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Abstract. We investigate the case of deformations of even Galois representations. Our methods 
are the group theoretic ones mainly developed by NIGEL BOSTON to study odd representations. We 
present conditions for Borel and tame cases under which the universal deformation ring is isomorphic 
to &[[TI] and where we compute the universal deformation explicitly. Furthermore we produce a 
family of examples of totally real S3 extensions which satisfy the above conditions in the tame case 
and we give examples in the Borel case. Finally we study the change of the deformation space under 
enlarging the ramification and thus give an example of an even representation that is not twist -finite. 

1. Introduction 

In 1986 MAZUR introduced the concept of deformations of Galois representations 
and showed the existence of a universal one for many reasonable sets of restrictions 
on the deformations [Maz]. Using Galois cohomology and obstruction theory, he was 
able to determine the deformation space explicitly in particularly amenable cases. He 
found examples where the universal deformation ring is isomorphic to Z,[[Tl , T2, T3]] 
for odd two-dimensional representations and to Z,[[T]] for even ones. In general, he 
was able to give a lower bound on the dimension of the deformation ring modulo the 
ideal generated by p ,  namely 3 or 1, respectively. Yet the structure of the universal 
deformation remained unclear. 

In [BoMa] the problem of explicit examples and the structure of those was addressed 
for a family of neat odd two - dimensional residual representations. Furthermore in 
[Bosl] a number of methods based on pro - p Galois theory were developed to determine 
universal deformations. A variation of these methods was presented in [BosZ] to  study 
the universal deformation under enlarging the set of primes that can ramify. Almost 
all cases considered were odd. 

1991 Mathematics Subject Classification. 1 1  R33, 11 R39. 
Keywords and phrases. Even Galois representations, universal deformations. 



86 Math. Nachr. 206 (1999) 

Our goal here is to  apply the methods in [Bosl] and (Bos21 to  study some even cases, 
In Section 2, we briefly recall the main tools from [Bosl] and some ideas behind them 
to  consider some basic deformation problems in the even case. There the image of a 
complex conjugation is either the identity or its negative, and so the splitting field is 
totally real or a CM field, respectively. In both cases, the number of indeterminates of 
the universal deformation ring depends only on the largest totally real subfield, Remark 
2.9. In the tame unobstructed case this number is one, and so the corresponding Galois 
representation is the cyclotomic p -  extension, Theorem 2.11. We also discuss those 
Borel cases which are related to  pro-p Poincarb groups, Theorem 2.12. Unlike in the 
odd case they cannot be neat as in [Bosl, 891, yet they are unobstructed and rigid in 
the sense of MAZUK. 

Section 3 contains explicit examples for the tame as well as the Borel case. In 
the tame case we will exhibit a family of totally real S, extensions together with a 
representation, that, satisfies the conditions given in Section 2. The case where we 
do not have any examples is the one where the image of the residual representation 
contains SL2(k) for some finite field k. 

The last section contains results about enlarging the set of ramified primes which are 
mostly valid for even and odd cases. We begin by collecting results based on what is 
called prime-to-adjoint in [Bosl]. Next for even dihedral cases we can compute the 
universal deformation under fairly general assumptions as long as a certain part of the 
universal deformation stays abelian, Theorem 4.5. Then we briefly revisit the results in 
[Bos2] and show how they apply in general, independently of even or odd. We observe 
that, in all cases considered, the number of relations is equal to  the cohomologically 
determined number, dimk 1-12 (Go, , a d )  , as one might expect from (Maz], see Remark 
4.10. The calculations are essentially the ones in [Bos~].  In loc. cit. in the case where 
three relations are given but two are expected, and where it is stated that the three 
are dependent, we make this more precise, by explicitly showing that one of them is 
superfluous. 

Finally we construct, examples where the universal deformation of tame cases is 
iiot twist - finitr by considering larger sets of ramification. ,All other known examples 
in  the even case seem twist-finite. Furthermore this example carries some of the 
propert,ies that one might expect by looking at  the corresponding odd case as done 
in [Bos~] ,  where one can interpret the growth of the universal deformation space by 
the appearance of new modular forms as in RIBET’S “raising the level”. The question 
that remains is if there are indeed several new lifts to  characteristic zero, 01 if there is 
a natural obstruction why there cannot be more such lifts. 

2. The basic deformation problem 

2.1. Basics 

Let k be a finite field of characteristic p > 2, p : Gal( a/()) = GQ 4 GL2(k) a 
Galois representation, G the image of p inside GL2(k) and L the Galois extension of Q 
corresponding to G. The field L is called the splitting field of p .  The representation p 
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will be called even or odd if det p(c)  is +1 or -1, respectively, where c is any complex 
conjugation in GQ. 

Let C be the category of complete noetherian local rings with residue field k and 
local ring homomorphisms which induce the identity on residue fields. If R is an 
object of C ,  then it is a quotient of W ( k ) [ [ T ] ,  . . . , T,.]] for some r. For R in C we define 
r2(R)  := ker(GLz(R) + GL2(k ) ) .  

Two lifts p,  p' : GQ + GL2(R) of p are called strictly equivalent if there is an 
M E I'2(R) such that p = Mp'M-I .  A strict equivalence class of lifts of p to  R is 
called a deformation. Given a finite set S of places of Q that contains the prime p, we 
define the functor Fs : C - - + Sets by 

Fs(R) = {deformations of p to R unramified outside S ]  . 

The following theorem is known by [Maz, Ram]. 

Theorem 2.1. If the centralizer of im(p) in GL2(k) is the set of scalar matrices, 
then Fs is representable. This means there exists a pair (Rs,ps) where Rs E C and 
PS : GQ + GL2(Rs) unramified outside S ,  unique up to isomorphism, such that 

where the isomorphism is induced from composing the representation ps with elements 
of Home (Rs,  R).  

From now on we will assume that satisfies the condition in the theorem. 

R e m a r k  2.2. There are many other interesting sets of deformation conditions - 
at least in the case of odd residual representations - that have been considered, in 
particular concerning the behavior at  the prime p .  The above references also discuss 
many such examples. 

As I'z(R) is a pro-p group, it follows that any lift p unramified outside S has 
to factor through the maximal pro-p extension of G that is a quotient of GQ and 
unramified outside S. In fact this is the extension of G by Ps, the Galois group of 
the maximal pro-p extension of L that is unramified outside all places of L above S, 
which occurs as the quotient of GQ. We denote this extension by Gs. Our approach 
to study Rs is by investigating the properties of Ps as described in [Koch]. 

Definition 2.3. For a pro-p group P we denote by @ ( P )  the Frattini subgroup of 
the F'rattini quotient P/@(P), P ,  i. e., the topological closure of [P, PIPI', and by 

i. e., the maximal elementary p- abelian quotient of P. 

Proofs of the following useful facts can be found in [Bosl, 823 or derived easily. 

L e m m a  2.4. Let P be Q pro -p group and A be a finite group of order prime to p. 
1. If r is the rank of P ,  a.  e., the minimal number of topological generators of P ,  

then E FI;. 
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2. If E is profinite containing P as a normal subgroup such that E I P  A, then E 
is  a semi-direct product of P and A.  The action of A on P is, up to conjugation, 
uniquely determined by the action on  P .  

3. If A acts on  p and V is an  A -invariant subspace, then one can find an  A - 
invariant subgroup Q in P whose generators map onto V under P + p .  Furthermore 
if N is the normal topological closure of Q i n  P ,  then 

If P, Pi are pro -p  groups with an  action of A and if we have a decreasing 
filtration {PA} of P' such that all subquotients are F,[A] -modules and such that 
HomF,IA] (9, P,!,lPA,, ) = 0 for all n, then any A - equivariant homomorphism from 
P to P' is  zero. 

5 .  For R E C ,  and A c GL2(R) one has a filtration {PA} of I'z(R) as in the 
previous part, where each subquotient is isomorphic to M z ( k ) ,  and where A acts via 
A + GL2(k) and G L 2 ( k )  via conjugation on M 2 ( k ) .  

F/V as A -modules. 
4. 

If the order of G = Gal(L/Q) = im(p) is prime to  p ,  we will call p tame. In this case, 
by part 2,  G will act, on Ps and on I ' 2 ( W ( k ) ) ,  and thus via W ( k )  + R canonically on 
any I'2(R), for R E C .  One can obtain the following equivalence of functors [Bosl, 561. 

Theorem 2.5. If p is  tame, then the functor Fs is equivalent to the functor Es on 
C given by 

E.y(R) = {G - equivariant homomorphisms f rom Ps to I'z(R)} . 

