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Abstract. We investigate the case of deformations of even Galois representations. Our methods
are the group theoretic ones mainly developed by N1GEL BoSTON to study odd representations. We
present conditions for Borel and tame cases under which the universal deformation ring is isomorphic
to Zp{[T]] and where we compute the universal deformation explicitly. Furthermore we produce a
family of examples of totally real S3 extensions which satisfy the above conditions in the tame case
and we give examples in the Borel case. Finally we study the change of the deformation space under
enlarging the ramification and thus give an example of an even representation that is not twist - finite.

1. Introduction

In 1986 MAZUR introduced the concept of deformations of Galois representations
and showed the existence of a universal one for many reasonable sets of restrictions
on the deformations [Maz]. Using Galois cohomology and obstruction theory, he was
able to determine the deformation space explicitly in particularly amenable cases. He
found examples where the universal deformation ring is isomorphic to Z[[T1, T2, T3]
for odd two - dimensional representations and to Z,[[T}]] for even ones. In general, he
was able to give a lower bound on the dimension of the deformation ring modulo the
ideal generated by p, namely 3 or 1, respectively. Yet the structure of the universal
deformation remained unclear.

In [BoMa] the problem of explicit examples and the structure of those was addressed
for a family of neat odd two-dimensional residual representations. Furthermore in
[Bos1] a number of methods based on pro - p Galois theory were developed to determine
universal deformations. A variation of these methods was presented in [Bos2] to study
the universal deformation under enlarging the set of primes that can ramify. Almost
all cases considered were odd.
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Our goal here is to apply the methods in [Bos1] and [Bos2] to study some even cases,
In Section 2, we briefly recall the main tools from [Bosl] and some ideas behind them
to consider some basic deformation problems in the even case. There the image of 3
complex conjugation is either the identity or its negative, and so the splitting field is
totally real or a CM field, respectively. In both cases, the number of indeterminates of
the universal deformation ring depends only on the largest totally real subfield, Remark
2.9. In the tame unobstructed case this number is one, and so the corresponding Galois
representation is the cyclotomic p—extension, Theorem 2.11. We also discuss those
Borel cases which are related to pro—p Poincaré groups, Theorem 2.12. Unlike in the
odd case they cannot be neat as in [Bosl, §9], yet they are unobstructed and rigid in
the sense of MAZUR.

Section 3 contains explicit examples for the tame as well as the Borel case. In
the tame case we will exhibit a family of totally real S; extensions together with a
representation, that satisfies the conditions given in Section 2. The case where we
do not have any examples is the one where the image of the residual representation
contains SLy (k) for some finite field k.

The last, section contains results about enlarging the set of ramified primes which are
mostly valid for even and odd cases. We begin by collecting results based on what is
called prime—to - adjoint in [Bosl]. Next for even dihedral cases we can compute the
universal deformation under fairly general assumptions as long as a certain part of the
universal deformation stays abelian, Theorem 4.5. Then we briefly revisit the results in
[Bos2] and show how they apply in general, independently of even or odd. We observe
that in all cases considered, the number of relations is equal to the cohomologically
determined number, dimy H?(Gq,,ad ), as one might expect from [Maz}, see Remark
4.10. The calculations are essentially the ones in [Bos2]. In loc. cit. in the case where
three relations are given but two are expected, and where it is stated that the three
are dependent, we make this more precise, by explicitly showing that one of them is
superfluous.

Finally we construct examples where the universal deformation of tame cases is
not twist —finite by considering larger sets of ramification. All other known examples
in the even case seem twist - finite. Furthermore this example carries some of the
properties that one might expect by looking at the corresponding odd case as done
in [Bos2], where one can interpret the growth of the universal deformation space by
the appearance of new modular forms as in RIBET’s “raising the level”. The question
that remains is if there are indeed several new lifts to characteristic zero, or if there is
a natural obstruction why there cannot be more such lifts.

2. The basic deformation problem

2.1. Basics

Let k be a finite field of characteristic p > 2, 5 : Gal(@/@) = Gg — GLq(k) a
Galois representation, G the image of p inside GL,(k) and L the Galois extension of Q
corresponding to GG. The field L is called the splitting field of p. The representation p
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will be called even or odd if det p(c) is +1 or —1, respectively, where c is any complex
conjugation in Gg.

Let C be the category of complete noetherian local rings with residue field £ and
local ring homomorphisms which induce the identity on residue fields. If R is an
object of C, then it is a quotient of W (k)[[T1,...,T,]] for some r. For R in C we define
I'2(R) := ker(GLy(R) — GLa(k)).

Two lifts p, p' : Go — GL2(R) of j are called strictly equivalent if there is an
M € T2(R) such that p = Mp'M~!. A strict equivalence class of lifts of 5 to R is
called a deformation. Given a finite set S of places of Q that contains the prime p, we
define the functor Fs : C — — — Sets by

Fs(R) = {deformations of 5 to R unramified outside S} .

The following theorem is known by (Maz, Ram].

Theorem 2.1. If the centralizer of im(p) in GLy(k) is the set of scalar matrices,
then Fs is representable. This means there exists a pair (Rg,ps) where Rg € C and
ps : Gg = GLy(Rs) unramified outside S, unique up to isomorphism, such that

FS(R) = HOT"’C(RSaR)7

where the isomorphism is induced from composing the representation ps with elements
of Homc (Rs, R).

From now on we will assume that p satisfies the condition in the theorem.

Remark 2.2. There are many other interesting sets of deformation conditions —
at least in the case of odd residual representations — that have been considered, in
particular concerning the behavior at the prime p. The above references also discuss
many such examples.

As T'3(R) is a pro-p group, it follows that any lift p unramified outside S has
to factor through the maximal pro-p extension of G that is a quotient of Gg and
unramified outside S. In fact this is the extension of G by Ps, the Galois group of
the maximal pro-p extension of L that is unramified outside all places of L above S,
which occurs as the quotient of Gg. We denote this extension by Gg. Our approach
to study Rg is by investigating the properties of Pg as described in [Koch].

Definition 2.3. For a pro-p group P we denote by ®(P) the Frattini subgroup of
P, i.e., the topological closure of [P, P]P?, and by P the Frattini quotient P/®(P),
i.e., the maximal elementary p-abelian quotient of P.

Proofs of the following useful facts can be found in [Bosl, §2] or derived easily.
Lemma 2.4. Let P be a pro-p group and A be a finite group of order prime to p.

1. If r is the rank of P, i.e., the minimal number of topological generators of P,
then P = F7.
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2. If E is profinite containing P as a normal subgroup such that E/P = A, then E
is a semi-direct product of P and A. The action of A on P is, up to conjugation,
uniquely determined by the action on P.

3. If A acts on P and V is an A -invariant subspace, then one can find an A -
invariant subgroup Q in P whose generators map onto V under P — P. Furthermore
if N is the normal topological closure of Q in P, then P/N = P/V as A - modules.

4. If P, P' are pro-p groups with an action of A and if we have a decreasing
filtration {P’} of P’ such that all subguotients are Fp[A] - modules and such that
Homg [A](P PL/P! ) =0 for all n, then any A - equivariant homomorphism from
P to P is zero.

5. For R € C, and A C GLy(R) one has a filtration {P.} of T2(R) as in the
previous part, where each subquotient is isomorphic to Msy(k), and where A acts vig
A = GLy(k) and GLy(k) via conjugation on Ms(k).

If the order of G = Gal(L/Q) = im(p) is prime to p, we will call 5 tame. In this case,
by part 2, G will act on Ps and on Fg(W(k)) and thus via W (k) - R canonically on
any FQ(R), for R € C. One can obtain the following equivalence of functors [Bosl, §6].

Theorem 2.5. If p is tame, then the functor Fg is equivalent to the functor Es on
C given by

Es(t) = {G - equivariant homomorphisms from Ps to I'y(R)} .

