smooth over W (F).

Proof. The proof of the first part is more or less the same as that of Lemma 3.5.2.
For the second assertion one proceeds as in Lemma 3.5.6. For any closed point η on
the generic fiber of R, one proves that the completion of Θord,χ,2

VF
at η is either zero

or an infinitesimal isomorphism (by showing that the respective functor is fully

faithful). Because the morphism Θord,χ,2
VF

is also projective, it must be a closed
immersion.

It remains to verify formal smoothness. The proof proceeds as the proof of
Lemma 3.5.3. The key input is Lemma 3.7.1. It provides the desired lifting of an
extension 0→ LB/I → VB/I → VB/I/LB/I → 0 over B/I to an extension over B
for B → B/I surjective with nilpotent kernel. �

Corollary 3.7.3. Define Spf Rord,χ,2
VF

as the scheme theoretic image of Θord,χ,2
VF

.
Then:

(a) If E/W (F)[1/p] is a finite extension and x : Rχ,2VF
→ E is an E-valued

point, then x factors through Rord,χ,2
VF

if and only if the two-dimensional
E-representation of GK corresponding to x is crystalline and has the form(
χη ∗
0 η−1

)
with η : GK → E∗ an unramified character.

(b) Rord,χ,2
VF

[1/p] is formally smooth over W (F)[1/p].

(c) Rord,χ,2
VF

is a domain unless VF ∼= χ1⊕χ2 for distinct characters χi : GK → F∗
such that χ1|IK = χ2|IK = χ|IK .

Proof. Let OE denote the ring of integers of E. Then x arises from an OE-valued
point and Vx has the properties listed in part (a) if and only if x lifts to an OE-

valued point of Lord,χ,2
VF

. By the previous proposition and the valuative criterion
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for properness, the OE-valued points of SpecRord,χ,2
VF

and of Lord,χ,2
VF

are in bijec-
tion. Taking into account the relation between flat deformations and crystalline
representations with weights in {0, 1}, cf. Proposition 4.2.1, this proves part (a).
Part (b) follows directly from the previous proposition.

The arguments used to prove connectivity in Lemma 3.5.3 can be applied
to part (c). Thus the number of connected components of Rord,χ,2

VF
is in bijection

with the number of connected components of Lord,χ,2
VF

⊗Rχ,2VF
F. The latter is a

subscheme of P1
F. If VF is not semisimple, it is a point, and if VF is scalar then it

is all of P1. If VF is semisimple but the characters after restriction to inertia are
different, then again the subscheme is a point. In the remaining case, it consists
of two points. �

Proposition 3.7.4. Let E be a finite totally ramified extension of W (F)[1/p] with
ring of integers O. Let ψ : GK → O∗. Consider now all groupoids over ArO (or

AugO). Then there exists a quotient Rord,χ,2
VF

of R2
VF

such that:

(a) If E′/E is a finite extension and x : R → E′ is an E′-valued point, then x

factors through Rord,χ,2
VF

if and only if the two-dimensional E′-representation

of GK corresponding to x is crystalline and has the form
(
χψη ∗

0 η−1

)
with

η : GK → E∗ an unramified character.

(b) Rord,χ,2
VF

[1/p] is formally smooth over W (F)[1/p] of relative dimension equal
to 3 + [K : Qp].

(c) Rord,χ,2
VF

is a domain unless VF ∼= χ1⊕χ2 for distinct characters χi : GK → F∗
such that χ1|IK = χ2|IK = χ|IK .

Proof. We only give the proof for p > 2. Twisting VF with a square root of ψ
reduces us to the case ψ = 1 treated in the previous corollary. The only claim that
remains to be proved is that on the dimension of Rord,χ,2

VF
[1/p]. The computation

will be indicated later; cf. Proposition 4.2.4. For ordinary crystalline deformations,
so that Vx is an extension of two one-dimensional crystalline representations, the
computation is particularly simple. �

3.8 Complements

The methods of the previous section on flat (hence weight 2) ordinary defor-
mations may be generalized to ordinary deformations of arbitrary weight. Ex-
cept for the computation of the Ext-group describing extensions of a twist of the
(k−1)-th power of the cyclotomic character by an unramified character, there are

few changes. One again uses an auxiliary functor L?,2
VF

. Therefore we only describe

the setting and the result —note however that the computation of the Ext1-groups
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and in particularly the surjectivity analogues to Lemmas 3.5.4 and 3.7.1 is in cer-
tain cases quite involved.

We fix K/Qp an unramified finite extension. We suppose VF ∼=
(
χ1 ∗
0 χ2

)
with χ2 for a basis βF of VF. We let ψ : GK → O∗ be an unramified character
with ψ1/2 well-defined. Let Rk,ψ,2VF

be the universal ring for framed deformations

of determinant ψχk−1 with χ the p-adic cyclotomic character.

Theorem 3.8.1 ([KW2, §3.2]). Suppose 2 ≤ k ≤ p is an integer or that k = p+ 1,
K = Fp and p > 2. Then:

(a) Rk,ψ,2 has a quotient Rord,k,2
VF

for k > 2; Rord,flat,2
VF

for k = 2 if VF is flat

and Rord,χ,2
VF

for k = 2 if VF is non-flat, such that, for all E/O[1/p] finite

and for all x : Rk,ψ,2VF
→ E, the following equivalences hold:

(i) If k > 2, then x factors through Rord,k,2
VF

if and only if Vx ∼
(
χ̃1 ∗
0 χ̃2

)
with χ̃2 unramified.

(ii) If k = 2 and VF is flat, then x factors through Rord,flat,2
VF

if and only if

Vx ∼
(
χ̃1 ∗
0 χ̃2

)
and Vx is flat.

(iii) If k = 2 and VF is non-flat, then x factors through Rord,χ,2
VF

if and only

if Vx ∼
(
χψ1/2 ∗

0 ψ1/2

)
.

Note that, as a quotient of Rk,ψ,2, one automatically has detVx = ψχk−1.

(b) Except for k > 2 and χ1χ
−1
2 = χ, the rings Rord,?,2

VF
just defined are formally

smooth over Qp and of relative dimension 3 + [K : Qp], unless they are 0.

(c) The number of components of Rord,?,2
VF

is given as follows:

(i) Case ? = k > 2: the number is 2 if χ1 is unramified and ∗ = triv, else
it is 1.

(ii) Case ? = flat: the number is 2 if χ1 is unramified and ∗ = triv, else it
is 1.

(iii) Case ? = χ: the number is one.

3.9 Appendix

3.9.1 The canonical subgroups of the absolute Galois group of a
local field

Let k be the residue field of the finite extension F ⊃ Q`. The extension F nr ⊃ F
is Galois and one has

Gal
(
F nr/F

) ∼= Gal
(
k/k

) ∼= Ẑ,
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where the first isomorphism is the canonical one arising from reduction.
The absolute Galois group GF of F admits two canonical subgroups. First

there is the inertia subgroup IF of F , which is the kernel of the surjective homo-
morphism GF � Gal(F nr/F ), i.e., one has the short exact sequence

1 −→ IF −→ GF −→ Gal
(
k/k

)
−→ 1.

Second, by the structure theory of IF , the pro-` Sylow subgroup PF of IF is a closed
normal subgroup, the wild ramification subgroup of F . The quotient ItF := IF /PF
is the tame quotient of IF ; it is isomorphic to

∏
q 6=` Zq where the product is over

all rational primes q 6= `. Thus, one has a short exact sequence

1 −→ PF −→ IF −→
∏
q 6=`

Zq −→ 1.

The subgroup PF is also normal in GF : it is the pro-` Sylow subgroup of IF .
Suppose now that ` 6= p. In order to focus on representations of GF into

GLd over rings in ArW (F) it is convenient to introduce the subgroup PF,p of IF as
follows. From the structure theory of IF it is apparent that there is a surjective
homomorphism tp : IF � Zp. Introduce PF,p as the kernel, so that one has the
exact sequence

1 −→ PF,p −→ IF −→ Zp −→ 1.

The quotient Zp carries an action of Gal(F nr/F ) via the cyclotomic character;
this is immediate from the Kummer isomorphism

Zp ∼= Gal
(⋃

n

F nr
(
pn
√
p
)
/F nr

)
.

3.9.2 Galois cohomology

We recall some results on the cohomology of GF for F ⊃ Q` finite, where `
can be equal to or different from p; see [NSW]. For ` 6= p we set [F : Qp] = 0
—for ` = p it is, as usual, the extension degree of F over Qp. Let E be either a
finite extension of Fp or Qp, and let V be a continuous representation of GF on
a finite-dimensional E-vector space. Recall that V ∨ = Hom(V,E(1)). We write
hi(F, V ) = dimE H

i(GF , V ).

Theorem 3.9.1 (Tate). The groups Hi(GF , V ) are finite-dimensional E-vector
spaces for i ∈ Z and zero for i /∈ {0, 1, 2}. Moreover:

h0(F, V )− h1(F, V ) + h2(F, V ) = −[F : Qp] dimE V, and h2(F, V ) = h0(F, V ∨).

Corollary 3.9.2. Suppose dimE V = 1. Then h1(F, V ) = [F : Qp] unless V is trivial
or GF acts via the (mod p) cyclotomic character (if E is finite).
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Let ρ : GF → GL2(E), g 7→
(
η b
0 λ

)
be a reducible continuous representation

for characters η, λ : GF → E∗. Then

b ∈ Ext1
GF (η, λ) ∼= Ext1

GF (1l , λη−1) ∼= H1(GF , λη
−1).

The class b is trivial if and only if the extension splits, i.e., if and only if ρ is
semisimple.

Corollary 3.9.3. Suppose ` 6= p. If ρ is non-split, then ηλ−1 is trivial or the cyclo-
tomic character (mod p).

Let F nr be the maximal unramified extension of F inside a fixed algebraic
closure F of F .

Proposition 3.9.4. Suppose that dimE V = 1 and V is unramified, i.e., IF acts
trivially on V . Then the groups Hi(Gal(F nr/F ), V ), i ∈ Z, are finite-dimensional
over E. Moreover H1(Gal(F nr/F ), V ) = 0 unless V is trivial, in which case
h1(Gal(F nr/F ), V ) = 1.

Corollary 3.9.5. Any unramified 2-dimensional representation is either split or an
extension of an unramified character by itself.

Combining the previous two corollaries, one deduces:

Corollary 3.9.6. Suppose ` 6= p. If ρ as above is non-split and not unramified up
to twist, then ηλ−1 is the cyclotomic character (mod p).

3.9.3 Weil–Deligne representations

Let F be a finite extension of Q` as above with ` 6= p and residue field k. Consider
the canonical homomorphism π : GF → Gk. The arithmetic Frobenius automor-
phism σ is a canonical topological generator ofGk. The Weil group ofWF is defined
as π−1(σZ), so that one has a short exact sequence 1→ IF →WF → σZ → 1. Let
q = |k| and define

|| − || : WF −→ Q, σng 7−→ qn

for g ∈ IF and n ∈ Z.

Definition 3.9.7. Let L be a field of characteristic 0 equipped with the discrete
topology. A Weil–Deligne representation3 over L is a triple (VL, ρ

′, N) such that

(a) VL is a finite-dimensional L-vector space,

(b) ρ′ : WF → AutL(VL) is a continuous representation with respect to the dis-
crete topology on VL, and

3We follow the conventions of [Tat2, §4] except that we express everything in terms of an
arithmetic Frobenius.
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(c) N is a nilpotent endomorphism of VL such that ρ′(w)Nρ′(w)−1 = ||w||N for
all w ∈WF .