Let K be any finite Galois extension of Q with Galois group H .  For 1 a place of Q, 
Hl will denote the corresponding local Galois group. PS,K will be the Galois group 
of thc maximal pro-p  extension of I< unramified outside S. Let S' be the places of 
I< above S. By E and E ,  we denote the global and local units modulo p-powers of 
K and I ( ,  respectively (v E S'). C,, denotes the elements in the class group Cl(K) 
of order p ,  (? the class group modulo p -  powers. By class field theory one obtains the 
following exact sequence of F,[H] --modules [Koch, Satz 11.81 

(2 .1)  0 + vs --t v0 + $ E w  + F S , K  + F + 0 
WE S' 

where V0, and V s  can be described explicitly, V0 is an extension of C, by E and the 
map from 

Ecv0 + BEu 
W E S '  

is induced from the one sending global to local units. 
Regarding the Galois module structures the following is known [Bosl, BoUI]. 

Lemma 2.6. I f p  does not divide the order of H ,  then as F,[H] -modules. 
1. E @ ,pi" E p p ( K )  @ Ind irn FFZ". 

2 .  @ E ,  EF,,[H]@ ( @ I n d E , p p ) .  
U E S '  L E S - t P )  

3. cp E F .  
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We recall the classification of the subgroups of PGLz(k) [Dic, 8255, 2601. 

Theorem 2.7. I f H  is af in i te  subgroup of PGLz(k), then  one of the following holds. 
1. H is conjugate to  a subgroup of  the upper triangular matrices inside PGL2(k'), 

2. H is  conjugate to  PGLz(k') or  PSL2(k') f o r  a subfield k' of k. 
3. H is isomorphic t o  Ad, Sq, A5 or  the dihedral group D,  of order 2r f o r  some r 

k' the unique quadratic extension of k, (Bore1 case). 

not divisible by p .  

2.2. 

The next lemma ties together statements of [Maz] and [Bosl] regarding the number 
of generators of the maximal ideal of Xs = R s / ( p ) .  Let ms be the maximal ideal of 
Rsl iiis that of&. Let ad = ad, = rz(W(Ic)) 2 M2(k) with the action of G coming 
from the adjoint action of GL2(Ic) composed with the inclusion p : G + GL2(k). 
Note that the adjoint action of GL2(k) on M2(k) factors through PGL2(k), as scalar 
matrices act trivial. Also in all case ad E ktri" @ a d o  where a d o  are the matrices of 
trace zero in M2 (k). 

The number of variables of the universal  deformat ion  

Proposi t ion 2.8. Let G' be the image of  G in PGLz(k) with fixed field L', Pi 
the Galois group of the maximal  outside S unramified extension of L', and GL the  
corresponding extension of G' b y  PA. 

1. There is  a natural isomorphism Horn(iiis/(iiis)2, k) 2 HI(GQ,S, a d ) .  
2. By the inflation - restriction sequence 

0 + H ' ( G , a d )  + H ' ( G ~ , s , a d )  + H ' ( p ~ , a d ) ~  + H 2 ( G , a d )  

and one has the same sequence with Pi and G' replacing Ps and G .  I n  particular 

H' ( G Q , ~ ,  a d )  E H'(Gs/(@(Ps)), a d )  2 H 1 ( G ~ / ( @ ( P ~ ) ) ,  a d ) .  

3. If p is tame,  then 
G' H'(G~,s,ad) % H o m ( P s , a d ) G  2 H o r n ( P i , a d )  . 

Furthermore, if ad is written as a direct s u m  of irreducible k[G] -modules @ V,, then  
the Ic dimension of i i i ~ / ( i i i s ) ~  is  the number of components of Fs  @ k as a k[G] - 
module that are isomorphic to  one of the I/i 's and also the number of such components 
of pL @ k. 

Proof .  The isomorphism in 2.8 can be found in [Maz], and it reflects two ways of 
computing the set of deformations from GQ to GL2 (~[E] / (E ' ) ) .  The sequence with Ps 
in 2.8 follows if one observes that ker(P) acts trivially on ad and hence that 

G H'(ker(p),ad)G Z Horn(ker(p),ad)G E H o r n ( P s , a d )  , 
the one with PA by observing that even l<er(GQ + G') acts trivial on a d .  For the 
second half one compares the given inflation -restriction sequence with that for 

1 + Ps/@(Ps) + Gs/@(Ps)  + G + 1, 
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respectively the sequence with the primes. 
The isomorphisms in 2.8 follow from the inflation-restriction sequences in 2.8 

here we assume that the orders of G and G' are prime to p. For the last part, we need 
to decompose ad into irreducible k[G] -modules. We assumed that the centralizer of 
im(P) in GL2(k) is the set of scalars and that  the order of im(p) is prime to p, SO 

by the above classification Theorem 2.7, the image in PGLz(Ic) has to be one of the 
groups in case 2.7. In any case ad = ktriv 63 ad'. Now ad' is irreducible unless we 
are in the dihedral case in which it decomposes into a non - trivial one - dimensional 
and an irreducible two-dimensional representation for T > 2 and into three distinct 
non - trivial one - dimensional representations for r = 2. In particular the are not 
isomorphic. Now the statement about dimensions is a simple consequence of counting 
homomorphisms between modules in a semi -simple category. The case where the 
image is cyclic of order prime to p ,  which is included in the Bore1 case in Theorem 2.7, 
does not occur, as we assumed that the centralizer of im(p) consists of the homothethies 
only. 0 

Remark 2.9. 1. For even representations the image of a complex conjugation is 
the identity matrix or the negative of it. So if one considers its image in PGLz(k) 
it is the identity. By using G' in instead of G on sees that at least for infinitesimal 
deformations there is no difference bet,ween either case. This stems from the fact that 
the kernel of G + G' is of order prime to p and so all higher cohomology groups of 
this with 11-  torsion coefficients vanish. 

2. Part 2.8 can also be seen by appealing to  2.4. By combining several parts of it 
one can see that any deformation of type S of p lias to factor through an extension 
Pi  of G where Pg is a quotient of PS whose p-F'rattini quotient consists exactly of 
the components in 2.8 that  express the dimension of ii'is/(iiis) . 

3. The term H1(G,ad )  is often zero, as remarked already in [Maz], even if p is not 
tame. At the same time for p > 3, in the non-tame case, H2(G,  a d )  is never zero as 
one then has two obviously non-equivalent extensions of G by ad'. Let 

2 

d : GL2(W(k)/p2) + ( W ( k ) / p 2 ) *  and x : GL2(1V(k)/p2) + GL2(k) 

be thc determinant, map and the reduction modulo p ,  resp. Then 

7r-l (im(p)) n ker (d1'l-l) and im(p) (1 + €ad ') C GL2 ( ~ [ E ] / ( E ~ ) )  

are such extensions - one contains an element of order p 2 ,  the other doesn't. For p = 3 
bot,h have elements of order 9, so they are not necessarily different. Precise statements 
about the size of Hi(G,  a d )  are given in the following lemma for the case Ic = F,. 

Hence the difficult part in actually determining the size of H'(GQ,  ad)  from that of 
Honz(P.7, ad)G,  apart from the calculation of P S ,  is the map 

H o m ( p s , a d ) "  + H 2 ( G , a d ) .  

For given S, it is not at all apparent how to do this, as it would require explicit 
knowledge of the group G s / ( @ ( P s ) ) ,  i.e., the way in whichps is an extension of G - 
or at least that part of Ps that provides G - equivariant homomorphisms to a d .  
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On the other hand, if one assumes that S contains SO, the set consisting of p ,  00 

md the primes where p ramifies, and a set of auxiliary primes for SO as the sets 
J n  constructed in [TaWi, 541, which can be done quite generally, also for many even 
.epresentations, then by [Neu, Satz 3.11, as all the local extension problems can be 
jolved, the map H o m ( P s , a d o ) G  -+ H 2 ( G , a d o )  is surjective. Thus for p 2 5 one 
:an find surjective lifts onto S L 2 ( Z / ( p 2 ) )  if p surjects onto SL2(F , ) .  If in addition 
H2(G, FFi") = 0, one obtains a lift GQ -+ E for any extension E of G by a d .  For 
"on - split extensions such that a d o  is an irreducible F,[G] - module, the surjectivity of 
the lift onto the a d o  part follows. One can certainly improve this t o  obtain surjective 
lifts onto G L 2 ( Z / ( p 2 ) )  for surjective p onto G L 2 ( F p ) ,  provided p 2 5, after possibly 
further enlarging S .  For other solut,ioiis concerning this extension problem see [Kha]. 

L e m m a  2.10. Suppose k = F,, p 2 3. I f  G contains  a subgroup H such tha t  t h e  
image of H in P G L z ( F , )  is  isomorphic  t o  C, x Cr wi th  r > 2, t h e n  H '  (G, a d o )  = 0. 
Under the s a m e  assumptions one has H I  (G, F F i v )  = H2 (G,  F F i u )  = 0. 