Let K be any finite Galois extension of Q with Galois group H. For | a place of (,
H; will denote the corresponding local Galois group. Ps g will be the Galois group
of the maximal pro-p extension of K unramified outside S. Let S’ be the places of
K above S. By E and E, we denote the global and local units modulo p- powers of
K and K, respectively (v € S'). C, denotes the elements in the class group CI(K)
of order p,C the class group modulo p—powers. By class field theory one obtains the
following exact sequence of F,[H]~modules [Koch, Satz 11.8]

(2.1) 0—>V5—>V@—+@E,,—>p5,x—>(]—>0
veS’

where Vp, and Vg can be described explicitly, Vy is an extension of C, by E and the
map from
Ec Vo — @ E,,
ves!
is induced from the one sending global to local units.
Regarding the Galois module structures the following is known [Bosl, BoUl].

Lemma 2.6. If p does not divide the order of H, then as Fp[H] - modules.
1. E@ FUv =y, (K) & Ind Jj. Fi7.

2. @EUEFP[H]@< 2 Indﬁ;’,up)

veS’ leS—{p}
3.C,=C
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We recall the classification of the subgroups of PGLq(k) [Dic, §255, 260).

Theorem 2.7. If H is o finite subgroup of PGLy(k), then one of the following holds.

1. H is conjugate to a subgroup of the upper triangular matrices inside PGLo(k'),
k' the unigque quadratic extension of k, (Borel case).

2. H is conjugate to PGLy(k') or PSLy(k') for a subfield k' of k.

3. H is isomorphic to Ay, Sa, As or the dihedral group D, of order 2r for some r
not divisible by p.

2.2. The number of variables of the universal deformation

The next lemma ties together statements of [Maz] and [Bos1] regarding the number
of generators of the maximal ideal of Rs = Rs/(p). Let mg be the maximal ideal of
Rs, Mg that of Rs. Let ad = ad ; = I'>(W(k)) & M, (k) with the action of G coming
from the adjoint action of GLa(k) composed with the inclusion g : G — GLy(k).
Note that the adjoint action of GLy(k) on M2 (k) factors through PGLy(k), as scalar
matrices act trivial. Also in all case ad = k'™ @ ad® where ad® are the matrices of
trace zero in Ms(k).

Proposition 2.8. Let G' be the image of G in PGLy(k) with fized field L', Pg
the Galois group of the mazimal outside S unramified extension of L', and G the
corresponding extension of G' by Pg.

1. There is a natural isomorphism Hom(Ws/(Ws)?, k) = H'(Gg,s, ad).

2. By the inflation - restriction sequence

0 — H'(G,ad) — H'(Ggs,ad) — H'(Ps,ad)® — H*(G, ad)
and one has the same sequence with Pg and G' replacing Ps and G. In particular
H'(Gg,s,0d) = H'(Gs/(3(Ps)),ad) = H'(Gs/(2(P5)),ad).
3. If p is tame, then
H'(Gos,0d) = Hom(Ps,ad)® = Hom(Pys,ad)® .

Furthermore, if ad is written as a direct sum of irreducible k[G) - modules @ V;, then

the k dimension of '11'1'5/(1"11'5)2 is the number of components of Ps ® k as a k[G] -
module that are isomorphic to one of the V;’s and also the number of such components

of Ps® k.

Proof. The isomorphism in 2.8 can be found in [Maz], and it reflects two ways of
computing the set of deformations from Gg to GLy (k{e]/(¢2)). The sequence with Ps
in 2.8 follows if one observes that ker(p) acts trivially on ad and hence that

H'(ker(p),ad)® = Hom(ker(p),ad)® = Hom(ﬁs,ad)c,

the one with P¢ by observing that even ker(Gg — G') acts trivial on ad. For the
second half one compares the given inflation - restriction sequence with that for

1 — Ps/q)(Ps) — Gs/q)(Ps) — G — 1,
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respectively the sequence with the primes.

The isomorphisms in 2.8 follow from the inflation —restriction sequences in 2.8 ag
here we assume that the orders of G and G’ are prime to p. For the last part, we need
to decompose ad into irreducible £[G]-modules. We assumed that the centralizer of
im(p) in GLy(k) is the set of scalars and that the order of im(p) is prime to p, so
by the above classification Theorem 2.7, the image in PGLy(k) has to be one of the
groups in case 2.7. In any case ad = k" @ ad®. Now ad® is irreducible unless we
are in the dihedral case in which it decomposes into a non - trivial one - dimensiona)
and an irreducible two - dimensional representation for r > 2 and into three distinct
non —trivial one - dimensional representations for r = 2. In particular the V; are not
isomorphic. Now the statement about dimensions is a simple consequence of counting
homomorphisms between modules in a semi-simple category. The case where the
image is cyclic of order prime to p, which is included in the Borel case in Theorem 2.7,
does not occur, as we assumed that the centralizer of im(5) consists of the homothethies
only. o

Remark 2.9. 1. For even representations the image of a complex conjugation is
the identity matrix or the negative of it. So if one considers its image in PGL2(k)
it is the identity. By using G’ in instead of G on sees that at least for infinitesimal
deformations there is no difference between either case. This stems from the fact that
the kernel of G — G’ is of order prime to p and so all higher cohomology groups of
this with p - torsion coefficients vanish.

2. Part 2.8 can also be seen by appealing to 2.4. By combining several parts of it
one can see that any deformation of type S of p has to factor through an extension
P2 of G where P2 is a quotient of Ps whose p-Frattini quotient consists exactly of
the components in 2.8 that express the dimension of ﬁg/(ﬁs)z.

3. The term H'(G,ad) is often zero, as remarked already in [Maz], even if p is not
tame. At the same time for p > 3, in the non - tame case, H*(G, ad) is never zero as
one then has two obviously non - equivalent extensions of G by ad®. Let

d : GLy(W(k)/p*) — (W(k)/p*)" and m : GLy(W(k)/p*) — GLa(k)
be the determinant map and the reduction modulo p, resp. Then
7~ (im(p)) Nker (d*!7) and im(p)(1 +ead®) C GL2(k[e]/(¢?))

are such extensions ~ one contains an element of order p?, the other doesn’t. For p = 3

both have elements of order 9, so they are not necessarily different. Precise statements

about the size of H*(G,ad) are given in the following lemma for the case k = F,,.
Hence the difficult part in actually determining the size of H!(Gg, ad) from that of

Hom(Ps,ad )G, apart from the calculation of P, is the map

)G

Hom(Ps,ad)” — H*G,ad).

For given S, it is not at all apparent how to do this, as it would require explicit
knowledge of the group Gs/ (®(Ps)), i.e., the way in which Pg is an extension of G -
or at least that part of Pg that provides G - equivariant homomorphisms to ad.
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On the other hand, if one assumes that S contains Sp, the set consisting of p, oo
ind the primes where j ramifies, and a set of auxiliary primes for Sy as the sets
Jn constructed in [TaWi, §4], which can be done quite generally, also for many even
-epresentations, then by [Neu, Satz 3.1}, as all the local extension problems can be
solved, the map Hom(Fs,ado)G — H?(G,ad®) is surjective. Thus for p > 5 one
-an find surjective lifts onto SLy(Z/(p?)) if p surjects onto SLy(F,). If in addition
H?(G,FY™) = 0, one obtains a lift Gg — E for any extension E of G by ad. For
non - split extensions such that ad® is an irreducible F,[G] - module, the surjectivity of
the lift onto the ad® part. follows. One can certainly improve this to obtain surjective
lifts onto GLg (Z/(p?)) for surjective § onto GLo(F,), provided p > 5, after possibly
further enlarging S. For other solutions concerning this extension problem see {(Kha].

Lemma 2.10. Suppose k = F,, p > 3. If G contains a subgroup H such that the
image of H in PGLy(F,) is isomorphic to C, x C, with r > 2, then H' (G, ad®) = 0.
Under the same assumptions one has H' (G,Fi'*") = H*(G,Fir™) = 0.

In particular this holds for G = GLy(F,), allp > 2, and G = SLy(F), all p > 5.
Ezplict calculations show dimp, H' (SLy(Fs), ad®) = 1 and H'(SLy(F3), ad®) = 0.
Furthermore for p > 3 and G the dihedral group D, inside GLy(Fp) one computes
dimp, H'(Dp, ad®) = 1.