If L is a complete discretely valued field, then A ∈ AutL(VL) is called bounded if all
its eigenvalues have valuation zero, or equivalently if the characteristic polynomials
of A and A−1 have coefficients in the ring of integers of L. The Weil–Deligne
representation (VL, ρ

′, N) is called bounded if ρ′(σ) is bounded.

Observe that condition (b) is equivalent to the assertion that Ker(ρ′|IF ) is
finite.

Let E be a p-adic field. For any continuous representation ρ : GF → Aut(VE),
where VE is a finite-dimensional E-vector space, we may consider its restriction
to WF . One has the following important and elementary result due to Deligne:

Theorem 3.9.8 (Deligne). The following assignment sets up a bijection between
pairs (VE , ρ), where VE is a finite-dimensional E-vector space with the p-adic topol-
ogy and ρ : WF → AutE(VE) is a continuous representation, and Weil–Deligne
representations (VE , ρ

′, N) over E (where, as in (b) above, VE is given the dis-
crete topology). Given (VE , ρ

′, N), one defines

ρ(σng) = ρ′(σng) exp(tp(g)N) for g ∈ IF , n ∈ Z.

The key step in the proof is Theorem 3.2.1, due to Grothendieck. The as-
signment (VE , ρ

′, N) 7→ (VE , ρ) is less explicit. It can be deduced from the proof
of Theorem 3.2.1.

The advantage of the Weil–Deligne representation associated to a p-adic rep-
resentation is that it can be expressed without any use of the p-adic topology
involved —at the expense of introducing N . The concept is enormously impor-
tant in the definition of a strictly compatible system of Galois representations to
have a good description also at the ramified places! For instance, let E/Q be an
elliptic curve with semistable but bad reduction at the prime `. For any prime
p 6= `, consider the representation Vp of GQ on the p-adic Tate module of A. Then
the action of IQ` on Vp is unipotent and non-trivial, i.e., it is a non-trivial action
via the unique quotient Zp of IQ` . In particular, the representation depends on p.
However, as the reader may verify, the associated Weil–Deligne representation is

independent of p. One has ρ′(Ip) = 1 and N ∼
(

0 1
0 0

)
.

It is possible to describe a Weil–Deligne representation also as a represen-
tation between algebraic groups. For this, one needs to define the Weil–Deligne
group WDF . As a group one has WF = lim←−J⊂IF WF /J , where J ranges over the

open subgroups of IF . For any discrete group H (which may be infinite) and any
ring R, denote by HR the constant group scheme on R with group H. Then the
group schemes

WF /J Q
, J ⊂ IF an open subgroup,

form an inverse system. One defines

WF Q = lim←−
J

WF /J Q
.
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Suppose E is any field of characteristic zero. Then a homomorphism of algebraic
groups WFE

→ AutE(VE) will factor via WF /J for some open J ⊂ IF and hence
is nothing else but a continuous representation WF → Aut(VE), where VE carries
the discrete topology.

Definition 3.9.9. The Weil–Deligne group is the semidirect product

(WDF )Q = Ga oWF Q = Ga o
⋃
n∈Z

σnIF Q,

where multiplication is obtained as the inverse limit of the action of WF /J on Ga
defined by

(a,w) · (a′, w′) = (a+ a′||w||, ww′), where a, a′ ∈ Ga(R), w,w′ ∈WF /J.

The following result is straightforward:

Proposition 3.9.10. For any (discrete) field E of characteristic zero, there is a
canonical bijection between d-dimensional Weil–Deligne representations and alge-
braic representations (WDF )E → GLd,E.

For further background we refer to [Tat2].

3.9.4 Finite flat group schemes

Let R be a commutative ring (or a scheme). By a finite flat group scheme over
R one means a group scheme G which is finite flat over R. In particular G is
affine. Let A denote its coordinate ring. It is a locally free (sheaf of) algebra(s)
over R. The rank of G is the rank of A over R. The group scheme structure on G
translates into a cocommutative Hopf algebra structure on A. This means that A
is an R-algebra equipped with R-linear maps µ : A → A⊗R A (comultiplication),
ε : A → R (counit), ι : A → A (coinverse) satisfying axioms which are dual to
those satisfied by a group (scheme).

Example 3.9.11. (a) For an abstract finite group Γ, the ring A = Maps(Γ, R)
is naturally an R-algebra. Moreover, with µ(f)(s, t) = f(st) as comultipli-
cation, ε(f)(s) = f(1) as counit and ι(f)(s) = f(s−1) as coinverse, it is a
cocommutative Hopf algebra.

(b) Let A = R[X]/(Xm − 1) with µ(X) = X ⊗X, ι(X) = X−1 and ε(X) = 1.
This defines the multiplicative group scheme µm. It is étale over R if and
only if m is invertible in R.

For a fixed finite extension K of Qp we now present some basic properties on
finite flat group schemes over OK and flat representations of GK .

A flat representation of GK is a continuous representation of GK on a finite
abelian group V such that there exists a finite flat group scheme G over OK so that
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V ∼= G(K) as a Z[GK ]-module. Such a representation on V can be decomposed
into its primary parts. Flatness for components of order prime to p is characterized
by the following result —it will not be needed in the main part of the lecture, but
we include it for completeness:

Proposition 3.9.12 ([Sha, §4, Corollary 3]). Suppose G is a finite flat group scheme
over OK of order prime to p. Then the following three equivalent conditions hold:

(a) G is étale.

(b) The action of GK on G(K) is via π1(SpecOK).

(c) The action of GK is unramified.

Conversely (see Exercise 3.10.5), any unramified continuous representation of GK
on a finite abelian group is flat.

From now on we assume that V is of p-power order. The following descent
result is presumably well known. Lacking a reference, we give a proof. Its idea was
suggested to us by J.-P. Wintenberger.

Lemma 3.9.13. Suppose that V is a continuous linear representation of GK on a
finite abelian p-group. If V is flat over Knr, then it is flat over K.

Proof. The Hopf algebra over OKnr giving the flatness of V restricted to GKnr is
already defined over a finite unramified extension L/K such that GL acts trivially
on V . Let AOL denote a Hopf algebra over OL whose associated finite flat group
scheme GOL satisfies GOL(K) ∼= V as Z[GL]-modules. Define AL as AOL ⊗OL L.
By Exercise 3.10.5(c), the invariants of AL under Gal(L/K) form a finite Hopf
algebra AK over K such that GK(K) ∼= V as Z[GK ]-modules for the associated
group scheme GK .

Define AOK = (AOL)Gal(L/K). We shall prove that

AOK ⊗OK OL ∼= AOL (3.9.1)

is an isomorphism under the naturally given homomorphism (which regards AOK
as a subring of AOL and AOL as a OL-algebra). In other words, we shall show
that AOL satisfies Galois descent for Gal(L/K); see for example [Wa, §17]. By
Galois descent one also shows that the Hopf algebra structure descends from AOL
to AOK = AK ∩ AOL . For instance, to see that the comultiplication descends to
AOK , one may proceed as follows. Since comultiplication on AL arises by base
change from AK , the comultiplication µ : AL ⊗L AL → AL is Galois equivariant.
Its restriction to AOL ⊗OL AOL maps to AOL . Hence it induces an OK-linear
homomorphism (AOL⊗OLAOL)Gal(L/K) → (AOL)Gal(L/K). However (3.9.1) allows
us to identify the left-hand side with AOK ⊗OK AOK . Further details are left to
the reader.



70 Lecture 3. Deformations at places not above p

We now prove (3.9.1). Let π denote a uniformizer of OK . Because L/K is
unramified, π is also a uniformizer of OL. We shall prove by induction on n that
for all n one has a natural isomorphism

(AOL/πnAOL)Gal(L/K) ⊗OK/πnOK OL/π
nOL ∼= AOL/πnAOL . (3.9.2)

For n = 1 recall that, by Hilbert 90, or rather the normal basis theorem, one has
kL ∼= kK [Gal(L/K)] as Galois modules, where kL and kK denote the residue fields
of L and K, respectively. Since AOL is a free OL-module, say of rank r, it follows
that

AOL/πAOL ∼= krL
∼= kK

[
Gal(L/K)]r ∼= krK ⊗kK kK [Gal(L/K)]

as kK [G]-modules. One immediately deduces (3.9.2) for n = 1. For the induction
step, consider the sequence

0 −→ AOL/πAOL
πn−→ AOL/πn+1AOL −→ AOL/πnAOL −→ 0.

Abbreviate G = Gal(L/K). Observe first that taking G-invariants is exact. This
is so because the group H1(G,AOL/πAOL) vanishes —again by the normal ba-
sis theorem. Tensoring the resulting short exact sequence with OL over OK and
comparing it with the given sequence yields

(AOL/πAOL)G ⊗OK OL
πn//

��

(AOL/π
n+1AOL)G ⊗OK OL

��

// (AOL/π
nAOL)G ⊗OK OL

��

AOL/πAOL
πn // AOL/π

n+1AOL // AOL/π
nAOL .

By induction hypothesis, the right and left vertical arrows are isomorphisms. By
the Snake Lemma, the same follows for the middle term. This proves (3.9.2). The
isomorphism (3.9.1) now follows by taking the inverse limit of (3.9.2). �

Corollary 3.9.14. If M is a finite continuous Z[Gal(Knr/K)]-module and G is a
finite flat group scheme over OK , then the representation M ⊗ G(K) arises from
a finite flat group scheme. In particular, M arises from a finite flat group scheme.

Proof. Let V be the representation of GK on G(K) ⊗M . Because M is discrete
and unramified, there is a finite unramified extension L/K over which M becomes
trivial. Since G, being flat over OK , will also be flat over OL, we may apply the
previous result to V .

For the second assertion, note that for any n ∈ N the trivial GK-module
Z/(pn) arises from a finite flat group scheme G over OK ; cf. Exercise 3.10.5(d). �

Write ΓK = Gal(Knr/K). Our next aim is to provide some background on
H1
f (GK ,M(1)) as defined in (3.7.1) for M a discrete (possibly infinite) representa-

tion of Zp[Gal(Knr/K)]. Recall that the group schemes µpn are flat over any ring.
The following result follows from [KM, Prop. 8.10.5] and its proof.
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Proposition 3.9.15 ([KM]). The group H1
f (GK ,Zpn(1)) ∼= O∗K/O

∗pn
K is naturally

isomorphic to the group of flat extensions

0 −→ µpn,K −→ V −→ Z/pnZ −→ 0

of GK-modules such that V is pn-torsion within the group

H1(GK ,Zpn(1)) ∼= K∗/K∗p
n

of all such extensions of GK-modules.

Note that the identification of the group of all extensions 0 → µpn(K) →
V → Z/pnZ→ 0 of GK-modules with H1(GK ,Zpn(1)) is via Kummer theory.

The result in [KM] is based on the construction of a universal flat extension
of Z/pn by µpn over Z[x±1]. To have such a flat extension defined over a ring R,
such as R = OK , the image of x has to be a unit in R.

Proposition 3.9.16. Let M be any finite discrete ΓK-module which is pn-torsion, so
that in particular M is flat. Then the group H1

f (GK ,M(1)) is naturally isomorphic
to the group of flat extensions

0 −→ µpn,K −→ V −→M −→ 0

of GK-modules as a subgroup of the group H1(GK ,M(1)) of all such extensions
of GK-modules.