I n  particular this  holds f o r  G = GL2 (F,), all p > 2, and G = SL2 (F , ) ,  all p > 5 .  
Explict calculations show dimF, HI ( S L z ( F g ) ,  a d o )  = 1 and H 1 ( S L 2 ( F 3 ) ,  a d " )  = 0 .  
Furthermore f o r  p > 3 and G the  dihedral group D ,  inside G L 2 ( F , )  one compu tes  
dimFp H' (D,, a d o )  = 1. 

For the second cohomology one f i nds  diinF, H 2 ( G ,  a d o )  = 1 for p > 3 f o r  all t he  
groups considered above, while H 2 ( S L z ( F 3 ) ,  a d o )  = 0.  

The proof follows easily from the proof in [Fla, Lemma 1.21, based on properties of 
the transfer map [Bro, II1.10.3], arid part 2.9 of the previous remark. 

2.3. The basic defo rma t ion  p r o b l e m  in tame cases 

T h e o r e m  2.11. Let p : GQ -i G L Z ( k )  be a t u m e  even irreducible representation. 
W e  denote by S a f ini te  set o f  places containing p ,  co and all places where p ramifies.  
W e  assume that  p i s  neat at  11, i. e., as k [ G ' ]  -modu les  the p quot ient  of t he  class 
group of L' has n o  c o m m o n  component  wi th  a d ,  and  t h e  cokernel of E + eves, E ,  
tensored w i th  k has only ktrio as  (L c o m m o n  component  wi th  a d .  Let  po : G -+ 
G L 2 ( W ( k ) )  be a gizien lift of p .  Let  L" be the cyclotomic p ex t ens ion  of L .  T h e n  t h e  
universal de format ion  (ps ,  Rs)  of 

ji  : GQ -+ G L 2 ( k )  

factors  through Gal (L" /Q)  E Z,xG, Rs is  isomorphic  to  W ( k ) [ [ T ] ] ,  and if y is a f i xed  
topological generator of  Z, E G a l ( L " / L ) ,  t h e n  ps : Gal (L" /Q)  -+ G L 2 ( M / ( k ) [ [ T ] ] )  i s  
explicitly given by po o n  G and by srnding y t o  (I  + T )  t i m e s  the  ident i ty  m a t r i x .  

P r o o f .  By Lemma 2.6 and Proposition 2.8, the conditions that  we impose are equiv- 
alent to K s / ( i i ~ s ) ~  E ktr*".  By t,he remark above this implies t ha t  ps factors though 
a pro-p extension P: of G whose p Frattini quotient is isomorphic t o  FFiu  and which 
is unramified outside S .  But the cyclotomic p extension of L is such an extension, 
so its Galois group which is isomorphic to Z, must be P,g. As L ,  LQ", Q" the 
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cyclotomic p extension of Q, G has to  act trivially on Gal(L”/L). The choice of pa 
fixes the ambiguity that arises as one considers lifts up to  strict equivalence. a 

2.4. The deformation problem for some Borel cases 

Now we consider the case where G lies inside the upper triangular matrices of GL2(k) 
and has non - trivial image in the unipotent as well as in the diagonal part of PGLz (k). 
Those conditions are, up to  base change, equivalent to the condtion that the centralizer 
of G in GL2(k) is the set of homotethies, as needed in Theorem 2.1. Hence we will 
assume these conditions throughout this subsection. 

The group G is clearly solvable, and if we denote by A the diagonal matrices in G, 
and by U the unipotent part, then 

1 - - t U  + G - +  A +  1.  

The field with A as its Galois group is denoted by F and it is obviously an abelian 
extension of Q. We assume that the image of G is inside the upper triangular matrices. 
Again we want to study pro-p extensions of G. The fact that  p does divide G seems 
a problem at first, but, one observes that the extension of U by a pro-p group is a 
pro-p group itself, and so the idea is to  let A act on this pro-p group. 

We denote by A’ the quotient to  A in PGLz(k). If A acts via the characters X I ,  x2 
on the diagonal inside GLZ(k), we define x = xlx;’ which is then a character of A’ 
into k*. The A - module structure on ad, is the one given by trivial action along the 
diagonal, by x on the right upper corner and by x-l on the lower left corner. In 
particular, if x has order two the latter two modules are isomorphic, and vice versa - 
order one is excluded by the condition on the centralizer of G in GLz(k). 

Unlike in the odd caSe [Bosl, $91, the: deformation problem that  we have to consider 
here cannot be neat above F or L. If it were neat above L,  then by [Mov, Prop. 51, 
it would have to be neat above F ,  too. But in the neat even case, the only extension 
possible is the cyclotomic one with a trivial A action on the p F’rattini quotient. But 
U has a non - trivial action by A .  On the other hand the case that we will consider 
below is unobstructed in the sense of MAZUR, i.e., H 2 ( G ~ , s , a d )  = 0. As we are 
in the even case this means that dimk H ’ ( G ~ , s , a d )  = 1 or in other words that 
after fixing the det,erminant,, the lifts to Z, are rigid. As we calculate the universal 
deformation explicitely, this can also be seen by simply examining it for t,he case of 
fixed determinant. 

The case next, simple to  the case of PS being a free pro-p group, is the case that 
Ps is a PoincarB group. Fortunately there is a complete characterization of those in 
[Winl]. At the same time it is not hard to determine the most, general non-abelian 
pro-p group on two generators that  can fit into GL2(;Z,) with a lift of the action of 
A on it, where the image of one generator in U is the matrix (A :). It turns out that 
this itself is a Poincari! group, and so this concept seems to be ideally suited to our 
problem. Regarding PoincarB quotients of Ps, one should also consult the excellent 
survey article [Win2, Theorem 61 and bear in mind that for even Galois representation 
the field L, if totally complex, is always a CM field. An alternative approach to  the 
Borel case as treated here would be the use of Iwasawa theory, as the image of our 
deformations will have to be metabelian. 
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For the next theorem, we will simply assume that  Ps is a Poincark group. Later in 
proposition 3.7, we will give more precise conditions and examples for this t o  happen. 
If Ps has a quotient that  is a Poincark group of the type described below, then one 
can at least conclude that  the universal deformation ring surjects onto the ring given 
in the following theorem, and that there are lifts to  characteristic zero. 

Theorem 2.12. Let p : GQ + GL2(k)  be upper triangular as described above. W e  
assume that S contains p ,  0;) and the primes where p ramifies, and is such that Ps,J, 
the Galois group of the maximal pro-p extension of F unramified outside S, is a 
Poincare' group of rank two, i. e.  , 

Ps = s ,  t l s t s - I t -  - t ( I -  ,"> 
for some n 2 1. Equivalently Ps is a semi - direct product of Z, acting non - trivially 
on Z,. The number n can be determined f rom Pt', a .  e., f rom global class field theory. 

Then we can pick s ,  t so that A acts trivially on s and via x on t .  Furthermore 
Rs = W ( k ) [ [ T ] ]  and the universal deformation is given b y  

GQ + Ps A -+ G L 2 ( W ( k ) [ [ T ] ] )  

where the second map is p composed with the Teichmuller lift k' x k* -i W ( k ) *  x W ( k ) *  
on A ,  and on s , t  it is given b y  

~ ( ( 1 + T ) ( l + P n )  
0 l + T  

P r o o f .  By our assumption 

Ps E (s, t ) [ s , t ]  = t p n )  , 

and so every element of Ps can be written in the form satS with a,  /3 E Z,. Now 
we consider the following diagram where the horizontal arrows are surjective and the 
bottom row represents the p Frattini quotients. 

9 ps- Z, 

The group Z, on the top right is the Galois group of the maximal cyclotomic 
p -  extension of F ,  hence it has trivial A action. The whole diagram is A - equivariant. 
Furthermore p s  2 FFi" @ F: by our assumption on p .  

To identify the A action, let CJ be a generator of Z,, let s' = sato be a lift in Ps 
that maps to  an element in Ps with trivial A action. Then the subgroup generated 
in Ps by s' must be Z, and by the uniqueness of an A action, Lemma 2.4, A has to  
act trivially on this subgroup. In particularly the map g splits A - equivariantly. By 
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considering the map on p F'rattini quotients and using the fact that t gets mapped to 
0 in Z,, the element (Y must be a unit in Z,. If we replace s by s' which does not 
change the relation in Ps we may assume that s' = s. 

Regarding the action of A on t ,  it is clear that the kernel of 3 is exactly the part of 
Ps  on which A acts as x. As the image o f t  generates this kernel, A acts via x on the 
image of t and hence by the uniqueness of such an operation it acts in the same way 
on the subgroup generated by t .  