For the second cohomology one finds dimg, H?(G, ado) =1 for p > 3 for all the
groups considered above, while H2(SL2(F3), ado) =0.

The proof follows easily from the proof in [Fla, Lemma 1.2], based on properties of
the transfer map [Bro, 111.10.3], and part 2.9 of the previous remark.

2.3. The basic deformation problem in tame cases

Theorem 2.11. Let j: Gg = GLa(k) be a tame even irreducible representation.
We denote by S a finite set of places containing p, oo and all places where p ramifies.
We assume that p is neat at p, i.e., as k[G'] - modules the p quotient C' of the class
group of L' has no common component with ad, and the cokernel of E — D,es E,
tensored with k has only k'™ as u common component with ad. Let pg : G —
GLy(W (k)) be a given lift of p. Let L™ be the cyclotomic p extension of L. Then the
universal deformation (ps, Rs) of

5 Go — GLy(k)

factors through Gal(L™ /Q) = Z,xG, Rs is isomorphic to W (k)[[T]], and if y is a fized
topological generator of Z, = Gal(L* /L), then ps : Gal(L*®/Q) — GLo(W (k)[[T])) is
explicitly given by po on G and by sending v to (1 + T) times the identity matriz.

Proof. By Lemma 2.6 and Proposition 2.8, the conditions that we impose are equiv-
alent to mg/ (ﬁ5)2 = k'™ By the remark above this implies that pg factors though
a pro-p extension P§ of G whose p Frattini quotient is isomorphic to F;”"’ and which
is unramified outside S. But the cyclotomic p extension of L is such an extension,
so its Galois group which is isomorphic to Z, must be PS. As L, & LQ®, Q> the
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cyclotomic p extension of Q, G has to act trivially on Gal(L>/L). The choice of p,
fixes the ambiguity that arises as one considers lifts up to strict equivalence. O

2.4. The deformation problem for some Borel cases

Now we consider the case where G lies inside the upper triangular matrices of GLy (k)
and has non - trivial image in the unipotent as well as in the diagonal part of PGL, (k).
Those conditions are, up to base change, equivalent to the condtion that the centralizer
of G in GLy(k) is the set of homotethies, as needed in Theorem 2.1. Hence we wil]
assume these conditions throughout this subsection.

The group G is clearly solvable, and if we denote by A the diagonal matrices in G,
and by U the unipotent part, then

1 - U —G — A — 1.

The field with A as its Galois group is denoted by F' and it is obviously an abelian
extension of (). We assume that the image of G is inside the upper triangular matrices.
Again we want to study pro- p extensions of G. The fact that p does divide G seems
a problem at first, but one observes that the extension of U by a pro-p group is a
pro-p group itself, and so the idea is to let A act on this pro-p group.

We denote by A’ the quotient to A in PGLa(k). If A acts via the characters xi, xo
on the diagonal inside GLy(k), we define ¥ = x;x5 ' which is then a character of A’
into k*. The A-module structure on ad is the one given by trivial action along the
diagonal, by x on the right upper corner and by x~! on the lower left corner. In
particular, if ¥ has order two the latter two modules are isomorphic, and vice versa -
order one is excluded by the condition on the centralizer of G in GLy(k).

Unlike in the odd case [Bosl, §9], the deformation problem that we have to consider
here cannot be neat above F or L. If it were neat above L, then by [Mov, Prop. 5],
it would have to be neat above F', too. But in the neat even case, the only extension
possible is the cyclotomic one with a trivial A action on the p Frattini quotient. But
U has a non - trivial action by A. On the other hand the case that we will consider
below is unobstructed in the sense of MAZUR, i.e., H*(Gg,s,ad) = 0. As we are
in the even case this means that dimy H'(Gg,s,ad) = 1 or in other words that
after fixing the determinant, the lifts to Z, are rigid. As we calculate the universal
deformation explicitely, this can also be seen by simply examining it for the case of
fixed determinant.

The case next simple to the case of Ps being a free pro-p group, is the case that
Ps is a Poincaré group. Fortunately there is a complete characterization of those in
[Winl]. At the same time it is not hard to determine the most general non- abelian
pro-p group on two generators that can fit into GLQ(Z,,) with a lift of the action of

A on it where the image of one generator in U is the matrix ((1) %) It turns out that

this itself is a Poincaré group, and so this concept seems to be ideally suited to our
problem. Regarding Poincaré quotients of Pg, one should also consult the excellent
survey article [Win2, Theorem 6] and bear in mind that for even Galois representation
the field L, if totally complex, is always a CM field. An alternative approach to the
Borel case as treated here would be the use of Iwasawa theory, as the image of our
deformations will have to be metabelian.
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For the next theorem, we will simply assume that Ps is a Poincaré group. Later in
Proposition 3.7, we will give more precise conditions and examples for this to happen.
If Ps has a quotient that is a Poincaré group of the type described below, then one
can at least conclude that the universal deformation ring surjects onto the ring given
in the following theorem, and that there are lifts to characteristic zero.

Theorem 2.12. Let p: Gg = GLo (k) be upper triangular as described above. We
assume that S contains p, co and the primes where p ramifies, and is such that Ps r,
the Galois group of the mazimal pro-p extension of F unramified outside S, is a
Poincaré group of rank two, 1. e.,

Ps = <s, t|sts™1t7! = t"">

for some n > 1. Equivalently Ps is a semi~direct product of Z, acting non - trivially
on Z,. The number n can be determined from P2%, i. e., from global class field theory.

Then we can pick s, t so that A acts trivielly on s and via ¥ on t. Furthermore
Rs = W(k)[[T]] and the universal deformation is given by

Gq — PsxA — GL,(W(K)([T])

where the second map is p composed with the Teichmiller lift k* x k* — W (k)* x W (k)*
on A, and on s,1 it is given by

1 1

0 1)

<(1+T)(]+p") 0 )
S — )
0 1+7T

Proof. By our assumption
Ps = <s,t|[s,t]=tp">,

and so every element of Ps can be written in the form st with o, 8 € Z,. Now
we consider the following diagram where the horizontal arrows are surjective and the
bottom row represents the p Frattini quotients.

PS—L Zp

.

Ps—2. 7/)(p)

The group Z, on the top right is the Galois group of the maximal cyclotomic
p—extension of F, hence it has trivial A action. The whole diagram is A - equivariant.
Furthermore Pg = F;,”“ & F) by our assumption on p.

To identify the A action, let ¢ be a generator of Z,, let s’ = s°t# be a lift in Ps
that maps to an element in Pg with trivial A action. Then the subgroup generated
in Ps by s’ must be Z, and by the uniqueness of an A action, Lemma 2.4, A has to
act trivially on this subgroup. In particularly the map g splits A -equivariantly. By
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considering the map on p Frattini quotients and using the fact that ¢ gets mapped tq
0 in Z,, the element o must be a unit in Z,. If we replace s by s’ which does no
change the relation in Ps we may assume that s’ = s.

Regarding the action of A on 1, it is clear that the kernel of g is exactly the part of
Ps on which A4 acts as x. As the image of ¢ generates this kernel, A acts via x on the
image of t and hence by the uniqueness of such an operation it acts in the same way
on the subgroup generated by t.

We fix the lift from A to the diagonal of GLy (W (k)) that was described in the
statement of the theorem. Using this, any lift p : Gg — GL2(R) of p induces an

A -equivariant map Ps — GLo(R). A acts trivial on s, and so its image has to be a

diagonal matrix of the type (I’BT‘ lsz) with T; € m the maximal ideal of R. The

action of A on the image of t is given by x and its reduction modulo m generates
U. Hence it is of the form ((1) f) where z is a unit in R. By replacing t by a

prime to p power with an exponent in Zj; we can achieve z = 1. After fixing the
image of A and ¢ we used up all the freedom given by considering lifts up to strict
equivalence. Finally from the commutativity relation between s and ¢ it follows that
14Ty = (14 T3)(1+p?). Now it is easy to see that Rg and ps as given satisfy the
necessary universality condition. n]

3. Examples

3.1. A family of examples in the tame case

Here we will construct an explicit family of polynomials analogous to the construction
in [BoMa] which satisfy the conditions in Theorem 2.11.