If M = lim−→i∈IMi for finite abelian p-groups Mi with a linear action of ΓK ,

the lemma gives a corresponding interpretation for H1
f (GK ,M(1)).

Proof. By [Tat1, § 4.2], the map that associates to any flat extension 0 −→
µpn,K −→ V −→ M −→ 0 the corresponding extension of GK-modules on the
generic fiber is injective. Hence any flat extension is described by a unique class c
in H1(GK ,M(1)). By Lemma 3.9.13, the extension is flat if and only if it is flat
over some, or any unramified extension of K. Passing to a suitable such extension,
we may assume that ΓK acts trivially on M . So then M is a finite direct sum
of trivial group schemes Z/piZ. But then by Proposition 3.9.15, flatness of c is
equivalent to being a class in O∗K ⊗Z M ⊂ K∗ ⊗Z M . Again by Lemma 3.9.13 we
can pass to the limit over all unramified extensions of K, and hence c is flat if and
only if its image lies O∗Knr ⊗ZM ⊂ Knr∗⊗ZM . By the definition of H1

f , the latter

condition is equivalent to c ∈ H1
f (GK .M(1)). �

3.10 Exercises

Exercise 3.10.1. Let ` 6= p and R = Zp[[x]]. Construct a continuous representation

ρ : (ĜQ`)
p → GL2(R) such that there are two closed points x, y on the generic

fiber SpecR[1/p] whose logarithmic monodromy satisfies Nx = 0 and Ny 6= 0.



72 Lecture 3. Deformations at places not above p

Exercise 3.10.2. Let ρ̄ : GQ` → GL2(Fp) be the trivial representation. Determine,
depending on the (non-zero) residue of `mod p, the set of all bounded Weil–Deligne
representations (VQp , ρ

′, N) whose corresponding p-adic representation admits a

model GQ` → GL2(Zp) whose mod p reduction is ρ̄.

Exercise 3.10.3. (a) Let AugF be the full subcategory of AugW (F) whose objects
are pairs (A → B) in AugW (F) with A = F. Prove that the restriction of

the groupoid Lχ,2VF
to AugF is either the scheme SpecF or the scheme P1

F,
depending on VF.

(b) Let Aug′F be the full subcategory of AugF whose objects are pairs (F→ B) in
AugF such that B is in ArW (F). Prove that if Lχ,2VF

over AugF is represented

by the scheme P1
F, then Lχ,2VF

over Aug′F is represented by the 0-dimensional
scheme lim−→X⊂P1

F
X, where X runs over the zero-dimensional (not necessarily

reduced) subscheme of P1
F.

Exercise 3.10.4. Compute h1(K,Qp(n)) and h1
cris(K,Qp(n)) for a finite extension

K of Qp, for all n ∈ Z. Hints: Use without proof the following results; cf. [Nek].

(a) The dimension formulae derived from Tate’s local duality theory; cf. Theo-
rem 3.9.1.

(b) For V a crystalline representation and Dcris(V ) its associated filtered ϕ-mod-
ule4 one has

h1
cris(K,V ) = dimQp Ext1

cris(1l , V )

= h0(K,V ) + [K : Qp](dimQp V − dimK Fil0(Dcris(V ))).

(c) For K0 ⊂ K the maximal subfield unramified over Qp and σ the Frobenius
automorphism of K0 one has Dcris(Qp(n)) = (K0, ϕ = p−nσ, Fil−n = K,
Fil−n+1 = 0).

Exercise 3.10.5. Let K be a finite extension of Qp and let V be a finite abelian
group carrying a continuous linear action of GK . Let L/K be a finite Galois exten-
sion where GL acts trivially on V . Define a flat OL-algebra AOL = Maps(V,OL)
as in Example 3.9.11(a). Show the following:

(a) The algebra AOL is the cocommutative Hopf algebra underlying a finite flat
group scheme GOL over OL.

(b) If for f : V → OL and g ∈ Gal(L/K) one defines (gf)(v) = g(f(g−1v)), then
this defines an action of Gal(L/K) on AOL which is compatible with the
Hopf algebra structure.

4See Section 4.2 and Appendix 4.6.2.
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(c) The L-algebra AL = AOL⊗OLL inherits a Hopf algebra structure from AOL .
The invariants (AL)Gal(L/K) form a cocommutative Hopf algebra over K
defining a finite flat group scheme GK over SpecK such that GK(K) ∼= V as
a Z[GK ]-module and GK ×SpecK SpecL ∼= GOL ×SpecOL SpecL.

(d) Suppose L/K is unramified. Then AOK = (AOL)Gal(L/K) is the cocommu-
tative Hopf algebra underlying a finite flat group scheme GOK over SpecOK
with generic fiber GK and base change to OL isomorphic to GOL .

Hint: Part (c) is proved by étale descent: one may use the additive Hilbert 90
theorem for L/K, which implies that L ∼= K[Gal(L/K)] as a Galois module. For
(d) one needs to show that the canonical homomorphism AOK ⊗OK OL → AOL
is an isomorphism, i.e., that AOL descends to OK . The argument is similar to the
proof of Proposition 3.9.13.

Exercise 3.10.6. Adapt the proof of Theorem 2.2.1 to show the following. Let
E/Qp be finite, VE a continuous absolutely irreducible G-representation of E, and
B ∈ ArE . Suppose that VB , V

′
B are deformations of VE to B such that Tr(σ|VB) =

Tr(σ|VB′) for all σ ∈ G. Then VB and V ′B are isomorphic deformations.
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Lecture 4

Flat deformations

We follow mostly [Ki7]. Some parts are motivated by the course of L. Berger on
p-adic Galois representation and discussions with K. Fujiwara and J.-P. Winten-
berger during the course. As a reference for much of the p-adic Galois representa-
tions, the lecture notes [Ber1] by L. Berger are highly recommended.

The appendix for this chapter summarizes very briefly some basic results and
definitions on p-divisible groups, on (weakly admissible) filtered ϕ-modules and on
Fontaine–Laffaille modules.

4.1 Flat deformations

Let K/Qp be a finite extension field with residue field k; write W = W (k) and
K0 = W [1/p]; fix an algebraic closure K of K, and let GK = Gal(K/K). Denote
by VF a continuous representation of GK on a finite-dimensional F-vector space.

A representation V of GK on a finite abelian p-group is called flat if it arises
from a finite flat group scheme G over OK , i.e., if V ∼= G(K) as Z[GK ]-modules.

The following result is essentially due to Ramakrishna [Ram].

Proposition 4.1.1. Let A be in ArW (F) and VA in DVF(A). There exists a quotient

Aflat of A such that, for any morphism A→ A′ in ArW (F), VA′ = VA⊗AA′ is flat

if and only if A→ A′ factors through Aflat.

Proof. Let V denote any flat representation of GK on a finite abelian p-group,
say V ∼= G(K), and let V ′ be any subrepresentation. Define G′ ⊂ G as the scheme
theoretic closure of V ′ ⊂ G(K); cf. [Ray, §2.1]. Then G′ is a finite flat group
scheme over OK and V ′ = G(K). Moreover the functor G/G′ is representable by a
finite flat group scheme over OK with generic fiber V/V ′. Let us give some details.
Let A be the affine coordinate ring of G. It is a free OK-module of finite rank
and carries the structure of a cocommutative Hopf algebra. The K-points of V ′

correspond to OK-homomorphisms A → K. The intersection of the kernels of

75
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these homomorphisms is an ideal I of A. Since it is the same as the intersection
of the corresponding ideal IK of the generic Hopf algebra AK = A⊗OKK with A,
the ideal I is saturated as an OK-submodule of A. Over SpecK the subgroup
V ′ is represented by the finite flat subscheme SpecA/I of GK . This shows that
IK ⊂ AK is a Hopf ideal. The latter property is inherited by I. Hence A′ = A/I
is a Hopf algebra which is finite flat over OK . One verifies that G′ = SpecA′ is
the desired subgroup scheme of G.

The above shows that, if θ : A → A′ is a morphism in ArW (F), then VA′ is
flat if and only if Vθ(A) is flat. (For one direction use that, if θ(A)r → A′ is a
θ(A)-module epimorphism, then VA′ is a quotient of V rθ(A).) Similarly, if I, J ⊂ A
are ideals such that VA/I and VA/J are flat, then VA/(I∩J) ⊂ VA/I ⊕ VA/J is flat.
The second assertion implies the existence of a largest quotient A0 of A such that
VA0

is flat. By the first assertion, this A0 is the desired Aflat. �

Corollary 4.1.2. Let Dflat
VF
⊂ DVF denote the subfunctor corresponding to flat de-

formations. Then Dflat
VF
⊂ DVF is relatively representable.

Proof. Relative representability for groupoids over categories was defined in Def-
inition 2.4.4. It simply means that for all ξ in DVF the functor (Dflat)ξ is repre-
sentable. The latter is the functor of flat representations arising from ξ ∈ DVF(A)
via a homomorphism A→ A′. The corollary follows from Lemma 4.1.1. �

4.2 Weakly admissible modules and smoothness of the
generic fiber

Proposition 4.2.1. Let E/W (F)[1/p] be a finite extension and ξ ∈ Dflat
VF

(OE) with
corresponding representation Vξ over E. Then there is a natural isomorphism of
groupoids over ArE,

Dflat
VF,(ξ)

−→ Dflat
Vξ
,

where Dflat
Vξ

is the subgroupoid of DVξ of representations which are crystalline with

Hodge–Tate weights in {0, 1}. In particular, one has

Dflat
VF,(ξ)

(E[ε]) ∼= Ext1
cris

(
Vξ, Vξ

)
.

Moreover, for any (A
α→ OE) in ÂrW (F) such that A is flat over OE and α becomes

B → E in ArE after inverting p, and for any VA ∈ DVF(A) mapping to Vξ under
α, one has

VA ∈ Dflat
VF

(A)⇐⇒ VA ∼= Tatep G for G/OK a p-divisible group (4.2.1)

⇐⇒ VA ⊗A B is crystalline with weights in {0, 1}. (4.2.2)

Proof. The equivalence in (4.2.1) is a result of Raynaud: VA lies in Dflat
VF

(A) if and
only if for all n ∈ N the representation VA ⊗A A/mnOEA is finite flat. By [Ray,
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2.3.1], the latter is equivalent to VA being isomorphic to the Tate module of a
p-divisible group.

The equivalence in (4.2.2) uses Breuil’s result that a crystalline representation
with all Hodge–Tate weights equal to 0 or 1 arises from a p-divisible group [Bre,
Thm. 5.3.2], [Ki2, 2.2.6].

From (4.2.1) and (4.2.2) and the definition of Dflat
VF,(ξ)

, the equivalence of
functors is immediate, as is then the identification of the tangent space. �

Suppose that DVF is pro-represented by RVF and let Rflat
VF

be the quotient of

RVF which pro-represents Dflat
VF

. For ξ as above, denote by R̂flat
ξ the completion

(after −⊗W (F) E) along the kernel of ξ. The equivalence in the above proposition

allows one to use Fontaine theory to show that R̂flat
ξ is formally smooth over E

and to compute its relative dimension; see Corollary 4.2.4. If K/Qp is ramified,
the difficulty of Rflat

VF
lies in its special fiber. As shown in [Ki4], its analysis may

require delicate arguments.
To compute Ext1

cris(Vξ, Vξ), we recall some facts on weakly admissible filtered
ϕ-modules from the lectures of L. Berger; cf. [Ber2] —see also Appendix 4.6.2.
Consider the fully faithful functor

Dcris :
{

crystalline representations of GK
}

=: Repcris
Qp
(
GK
)

−→ FilϕK :=
{

filtered ϕ-modules on K
}
.