We fix the lift from A to the diagonal of GL2(W(lc)) that was described in the 
statement of the theorem. Using this, any lift p : GQ + GL2(R) of fi  induces an 
A -equivariant map Ps GL2(R). A acts trivial on s, and so its image has to be a 
diagonal matrix of the typc 1:T2) with T, E m the maximal ideal of R. The 
action of A on the image of t is given by x and its reduction modulo m generates 
U .  Hence it is of the form (A T) where x is a unit in R. By replacing t by a 
prime to p power with an exponent in Z; we can achieve x = 1. After fixing the 
image of A and t we used up all the freedom given by considering lifts up to strict 
equivalence. Finally from the commutativity relation between s and t it follows that 
1 + TI = (1 + T2)(1 + p") .  Now it is easy to see that R s  and ps as given satisfy the 

- 

neressary universality condition. 0 

3. Examples 

3.1. A family of examples  in  the tame case 

Here we will construct an explicit family of polynomials analogous to the construction 
in [BoMa] which satisfy the conditions in Theorem 2.11. 

Let, f (x) = x3 - a2x - 1 where a 2 2 is an integer such that p = 4aG - 27 is prime. 
Then clearly p 1 (mod 4).  The splitting field L of f over Q is totally real with 
Galois group 5'3.  In fact, L is inside the Hilbert class field F = a(&), which is 
obvious as p is the discriminant of the above polynomial. Hence the only prime that 
ramifies in L over Q is p .  So we let S = { p } .  The prime p 2 229 will also be the 
residue characteristic of the finite field that we consider. The reason why we choose 
the coefficient of x to be -a2 ,  and not just -a ,  is to have explicit expressions for 
fundamental units as will be apparent later on. 

We obtain a continuous absolutely irreducible even representation 

p : GQ + Gal(L/Q) S3 -+ GL2(F,). 

For S3 -) GL2 (Fp) one can take for example the reduction mod p of the representation 
po : S:j + GL2(Z[$]) given in [BoMa, Prop. 111. 

Theorem 3.1. Let L be the splitting field off (x) = x3 - a2x - 1 where a 2 2 is an 
integer, such that p = 4aG - 27 is prime. Assume that p satisfies the Ankeney - Artin - 
Chowla conjecture and the following congruence condition: 

("(&) -1 ) (2a3+9) /6 -  (.(-) 3 -1) 
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1 
243 

f - (4a6 - 27) (9/4 + a3)  (mod (4a6 - 27)2) 

h e r e  f o r  x E Z, we let u ( x )  = x / x p .  T h e n  p satisfies the assumptions of Theorem 
!.ll. 

The Ankeney - Artin - Chowla conjecture predicts that for any prime p 1 (mod 4) 
,he coefficient B in the expression u = A + B f i  for the fundamental unit is not 
livisible by p ,  see [AAC]. 

According to Bouniakowski's conjecture there are infinitely many primes of the form 
la6 - 27. In fact he conjectures that all polynomial expressions g(z ) ,  apart from the 
ines that have a trivial integral divisor due to congruences, represent infinitely many 
)rimes; here a prime q is such a divisor if g(x)  (mod q)  is divisible by zq - z over 
Fq[x]. In fact using PARI-gp, one can show that the conditions given in the above 
;heorem are satisfied for all the 108 primes that arise for a between 2 and 1000. 

To prove the theorem we will show that the p part of the class group CZ(L) is zero 
md that the map L : EL --t  EL^ is injective. Hence by 2.6 and the sequence 
(2.1) above it this will imply that the cokernel is isomorphic to Fra" which was to be 
shown. The proofs of those facts will be the content of the following two subsections. 
We begin be fixing the notation for the calculations to come, and exhibiting some 
dementary properties of L. 

Let a, (i = 1 , 2 , 3 )  be the three roots of f in L and let S 3  have generators T, u where 
r has order 3 and u has order 2, and r permutes the three roots ai cyclically. We let 
K ,  = Q(a,). Sometimes we will refer to  K1 as K ,  to K2 as K T  and to  K3 as Kr' ,  and 
as above F = Q( 4) .  For any number field M we denote by EM its group of global 
units and by EM" the group of local units at a place v. We will suppress M from the 
notation if it is clear from the context. 

Regarding the factorization of ( p )  in the above fields, one observes that ( p )  = ( T ) ~  in 
F ,  where T = fi, and that ( T )  splits completely in L ,  say T = !J31?2Y3 corresponding 
to the above fields Ki.  To investigate how ( p )  splits in K ,  we compute f modulo p as 

f(.) = (.+ &)2(x  - $) . 
Thus ( p )  = p1pi in OK with prime ideals P I  and p 2 ,  and we must have p1 = 9; and 

From this decomposition of ( p )  we conclude that K,, is isomorphic to Qpr and K p 2  
is isomorphic to the unique totally ramified extension of degree 2 of Q,, and so are 
Lpi for i = 1 , 2 , 3  and E, with the obvious identifications. 

P2 = ! J 3 2 9 3 .  

3.2. The class group of L 

To begin we shall compute the fundamental units and the regulator of K .  

Proposition 3.2. For a 2 3, p = 4a6 - 27 and K as above we have 
1. 121 and a1 + a f o r m  a sys tem of fundamental  un i t s  f o r  K .  
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2. T h e  regulator RK of K satisfies 

31og2a+2loga > RK > log2a-0.310ga. 

P roof .  Part  3.2 follows from [Ste, Satz 7, S.1731 after replacing z by z + a. 
For part 3.2 one uses the definition of the regulator as the determinant of the loga- 

rithms of the embeddings of a system of fundamental units, RK =log la1 I log la2 +a[  - 
logla2110glal + al, where we assume that the ai are ordered so that a1 > a2 > as. 
To get the estimates one only needs the following estimates on the roots: 

0 

Proposition 3.3. T h e  class number  of L i s  n o t  divisible by  p .  

Proof .  We follow the method in MAZUR [Maz, Thm IV. l ,  S. 671. From results of 
MOSER who applies BRAUER’S theory of computing the class number of L through the 
class numbers of its subfields [Mos], we know that hL = f h%hE, where c E {1,3,9} .  
Thus we are reduced to  showing that p doesn’t divide either of h E  or h K .  

For h E  one can quote the result in [Nar, VIII.2., Prop 8.21 which says that h E  5 4. 
For h K  one can find in [Nar, p. 4011 the inequality 

which 
Rl< > 

which 

3.3. 

R K ~ K  < .088&l0g2(p) 

was obtained by LAVRIK. From the previous corollary we have the estimate 
log2 a ( 3  - &$) where a6 = ( p  + 27)/4. We get 

log2 P hi< < 1.3& 
log2 ( p  + 27)/4 

is always less than p as p 2 229, the minimal p that, can occur (for a = 3). 0 

The injectivity of L L  : EL + $ v l p E ~ ,  
As one has neither local nor global p -  th roots of unity, by Dirichlet’s unit theorem 

we know that E L  is a five - dimensional F, vector space. Thus to show injectivity, we 
are going to show that t,he image of L L  has dimension five. This will be accomplished 
by considering the corresponding maps LF and LI( and their relations to L L .  Note that 
by results of MOSEH. [Mos, Thm 111.5, S. 621, one has 

[EL : EKEK-EI; . )  = C ,  

where c E { 1,3,9},  and thus E L  = E K E K ,  EF for the p -  F’rattini quotients. 
From 2.6 we know that eVlp EL,  2 F,[S3] where 5’3 2 Gal(L/Q). So we have 

$ E L ”  
PIP 

Ftriv CB F“ CB 1’2 CB Vz 

with F“ the one-dimensional representation on which r7 acts non trivially and V2 the 
unique irreducible two - dimensional representation. 
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Lemma 3.4. The image of ,!?F under L L  is F“ inside eVlp EL”.  
Proof .  We consider the following diagram: 

As F and hence F,, are 7 -invariant this diagram is a diagram of FP[S3] - modules. 
The action of (T on EF sends a fundamental unit uo to fu;’; thus it acts on EF as 
the map sending 5 to  -5. 

At. this point we need the Ankeney - Artin - Chowla conjecture. Let uo = A + B f i  
be a fundamental unit of E .  By the the conjecture we know that  is a unit in F,. 
For any p we have that  fi is a uniformizing parameter in F, . Therefore 1 + :fi, 
the image of uo in EF, , is nonzero, and so LF is injective. Finally the left vertical map 

0 

We have already seen that  a 
and a + a form a set of fundamental units of I<. Without loss of generality we assume 
that K is the CJ - invariant subfield of L. 

is clearly injective, too, establishing the lemma. 

Next we will compute the image of El( inE,cpl 

Lemma 3.5. The mup LI(  : E K  t 

Proof .  We will show that, the images of a and a + a are linearly independent in 
by explicitly computing them. Say 711 is a uniformizing parameter of K p 2 .  Then 

@ EK,, is injective. 