Let f(z) = z* — a®z — 1 where a > 2 is an integer such that p = 4a® — 27 is prime.
Then clearly p = 1 (mod 4). The splitting field L of f over Q is totally real with
Galois group S;. In fact L is inside the Hilbert class field ' = Q(\/ﬁ), which is
obvious as p is the discriminant of the above polynomial. Hence the only prime that
ramifies in L over Q is p. So we let S = {p}. The prime p > 229 will also be the
residue characteristic of the finite field that we consider. The reason why we choose
the coefficient of z to be —a?, and not just —a, is to have explicit expressions for
fundamental units as will be apparent later on.

We obtain a continuous absolutely irreducible even representation

5: Gop — Gal(L/Q) = Ss — GLy(F,).

For S3 = GL4 (F,,) one can take for example the reduction mod p of the representation
po : Sz = GLy(Z[3]) given in [BoMa, Prop. 11].

Theorem 3.1. Let L be the splitting field of f(z) = 2° —a’z — 1 where a > 2 is an
integer, such that p = 4a% — 27 is prime. Assume that p satisfies the Ankeney - Artin-
Chowla conjecture and the following congruence condition:

(3 e (o35 )
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1

o35 (42° ~ 27) (9/4+a°) (mod (4° - 27)°)

vhere for x € Z, we let u(z) = z/zP. Then p satisfies the assumptions of Theorem
111,

The Ankeney - Artin - Chowla conjecture predicts that for any prime p=1(mod 4)
he coefficient B in the expression u = A + B,/p for the fundamental unit is not
livisible by p, see [AAC].

According to Bouniakowski’s conjecture there are infinitely many primes of the form
1a® — 27. In fact he conjectures that all polynomial expressions g(z), apart from the
mes that have a trivial integral divisor due to congruences, represent infinitely many
srimes; here a prime ¢ is such a divisor if g(z) (mod ¢) is divisible by z? — = over
Fglz]. In fact using PARI-gp, one can show that the conditions given in the above
:heorem are satisfied for all the 108 primes that arise for a between 2 and 1000.

To prove the theorem we will show that the p part of the class group CI(L) is zero
and that the map ¢ : E — @le E, is injective. Hence by 2.6 and the sequence
(2.1) above it this will imply that the cokernel is isomorphic to F:,”” which was to be
shown. The proofs of those facts will be the content of the following two subsections.
We begin be fixing the notation for the calculations to come, and exhibiting some
alementary properties of L.

Let a; (i = 1,2,3) be the three roots of f in L and let S have generators 7, o where
7 has order 3 and o has order 2, and 7 permutes the three roots a; cyclically. We let
K; = Q(a;). Sometimes we will refer to K as K, to K3 as K™ and to K3 as K’z, and
as above F = Q(/p). For any number field M we denote by E) its group of global
units and by Ejs, the group of local units at a place v. We will suppress M from the
notation if it is clear from the context.

Regarding the factorization of (p) in the above fields, one observes that (p) = (7)? in
F, where m = ,/p, and that (7) splits completely in L, say 7 = P1P2B3 corresponding
to the above fields K;. To investigate how (p) splits in K, we compute f modulo p as

flz) = (:r+ 2—22)2(a: - a%) .

Thus (p) = p1p} in Ok with prime ideals p, and py, and we must have p; = B? and

p2 = P2 Ps.

From this decomposition of (p) we conclude that K\, is isomorphic to @,, and K,
is isomorphic to the unique totally ramified extension of degree 2 of Q,, and so are
Ly, for i = 1,2,3 and E, with the obvious identifications.

3.2. The class group of L

To begin we shall compute the fundamental units and the regulator of K.

Proposition 3.2. For a > 3, p = 4a% — 27 and K as above we have
1. oq and on + a form a system of fundamental units for K.
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2. The regulator Rg of K satisfies
3logZa+2loga > Rk > log’a—0.3loga.

Proof. Part 3.2 follows from [Ste, Satz 7, S.173] after replacing z by z + a.

For part 3.2 one uses the definition of the regulator as the determinant of the loga-
rithms of the embeddings of a system of fundamental units, R =log | | log |az +a| -
log |as|log |a1 + a|, where we assume that the a; are ordered so that a; > a2 > a3,
To get the estimates one only needs the following estimates on the roots:

1

1 2
a <oy <at= and - — < a < ——. ]
a a? a

Proposition 3.3. The class number of L is not divisible by p.

Proof. We follow the method in MAzUR [Maz, Thm IV.1, S. 67]. From results of
MOSER who applies BRAUER’S theory of computing the class number of L through the
class numbers of its subfields [Mos], we know that hy = gh%hE, where ¢ € {1,3,9}.
Thus we are reduced to showing that p doesn’t divide either of hg or hg.

For hg one can quote the result in [Nar, VIIL.2., Prop 8.2] which says that hp < \/p.

For hy one can find in [Nar, p. 401] the inequality

Rxhgx < .088,/plog’(p)

which was obtained by LAVRIK. From the previous corollary we have the estimate
Ry >log?a(3 - 21.) where a® = (p+27)/4. We get

loga

log” p

} < 13/p —————
K VP log?(p + 27) /4

which is always less than p as p > 229, the minimal p that can occur (for a = 3). O

3.3. The injectivity of ¢y : B}, — ®V|P ELV

As one has neither local nor global p-th roots of unity, by Dirichlet’s unit theorem
we know that E, is a five— dimensional F,, vector space. Thus to show injectivity, we
are going to show that the image of ¢; has dimension five. This will be accomplished
by considering the corresponding maps ¢tr and tx and their relations to ¢,. Note that
by results of MOSER [Mos, Thm II1.5, S. 62], one has

[EL : E}(E](rEp] = c,

where ¢ € {1, 3,9}, and thus EL__= ExEg-EF for the p-Frattini quotients.
From 2.6 we know that @, B, = F,[S3] where S3 = Gal(L/Q). So we have

vip

DE..

vip

¢

Ftriv GF @V, ® Vs

with F? the one—dimensional representation on which ¢ acts non trivially and V;, the
unique irreducible two — dimensional representation.
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Lemma 3.4. The image of Ep under ¢f is F° inside @le E;

v

Proof. We consider the following diagram:

As F and hence F,, are 7 —invariant this diagram is a diagram of F,[S3]~modules.
The action of 0 on Ep sends a fundamental unit up to +ug’; thus it acts on Ep as
the map sending z to —z.

At this point we need the Ankeney - Artin~ Chowla conjecture. Let ug = A+ B,/p
be a fundamental unit of E. By the the conjecture we know that % is a unit in Fj.
For any p we have that |/p is a uniformizing parameter in F;. Therefore 1 + %\/ﬁ,

the image of up in Ep", is nonzero, and so tp is injective. Finally the left vertical map
is clearly injective, too, establishing the lemma. a

Next we will compute the image of Ef in EK“ EBEK”. We have already seen that o
and o+ a form a set of fundamental units of K. Without loss of generality we assume
that K is the ¢ —invariant subfield of L.

Lemma 3.5. The map v : Ex — EKm @ EK” 18 injective.

Proof. We will show that the images of & and a + a are linearly independent in
Ek,, by explicitly computing them. Say n; is a uniformizing parameter of K,,. Then

Ek,, = Fyx(1+(m)) = 1+(m)
(3.1) ~ 1t (m) o 1t(m)
(14 (m))? 1+ (m)?

= F,xF,.