It is elementary to extend this equivalence to an equivalence with E-coefficients
for any finite extension E/Qp

Dcris : Repcris
E

(
GK
)
−→ FilϕK,E .

Denote by Dξ the image of Vξ under Dcris. From the definitions and properties of
Dcris one deduces that

H1
f

(
GK , adVξ

)
= Ext1

cris

(
Vξ, Vξ

) ∼= Ext1
FilϕK,E

(
Dξ, Dξ

)
.

For the definition of H1
f , see [Ber2]. Using the period rings Bcris and BdeR in

[Ber2], the following formula is derived:

dimE H
1
f

(
GK , adVξ

)
= dimE H

0
f

(
GK , adVξ

)
+ d2 − dimE Fil0adDξ. (4.2.3)

Let us rederive the latter dimension formula by an elementary approach given, for
instance, in [Ki7]. For any weakly admissible filtered ϕ-module D over K, denote
by C•(D) the complex

D
(1−ϕ, id)

// D ⊕DK/Fil0DK (4.2.4)

concentrated in degrees 0, 1.
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Lemma 4.2.2. There is a canonical isomorphism

Ext1
w.a.

(
1l , D

) ∼=−→ H1
(
C•(D)

)
where 1l = K0 denotes the unit object in the category of weakly admissible modules.

Proof. Consider an extension

0 −→ D −→ D̃ −→ 1l −→ 0 (4.2.5)

of weakly admissible filtered modules. Let d̃ ∈ D̃ be a lift of 1 ∈ 1l = K0. Since
(4.2.5) is short exact, so is the sequence of Fil0-terms of the induced sequence
obtained by base change from K0 to K (by the definition of exactness for filtered
modules). This shows that

DK/Fil0DK

∼=−→ D̃K/Fil0D̃K

is an isomorphism, and so we may regard d̃ as an element of DK/Fil0DK . Moreover
(1− ϕ)(d̃) ∈ D (because 1 = ϕ1l (1)). We thus associate the class

((1− ϕ)d̃, d̃) ∈ H1(C•(D))

to the given extension.
Suppose now that (d0, d1) ∈ D⊕DK/Fil0DK . To construct a corresponding

extension of 1l by D, set D̃ = D ⊕K0 on underlying K0-vector spaces, define ϕ
on D̃ by ϕ((d, 1)) = (ϕD(d) + d0, 1), and a filtration by

FiliD̃K = FiliDK +K · d1 for all i ≤ 0

and FiliD̃K = FiliDK for i > 0. The extensions which arise from elements in the
image of (1−ϕ, id) in (4.2.4) are split extensions. It is the content of Exercise 4.7.2
to show that these two constructions induce the asserted isomorphism and its
inverse. (Note: The proof uses that the category of weakly admissible filtered
ϕ-modules is closed under extensions within the category filtered of ϕ-modules.
Hence any extension of weakly admissible modules is again weakly admissible.) �

Let the notation be as in Proposition 4.2.1 and let Dξ = Dcris(Vξ) be in
FilϕK,E . For B ∈ ArE , following Kisin one defines the category FilϕK,B of filtered ϕ-
modules on K over B: the objects are free and finitely generated K0⊗QpB-modules
DB with a σK0⊗idB-linear automorphism ϕ together with a filtration onDB⊗K0K
such that the associated graded pieces are free over B (but not necessarily over
K ⊗ B). An object is weakly admissible if and only it is so if considered in FilϕK .
One now defines the groupoid Dcris

Vξ
over ArE by defining Dcris

VE
(B) as the category

of crystalline deformations of Vξ to B, and similarly Dw.a.
Dξ

over ArE by defining

Dw.a.
Dξ

(B) as the category of all weakly admissible deformations of Dξ to B.
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Lemma 4.2.3. The functor Dcris induces an equivalence of groupoids Dcris
Vξ
→ Dw.a.

Dξ
over ArE. Moreover, each of these groupoids is formally smooth.

Proof. For the proof of the first statement, see Exercise 4.7.5 below. The proof
of the second statement for Dw.a.

DE
is rather straightforward. Indeed, one lifts the

free K ⊗Qp B/I-module DB/I to a free K ⊗Qp B-module DB . The isomorphism
ϕB/I : ϕ∗DB/I → DB/I lifts (non-uniquely) to a K ⊗Qp B-linear isomorphism
ϕB : ϕ∗DB → DB . To lift the filtration, one can use a complete set of idempotents
for K ⊗Qp E; via the canonical E-module structure of B, these idempotents lift
uniquely to K ⊗Qp B. �

Corollary 4.2.4. Let the notation and hypotheses be as in Proposition 4.2.1 and
let Dξ = Dcris(Vξ). Then the E-algebra R̂flat

ξ is formally smooth of dimension

1 + dimE adDξ,K/Fil0adDξ,K .

The corollary assumes that DVF is representable. One could instead work

with D2
VF

and Dflat,2
VF

. The functor Dflat,2
VF,(ξ)

is then formally smooth of dimension

d2 + dimE adDξ,K/Fil0adDξ,K .

Proof. By Proposition 4.2.1 and the previous lemma, formal smoothness is clear.
The complex (4.2.4) shows that

h1
w.a.(GK , adDξ)− h0

w.a.(GK , adDξ) = dimE adDξ,K/Fil0adDξ,K .

As we assume the representability of the groupoid DVF , it has no extra automor-
phisms and so EndF[T ](VF) ∼= VF, which implies that h0

w.a.(GK , adDξ) = 1. Now
use that

dimE Ext1
cris

(
Vξ, Vξ

)
= dimE Ext1

w.a.

(
Dξ, Dξ

)
= dimE Ext1

w.a.

(
1l , adDξ

)
= dimE H

1
(
C•
(
adDξ

))
to obtain the assertion on the dimension from Lemma 4.2.2. Alternatively one can
simply use (4.2.3). �

4.3 The Fontaine–Laffaille functor and smoothness

when e = 1

So far we have seen that the generic fiber of Dflat
VF

is smooth. In general its special
fiber may have a complicated structure. However, in the case where K/Qp is
unramified the groupoid is smooth over W (F). The principal tool to prove this is
Fontaine–Laffaille theory, which we now recall.

The Fontaine–Laffaille category MF1
tor is defined as follows. Its objects are

finite, torsion W -modules M together with a submodule M1 ⊂M and Frobenius
semilinear maps

ϕ : M −→M and ϕ1 : M1 −→M
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such that

(a) ϕ|M1 = pϕ1;

(b) ϕ(M) + ϕ1(M1) = M .

The category MF1
tor is an abelian subcategory of the category of filtered W -mod-

ules of finite length [FL, 9.1.10]. In particular, any morphism on MF1
tor is strict

for filtrations.
Note that, if p ·M = 0, then ϕ(M1) = 0, and so comparing the lengths of

the two sides of (b) above shows that ϕ1 is injective and

ϕ(M)⊕ ϕ1(M1)
∼=−→M. (4.3.1)

Theorem 4.3.1 (Fontaine–Laffaille, Raynaud). Suppose that K = K0 and p > 2.
Then there exist (covariant) equivalences of abelian categories

MF1
tor

∼=
//

FL

{
finite flat group schemes/W

} ∼=
//

Raynaud

{
flat reps. of GK

}
.

Proof. The first equivalence is obtained by composing the anti-equivalence [FL,
9.11] with Cartier duality. The second follows from Raynaud’s result [Ray, 3.3.6]
that, when e(K/K0) < p − 1, the functor G 7→ G(K) is fully faithful and the
category of finite flat group schemes over OK is abelian. �

Remark 4.3.2. For A ∈ ArW (F), one defines a category MF1
A as follows: its objects

are quadruples (M,M1, ϕ, ϕ1), where M is a finitely generated W ⊗Zp A-module,
M1 ⊂ M is a W ⊗Zp A-submodule, and ϕ : M → M and ϕ1 : M1 → M are
σW ⊗ idA-linear homomorphisms such that (a) and (b) hold. This is an A-linear
abelian category; see Exercise 4.7.5.

Theorem 4.3.3. Suppose K = K0 and p > 2. Then Dflat
VF

is formally smooth.

Independently of the condition EndF[GK ](VF) = F, the proof below will also

show the formal smoothness of Dflat,2
VF

. Without using frames it is considerably

more difficult to study Dflat
VF

and its properties if EndF[GK ](VF) ) F. This problem
had been considered by K. Fujiwara.

Proof. Let MF ∈ MF1
tor denote the object corresponding to VF. Then MF lies

naturally in MF1
F by the full faithfulness of Theorem 4.3.1. Its underlying module

is free and finite over W ⊗Zp F, and the submodule MF1
F is a W ⊗Zp F-direct

summand by (4.3.1). Let DMF denote the groupoid over ArW (F) such that DMF(A)
is the category of tuples (MA,M

1
A, ϕA, ϕ

1
A, ιA) such that (MA,M

1
A, ϕA, ϕ

1
A) lies in

MF1
A and MA is a finite free W ⊗Zp A-module, M1

A is a W ⊗Zp A-direct summand,
and conditions (a) and (b) hold, and moreover ιA is an isomorphism(

MA,M
1
A, ϕA, ϕ

1
A

)
⊗A F ιA−→

(
MF,MF

1, ϕF, ϕF
1
)
.
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Note that W ⊗Zp F will in general not be a local ring —because in fact k⊗Fp F will

not be a field whenever the fields k and F over Fp are not linearly disjoint inside Fp.
However, observe that, since W (F) is a ring of Witt vectors, the complete set of
indecomposable idempotents e1, . . . , en for k ⊗Fp F will lift to the unique such set
over W ⊗Zp W (F) and in turn induce the unique such set on W ⊗Zp A for any
A ∈ ArW (F).

The following result is immediate from Exercise 4.7.5.

Lemma 4.3.4. The Fontaine–Laffaille functor of Theorem 4.3.1 induces an equiv-
alence of categories

FL: DMF

∼=−→ Dflat
VF
.

Having the lemma at our disposal, to prove the formal smoothness of Dflat
VF

it suffices to prove the formal smoothness of DMF . Let A be in ArW (F), I ⊂ A an
ideal and MA/I in DMF(A/I). We have to show that MA/I lifts to an object of
DMF(A). Consider first the given data displayed in the following diagram:

MA/I

ϕA/I
// MA/I

M1
A/I

ϕ1
A/I

//

?�

OO

MA/I .

p·

OO

The module M1
A/I is a direct summand of MA/I as a W⊗ZpA-module, by definition

of DMF . The homomorphism ϕ1
A/I is injective, because this holds true for ϕ1

F. This

in turn implies that LA/I := ϕ1
A/I(M

1
A/I) is a projective W ⊗Zp A/I-module of

finite rank. Using the idempotents mentioned above and the fact that any free
submodule of a local Artin ring is a direct summand, one can see that LA/I is a
direct summand of MA/I .

We can thus choose a free W ⊗Zp A-module MA, and projective W ⊗Zp A-
modules M1

A and LA lifting MA/I , M
1
A/I , LA/I , respectively, and in such a way

that M1
A and LA are direct summands of MA. By the projectivity of M1

A, one can

lift the σW ⊗ idA/I -linear homomorphism ϕ1
A/I to an isomorphism ϕ1

A : M1
A

∼=→ LA.