EK,, E F; x (1 + ( T I ) )  g I +  ( T I )  

E F, x F,. 

The second isomorphism involves Teichiniiller lifts. For any 2 E Z; one can write 
x = W ( Z ) I L  where u is a one-unit, and W ( X )  is a ( p  - I ) - s t  root of unity. Modulo 
(1 + ( T I ) ) ,  one can compute u as U(X) = x/xP. 

Knowing that f(x) (x + &) (X - 3 )  (mod p ) ,  it is an easy exercise to see that  
B = a + & is a uniformizing parameter of K P 2 ,  and thus we can assume T I  = B. 
From the identification in ( 2 )  we get 

2 

- -3 2a2 
QI = - 2a2 + T I  = ?L(S)  (1 - 3 ~ ~ )  and 

-3 2a2 
2a2 a 1 S a  = -+a++’  = u - (3.3) 
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C l e a r l y 6  is not trivial, Le., equal to I, as it is non-trivial modulo (n?),  and so to 
establish linear independence it is enough to show that al+a cannot be written as a 
power of &. Assume the contrary. Then we can find an integer k such that 

2a2 

One obtains two equations modulo p .  The first one arises by considering this modulo 
7r: and yields Ic & (mod p ) .  Using this after subtracting 1 on both sides one 
has an equation with leading term n?. This equation can be transformed to the first 
congruence condition given in Theorem 3.1. One needs to replace p by an expression 
in T:. To do this we observe that, ~1 - & satisfies x3 - a2x - 1 = 0, which implies 
p 3Ga4n! (mod n;) .  0 

Next we note that, the image ofEQp in eVlP EL" is exactly the trivial one- dimensional 

Denote by H the image of EK in eVlP EL, , where we consider the diagram 
part I/triv. 

Lemma 3.6. H and FtTiv  intersect trivially in EL,, and H has dimension 
two in eVIP E L , .  

Proof .  This is an easy consequence of 2.6 where the Fp[G] structures of the two 
groups a t  the bottom are described. As the above diagram commut,es, H is clearly in 
the image of E L .  But as an F,[G] -module this does not, contain ,Pi" as a summand. 
The bottom map is a map of F,[G] - modules, and hence the image of H cannot meet 
the Friu.  The statement about the dimension follows as the horizontal map on the 

P roof .  Now we prove the injectivity of LL.  As K is the u-invariant subfield of 
L ,  it follows that N is u-invariant. Clearly Ftriv is u-invariant, too, and by the 
previous lemmas those two subspaces together span a three - dimensional (T - invariant 
subspace of $ V l p E ~ ,  Fp[S3]. By representation theory this must be the set of 
all u - invariant elements. Thus the 7 - orbit of H must, coincide with V2 @ V2 inside - 
eVIP EL,. But, the 7-orbit of H is the sum of the images of El( ,  EKT and EK,z 
and thus inside the image of EL. Hence the image of contains V2 69 172 and also Fu, 

0 

right, is injective. 0 

- -  

the image of EF. Therefore it must have dimension at  least 5. 

3.4. Examples in the Bore1 case 

We now describe conditions which are derived from [Winl, Cor.] under which PS,F 
is a PoincarC group which appears at, the base level of a universal deformation of 
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residual Bore1 type as described in Theorem 2.12. In fact we will use the conditions 
given in (Koch, Satz 11.161 which are equivalent to those above in the case d = 1 in 
the notation of [Koch, Satz 11.161. 

Let F be a totally real cyclic extension of Q of degree m prime to p that  is unramified 
at all primes q such that N ( q )  E 1 (mod p )  for q in F above q. We assume that 
VS,F = 0 so in particular the p part of the class group of F is trivial and F has no 
local roots of unity at  p. Let q be a prime that is inert for F/Q and so that A, 
which is isomorphic to A acts as x on p p ( F , ) .  By the Cebotarev density theorem 
there exists a set of positive density with this property. Let L be the extension of 
degree p corresponding by global class field theory to the image of E,/EF in the five 
term sequence (2.1). Then Gal(L/F) 2 Eq/E,” S F; as an A-module, and thus 
Gal(L/Q) 2 C, >a C,. We now choose f large enough so that m divides pf - 1 and 
let Ic = FPt , Thus we obtain a representation 

p : Gal(F/Q) 4 GL2(Ic) 

with upper triangular image. Let n = ord,(qm - 1). 

Proposi t ion 3.7. Under the above assumptions PS,F is a Poincare‘ group of rank 
two and the universal deformation of p is as described in 2.12. 

In the case m = 2, and ramification at  p one can give particularly simple conditions 
under which all the above holds. As mentioned above the existence of q is irrelevant, 
as by Cebotarev there always exists an infinite number. For F = Q( a),  where d > 0 
is square free, the above conditions mean that d has no prime divisors 1 1 (mod p ) ,  
p divides d, and if u = A + B& is a fundamental unit of F ,  then B f 0 (mod p ) .  

4. Enlarging the ramification 

4.1. The principle of pr ime - to  - adjointness 

In this subsection we assume that p is absolutely irreducible and that im(p) has 
order prime top ,  so projected onto PGL2(lc) its image is dihedral or Ad, 5’4 or As. We 
will call the first case projectively dihedral and the other ones exceptional. Note that 
projectively dihedral means that im(p) is non - abelian and contained in the normalizer 
of a Cartan subgroup of GL2(k). 

As we have seen in Lemma 2.4, mainly part 4, and Proposition 2.8, the part of Ps 
that is really relevant is the part that is, loosely speaking, not prime to the adjoint 
representation. The way that Ps maps into r2(R) depends largely on the way that its 
p Frattini quotient maps G-equivariantly to ad .  This is made explicit in Corollary 
4.3. Again the method we use goes back to [Bosl] and the following two lemmas are 
implicitly from there. 

We begin by briefly recalling the possible module structures of ad under any sub- 
groups of GL2(Ic) of order prime to  p .  
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Lemma 4.1. Let H be a subgroup of GL2(k)  and acting on ad in this way. Assume 

1. If H is inside the scalars, then ad E ( k t r i v ) . l .  
2.  If H is inside a split Cartan subgroup, but not in the center, then ad g ( k t r i v ) 2  

k @ H  @ k@i'  for some character 4 H .  4~ can be made explicit i f  we assume that the 
elements of H are 2 b y  2 matrices x = (x i ,3)  in diagonal f o r m .  Then ~ H ( x )  = X ~ J X ; ;  

for x E H .  
3. If H is not in the center, but inside a non-split Cartan subgroup, then ad s 

( k t r i v ) 2  8, Vz for some irreducible representation V2 of H .  
4. If H is projectively dihedral, and $ is the action of the C, quotient of H that 

sends x E k to -2, then ad g ktriv 8, k @  @ V2 for some irreducible VZ.  
5. In all other cases ad 2 ktriv  @ ad' where ad' is irreducible. 

For primes g # p ,  we saw in the description of Ps in 2.6 and the paragraph above 
that increasing S to S' = S U { q }  enlarges Fs by a summand that is a quotient of 
Ind Eqx where x is the action of G, on the local p -  th roots of unity, tensored with k, 
where we choose a prime q in L over q.  Replacing H by G, after applying F'robenius 
reciprocity, one obtains the following lemma, where the cases are numbered as in the 
previous lemma. 

p ; l l H l .  Then the structure of ad as a k [ H ]  -module is one of the following. 

Lemma 4.2. ad and Ind Eqx share the following irreducible k(G] -modules as sum- 

1. If  x is non - trivial, there is no common summand, else they share all of a d .  
2. If x # triv, d ~ ~ ,  @it, there is no common summand. If x = triv, they share 

p a 1  and one other irreducible summand of ad whose restriction to G,  is trivial. In 
the other two cases they share a summand that is inside ad' .  

3. If x # triv they share no common summand, else they share ktr'l" and one other 
irreducible summand of a d .  

4. If x # triv, 1c, there is no common summand, for x = triv they share kiriV,  and 
for x = 1c, one summand of ad' .  

5. If x # triu they share n o  common summand, else they share k t r i v .  
If G is pi,ojectively dihedral, say  1 3 GI -+ G --f C2 --t 1 with GI abelian, then they 
share ktrrl '  @ k* provided that x = triv in case 4.2, or that G, C GI and x = triv in 
case 4.2, or that x = 1c, in case 4.2, or that x = tTiv in case 4.2. 

mands. 

Cases 4.2 and 4.2 can obviously only occur at primes that ramify in L.  If g doesn't 
ramify, then cases 4.2 and 4.2 are exactly those where the image of the Frobenius 
element at, q has distinct eigenvalues. The following result is immediate. 