The second isomorphism involves Teichmiiller lifts. For any z € Z; one can write
z = w(z)u where u is a one—unit and w(z) is a (p — 1) -st root of unity. Modulo
{1+ (m1))? one can compute u as u(z) = z/zP.
! 2 . :
Knowing that f(z) B (z + 522) (z — &) (mod p), it is an easy exercise to see that
B8=a+ %; is a uniformizing parameter of K,,, and thus we can assume m; = f.
From the identification in (2) we get

~3 -3 2a?
(32) —(f = m +m = ’ll,(ﬁ) (1 - %7‘{]) and

- -3 208 -3 2a?
(3.3) o +a = ﬁ+a+7r1 = u< 577 >(l—3_2a37r1).
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Clearly a7 is not trivial, i.e., equal to 1, as it is non - trivial modulo (%), and so to
establish linear independence it is enough to show that a; + a cannot be written as g
power of &;. Assume the contrary. Then we can find an integer k such that

k k
-3 2a* _ 2a% -3 2a?
u(ﬁ) <1— TW]) = u( 20,2 )(1-m7’f1) (mod 71'13)

One obtains two equations modulo p. The first one arises by considering this modulo
7 and yields k = 3_%5 (mod p). Using this after subtracting 1 on both sides one
has an equation with leading term . This equation can be transformed to the first
congruence condition given in Theorem 3.1. One needs to replace p by an expression
in 7#. To do this we observe that m; — ;27 satisfies 27 — a®z — 1 = 0, which implies

p = 36a*n? (mod ). u]

Next we note that the image of E_Qp in @Ul » E, is exactly the trivial one - dimensional
part Vipjy-

Denote by H the image of Ex in @,,, E1,, where we consider the diagram

v|p
Ex /25 E}(v, & EK,,

| |

EL iy - @ELV

vip

Lemma 3.6. H and F" intersect trivially in & ELV, and H has dimension

two in B, E.,.

v|p

Proof. This is an easy consequence of 2.6 where the F,[G] structures of the two
groups at the bottom are described. As the above diagram commutes, H is clearly in
the image of E 1. But as an F,|G] - module this does not contain F4*" as a summand.
The bottom map is a map of F,[G]-modules, and hence the image of H cannot meet
the Ftp“”. The statement about the dimension follows as the horizontal map on the
right is injective. o

Proof. Now we prove the injectivity of ¢;,. As K is the o—invariant subfield of
L, it follows that H is ¢-invariant. Clearly F'™® is ¢ —invariant, too, and by the
previous lemmas those two subspaces together span a three - dimensional o - invariant
subspace of @, E,, = F,[S;]). By representation theory this must be the set of
all o —invariant elements. Thus the 7-orbit of H must coincide with V, & V5 inside
@®,, Ev,. But the 7—orbit of H is the sum of the images of Ex, Ex- and Ey»

and thus inside the image of Er. Hence the image of E contains V, @ V, and also F,
the image of Ep. Therefore it must have dimension at least 5. ]
3.4. Examples in the Borel case

We now describe conditions which are derived from {Winl, Cor.] under which Ps p
is a Poincaré group which appears at the base level of a universal deformation of
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residual Borel type as described in Theorem 2.12. In fact we will use the conditions
given in [Koch, Satz 11.16] which are equivalent to those above in the case d = 1 in
the notation of [Koch, Satz 11.16].

Let F be a totally real cyclic extension of Q of degree m prime to p that is unramified
at all primes g such that N{q) & 1 (mod p) for q in F above q. We assume that
Vs,r = 0 so in particular the p part of the class group of F is trivial and F has no
local roots of unity at p. Let g be a prime that is inert for F/Q and so that A4,
which is isomorphic to A acts as x on p,(F;). By the Cebotarev density theorem
there exists a set of positive density with this property. Let L be the extension of
degree p corresponding by global class field theory to the image of E,/E? in the five
term sequence (2.1). Then Gal(L/F) = E;/E} = FX as an A-module, and thus
Gal(L/Q) = Cp » Cp,. We now choose f large enough so that m divides p/ — 1 and
let k = F;. Thus we obtain a representation

5 : Gal(F/Q) — GLa(k)

with upper triangular image. Let n = ordy(¢g™ — 1).

Proposition 3.7. Under the above assumptions Pg r ts a Poincaré group of rank
two and the universal deformation of p is as described in 2.12.

In the case m = 2, and ramification at p one can give particularly simple conditions
under which all the above holds. As mentioned above the existence of g is irrelevant,
as by Cebotarev there always exists an infinite number. For F = Q(v/d), where d > 0
is square free, the above conditions mean that d has no prime divisors I = 1 (mod p),
p divides d, and if u = A + BV/d is a fundamental unit of F, then B Z 0 (mod p).

4. Enlarging the ramification

4.1. The principle of prime —to—adjointness

In this subsection we assume that j is absolutely irreducible and that im(p) has
order prime to p, so projected onto PGLy(k) its image is dihedral or A4, Sq or A5. We
will call the first case projectively dihedral and the other ones exceptional. Note that
projectively dihedral means that im(p) is non - abelian and contained in the normalizer
of a Cartan subgroup of GLo (k).

As we have seen in Lemma 2.4, mainly part 4, and Proposition 2.8, the part of Pg
that is really relevant is the part that is, loosely speaking, not prime to the adjoint
representation. The way that Ps maps into I'2(R) depends largely on the way that its
p Frattini quotient maps G —equivariantly to ad. This is made explicit in Corollary
4.3. Again the method we use goes back to [Bosl] and the following two lemmas are
implicitly from there.

We begin by briefly recalling the possible module structures of ad under any sub-
groups of GLy(k) of order prime to p.
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Lemma 4.1. Let H be a subgroup of GL2(k) and acting on ad in this way. Assume
pf|H|. Then the structure of ad as a k[H]-module is one of the following. :

1. If H is inside the scalars, then ad = (k'™V)4. :

2. If H is inside a split Cartan subgroup, but not in the center, then ad = (k'™)2 g
k*H @ k®n' for some character ¢n. ¢y can be made explicit if we assume that the
elements of H are 2 by 2 matrices z = () in diegonal form. Then ¢p(z) = 1,127
forxz € H.

3. If H is not in the center, but inside a non-split Cartan subgroup, then ad =
(k)2 @&V, for some irreducible representation Vo of H.

4. If H is projectively dihedral, and v is the action of the Co quotient of H that
sends z € k to —z, then ad = k'™ @ kY @ V, for some irreducible Vs.

5. In all other cases ad = k' @ ad® where ad® is irreducible.

For primes ¢ # p, we saw in the description of Ps in 2.6 and the paragraph above
that increasing S to S’ = S U {q} enlarges Ps by a summand that is a quotient of
Ind gqx where x is the action of G4 on the local p- th roots of unity, tensored with k,
where we choose a prime q in L over ¢. Replacing H by G, after applying Frobenius
reciprocity, one obtains the following lemma, where the cases are numbered as in the
previous lemma.

Lemma 4.2. aod and Ind (G;qx share the following irreducible k{G) - modules as sum-
mands. ‘

1. If x is non-trivial, there is no common summand, else they share all of ad.

2. If x # triv, ¢g,, (b(:.i, there is no common summand. If x = triv, they share
k'™ and one other irreducible summand of ad whose restriction to G is trivial. In
the other two cases they share a summand that is inside ad®.

3. If x # triv they share no common summand, else they share k'™ and one other
irreductble summand of ad.

4. If x # triv, ¢ there is no common summand, for x = triv they share k'™, and
for x = ¢ one summand of ad®.

5. If x # triv they share no common summand, else they share k™.

If G is projectively dihedral, say 1 = Gy = G = Cy = 1 with G, abelian, then they
share k'™ @ k¥ provided that x = triv in case 4.2, or that Gq C Gy and x = triv in
case 4.2, or that x = ¢ in case 4.2, or that x = triv in case 4.2.

Cases 4.2 and 4.2 can obviously only occur at primes that ramify in L. If g doesn’t
ramify, then cases 4.2 and 4.2 are exactly those where the image of the Frobenius
element at ¢ has distinct eigenvalues. The following result is immediate.

Corollary 4.3. Assume Vs = 0. If we increase S by a prime g such that G is
abelian or exceptional and that x # triv, ¢g,, ¢51 then (ps', Rs') = (ps, Rg).