Using a complement to M1
A inside MA it is also straightforward to show that ϕA/I

can be lifted. �

4.4 The dimension of Dflat
VF

We wish to compute the dimension of the mod p tangent space of Dflat
VF

in the case
K = K0. A direct way using Fontaine–Laffaille theory is described in [Ki7, 5.3.3].
We take a different route by working over the generic fiber. There it amounts to
finding a more explicit form of the formula in Corollary 4.2.4. The computation
here is valid for all K and is taken from [Ki4]. For K = K0 one can relate the
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final result via Fontaine–Laffaille theory to the filtered torsion ϕ-module MVF

associated to VF. Moreover, in that case Dflat
VF

is smooth and so the result also
yields its dimension.

Let ξ be a closed point on the generic fiber of Rflat
VF

, say with values in
the finite extension E of Qp and associated E-representation Vξ. Let Dξ be the
corresponding filtered ϕ-module and G a p-divisible group over OK whose Tate
module TateG = G(K) satisfies Vξ ∼= VG := TateG ⊗Zp Qp (see the proof of
Proposition 4.2.1).

Denote by tG the tangent space of G and by G∨ its Cartier dual. Clearly,
tG is the tangent space of the connected component G0 of G. By [Tat1, Prop. 1],
the p-divisible group G0 arises as the p-power torsion from a unique p-divisible
smooth formal Lie group Λ over W . The dimension dimG of G is defined to be the
dimension of Λ or, equivalently, the dimension of tG .

Let Cp denote the completion of K. The following isomorphism of continuous
GK-modules is taken from [Tat1, p. 180, Corollary 2]:

VG ⊗Qp Cp ∼= tG(Cp)(1)⊕ tG∨(Cp)∗. (4.4.1)

Here, for any complete field L ⊂ Cp containing K, one has tG(L) ∼= LdimG as
L[GK ]-modules and similarly for tG∨ . Hence VG has Hodge–Tate weights −1 and 0
with multiplicities dimG and dimG∨.

To relate this to the functor MF1
tor

∼=−→ {finite flat group schemes/W} from
Theorem 4.3.1, we observe that the inverse of this functor, extended to the isogeny
category of p-divisible groups, takes the form

G 7−→ DG := Dcris(VG(−1))
∼=−→ HomGK (VpG∨, Bcris).

In particular, as K-vector spaces, we have

Fil1DG,K ∼= tG∨(K)∗. (4.4.2)

However this is not quite sufficient for the desired dimension calculation! The
point is that, so far, on the side of the p-divisible group we have ignored the action
of E (or its ring of integers). The action of E on Vξ induces an action on G and
hence on tG as well, as its Cartier dual. This makes tG∨(K)∗ into a K⊗E-module
and the isomorphism (4.4.2) one of K ⊗ E-modules.

To unify the arguments, we assume that E contains the Galois closure of
K/Qp. Then K ⊗ E ∼=

∏
ψ : K↪→E E, where ψ ranges over the embeddings of K

into K —these factor via E. Let eψ be the corresponding idempotents. Write dψ
for dimE eψtG(K). From equation (4.4.1) one deduces that

d− dψ = dimE eψt
∨
G(K) = dimE eψt

∨
G(K)∗.

Theorem 4.4.1.
dimE D

flat
Vξ

(E[ε]) = 1 +
∑
ψ

dψ(d− dψ).
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Proof. By Proposition 4.2.4, we need to compute dimE adDG,K/Fil0adDG,K . Now
adDG,K = DG,K ⊗K⊗E D∗G,K . The filtration of DG,K satisfies Fil0 = DG,K ⊃
Fil1 ⊃ Fil2 = 0. The filtration on D∗G,K is given by Fili(D∗G,K) = (Fil1−iDG,K)⊥

where D⊥ ⊂ D∗G,K denotes the annihilator of D ⊂ DG,K under the duality pairing
from linear algebra. Thus

Fil−1D∗G,K = D∗G,K ⊃ Fil0D∗G,K = (Fil1DG,K)⊥ ⊃ Fil−1D∗G,K = 0,

and it follows that Fil0adDG,K = Fil1DG,K ⊗ D∗G,K + DG,K ⊗ (Fil1DG,K)⊥. We
deduce that

adDG,K/Fil0adDG,K
∼= (DG,K/Fil1DG,K ⊗D∗G,K)/(DG,K/Fil1DG,K ⊗ (Fil1DG,K)⊥)

∼= (DG,K/Fil1DG,K)⊗ (D∗G,K/(Fil1DG,K)⊥)

∼= (DG,K/Fil1DG,K)⊗ Fil1D∗G,K .

Using the idempotents introduced above and the isomorphism in (4.4.2), the as-
serted dimension for dimFD

flat
Vξ

(E[ε]) can easily be verified. �

Suppose now that K = K0. Then Dflat
VF

is smooth. In particular there is
a unique finite flat group scheme G1 mod p which gives rise to VF. Moreover
we can assume that G has coefficients W (F)[1/p]. One has G1 = G[p] and the
dimension of the tangent space tG (as well as its decomposition into ψ-equivariant
parts) only depend on G1. Moreover, by the theory of Fontaine–Laffaille modules,
MF

1 agrees with tG(F) as an F-module. We introduce integers dψ as above for
the automorphisms ψ of K0 = K. The following is an immediate corollary of
Theorems 4.3.3 and 4.4.1.

Corollary 4.4.2. If K = K0 and p > 2, so that Dflat
VF

is formally smooth, then

dimFD
flat
VF

(F[ε) = 1 +
∑
ψ

dψ(d− dψ).

For arbitrary K/Qp, an important result of Kisin [Ki4, Cor. 2.1.13] constructs
a projective F-scheme GRVF,0 such that, for any finite extension F′ of F, the finite
flat group scheme models of VF ⊗F F′ are in bijection with the F′-valued points of
this scheme. The connected components of the scheme GRVF,0 are in bijection with
the connected components of the generic fiber SpecRflat[1/p], by [Ki4, Cor. 2.4.10].
The latter components are smooth and their dimension is given by Theorem 4.4.1.
Since the tangent space of a p-divisible group G depends on G[p] only, the dimension
can be computed from any model from GRVF,0 in the corresponding component.
Different components for the same VF can have different dimensions. The tuple
(dψ) is called a p-adic Hodge type in [Ki4]. If K is unramified over Qp, then
GRVF,0

∼= SpecF —which follows already from Raynaud’s results.



84 Lecture 4. Flat deformations

Suppose again that K/Qp is an arbitrary finite extension. Assume now that
G is isogenous to G∨, at least after restriction to a finite extension of K, i.e., that G
is potentially (Cartier) self-dual. This happens in the following situations relevant
to deformations of Galois representations associated to weight 2 Hilbert modular
forms:

(a) G is the p-divisible group associated with an abelian variety over OK (i.e.,
with good reduction): a polarization exists over OK′ for a finite extension
K ′ of K. It induces an isomorphism G∨ ∼= G over O′K .

(b) G is the p-divisible group associated with a parallel weight 2 Hilbert modu-
lar Hecke eigenform f whose level is prime to p. At least if f arises from a
Shimura curve C over a totally real field F , then the p-adic Galois represen-
tation of f arises from a subfactor of the Jacobian JC of C over F , which
has good reduction at p. Essentially by part (a) the associated p-divisible
group is potentially self-dual.

From the isogeny over K ′ it follows that tG∨(K ′) ∼= tG(K ′) and that this iso-
morphism is compatible with extra endomorphisms such as those coming from E.
In particular, d is even and dψ = d/2 for all ψ. Thus

dimE D
flat
Vξ

(E[ε]) = 1 + [K : Qp](d/2)2.

For d = 2 one recovers the expected result dimE D
flat
Vξ

(E[ε]) = 1 + [K : Qp].
Note that the argument basically rests on the fact that the Hodge–Tate

weight is invariant under finite extensions of the base field.

4.5 Complements

Suppose that VF is an irreducible 2-dimensional representation of GQp of any Serre
weight 2 ≤ k(VF) ≤ p. Then the methods of the present lecture on flat (hence
weight 2) deformations can be generalized to study (low weight) crystalline defor-
mations. The reason is simply that in this range of weight (2 ≤ k ≤ p), the theory
of Fontaine–Laffaille is still applicable. On the Fontaine–Laffaille side, one consid-
ers 2-dimensional filtered torsion modules of weight at most k. An A-representation
(A ∈ ArW (F)) is then said to be crystalline of weight k if it arises via the (inverse)
Fontaine–Laffaille functor from an FL-module of weight k. In this perspective, the
analogue of Lemma 4.3.4 is no longer an assertion but a definition. We simply
state the results from [KW2], in particular [KW2, 3.2.3]. (Analogous results hold
whenever K/Qp is unramified.)

Theorem 4.5.1 ([KW2, §3.2]). Suppose that 2 ≤ k ≤ p, that VF is irreducible of
Serre weight k, and that p > 2. Then the deformation functor for framed weight k
crystalline deformations of VF of determinant χk−1 is formally smooth over W (F)
of relative dimension 4.
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There is one further deformation condition considered in [KW2, §3.2] for
VF irreducible and of weight 2: semistable deformations with associated Weil–
Deligne parameter (in the sense of Fontaine and for p-adic lifts) given by the pair
((χmod p)⊕1, N) and with N non-trivial. The result in this case is due to Savitt
[Sav, Thm. 6.2.2(3)].

Theorem 4.5.2 ([KW2, §3.2]). Suppose that VF is irreducible of Serre weight 2
and p > 2. Let O be the ring of integers of a totally ramified extension of K0.
Then the deformation functor for framed weight 2 semistable deformations of VF
of determinant χ on ArO is representable. Provided that O is sufficiently large, it
is isomorphic to O[[X1, . . . , X5]]/(X4X5 − p).

4.6 Appendix

4.6.1 p-divisible groups

We only recall the most basic notions on p-divisible groups. As a reference we
recommend Tate’s seminal article [Tat1] and his notes [Tat3].

Definition 4.6.1. Let h ≥ 0 be an integer and let S be a scheme. A p-divisible
group G of height h over a scheme S is an inductive system

G =
(
Gn, ιn

)
n≥0

where, for each n,

(a) Gn is a finite flat commutative group scheme over S of order pnh, and

(b) the sequence

0 −→ Gn
ιn−→ Gn+1

pn−→ Gn+1

is exact (i.e., (Gn, ιn) can be identified with the kernel of the homomorphism
multiplication by pn on Gn+1).

A homomorphism f : G → H of p-divisible groups G = (Gn, ιn), H = (Hn, ι′n)
is a compatible system f = (fn)n≥0 of S-group homomorphisms fn : Gn → Hn
such that ι′nfn = fn+1ιn for all n ≥ 0.

If G = (Gn) is a p-divisible group, we shall often use the perhaps more intuitive
notation G[pn] for Gn (see Examples 4.6.2 below).

Note that, if p is invertible in S, then the Gn will be étale over S.

Examples 4.6.2. Let A → S be an abelian scheme over S. Then multiplication

by pn is a finite flat homomorphism A
pn−→ A of group schemes. Thus the kernel,

denoted by A[pn], is a finite flat commutative group scheme over S. Denote by
ιn : A[pn] ↪→ A[pn+1] the canonical inclusion. If g denotes the dimension of A, then
A[p∞] := (A[pn], ιn)n≥0 is a p-divisible group of height 2g.
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Consider the particular case where A = E is an elliptic curve over a finite
extension K of Qp. Then E[p∞] is a p-divisible group over K. It is completely
determined by the Tate module of E at p. Suppose that E has good reduction and
denote by E a model over the ring of integers O of K. Then E[p∞] is a p-divisible
group over SpecO of height 2.