Corollary 4.3. Assunic V s  = 0. If we increase S b y  a prime q such that G, is 
abclian or exceptional and that x # triv, & G ~ ,  4;; then ( P S I ,  Rsl) g (ps ,  R s ) .  

Proof .  By Theorem 2.5, we only need to compare G-equivariant maps from Ps 
and PSI to  r2 (R) .  By Lemma 2.4, r 2 ( R )  has a filtration with all subquotients being 
isomorphic to  a d .  Also as we assume VS = 0, = Ps CB IndEgX. By the same 
lemma any element of Pst with non - trivial image in the Frattini quotient with image 



fjijckle, Deformations of Galois Representations 101 

completely inside IndgqX must map t o  the identity in r2(R) under a G-equivariant 
homomorphism. Let N be the normal subgroup generated by such elements. Then, 
again by the same lemma Psl/N maps onto Ps and they have isomorphic F'rattini 
quotients. Furthermore, again as V s  = 0, by [Koch, 5111, all relations necessary in 
presentations of Ps and PSI are local. So Ps,/N has all the relations of Ps and two 
more, expressible in fixed lifts of generators of the Rat t ini  quotient of the former. 
Thus as the former maps onto the latter group and as they have isomorphic Frattini 
quotients they must be isomorphic. Hence 

R e m a r k  4.4. In fact a more careful analysis shows that the above lemma also holds 
if one doesn't assume that  lis = 0. To see this one has to  strengthen part 4 of Lemma 
2.4 to  include the influence of relations. One can further improve this lemma t o  a 
version where one doesn't have t o  assume that A has order prime t o  p ,  by replacing A 
by a profinite group that is the extension of a finite group (with order not necessarily 
prime to  p )  by a pro-p group and that  acts continuously on P, P'. Here one can 
take A = Gs. Then the relevant condition for the previous corollary to hold is that  
H o m ~ ( I n d ~ q ~ l a d ' * )  = 0 where now G = im(p) is not supposed t o  be prime t o  p .  
The superscript, "s. s." refers to the semisimplification of ad as a G - module. Only in 
the Bore1 case ad and ad * * are different, but even there the corollary still holds. 

4.2. A r e su l t  in the project ively d ihedra l  case 

In the case that, p is odd, already if ij is neat at p one has three free parameters and 
the deformations to GL2 (Z,) have typically a rather large image. Not so in the even 
case where we showed that  in the case where p is neat a t  p there is only one parameter, 
which acts as a scalar. Thus the image is rathex restricted. This observation can be 
used nicely in the pr~ject~ively dihedral case to determine the universal deformation 
for larger sets S than just S = { p , o o }  provided that on(. confines the image of Ps 
in such a way that. it. is abelian. Then one can describe the universal deformation 
to the extent that one can describe abelian extensions of number fields via class field 
theory. Essentially one can freely add primes for which the image of Frob, has distinct 
eigenvalues and lies inside GI = p ( G s l ( L / F ) ) ,  where F is the quadratic subfield 
corresponding to the canonical C, quotient of any projectively dihedral group - or 
a fixed Cz quotient, if the image of p in PGLz(k)  is isomorphic t o  D2. 

T h e o r e m  4.5. Given  p, f, po such  that G i s  projectively dihedral and that  n o  
irreducible k[G] - submodule of PSNk is  isomorphic  t o  the two  - dimensional  irreducible 
k[G] component  of a d .  Let  F,$' be the  max imal  abelian p - ex tens ion  of F unramif ied 
outside S ,  l? i ts  Galois group over  F arid L" = LF:b. As the  order of G is p r i m e  t o  
p ,  r = Pi'' @ I?" uihere G acts triviallg O I L  rtriu and n o n  - trivially via G a l ( F / Q )  o n  
rF. We assume  that po m a p s  the  e1ement.s of Gal (L/F)  t o  diagonal matrices ,  which 
can be done  by a n  appropriate choice of basis f o r  the representat ion described by po 
provided k i s  large enough. T h e n  t h e  universal deformation of p ,  unramified outside 
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S, is given by Rs = W ( k ) [ [ r ] ]  and 

ps : GQ ----f Gal(Lm/Q) E (GaZ(L/F) x r) K Gal(F/Q) + GL2(W(k)[[r]] )  

up to isomorphtsm, where the first m a p  is the canonical surjection and the second is 
given by  po on G ,  by  sending y E rtriu t o  y times the identity matrix, and b y  sending 
y E rF to the diagonal matrix with diagonal (y ,y- l ) .  

Proof .  We fix a lift of G to GLz(W(k)) such that GI has its image inside the 
diagonal matrices. Our assumptions on Ps are chosen so that its image in GL2(R) for 
any deformation p to R has to lie inside the commutator subgroup of GI considered 
as a subgroup of GL2(R), because the part of PS that is prime to ad is irrelevant. 
But this is the set of diagonal matrices which is commutative. Hence Ps + GL2(R) 
factors through Ptb. 

Let PS be the maximal quotient of Ftb whose p F'rattini quotient is the 
k[G] - submodule of Fs that consists of all components isomorphic to ktri" or k*, 
$ the non-trivial C2 action on k. Then Gal(L/F) acts trivially on the p Ft-attini 
quotient of Ps, hence on the whole group. This implies that the corresponding Galois 
extension is already defined over F. Thus this extension over F must be a subexten- 
sion of F i b  as defined in the statement of the theorem. Clearly F i b  and L are disjoint 
over F and thus Lc0 as a tensor product is well-defined. 

The structure of I' is also clear, as the Leopoldt conjecture is trivially true over a 
real quadratic field, and it implies that I' modulo the Galois group of the maximal 
cyclotomic p extension is finite. Finally, the image of inside the diagonal matrices is 
uniquely deteririined by the action of Gal(F/Q) Z Cz. Using this it is easy to verify 

0 the above claims concerning (Rs ,  ps).  

Remark 4.6. 1. The last paragraph of Lemma 4.2 lists all instances where Theorem 
4.5 still applies after enlarging S to S' = S U { q }  and where (Rs ,  p s )  is different from 

2 .  Theorem 4.5 also allows contributions from the class group as long as they do 
not, contain the two - dimensional irreducible component of ad . 

3. The assumption on the shape of the image of p ,  respectively its lift to GL2(W(k)), 
is superfluous. The conclusion still holds with the exception that the images of the 
elements of rF are slightly more difficult to describe. 

4. One can formulate Theorem 4.5 also for tame, exceptional G. The condition 
then is simply that the only k[G]-module that ad and Fs @ k share is ktr iu l  or 
equivalently that ado is not, contained in Fs.  Yet on closer inspection, it turns out 
that,, in the exceptional case, these assumptions are almost equivalent to those in the 
basic Theorem 2.11. The oiily case in which this result is stronger than 2.11 is when 
the splitting field L is wildly ramified with local Galois group surjecting onto Ad or 
S, - at least the former case can occur which one can easily conclude from part of 
Lemma 2.6 applied to Q((7). The argument is the following. 

contains a copy of ,Pi.. This means that there is an unramified 
Z / ( p )  extension G of G on which G acts trivially. It is not hard to see that this 
implies G = G x Z / ( p ) .  Then it would follow that there exists an unramified non- 
trivial extension of Q, a clear contradiction. 

(Rst 1 PS' 1. 

Suppose that 
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Suppose we have a prime 9 in S such that  L, contains p -  t h  roots of unity and such 
that the corresponding part Ind gq p p  of Ps contains FE’”. By F’robenius reciprocity 
this means that G, must act. trivially on ppl i .e. ,  that  the p - t h  roots of unity are 
already in Qq. One can now go through the classification in Lemma 4.2. This implies 
that one must be in case (v). As G, is solvable, its quotient, in PGL2(lc) must be 
either A4 or S4, and hence 9 = 2 - the absolute Galois group of Q, is an extension of 
(2/2,) M 2 by a pro - q group. 

E ,  always contains exactly one copy of FFau by 
Lemma 2.6, our analysis above is sufficient in light, of sequence (1) above Lemma 2.6. 

As the cokernel of E + 

4.3. The universal deformation space under enlarging ramification 

Here we will simply revisit [Bos2] in order to  see t o  what extend the results there on 
enlarging the ramification are still valid for even Galois representation. In fact i t  turns 
out that all of the results there, that  are not alluding t o  modular forms, remain valid 
and that the assumptions a p  rt(1 + p )  (mod 1) and p $ 1 (mod 1) - in the notation 
from there - can be replaced by slightly more general assumptions. The reason for 
having those assumptions in (Bos21 was simply that  those are exactly the assumptions 
that one needs in the case corresponding to modular forms of weight two and trivial 
charact.er . 