Proof. By Theorem 2.5, we only need to compare G - equivariant maps from Ps
and Pg to I'»(R). By Lemma 2.4, I'y(R) has a filtration with all subquotients being
isomorphic to ad. Also as we assume Vs = 0, Pss = Pg @ Ind gqx. By the same
lemma any element of Ps with non - trivial image in the Frattini quotient with image
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completely inside Ind gq X must map to the identity in I';(R) under a G —equivariant
homomorphism. Let N be the normal subgroup generated by such elements. Then,
again by the same lemma Pg /N maps onto Pg and they have isomorphic Frattini
quotients. Furthermore, again as Vs = 0, by [Koch, §11], all relations necessary in
presentations of Ps and Ps are local. So Ps/ /N has all the relations of Ps and two
more, expressible in fixed lifts of generators of the Frattini quotient of the former.
Thus as the former maps onto the latter group and as they have isomorphic Frattini
quotients they must be isomorphic. Hence

Homg(Ps,T2(R)) = Homg(Ps /[N, T2(R)) = Homg(Ps,T2(R)). O

Remark 4.4. In fact a more careful analysis shows that the above lemma also holds
if one doesn’t assume that Vg = 0. To see this one has to strengthen part 4 of Lemma
2.4 to include the influence of relations. One can further improve this lemma to a
version where one doesn’t have to assume that A has order prime to p, by replacing A
by a profinite group that is the extension of a finite group (with order not necessarily
prime to p) by a pro-p group and that acts continuously on P, P’. Here one can
take A = Gg. Then the relevant condition for the previous corollary to hold is that
Homg (Ind gqx, ad“') = 0 where now G = im(p) is not supposed to be prime to p.
The superscript “s.s.” refers to the semisimplification of ad as a G —module. Only in
the Borel case ad and ad** are different, but even there the corollary still holds.

4.2. A result in the projectively dihedral case

In the case that 5 is odd, already if p is neat at p one has three free parameters and
the deformations to GLs (Z,,) have typically a rather large image. Not so in the even
case where we showed that in the case where p is neat at p there is only one parameter,
which acts as a scalar. Thus the image is rather restricted. This observation can be
used nicely in the projectively dihedral case to determine the universal deformation
for larger sets S than just S = {p, o0} provided that one confines the image of Pg
in such a way that it is abelian. Then one can describe the universal deformation
to the extent that one can describe abelian extensions of number fields via class field
theory. Essentially one can freely add primes for which the image of Frob,, has distinct
eigenvalues and lies inside G; = p(Gal(L/F)), where F is the quadratic subfield
corresponding to the canonical Cy quotient of any projectively dihedral group - or
a fixed Cy quotient if the image of p in PGL2 (k) is isomorphic to D,.

Theorem 4.5. Given p, f, po such that G is projectively dihedral and that no
irreducible k|G] - submodule of Pswk is isomorphic to the two - dimensional irreducible
k{G] component of ad. Let F& be the mazimal abelian p - extension of F unramified
outside S, T its Galois group over F' and L™ = LF2'. As the order of G is prime to
p, [ =T% @ TF where G acts trivially on T'™ and non - trivially vie Gal(F/Q) on
I'F. We assume that py maps the elements of Gal(L/F) to diagonal matrices, which
can be done by an appropriate choice of basis for the representation described by po
provided k is large enough. Then the universal deformation of p, unramified outside
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S, is given by Rg = W(k)[[T]] and
ps : Gg — Gal(L®/Q) = (Gal(L/F) xT) x Gal(F/Q) — GLy(W(k)[T])

up to isomorphism, where the first map is the canonical surjection and the second is '
given by po on G, by sending y € T to y times the identity matriz, and by sending
v € TF to the diagonal matriz with diagonal (v,y™*).

Proof. We fix a lift of G to GLy(W(k)) such that G, has its image inside the
diagonal matrices. Our assumptions on Pg are chosen so that its image in GLo(R) for
any deformation p to R has to lie inside the commutator subgroup of G considered
as a subgroup of GLy(R), because the part of Ps that is prime to ad is irrelevant.
But this is the set of diagonal matrices which is commutative. Hence Ps — GLy(R)
factors through Pg°.

Let Ps be the maximal quotient of P2 whose p Frattini quotient is the
k[G) - submodule of Pg that consists of all components isomorphic to k™™ or k¥,
) the non-trivial C; action on k. Then Gal(L/F) acts trivially on the p Frattini
quotient of Ps, hence on the whole group. This implies that the corresponding Galois
extension is already defined over F'. Thus this extension over F' must be a subexten-
sion of F&® as defined in the statement of the theorem. Clearly F&® and L are disjoint
over F' and thus L™ as a tensor product is well - defined.

The structure of T is also clear, as the Leopoldt conjecture is trivially true over a
real quadratic field, and it implies that I' modulo the Galois group of the maximal
cyclotomic p extension is finite. Finally, the image of I inside the diagonal matrices is
uniquely determined by the action of Gal(F/Q) = C,. Using this it is easy to verify
the above claims concerning (Rs, ps). O

Remark 4.6. 1. The last paragraph of Lemma 4.2 lists all instances where Theorem
4.5 still applies after enlarging S to S’ = SU {q} and where (Rg, ps) is different from
(Rs, pst)-

2. Theorem 4.5 also allows contributions from the class group as long as they do
not contain the two - dimensional irreducible component of ad .

3. The assumption on the shape of the image of g, respectively its lift to GLq (W (k)),
is superfluous. The conclusion still holds with the exception that the images of the
elements of T'¥ are slightly more difficult to describe.

4. One can formulate Theorem 4.5 also for tame, exceptional G. The condition
then is simply that the only k[G]-module that ad and Ps ® k share is k*"", or
equivalently that ad® is not contained in Ps. Yet on closer inspection, it turns out
that, in the exceptional case, these assumptions are almost equivalent to those in the
basic Theorem 2.11. The only case in which this result is stronger than 2.11 is when
the splitting field L is wildly ramified with local Galois group surjecting onto A4 or
S4 - at least the former case can occur which one can easily conclude from part of
Lemma 2.6 applied to Q2((7). The argument is the following.

Suppose that C contains a copy of F;,””. This means that there is an unramified
Z/(p) extension G of G on which G acts trivially. It is not hard to see that this
implies G = G x Z/(p). Then it would follow that there exists an unramified non-
trivial extension of @, a clear contradiction.
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Suppose we have a prime g in S such that L, contains p-th roots of unity and such
that the corresponding part Ind gq pp of Pg contains Friv. By Frobenius reciprocity
this means that G, must act trivially on y,, i.e., that the p-th roots of unity are
already in @Q,. One can now go through the classification in Lemma 4.2. This implies
that one must be in case (v). As G, is solvable, its quotient in PGLy(k) must be
either A4 or Sy, and hence ¢ = 2 - the absolute Galois group of Q, is an extension of
(Z/Zq) x 7 by a pro-gq group.

As the cokernel of E — Zye{p}, E, always contains exactly one copy of F;,”" by
Lemma 2.6, our analysis above is sufficient in light of sequence (1) above Lemma 2.6.

4.3. The universal deformation space under enlarging ramification

Here we will simply revisit [Bos2] in order to see to what extend the results there on
enlarging the ramification are still valid for even Galois representation. In fact it turns
out that all of the results there, that are not alluding to modular forms, remain valid
and that the assumptions a, = £(1+p) (mod [) and p # 1 (mod ) - in the notation
from there — can be replaced by slightly more general assumptions. The reason for
having those assumptions in (Bos2] was simply that those are exactly the assumptions
that one needs in the case corresponding to modular forms of weight two and trivial
character.

Unlike in [Bos2], there seems to be no interpretation of the results about increasing
the ramification in the even case, mainly due to the lack of some kind of forms that
would naturally produce even representations. In some rare cases there seem to be
relations to Maass forms and two - dimensional complex Galois representations - see
[Boe]. Yet the example at the end of this section does suggest that increasing the
number of primes that can ramify has similar effects as in the odd case. Although
the main question — namely the existence of new deformations to characteristic zero
cannot be answered.