4.6.2 Weakly admissible filtered ϕ-modules

Much of the material of this and the following section goes back to Fontaine and his
coauthors. We suggest [Ber1] and [BC3, Ch. 8, §12.4] as references. They contain
many further references.

Fix an algebraic closure Qp of Qp and let K, E be finite extensions of Qp
inside Qp. The field K will take the role of the base and the field E that of a
coefficient ring. Suppose k is the residue field of K, so that K contains K0 :=
W (k)[1/p]. Let v be the valuation on Qp such that v(p) = 1. Let σ : K0 → K0 be
the Frobenius automorphism induced on k, e.g. via the Witt vector construction.

Definition 4.6.3. A filtered ϕ-module of rank n on K over E is a tuple

D =
(
D,ϕ,

{
FiliDK

}
i∈Z

)
consisting of

(a) a free K0 ⊗Qp E-module D of rank r,

(b) an isomorphism ϕ : (σ⊗ idE)∗D → D, i.e., a K0-semilinear automorphism ϕ,
and

(c) an exhaustive separating decreasing filtration(
FiliDK

)
i∈Z

of DK := D ⊗K0 K by K ⊗Qp E-submodules.

A morphism ψ : D → D′ between filtered ϕ-modules D = (D,ϕD, {FiliDK}i∈Z)
and D′ = (D′, ϕD′ , {FiliD′K}i∈Z) is a K0⊗Qp E-linear homomorphism ψ : D → D′

which is compatible with the action of ϕ and preserves the filtration.
The category of all filtered ϕ-modules on K over E is denoted by MFϕK,E .

Note that the filtration in (c) need not satisfy any compatibilities with the
previous data. However, the filtration datum imposes a strong restriction on the
morphisms in the category MFϕK,E . In particular it limits the set of subobjects of a

given filtered ϕ-module. Note also that the FiliDK need not be free over K⊗Qp E.

Definition 4.6.4. Suppose α : D′ → D and β : D → D′′ are morphisms in MFϕK,E .

Then D′
α→ D

β→ D′′ is a short exact sequence, written

0 −→ D′ −→ D −→ D′′ −→ 0,
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if 0 → D′
α→ D

β→ D′′ → 0 is an exact sequence of K0-vector spaces and for all
i ∈ Z the induced sequences 0 → FiliD′K → FiliDK → FiliD′′K → 0 are exact as
sequences of K-vector spaces.

One says that D is an extension of D′′ by D′ if there exists a short exact
sequence 0→ D′ → D → D′′ → 0.

For D ∈ MFϕK,E one can define exterior and symmetric powers as well as
duals, where one takes the induced endomorphisms and filtrations.

If D is in MFϕK,E , it is clearly also in MFϕK,Qp . Under this forgetful functor,
the dimension will increase by a factor of dimQp E. By detK0

D we denote the
element ∧dimK0

D

K0

D

in MFϕK,Qp of rank one. By the previous remark,

dimK0
D = dimK0⊗QpE

D · dimQp E.

Definition 4.6.5. The Hodge slope of D ∈ MFϕK,E is defined as

tH(D) = max{i ∈ Z : Fili(detK0
D)K 6= 0},

and its Newton slope is defined as

tN (D) = v(detK0 ϕ(x)/x), for any x ∈ detK0 D r {0}.

The Newton slope is well-defined, since detK0 D is of rank one over K0 and since
for any x ∈ K0 r {0} one has v(σ(x)) = v(x).

Hodge and Newton slopes are used to define a semistability condition on
filtered ϕ-modules:

Definition 4.6.6. A filtered (ϕ,K,E)-module is called (weakly) admissible if

tH(D) = tN (D)

and for all subobjects D′ ⊂ D in the category MFϕK,Qp one has tH(D′) ≤ tN (D′).

This is a priori a rather tricky definition, since the subobjects to be considered
for weak admissibility are subobjects in MFϕ,NK,Qp . However, one has the following

[BM, Prop. 3.1.1.5]:

Proposition 4.6.7. A filtered (ϕ,K,E)-module is admissible iff tH(D) = tN (D)
and for all ϕ-stable sub-K0 ⊗Qp E-modules D′ ⊂ D one has tH(D′) ≤ tN (D′),
where D′ carries the induced ϕ and filtration.

Note that the test objects D′ need not be free over K0 ⊗Qp E, and so they

may not lie in MFϕ,NF,E .
Categorically, the introduction of the semistability concept has the following

remarkable consequence (for a proof, see [BC3, Thm. 8.2.11]):

Theorem 4.6.8 (Fontaine). The full subcategory of MFϕK,E of weakly admissible
objects is abelian and closed under extensions.
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4.6.3 Fontaine–Laffaille modules

We assume that K = K0 and so we drop the subscript K at DK . Let

D = (D,ϕ, {FiliDF }i∈Z)

be an admissible filtered ϕ-module with coefficients in E. Let W = OK0
= W (k).

Suppose that D is effective, i.e., that Fil0D = D, and moreover FilpD = 0.

Definition 4.6.9. A strongly divisible OE-lattice in D is a free W⊗ZpOE-submodule
Λ ⊂ D such that

(a) Λ[1/p] = D,

(b) Λ is stable under ϕ,

(c) ϕ(FiliΛ) ⊂ piΛ for all i ≥ 0, where FiliΛ = Λ ∩ FiliD, and

(d)
∑
i≥0 p

−iϕ(FiliΛ) = Λ.

A strongly divisible lattice Λ is called connected if ϕΛ is topologically nilpotent
for the p-adic topology on Λ.

For the following, see [FL] or [BC3, Thm. 12.4.8]:

Theorem 4.6.10 (Fontaine–Laffaille). There are exact quasi-inverse anti-equiva-
lences between the category of strongly divisible lattices Λ with FilpΛ = 0 and the
category of OE [GK ]-lattices in crystalline GK-representations with Hodge–Tate
weights in the set {0, . . . , p− 1}.

Definition 4.6.11. A Fontaine–Laffaille module M = (M,ϕM , (FiliM)i∈Z) over W
is a finite length W -module M equipped with a finite and separated decreasing
filtration (FiliM) and σ-semilinear endomorphisms ϕiM : FiliM −→M such that

(a) for all i ≥ 0, the following diagram commutes:

FiliM
ϕi

// M

Fili+1M
ϕi+1

//
?�

OO

M,

p·(−)

OO

(b)
∑
i Im(ϕiM ) = M , and

(c) Fil0M = M .

The category of such is denoted by MFtor. If the filtration step 1 is non-zero, but
2 is zero, then we write MF1

tor. One says that M is connected if ϕ0
M is nilpotent.
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Example 4.6.12. If Λ is a strongly divisible lattice, then for each n > 0 we obtain
a Fontaine–Laffaille module M by setting M = Λ/pnΛ, taking FiliM to be the
image of FiliΛ under the natural quotient map, and letting ϕiM be the reduction
of p−iϕΛ restricted to FiliM .

This Fontaine–Laffaille module is connected if and only if Λ is connected.

The following result is stated in [BC3, Thm. 12.4.12] —unfortunately without
proof.

Theorem 4.6.13. Consider the contravariant functor

M −→ HomFil,ϕ(M,Acris ⊗Qp/Zp)

from the category of Fontaine–Laffaille modules M with one-step filtration that
satisfies Fil0M = M and FilpM = 0 to the category of p-power torsion discrete
GK-modules. If p > 2, this is an exact and fully faithful functor into the category
ReptorGK , i.e., continuous p-torsion GK-modules. If p = 2, the same statement
holds if one restricts the functor to connected Fontaine–Laffaille modules.

4.7 Exercises

Exercise 4.7.1. Formulate and prove Proposition 4.2.1 for framed deformations
and verify the assertion made after Corollary 4.2.4 .

Exercise 4.7.2. Check that the two constructions in the proof of Proposition 4.2.2
of the isomorphism

Ext1
w.a.

(
1l , D

) ∼=−→ H1
(
C•(D)

)
are well-defined and inverse.

Exercise 4.7.3. Give an explicit description of the isomorphism

Ext1
w.a.

(
Dξ, Dξ

) ∼= Ext1
w.a.

(
1l , adDξ

)
used in the proof of Corollary 4.2.4.

Exercise 4.7.4. Prove that the functor Dw.a.
DE

in Corollary 4.2.3 is formally smooth.

Exercise 4.7.5. Let C be a ring (commutative with 1). Recall that an additive
category C is C-linear if for all M ∈ C one has a homomorphism ϕM : C →
EndC(M) such that for all M,N ∈ C and all ψ ∈ HomC(M,N) diagram (4.7.1)
commutes (this also makes HomC(M,N) into a C-module). This exercise provides
a categorical approach to equipping suitable subcategories of a C-linear category
with a larger endomorphism ring than C. It will be applied to several of the
categories in this lecture.

Let now C be a C-linear abelian category in which all objects have finite
length over C.
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(a) For A ∈ ArC , define a category CA as follows. Objects of CA are pairs (M,ϕ)
with M ∈ C and ϕ : A → EndC(M) a C-linear homomorphism. Morphisms
ψ from (M,ϕM ) to (N,ϕN ) in CA are morphisms ψ : M → N such that for
all a ∈ A the following diagram commutes:

M
ϕM (a)

//

ψ

��

M

ψ

��

N
ϕN (a)

// N.

(4.7.1)

Show that CA is abelian and A-linear. Show also that for any finitely gener-
ated A-module N the tensor product −⊗A N is well-defined.

Hint: If N is free over A, this is obvious. Else use a 2-step resolution of N
by free finitely generated A-modules.

(b) For C = Zp and C = MF1
tor, describe CA for A ∈ ArC . An object of CA

contains in particular an inclusion M1 ⊂ M of A-modules. Show that M1

must be a direct summand.

Hint: Use the notion of pure submodule from [Mat, Appendix to §7] and the
abelianness of C.

(c) Suppose that D is a second C-linear abelian category in which all objects
are of finite C-length and that F : C→ D is an exact C-linear functor. Show
that for all A ∈ ArC it induces via the construction in (a) an exact C-linear
functor FA : CA → DA.

(d) The functor FA from (c) is compatible with the operation − ⊗A N for any
finitely generated A-module N and it restricts to an exact subfunctor on
objects which are A-flat.

(e) For C a finite extension of Qp and C the category of weakly admissible
ϕ-modules on K over C, describe CB for B ∈ ArC . An object of CB is
equipped with a filtration (over K ⊗Qp B). Show that the subobjects of this
filtration are direct summands as K ⊗Qp B-modules.



Lecture 5

Presenting global over local
deformation rings

A p-adic Galois representation of the absolute Galois group of a number field is
called geometric if it is unramified outside finitely many places and at all places
above p it is de Rham in the sense of Fontaine. When the number field F is
totally real and the representation is into GL2, one typically also requires the
representation to be totally odd. Conjecturally, the latter should automatically be
satisfied if not all Hodge–Tate weights are equal —but no proof is known. By the
Fontaine–Mazur conjecture, geometric 2-dimensional odd Galois representations
over totally real fields should (up to twisting by powers of the cyclotomic character)
arise from Hilbert modular forms. Then they are called modular. This is proven
in some instances. But even for Q the proof of the Fontaine–Mazur conjecture is
not complete.