Unlike in [Bos~] ,  there seems t o  be no interpretation of the results about increasing 
the ramification in the even case, mainly clue to  the lack of some kind of forms that  
would naturally producc even representations. In some rare cases there seem t o  be 
relations to  hilaass forms and two - dirnensional complex Galois representations - see 
[Boe]. Yet the exa.mple at. the end of this section does suggest, that  increasing the 
number of primes that can ramify has similar effects as in the odd case. Although 
the main question - namely the existencc of new deformations to characteristic zero 
cannot be answered. 

We will begin by stating a theorem on the effect on the universal deformat,ion of 
enlarging the set, of primes that can ramify, which holds for even and odd representa- 
tions. Thc proof is a simple modification of Sections 1 and 2 in [Bos2] and for the part  
fo  = 1 of [TaWi, Lemma, p. 5691. Except for one little calculation in the case fo = 2 
in Theorem 4.7, we will just, state the necessary lemmas arid leave the verifications t o  
the reader, see [Bos~] .  For a deformation -~ theoretic motivation why the number of 
relations should be the number that we give and that  was given in (Bos21, we refer t o  
Remark 4.10. 

Let, p : GQ + GL2(k) be any representation such that the centralizer of ~ ( G Q )  is 
exactly the scalar matrices. p can be even or odd with splitting field L.  We let S be 
a finite set, of rational primes containing p .  We let, q be a prime not in S, q a prime in 
L above q ,  f = lGql, fo = min{m I y”’ E 1 (mod p ) }  and denote by [ the fo-tlh root 
of unity in F, (or its Teichmuller lift. to Z,) such that, < 

1. p(Frob,) has distinct, eigenvalues, in k ,  so p(F’rob,) - d (A :) where we denote 

2. L is unramified at  9. 
3. Nq = 1 (mod p ) .  

q (mod p ) .  We assume 

by the element in k’ as well a.s its lift to  TV(k)*. 
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4. E E {Krl}* 
Note that unless the last two conditions are satisfied, the universal deformations for 

S and for S’ = S U { q }  agree, by prime - to - adjointness, Corollary 4.3 and the remark 
after it. 

Theorem 4.7. Assume the above assumptions are satisfied and let S’ = S U { q } ,  

1. If fo > 2,  then there exist power series r l ,  . . . , rn,  @ E W ( k ) [ [ T l , .  . . lTm,T]] ,  
Then 

such that if r = T(q - @) , then 

RS 2 W ( k ) [ [ T l ,  * .  * 1 Tni, T ] ] / ( r l , . .  . ,rnrr) 

and Rs E W(lc)[[Tl , . .  . , T m ] ] / ( f l , .  . . , F , )  where ri (mod T )  = f i .  

2.  If fo = 2 (so C = E = -l), given T ,  U and V = d m  E W(k)[[U,T]] ,  we 
define hi for i = 0 , 1 , .  . . to  be the polynomials in V satisfying the recurrence relation 
hi+l - 2Vhi + hi-l = 0 with ho = 0 ,  hl = 1. Then there are power series r1, .  . . , r,, 0, 
inthcringW(k)[[Tl ,  . . . ,  T,,,,T,U]], suchthat 2 f s = T ( h q - @ - ’ ) ,  t = U ( h , - @ ) ,  
then 

RSJ 2 I.l/’(lc)[[T~,. . . , T,,T, U ] ] / ( r l  , . .  . ,r,, s, t )  

and Rs 2 IY(k ) [ [T l , .  . . , T m ] ] / ( f l , .  . . , F n )  where ri (mod (T ,  U ) )  = fi. 
1 (mod p ” ’ ) } .  Then there are power series 

r l , .  . . , r,, in the ring W ( k ) [ [ T l , .  . . , T,,, U I T ] ] ,  such that if s = (1 + U)P - 1, t = 
(1 + T ) ~ J ~  - I ,  the71 

3. If fo = 1, let N = max{m I q 
N 

RS 14’(k)[[T1,. . . ,T,,,, T ,  U ] ] / ( r l , .  . . , r n l  s, t )  

and Rs E W ( k ) [ [ T l , .  . . , Tn,]]/(F1 , . .  . , f n )  where T ,  (mod (T ,  U ) )  = F,. 
The corresponding map a : Rsl + Rs sends T ,  resp. U and T to  0 .  

Lemma 4.8. The Galois group over Qq of t he  muximal p r o - p  extension of L ,  is 
isomorphic to  Z,, >a (Z, x Z / ( f ) )  where the action of ( z , ~ )  E Z, x Z / ( f )  = Z on 

E Z, = I’, written additively, is given by ( z , x ) y  = ~ x ( q ~ - l ) z y .  Y is the inertia 
subgroup and A’ a lift of the residual Galois group, so that (1,l) E X is u Frobenius 
element for this Galois group. 

Lemma 4.9. 
equivalence, that 

Given a lift p : GQ -+ GL1(R) of we may assume, using strict 

where ( 0 , l )  and (1, 1) are in 2 .  With these choices one obtains the following for p ( y )  
where y E 1’ is a generator 

fo  = 1 
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fo > 2 p(y) = (: y )  - OT the transpose if 6 = I-', where T E mR. 

This applies in particular to the universal deformation P S I  . Furthermore the relations 
- ,s , t  in the theorem above are derived from the form of  p(y) in this lemma. 

P r o o f .  We will only remark 011 the proof of the case fo = 2, as here in [Bos2] three 
:elations are given, and it is stated afterwards that there is a relation among the three. 
The three relations given there are the two relations we stated, and the ext,ra relation 
r = gy - V ,  where g, is defined by the same recursion as h, with different initial values 
yo = 1 and g1 = V .  We will now briefly explain, why the two we state are sufficient. 

The three relations in [Bos2] come from the following equation for matrices. 

where y,, h, are polynomials in 1' = d m .  As is remarked in [Bos2], one has the 
relation gi - UThi = 3 ,  as the right hand matrix has determinant one. The same is 
true for the left hand matrix, as V 2  - UT = 1. The three relations T ,  s,  t are precisely 
the relations coming from equating the matrix entries, as the one -- orif and two - two 
entries a.re the same. Becausc of the observat,ion on the determinants, one of the t,hree 
relations is superfluous. To be precise, we sliow that T is in the ideal generated by s, t .  

T(gq + V )  = 9; - vz = (1 - liTh.%) - (1 - U T W - ' )  = -SUh,  - t m - '  . 

But gy + If 2 (mod m), i.e., it is a unit,, and so T E ( s , t ) .  0 

Remark 4.10. 1. In agreement with Proposition 2.8, provided Vs = 0, the number 

2. In the casc t.hat fo > 2, the assumption that both eigenvalues of the Frobenius 
of variables of Rsc grows by one in  th r  first case and by two in the other two cases. 

are in k is automatically satisfied. This follows from 

det(p(Frob,)) = d2([*') , tracc(p(Frobp)) = d ( 1  + <*') E k* , < E F;. 

If the eigenvalues are distinct,, but, not, in k, the above presentations of Rst are valid 
after tensoring o v a  W ( k )  with W ( k ' ) ,  where k' is the unique qudratic extension of k .  

3. In [Bos2] the eigenvalues are distinct. hecause of t,he congruence condit,ions, and 
they are in k, as onc of then-! is always *I [Bos2, Lemma 31. Also under the conditions 
there the cases f > 2 and f = 2 directly correspond to the cases p $ fl (mod I )  and 
p 2 -1 (mod l ) ,  resp., f agrees with fo and [ with C. 

4. Reconsidering the case fo  = 2 and explicitly giving two equations as was done 
here, was stimulated by t,he following observation, that  is already present in [Maz]. 
If the ring Rs/ (p)  has tho expected dimcnsion, i.e., one in the even and three in the 
odd case, then by propositions two and five from loc. cit., the ring Rs/ (p)  is actually 
a complete intersection. If in addition R..? is flat over W ( k )  it has to be a complete 
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intersection itself. So from this one should expect that ,  at least modulo p ,  if the 
number of variables increases by two, the number of equations should not increase by 
more than two. 

5. Also what, we found, in all the cases considered, is that  the number of ad& 
tional equations needed to  describe Rs, when adding the prime q to S, is exactly 
dimk H 2 ( G ~ q , a d ) ,  where we consider ad restricted to  Go, - this is an easy exer- 
cise using Tate local dualit,y. This is a restatement of the previous item, as for large 
sets S ,  large meaning that  the obstruction V s  vanishes, the increment of the number 
of variables in the universal deformation ring is the increment of the k - dimension of 
HI ( G ~ , s , a d )  if we replace S by S U { q } ,  and this is the increment of the k-dimension 
of H 2  ( G Q , ~ ,  a d )  which, under the assumption that  S is large, is the k-dimension of 
H 2  (GQ, 1 ad ) .  