We will begin by stating a theorem on the effect on the universal deformation of
enlarging the set of primes that can ramify, which holds for even and odd representa-
tions. The proof is a simple modification of Sections 1 and 2 in [Bos2] and for the part
fo =1 of [TaWi, Lemma, p. 569]. Except for one little calculation in the case fo = 2
in Theorem 4.7, we will just state the necessary lemmas and leave the verifications to
the reader, see [Bos2]. For a deformation- theoretic motivation why the number of
relations should be the number that we give and that was given in [Bos2}, we refer to
Remark 4.10.

Let p : Gg = GLy(k) be any representation such that the centralizer of 5(Gg) is
exactly the scalar matrices. p can be even or odd with splitting field L. We let S be
a finite set of rational primes containing p. We let ¢ be a prime not in S, q a prime in
L above q, f = |Gql, fo = min{m | ¢™ =1 (mod p)} and denote by ¢ the fo—th root
of unity in F, (or its Teichmiiller lift to Z;) such that ¢ = ¢ (mod p). We assume

1. p(Frob,) has distinct eigenvalues, in k, so 5(Frob,) ~ d ((1] g) where we denote

by ¢ the element in k* as well as its lift to W (k).
2. L is unramified at gq.
3. Ng=1 (mod p).
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4. €€ {1,(,¢'}
Note that unless the last two conditions are satisfied, the universal deformations for

S and for S’ = SU{q} agree, by prime - to-adjointness, Corollary 4.3 and the remark
after it.

Theorem 4.7. Assume the above assumptions are satisfied and let S’ = S U {q}.
Then

1. If fo > 2, then there exist power series r1, ..., 1o, ® € W(k)[[T,...,Trn,T]),
such that if r = T(q — @), then

RS‘ == W(k)[[T], .. ,Tm,T]]/('I‘l, e ,Tn,T)

and Rs = W(k)[[T1,...,Tm)l/(F1,...,Tn) where r; (mod T) = ;.

2. Iffo=2(s0(=¢=-1), gwen T, U and V = V1 +UT € W(k)[[U,T]), we
define h; for i =0,1,... to be the polynomials in V satisfying the recurrence relation
hiv1 =2V h;i+hi_y = 0 with ho = 0, hy = 1. Then there are power seriesri,...,Tn, ®,
in the ring W(k)[[T1,.-.,Tm, T, U]}, such that if s = T (hg — 1), t = U(hg — @),
then

Rs =& WWK)T,. .. T, T, U /(r1,..., 70,5, )
and Rs = W(k)[[Th, .., Twm))/(F1,...,Tn) where r; (mod (T,U)) = 7;.

3. If fo =1, let N = max{m | ¢ =1 (mod p™)}. Then there are power series
T1,...,Tn, in the ring W(k)[[Tl,...,Tm,U,T]], such that if s = (1 + U)pN -1,t=
(1+ T)”N — 1, then

Rg = WHE)([Th,..., T, T,UI/ (1, .,y 5, 1)

and Rs = W(K)[[Ty,...,Tnl)l/(F1,...,7n) where r; (mod (T,U)) = ;.
The corresponding map a : Rg — Rg sends T, resp. U and T to 0.

Lemma 4.8. The Galois group over Q, of the mazimal pro-p extension of Lq is
isomorphic to Z, » (Z, x Z/(f)) where the action of (z,z) € Z, x Z/(f) = Z on
y € L, = Y, written additively, is given by (z,z)y = £ (g¢")*y. Y is the inertia
subgroup and X a lift of the residual Galois group, so that (1,1) € X is o Frobenius
element for this Galois group.

Lemma 4.9. Given a lift p : Gg = GLo(R) of p we may assume, using strict
equivalence, that

{1 0 1 0
p(Froby) = p((0,1)) = d 0 ¢ and p((1,1)) = D (O ¢>
where (0,1) and (1,1) are in Z. With these choices one obtains the following for p(y)
where y € Y is a generator

fo =1 ply) = <(T) S), where 7, v € mp,
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Vit ot T
Jo =2 ply) = ( v m): where T,v € mpg,

o > 2 p(y):(lo

. 1> - or the transpose if £ = (7', where T € mp.

This applies in particular to the universal deformation ps.. Furthermore the relations
-, 8,1 in the theorem above are derived from the form of p(y) in this lemma.

Proof. We will only remark on the proof of the case fo = 2, as here in [Bos2] three
-elations are given, and it is stated afterwards that there is a relation among the three.
The three relations given there are the two relations we stated, and the extra relation
r = gq— V, where g, is defined by the same recursion as h, with different initial values
90 =1 and g; = V. We will now briefly explain, why the two we state are sufficient.

The three relations in [Bos2] come from the following equation for matrices.

( y m-l) ~ ( o Th,,)
Uo Vv ~ \Uhy g4

where g,, hy are polynomials in V = /1 + UT. As is remarked in [Bos2], one has the
relation gg - UThZ = 1, as the right hand matrix has determinant one. The same is
true for the left hand matrix, as V2 — UT = 1. The three relations r, s, t are precisely
the relations coming from equating the matrix entries, as the one-one and two - two

entries are the same. Because of the observation on the determinants, one of the three
relations is superfluous. To be precise, we show that » is in the ideal generated by s, £.

r(ge+V) = ¢2-V? = (1-UTR) - (1-UT®®"') = —sUh, —1Td"".
But g, + V =2 (mod m), i.e., it is a unit, and so r € (s,1). O

Remark 4.10. 1. In agreement with Proposition 2.8, provided Vg = 0, the number
of variables of Rg grows by one in the first case and by two in the other two cases.

2. In the case that fo > 2, the assumption that both eigenvalues of the Frobenius
are in k is automatically satisfied. This follows from

det(p(Frob,)) = d*(€*'), trace(p(Froby)) = d(1+&X') e k™, (€F;.

If the eigenvalues are distinct, but not in k, the above presentations of Rg: are valid
after tensoring over W (k) with W(%'), where k' is the unique qudratic extension of k.

3. In [Bos2] the eigenvalues are distinct, because of the congruence conditions, and
they are in k, as one of them is always £1 [Bos2, Lemma 3]. Also under the conditions
there the cases f > 2 and f = 2 directly correspond to the cases p Z +1 (mod ) and
p= -1 (modl), resp., [ agrees with f, and £ with ¢.

4. Reconsidering the case fo = 2 and explicitly giving two equations as was done
here, was stimulated by the following observation, that is already present in [Maz].
If the ring Rg/(p) has the expected dimension, i.e., one in the even and three in the
odd case, then by propositions two and five from loc. cit., the ring Rg/(p) is actually
a complete intersection. If in addition Rg is flat over W (k) it has to be a complete
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intersection itself. So from this one should expect that, at least modulo p, if the
number of variables increases by two, the number of equations should not increase by
more than two.

5. Also what we found, in all the cases considered, is that the number of addi.
tional equations needed to describe Rg, when adding the prime g to S, is exactly
dimg H2(Ggq,,ad ), where we consider ad restricted to Gg, — this is an easy exer-
cise using Tate local duality. This is a restatement of the previous item, as for large
sets S, large meaning that the obstruction Vs vanishes, the increment of the number
of variables in the universal deformation ring is the increment of the k- dimension of
H'(Ggq,s,ad) if we replace S by SU{g}, and this is the increment of the k - dimension
of H*(Gg,s,ad ) which, under the assumption that S is large, is the k- dimension of
H?(Gg,,ad).

As an example we will now present a universal deformation which is not twist ~ finite,
but whose residual representation is tame and absolutely irreducible. Twist -finite
means that after twisting the universal representation with a suitable p—adic character
of Gq it will have finite image. Typical examples for a twist —finite representation are
those arising from 4.5 and from 3.1.