In practice, it is important to construct geometric Galois representations,
even in situations when it is not known that they are modular. An important
method is to combine the proof of the potential modularity theorem by Taylor
[Tay2, Tay3], i.e., an R = T theorem over an enlarged (totally real) base field,
with a technique from deformation theory. The method has proved useful in many
instances beyond GL2, such as Galois representations of unitary or symplectic
type, e.g. [BGGT, BGHT].

In the present lecture, the focus will be on the deformation theoretic part:

we shall construct and analyze universal deformations rings R
ψ

S for representa-
tions of Galois groups of global fields which locally satisfy conditions that en-
sure that the deformations are geometric in the above sense. Concretely, one re-
quires that the deformations are unramified outside finitely many places and odd.
At those primes ` 6= p where ramification is allowed, one fixes a finite set of inertial
WD-types and imposes these on the deformations. Finally, at places above p one
chooses deformation conditions that lead to p-adic Galois representations which

91
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are crystalline or ordinary of low weight, semistable of weight 2, or of potential
Barsotti–Tate type (for instance).

The main result of this lecture —see Theorem 5.4.1 for a precise statement—

is the following dimension bound: if R
ψ

S is non-zero, then

dimKrullR
ψ

S ≥ 1. (5.0.1)

Let us indicate how to derive from Taylor’s results on potential modularity,
e.g. [Tay2, Tay3], the existence of lifts of mod p Galois representations satisfying

the conditions in the definition of R
ψ

S . If Taylor’s result is applicable, then it implies

that R
ψ

S/(p) is finite. Since the length of R
ψ

S/(p
n) is at most n times the length

of R
ψ

S/(p), and since R
ψ

S is p-adically complete, one deduces that R
ψ

S is a finitely
generated Zp-module. The lower bound (5.0.1) thus implies that(

R
ψ

S

[1

p

])
red

∼= E1 × · · · × Er

for suitable p-adic fields Ei (i.e., finite extensions of Qp). The defining properties of

R
ψ

S yield geometric Galois representationsGF → GL2(Ei) satisfying the conditions
prescribed by the corresponding functor at all places above p and ∞ and possibly
at some further places.

Lower bounds as in (5.0.1) were first obtained in [Bö1]; cf. also [Bö2] —and in
fact the results therein were sufficient for the proof of Serre’s conjecture in the level
one case [Kh]. However, the results in [Bö1] required the local deformation rings
to be complete intersections. In recent work [Ki1], Kisin gave a different approach
to obtain such bounds. This greatly enlarged the range where a lower bound as in
(5.0.1) can be proved. Moreover it simplified the arguments considerably. So here
we follow Kisin’s approach. As a further reference we recommend [KW2, Ch. 1–4].

In this lecture we fix the following notation pertaining to number fields:

• F will be a number field and S will denote a finite set of places of F containing
all places v | p and v | ∞.

• By GF,S , or simply GS , we denote the Galois group of the maximal outside
S unramified extension of F inside a fixed algebraic closure F of F .

• For any place v of F , we denote by Gv the absolute Galois group of the
completion Fv of F at v. We fix for each v a homomorphism F ↪→ F v
extending F ↪→ Fv. This yields a group homomorphism Gv → GS .

• By VF we denote a continuous F[GF,S ]-module of finite dimension d over F.
We write ad0 ⊂ ad = adVF for the subrepresentation on trace zero matrices.

• All deformation functors (or categories of groupoids) considered will be func-

tors on either the category ArO or ÂrO, where O is the ring of integers of a
totally ramified extension field of W [1/p] and thus with residue field F.
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• We fix a lift ψ : GS → O∗ of detVF. This defines subfunctors Dψ and Dψ,2

of D and D2 by requiring detVA = ψ for lifts.

5.1 Tangent spaces

We provide some complements to Section 1.4. Here G stands either for GF,S or Gv,
and VF for VF|G. As in Lecture 1, one proves:

Proposition 5.1.1. (a) The functor Dψ,2 → Dψ of groupoids over ÂrO is for-
mally smooth. The functor Dψ,2 is always representable and the functor Dψ

is representable when h0(G, ad) = 1.

(b) The tangent space Dψ(F[ε]) is isomorphic to

H1
(
G, ad0

)′
:= Im

(
H1
(
G, ad0

)
−→ H1

(
G, ad

))
.

(c) There is a short exact sequence

0 −→ ad0/H0
(
G, ad0

)
−→ Dψ,2

(
F[ε]

)
−→ Dψ

(
F[ε]

)
−→ 0.

Remark 5.1.2. If p does not divide the degree d of VF, then ad ∼= ad0 ⊕ F as a
G-representation, and in this case H1(. . .)′ ∼= H1(. . .). However, for d = 2 and
p = 2 (for instance) one needs H1(. . .)′.

Applying Proposition 5.1.1(b) and (c) to the first five terms in the long exact
cohomology sequence obtained from 0→ ad0 → ad→ F→ 0, one finds

Corollary 5.1.3. One has

dimF Dψ,2(F[ε]) = d2 − 1 + h1(G, ad0)− h0(G, ad0).

If in the deformation problem one fixes m bases of VA instead of just one, then
one has to add (m− 1)d2 to the right-hand side of the above formula.

5.2 Relative presentations

We now turn to a situation which is closer to our final aim. Thus, from now on,

• the representation ρ̄ : GS −→ AutF (VF) is absolutely irreducible, and

• we fix a subset Σ of S which is assumed to contain all places v of F dividing
p or ∞.

Corresponding to the above set-up, we introduce the following deformation
functors and associated universal deformation rings:
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deformation functor ←→ universal ring

∀v ∈ Σ : Dv = Dψ,2
v = D

ψ|Gv ,2

VF|Gv
←→ Rψ,2v

Dψ
S = Dψ

VF|GS
←→ RψS

Dψ,2
Σ,S ←→ Rψ,2Σ,S ,

where the functor Dψ,2
Σ,S : ÂrO → Sets is defined by the assignment

A 7→
{

(VA, ιA, (βv)v∈Σ)
∣∣∣ (VA, ιA) ∈ Dψ

S (A), (βv)v∈Σ are bases
of VA with ιA(βv) = βF ∀v ∈ Σ

}
/ ∼= .

The functor Dψ,2
Σ,S provides the crucial link between the global and local situation:

Dψ,2
Σ,S

smooth, rel.
dim 4|Σ| − 1

(VA, ιA, (βv)v∈Σ) 7→ (VA, ιA)

��

(VA, ιA, (βv)v∈Σ) 7→ ((VA)|Gv , ιA, βv)v∈Σ
//
∏
v∈Σ Dv

Dψ
S .

The formal smoothness of Dψ,2
Σ,S over Dψ

S follows from Proposition 5.1.1(a). The for-
mula for the relative dimension is proved in the same way as Proposition 5.1.1(c).

Corollary 5.2.1. (a) Rψ,2Σ,S
∼= RψS [[x1, . . . , x4|Σ|−1]].

(b) There is a natural homomorphism Rloc :=
⊗̂

v∈ΣR
ψ,2
v → Rψ,2Σ,S .

The ring RψS was first studied by Mazur in [Maz]. It is an interesting object,
since, for F totally real and ρ̄ odd, it can be naturally compared with a big Hecke
algebra of Hilbert modular forms. On the other hand, it can be recovered from
the universal representation ρS : GS → GLd(R

ψ,2
Σ,S) as the ring generated by the

traces of ρS over O. Ultimately it is a quotient of RψS which will be of interest
to us. The local rings at the places in Σ will be useful in order to pass from
Rψ,2Σ,S to this quotient. The use of framed deformations is a clean way to deal with

non-representability issues of the functors D
ψ|Gv
VF|Gv

.

Key Lemma 5.2.2. Consider the canonical homomorphisms

Dψ,2
Σ,S(F[ε])

θ2,1 //

⊕
v∈Σ

Dψ,2
v (F[ε]),

H2(GS , ad0)
θ2

//

⊕
v∈Σ

H2(Gv, ad0).

Set r = dimF Ker θ2,1 and t = dimF Ker θ2 + dimF Coker θ2,1. Then Rψ,2Σ,S has a
presentation

Rloc

[
[x1, . . . , xr]]/(f1, . . . , ft) ∼= Rψ,2Σ,S .
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Remarks 5.2.3. (a) The proof will be given in Section 5.6.

(b) The lemma makes no assumption about the shape of the fi. Some of the fi
could be zero. Therefore t is only an upper bound for the minimal number
of relations.

(c) The value of r is optimal, since θ2,1 is the homomorphism of mod mO tangent

spaces induced from SpecRψ,2Σ,S −→ SpecRloc.

(d) Before we compute r − t in the following section, let us determine the di-
mension of Coker θ2. The diagram defining θ2 is part of the terms 7–9 of the
9-term Poitou–Tate sequence

H2(GS , ad0)
θ2⊕···

//
⊕

v∈Σ∪̇(SrΣ)

H2(Gv, ad0) −→ H0(GS , (ad0)∨)∗ −→ 0.

Using local Tate duality H2(Gv, ad0) ∼= H0(Gv, (ad0)∨)∗ and some elemen-
tary linear algebra, we find (indeed!)

δ := dimF Coker θ2

= dimF Ker
(
H0
(
GS , (ad0)∨

)
−→

⊕
v∈SrΣ

H0
(
Gv, (ad0)∨

))
.

If H0(GS , (ad0)∨) = 0, which is for instance the case whenever the image
of ρ̄ is non-solvable, or if S r Σ 6= ∅, and thus by our hypothesis on Σ the
difference contains a finite prime, then δ = 0.

(e) The analogous computation for SpecRψΣ,S requires actually more bookkeep-

ing due to the infinite places. For SpecRψΣ,S , the set Σ is supposed to only

contain places at which ad0VF
Gv = 0; however, the infinite places do not

satisfy this requirement.

5.3 Numerology

Lemma 5.3.1. If Σ contains all places above p and ∞, then r − t+ δ = |Σ| − 1.

Proof. Tate’s duality theory for global (and local) fields gives us the following
formulas for the Euler–Poincaré characteristic of Galois cohomology (which is
defined to be the alternating sum of the dimension of the zeroth, first and second
term of Galois cohomology):

χ(GS , ad0) = −[F : Q] dim(ad0) +
∑
v|∞

h0(Gv, ad0), (5.3.1)
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χ(Gv, ad0) =


− dim(ad0)[Fv : Qp] if v | p,
h0(Gv, ad0) if v | ∞,
0 otherwise.

(5.3.2)

We deduce that

r − t+ δ = dimF Ker θ2,1 − dimF Coker θ2,1 − dimF Ker θ2 + dimF Coker θ2

= dimF Dψ,2
Σ,S(F[ε])−

∑
v∈Σ

dimF Dv(F[ε])− h2(GS , ad0) +
∑
v∈Σ

h2(Gv, ad0)

Cor. 5.1.3
= |Σ|d2 − 1 + h1(GS , ad0)− h0(GS , ad0)− h2(GS , ad0)

−
∑
v∈Σ

(
d2 − 1 + h1(Gv, ad0)− h0(Gv, ad0)− h2(Gv, ad0)

)
= −χ(GS , ad0) +

∑
v∈Σ

χ(Gv, ad0) + |Σ| − 1

(5.3.1), (5.3.2)
= dim(ad0)[F : Q]−

∑
v|∞

h0(Gv, ad0)

−
∑
v|p

dim(ad0)[Fv : Qp] +
∑
v|∞

h0(Gv, ad0) + 0 + |Σ| − 1 = |Σ| − 1,

since [F : Q] =
∑
v|p[Fv : Qp]. Note that after the third and fifth “=” the first line

contains the global and the second the local contribution. �

5.4 Geometric deformation rings

In this and in the following section we assume the following:

• F is totally real.

• ρ̄ is odd and of degree 2 over F (and still absolutely irreducible).

• Σ contains all places above p and ∞ (as before).

For each place v in Σ, choose a relatively representable subfunctor D
ψ,2

v ⊂ Dv

such that the corresponding universal ring R
ψ,2

v (a quotient of Rψ,2v ) satisfies:

• Rψ,2v is O-flat,

• Rψ,2v

[
1
p

]
is regular of dimension

 3 if v 6 | p,∞,
3 + [Fv : Qp] if v | p,
2 if v | ∞.

Suitable deformation conditions for v 6 | p,∞ were described in Lecture 3. The nat-
ural choice is to fix a set of inertial WD-types for lifts to the generic fiber.
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Rings of the above type for v | p were constructed at the end of Lecture 3 and
in Lecture 4. Possible deformation conditions are: low weight crystalline at v if ρ̄
is absolutely irreducible, low weight ordinary at v for ordinary ρ̄, and potentially
Barsotti–Tate. In some cases, Fv = Qp is required; in others, that Fv is unramified
over Qp, etc. Here we shall simply assume that we do have (framed) deformation
functors at places above p which satisfy the above requirements.

For v | ∞ we shall shortly describe the deformations and the corresponding
rings. They describe odd deformations.

The above hypotheses on R
ψ,2

v have the following consequences:

(a) The ring Rloc :=
⊗̂

v∈ΣR
ψ,2

v isO-flat. Its generic fiber is regular of dimension
3|Σ| (this uses the fact that

∑
v|p[Fv : Qp] =

∑
v|∞ 1 = [F : Q]). Hence

dimKrullRloc ≥ 3|Σ|+ 1.

(b) The corresponding functors D
ψ

S and D
ψ,2

Σ,S (where the latter again includes

a choice of |Σ| bases of VA) are representable, where (for instance) D
ψ,2

Σ,S is
defined as the pullback in

Dψ,2
Σ,S

//
∏
v∈Σ Dv

∏
v∈Σ Dv.

OO

(c) The global universal ring R
ψ,2

Σ,S is isomorphic to Rψ,2Σ,S⊗̂Rloc
Rloc, and therefore

Lemma 5.2.2 yields

R
ψ,2

Σ,S
∼= Rloc[[x1, . . . , xr]]/(f1, . . . , ft)

with r, t as in that lemma. Since r− t = |Σ|−1−δ by Lemma 5.3.1, part (a)

yields dimKrullR
ψ,2

Σ,S ≥ 4|Σ| − δ.

By Remark 5.1.2(d), the map D
ψ,2

Σ,S −→ D
ψ

S is formally smooth of relative
dimension 4|Σ| − 1. We deduce the following from part (c):

Theorem 5.4.1. If δ = 0, then dimKrullR
ψ

S ≥ 1.

5.5 Odd deformations at real places

At a real place, any two-dimensional odd residual representation is of the form

ρ̄∞ : Gal(C/R) −→ GL2(F),

with det ρ̄∞(c) = −1 in F, for c the complex conjugation in Gal(C/R). Up to
conjugation, one of the following three cases occurs:



98 Lecture 5. Presenting global over local deformation rings

(i) p > 2, ρ̄∞(c) =
(

1 0
0 −1

)
; (ii) p = 2, ρ̄∞(c) =

(
1 1
0 1

)
;

(iii) p = 2, ρ̄∞(c) =
(

1 0
0 1

)
.

Any framed representation of Gal(C/R) is determined by the image M of c
and the latter is subject to the condition that M2 = id. If we further want to ensure
that M has eigenvalues 1 and −1, we need to fix its characteristic polynomial to be
X2−1. LetM(X2−1) denote the moduli space of 2×2 matrices of characteristic
polynomial X2 − 1. Its completion at the matrix ρ̄∞(c) is the wanted universal
ring (as may be checked easily). This is precisely the construction that was used in
the proof of existence of R2

VF
in Proposition 1.3.1. Let us carry out this procedure

explicitly for case (iii) (the other ones being similar but simpler):

If we start with M =
(

1+a b
c 1+d

)
, then the conditions Tr = 0 and det = −1

lead to

M(X2 − 1) = SpecO[a, b, c, d]/((1 + a) + (1 + d), (1 + a)(1 + d) + 1− bc)
= SpecO[a, b, c]/(−(1 + a)2 + 1− bc)
= SpecO[a, b, c]/(−2a− a2 − bc)

and hence R
ψ,2

∞,odd
∼= O[[a, b, c]]/(2a+a2 + bc). The latter is a domain with generic

regular fiber of dimension 2.

In cases (i) and (ii), similar calculations lead to R
ψ,2

∞,odd
∼= O[[x1, x2]].

5.6 Proof of Key Lemma 5.2.2

Note that we now work again with representations of general degree d. To simplify
notation, we set Rgl = Rψ,2Σ,S . For r as in Lemma 5.2.2, we choose a surjective ring
homomorphism

ϕ : R̃ := Rloc[[x1, . . . , xr]] −→ Rgl.

We set J = Kerϕ and denote the maximal ideals of Rgl, Rloc and R̃ by mgl, mloc,
m̃, respectively. By Nakayama’s lemma, we need to show that dimF J/m̃J ≤ t. The
module J/m̃J appears as the kernel in the sequence

0 −→ J/m̃J −→ R̃/m̃J −→ R̃/J ∼= Rgl −→ 0. (5.6.1)

The argument to bound the dimension of J/m̃J is similar to the one given by
Mazur in [Maz] to bound the number of relations in presentations of universal
deformation rings as quotients of power series rings over O. The idea is to con-
sider the lifting problem associated to the above sequence for the universal lift
ρgl : GS −→ GLd(Rgl). The difference with Mazur’s argument is that some lifting
problems do have a solution and one needs to properly interpret this.
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Formally, we shall construct a homomorphism α : Hom(J/m̃J,F) → Ker θ2

and show that the kernel of α can be interpreted as a subspace of Coker θ2,1. This
will imply the lemma, since then

dimF J/m̃J = dimF Ker(α) + dimF Im(α) ≤ dimF Coker θ2,1 + dimF Ker θ2 = t.

Fix u ∈ HomF (J/m̃J,F). Then pushout under u of the sequence (5.6.1)
defines an exact sequence

0 −→ Iu −→ Ru
ϕu−→ Rgl −→ 0,

where Iu ∼= F. It is not hard to construct a set-theoretic lift ρ̃u so that the diagram

GS
ρ̃u //

ρgl

''NNNNNNNNNNNN GLd(Ru)

GLd(ϕu)

��

GLd(Rgl)

commutes, and so that det ρ̃u = ψ. (Regarding GLd(Ru) as the set-theoretic prod-
uct of diagonal matrices with diagonal entries (ru, 1, 1, . . . , 1) with SLd(Ru), it
suffices to construct a continuous splitting of SLd(Ru) → SLd(Rgl). This can be
done using the smoothness of SLd.)

The kernel of GLd(ϕu) is (1 + Md(Iu), ·) and can thus be identified with
ad ⊗F Iu ∼= ad. Via these identifications, the set-theoretic lift yields a continuous
2-cocycle

cu ∈ Z2(GS , ad0)

given by 1+cu(g1, g2) = ρ̃u(g1, g2)ρ̃u(g2)−1ρ̃u(g1)−1. Its image [cu] ∈ H2(GS , ad0)
is independent of the choice of the set-theoretic lifting. The representation ρgl can
be lifted to a homomorphism GS → GLd(Ru) precisely if [cu] = 0. The existence
of homomorphisms Rloc → Ru → Rgl together with the universality of Rloc imply
that the restrictions [cu|Gv ] ∈ H2(Gv, ad0) are zero for all v ∈ Σ. Thus we have
constructed the desired homomorphism

α : Hom(J/m̃J,F) −→ Ker θ2, u 7−→ [cu].

It remains to analyze the kernel of α. Let u be in the kernel, so that [cu] = 0
and ρgl can be lifted. By the universality of Rgl we obtain a splitting s of Ru � Rgl.
Consider the surjective map of mod mO cotangent spaces

ctϕu : mRu/(m
2
Ru + mO) −→ mgl/(m

2
gl + mO).

Any surjective homomorphism A → B in ÂrO which induces an isomorphism on
mod mO cotangent spaces and which has a splitting is an isomorphism (exercise!).
In our situation, this implies that Iu can be identified with the kernel of ctϕu .
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The map ctϕu itself is induced from the homomorphism R̃/(Jm̃) → Rgl by
pushout and from the analogous map

c̃tϕ : m̃/(m̃2 + mO) −→ mgl/(m
2
gl + mO).

Because m̃/(m̃2 +mO)→ mRu/(m
2
Ru

+mO) is surjective, the induced homomorph-

ism γu : Ker(c̃tϕ) → Iu of F-vector spaces is non-zero. Remembering that Iu is
really just another name for F to indicate that it is an ideal in Ru, we have thus
constructed an injective F-linear monomorphism

Ker(α) ↪→ HomF (Ker(c̃tϕ),F). (5.6.2)

By the choice of r and its minimality, it follows that we have Ker(c̃tϕ) = Ker(ctϕ)
for the canonical homomorphism

ctϕ : mloc/(m
2
loc + mO) −→ mgl/(m

2
gl + mO).

Since c̃tϕ = (θ2,1)∗, the map (5.6.2) is the desired homomorphism Ker(α) ↪→
Coker θ2,1. The proof of Lemma 5.2.2 is thus complete. �

Remark 5.6.1. For each v ∈ S, define a subspace Lv of H1(Gv, ad0) by Lv =
H1(Gv, ad0) for v ∈ S r Σ and by Lv = Ker(H1(Gv, ad0) → H1(Gv, ad0)′) for
v ∈ Σ, and denote by H1

L⊥(GS , (ad0)∨) the corresponding dual Selmer group (cf.
[KW2, Ch. 4] for a precise definition). It naturally sits in a short exact sequence

0 −→ Coker θ2,1 −→ H1
L⊥(GS , (ad0)∨)∗ −→ Ker θ2 −→ 0.

In [KW2, proof of Prop. 4.4], it is proved directly that there is an injective homo-
morphism

Hom(J/m̃J,F) ↪→ H1
L⊥(GS , (ad0)∨)∗.

This gives an alternative, more conceptual method to derive the desired bound
dim J/m̃J ≤ t.

5.7 Exercises

Exercise 5.7.1. Verify all unproven assertions in Section 5.1.

Exercise 5.7.2. Check the assertions made about the cocycle cu in the proof of
Lemma 5.2.2: that [cu] does not depend on the set-theoretic lifting ρ̃u and that
the class is trivial if and only if ρ̃u can be chosen to be a homomorphism.

Exercise 5.7.3. Prove that any surjective homomorphism A → B in ÂrO which
has a splitting (as O-algebras) and induces an isomorphism ctA → ctB on mod mO
cotangent spaces is an isomorphism.

Exercise 5.7.4. Let O be the ring of integers of a finite totally ramified extension
of W (F)[1/p] and let R be an O-algebra which is finite over O. Show that R is
flat over O if and only if R is p-torsion free. Hint: Deduce from TorO1 (R,O/p) = 0
that TorO1 (R,F) = 0 and hence the assertion.
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Paris, 1990–91, Progress in Math. 108, Birkhäuser, Boston, 1993, 127–202.
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