Example 4.11. We fix a tame absolutely irreducible even representation p : Gg —
GLo (k) that is neat at p and let S = {p}. Then we pick a prime g such that Frob, has
distinct eigenvalues in k and is not of order 2. By the Cebotarev density theorem it
is obvious that sufficiently many primes of this type exist. Let S’ = SU {¢}. So from
the above we have an explicit description of the universal deformation ring

Rg = VV(k)[[T],T]]/(T], ce 71‘,1,7')

where T divides r; fori =1,...,n, 7 =T(g - ®) and ry,...,7a,7 € W(k)[[U, T]).
Now we make the following additional assumptions. We assume that the splitting
field L has dihedral Galois group D, of order 2n that embeds into the normalizer of a
split Cartan subgroup of GL(k), that Frob, generates Cy, inside D,,, and that n > 2.
As in Lemma 4.9, we may assume that the image under the universal deformation

of a generator of the inertia group of Gg, is ((1] "lr), where we assume that a lift of
D,, to GLo(W (k)) has been chosen so that the the image of Cy, is contained in the
diagonal matrices, and so that ((1) (1,) is in the image. We enlarge k if necessary. By

conjugation with the latter element we find that (} ?) is in the image as well.

Lemma 4.12. The topologically closed subgroup of SLy(W (k){[T]]) generated by
(71~ (1)) and (é T) is the set of all matrices

1+ af(t) b(t)
( c(t) 1+d() )

of determinant one, with a, b, ¢, d € (p,t) C W(K)[[T]] such that a, d are even and
b, ¢ are odd power series, i.e., in the power series erpansion of a, d all odd powers
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if T have zero coefficient and similarly in the ezpansion for b, ¢ all even powers of T
ave zero coefficient.

This can be shown by first working modulo T'? and then increasing recursively the
xponent and computing some commutators.

From the five term sequence 2.1 on can compute that Ps has three generators, and,
or instance by [Koch, §11}, one can see that they are given by the generators of the
ocal inertia groups and by the generator of the cyclotomic p extension of L. Hence
sheir image in GLo (W (k){[U, T]]) without imposing any relations, only the constraints
rom the G action, and using strict equivalence, are

1 0 1 T 1I+U 0
T 1) \0 1) 0 1+U)"

This implies for the element D (é g) in Lemma 4.9, which has to be an expression in
the above three matrices and the lifts of G, that ¢ must be ¢ plus T2 times a power
series in W (k)[[T1].

As the pro-p group Ps has only local relations, and up to Galois conjugates only
one [Koch, §11] there are no further relations among the elements U, T' but the one
computed in [Bos2] and quoted above, namely T(qg — ®) = 0. By the Weierstrafl
preparation theorem we can rewrite the second factor

g-® = ¢-(+T*f(T)
= ])N(10+T2(L2+T303+"'
P b+ 0T+ -+ TN u

Il

where u is a unit in W(k){[T]], the b; have positive valuation, and 0 < j < k. We note
that 7 = 0 in the case £ = j. One obtains

Rg = W(E)U,TN/(Tp (bo + b2T% + ...+ 0,T7)).

From the above lemma it is more or less obvious that the image of Gg under pg
cannot be twist-finite. If 0 < j, we consider the image of Rg in k[[T]] where we
send U to T and p to 0. By the above lemma the image generated by Ps, which
has to be topologically closed by the compactness of P¢ and the continuity of the
homomorphism, contains all matrices as claimed in the lemma and all scalar matrices
and hence cannot be twist - finite. In fact the order of the image modulo T"*! is
p®"=2/2 while the order of To (k[[T]]/(T™*1)) has order p*".

In the other case we let o be one of the solutions of by + b,7% +---+7T7 = 0. Then
o must have positive valuation and we consider the image obtained by mapping Rg
to W(k)[a] by sending 7' and U to a. Again by the above lemma, the image of Ps in
GL,(W (k)[a]) cannot be twist - finite.

Finally there seems another remark worth while. In the odd case, as done in [Bos2],
the growth of the universal deformation space corresponds directly to the appearance
of new modular forms of higher level. If, in a vague analogy, based on the fact that
even deformations should be rigid once the determinant is fixed, one would consider
lifts to W(k), or a finite extension of it, with a given fixed determinant as forms,
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then will there arise new forms if one increases the set of primes that can ramj
appropriately? If above j < k or even better j = 0, then this would obviously be the
case. The natural question that occurs now is the following.

Problem 4.13. Let K be a totally real algebraic number field. Let g € Gg be
such that its image generates Gal(J,, K (¢ )/K((p)). Let A be a local complete
noetherian k- algebra. Do there exist Galois representations p : Gg — GLQ(A),
unramified outside a finite set of places, sending g to the identity, such that the image
of p is infinite? What about the special case A = F,[[T]]?

If the image is always finite, then clearly j = 0 and so all the solutions of by + boT2 4
+--+ T = 0 will give lifts to characterstic zero that lie in a finite extension of W (k).
On the other hand this question seems not so easy as a finite image in all such cases
would imply that the dimension of the universal deformation ring modulo p is one in
the even case, which might be expected, but is not known. At the same time, if in the
above example one has j > 0, then modulo p the universal deformation space would
be k[(S,T]] and thus this would provide an example where the dimension is indeed
bigger than one. These observations can be generalized as follows.

Let K be a totally real number field and p : Gx — GLo(k) an absolutely irreducible
Galois representation which is even at all infinite places. Let S be a set of places of
K, and Rs the universal deformation ring for deformations of p unramified outside
S. Let Rs = Rs/(p), I—i; the quotient of Rg for deformations with fixed determinant
equal to det(p), and T's the Galois group of the maximal outside S unramified abelian
pro- p extension of K. It is not hard to see that

Rs = Re®k[[Ts]].

Theorem 4.14. Under the assumptions of the previous paragraph, the following are
equivalent.

1. The Krull dimension of Rs is one.

2. K satisfies the Leopoldt conjecture and all deformations of p to rings R € C of
characteristic p are twist - finite.

If one wants to avoid the Leopoldt conjecture, the following equivalence holds.

1. The Krull dimension of Rfs is zero, 1. e., ]_%/5 is finite.

2. All deformations of p to rings R € C of characteristic p are twist - finite.

It is a conjecture by MAZUR, that the Krull dimension of R’S is always zero, and
so if this were true, indeed all deformations of p were twist - finite. In particular, one
could never have SLy(F,[[T)}) in the image of such a representation, or the subgroup
described in Lemma 4.12.

Proof. As the Krull dimension of k[[['s]] is always greater or equal to one, the first
equivalence follows from the second by the remark preceding the theorem.

Also if RIS is finite, then clearly the image of any deformation must be twist finite.
To show the converse, we assume that the image of g, the reduction of ps modulo

p, is twist finite. Then pY, corresponding to R’S, has finite image. Let N be the
intersection of im (p%) with the kernel of G L, (Rg) = GLy(k). Thus N is a finite p
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Jroup, $ay of exponent p Let m be the maximal ideal of RS By considering the
,ubrepresentatlons of ad® one can find elements 0; € Gx and matrices A; € GLy(k)

;]JCh that 1 T
Aipslo)AT = ( _B : l—OTv) (mod m?)

where T, ..., Ts denotes a set of generators of m/m?. If necessary, we first enlarge
t to a field k' that contains all eigenvalues of all elements of p, which can be done as

this would only replace R by R ®; k'. Then

pﬂ
<(1) ?) = Ags(o)” A7) = <1+0T1- 1 OTP,.) (mod m?"+1),

and so (TP",...,T?") € m?"*1. - It is perhaps not completely obvious, that A =

1+T: 0 2 . no_ 1+Tiv" 0
( A l—T;) (mod m*) implies that AP = ( o 1T

of characteristic p. But it can be checked by a somewhat tedious but straightforward
calculation. - This implies that

(mod m?"+1) over a ring

8

Ml (TP T e e

n =/ . . .
Hence m*” =1 = 0, and so Rg is artinian. ]

The above problem might be compared with conjectures of FONTAINE and MAZUR
[FoMa, §7] concerning representations of Gr into GL, (W (k)), F any number field,
that are unramified at all primes above p and only ramified at finitely many primes,
where as usual k& has characteristic p. They conjecture that in this case the image of
the representation must be finite.
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