As an example we will now present a universal deformation which is not twist - finite, 
but whose residual representation is tame and absolutely irreducible. Twist -finite 
means that after twisting the universal representation with a suitable p -- adic character 
of GQ it will have finite image. Typical examples for a twist - finite representation are 
those arising from 4.5 and from 3.1. 

Example 4.11. We fix a tame absolutely irreducible even representation p : GQ + 
GL2(k) that is neat at p and let S = { p } .  Then we pick a prime q such that Frob, has 
distinct eigenvalues in k and is not of order 2. By the Cebotarev density theorem it 
is obvious that, sufficiently many primes of this type exist. Let S' = S U { q } .  SO from 
the above we have an explicit description of the universal deformation ring 

R.SJ = Wk"11 T l ] / ( T I  , . .  . >  T n ,  .) 

where T divides ri for i = 1 , .  . . ,n ,  T = T(q  - @) and T I , .  . . , r n l r  E W ( k ) [ [ U , T ] ] .  
Now we make the following additional assumptions. We assume that, the splitting 

field L has dihedral Galois group D,, of order 2n that  embeds int,o the normalizer of a 
split Cart,an subgroup of GL2(k), that  Frob, generates C, inside D,,, and that  n > 2. 
As i n  Lemma 4.9, we may assume that the image under the universal deformation 
of a generator of the inertia group of GQ, is (A y ) ,  where we assume that a lift of 
D, to GLz(lV(k)) has been chosen so that the the image of C, is contained in the 
diagonal matrices, and so that (7 A) is in the image. We enlarge k if necessary. By 

conjugation with the latter element we find that ($ 7) is in the image as well. 

Lemma 4.12. T h e  t o p o l o g i c a ~ ~ y  closed subgroup of %2(W(k)[[T]])  generated by 
($ 7) a71d (A y )  i s  tlie set of a11 ma t r i ces  

( :$) 1 :(&) 
of de te rminan t  one, w i th  a ,  b ,  c, d E ( p , 2 )  C W ( k ) [ [ T ] ]  such  that  a ,  d are even  and 
b,  c are odd power  series ,  a .  e., in the  power  series  expansion of a ,  d all odd powers 
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)f T have zero coeficient and similarly an the expansion for b, c all even powers of T 
lave zero coefficient. 

This can be shown by first working modulo T 2  and then increasing recursively the  
:xponent and  computing some commutators. 

From the  five term sequence 2.1 on can compute tha t  Ps has three generators, and, 
br instance by [Koch, $111, one can see that they are given by the  generators of the 
ocal inertia groups and by the generator of the  cyclotomic p extension of L.  Hence 
,heir image in GL2(1V(k)[[Ul TI]) without, imposing any relations, only the  constraints 
iom the G action, and using strict equivalence, are 

This implies for the element D (i :) in Lemma 4.9, which has to be an  expression in 
the above three mat,rices and t,he lifts of G, t,ha.t @I must be ( plus T 2  times a power 
series in W ( I c )  [[TI]. 

As the p r o - p  group PSI has only local relations, and up to  Galois conjugates only 
one [Koch, $111 there a re  no further relations among t,he dements U, T but  t he  one 
computed in [Bos2] and quoted above, namely T(q - +) = 0. By the  Weierstrai3 
preparation theorem we can rewrite t he  second factor 

q - 4 ,  = q - ( + T 2 f ( T )  
= fa" + T'ci:! + T3a3 + . . 
= $(Oo + b2T2 + . . . + T')u 

where ti is a unit, in 14'(k)[[T]], the  bi have positive valuation, and 0 5 j 5 K.. We note 
that r = 0 in the case h: = j .  One obtains 

Rs V'(k) [ [U,  T ] ] / ( T $  ( b o  + b2T2 + . . . + bvTT) )  . 

From the  above lernrria it is more or less obvious tha t  t,he image of GQ under ps 
cannot be twist-finit,e. If 0 < j ;  we consider the image of Rs in k[[T]]  where we 
send U to T and p to 0. By the  above lemma the  image generated by Ps, which 
has to be topologically closed by the compactness of Ps a.nd the  continuity of the  
homomorphism, contains all matrices as claimed in the  lemma and  all scalar matrices 
and hence cannot be twist-finite. In fact the ordei- of the  image modulo Tn+l is 
p ( 5 " - 2 ) / 2  while the order of r2 (k[[T]]/ (F+')) has order p4". 

In the other case we let. a b e  ont: of the solutions of bo + b2T2 + . . . + T' = 0. Then 
a must. have positivc valuation and we consider the  image obtained by mapping Rs 
to W(k)[a]  by sending T aid lJ t o  a. Again by the  above lemma, the  image of Ps in 
GL2(W(lc)(cr]) cannot be twist.- finite. 

Finally there seems another remark worth while. In the odd case, as done in [Bos~],  
the growth of the universal deformation space corresponds directly t o  the  appearance 
of new modular forms of higher level. If, in a vague analogy, based on the  fact tha t  
even deformations should be rigid once the  determinant is fixed, one would consider 
lifts to IY(Ic), or a finite extension of it,, wit>h a given fixed determinant as forms, 
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then will there arise new forms if one increases the set of primes that can ramify 
appropriately? If above j < k or even better j = 0, then this would obviously be the 
case. The natural question that occurs now is the following. 

Problem 4.13. Let K be a totally real algebraic number field. Let g E GQ be 
such that its image generates Gal( l J n K ( & n ) / K ( ( p ) ) .  Let, A be a local complete 
noetherian k-algebra. Do there exist Galois representations p : GK --t GL2(A), 
unramified outside a finite set of places, sending g to  the identity, such that the image 
of p is infinite? What about the special case A = F,[[T]]? 

If the image is always finite, then clearly j = 0 and so all the solutions of bo + b2T2+ 
s . . + T" = 0 will give lifts to characterstic zero that lie in a finite extension of W ( k ) .  
On the other hand this question seems not so easy as a finite image in all such cases 
would imply that, the dimension of the universal deformation ring modulo p is one in 
the even case, which might be expected, but, is not known. At the same time, if in the 
above example one has j > 0, then modulo p the universal deformation space would 
be k[[S ,T]]  and thus this would provide an example where the dimension is indeed 
bigger than one. These observations can be generalized as follows. 

Let, K be a totally real number field and p : GK --t GL2(k) an absolutely irreducible 
Galois representat,ion which is even at all infinite places. Let S be a set, of places of 
K ,  and R.7 the universal deformation ring for deformations of p unramified outside 
S .  Let Rs = RLq/(p), l?: the quotient offRs for deformations with fixed determinant 
equal to det,(p), arid rs the Galois group of the maximal outside S unramified abelian 
pro- p extension of K .  It is not hard to see that 

Theorem 4.14. U n d e r  the  as sumpt ions  of t he  previous paragraph, t he  following are 

1. The K r u l l  d i m e n s i o n  of i?s i s  one .  
2 .  K satisf ies t h e  Leopoldt conjecture and  u11 de format ions  o f  i j  t o  r ings R E C of 

If one  wan t s  t o  avoid the  Leopoldt conjecture,  t h e  fol lowing equivalence holds.  
1. T h e  K r u l l  d i m e n s i o n  of 
2.  All de format ions  of i j  to  rings R E C of characteris t ic  p are twist  - f ini te .  
I t  i s  a conjecture by MAZUR, t ha t  the K r u l l  d i m e n s i o n  of 

equivalent.  

characterist ic p are tw i s t  - 6 n i t e .  

is  zero,  a.  e . ,  Rb i s  f i n i t e .  

i s  always zero, and 
so if this  were t rue ,  indeed all deformations of i j  were tw i s t  - f i n i t e .  I n  part icular ,  one 
could n e v e r  have  SL2  (F,[[T]]) in t h e  image  of such a representat ion,  o r  the  subgroup 
described in Leninia 4.12. 

P roof .  As the Krull dimension of ~ [ [ I ' s ] ]  is always greater or equal to one, the first 
equivalence follows from the second by the remark preceding the theorem. 

Also if is finite, then clearly the image of any deformation must be twist finite. 
To show the converse, we assume that the image of ps, the reduction of ps modulo 
11, is twist finite. Then p i . ,  corresponding to  Ei ,  has finite image. Let N be the 
intersection of im ( p k )  with the kernel of GL2 (EL) --t GL2(k). Thus N is a finite p 
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noup, say of exponent pn. Let m be the maximal ideal of a;. By considering the 
;,&epresentations of ado  one can find elements oi E GK and matrices Ai E GL2 ( k )  

where T I ,  . . . , T, denotes a set of generators of m/m2. If necessary, we first enlarge 
E to a field k' that contains all eigenvalues of all elements of p ,  which can be done as 
this would only replace i?; by @k k' .  Then 

and SO (Tp", . . . , T,Pn ) E mpn+l. - It is perhaps not completely obvious, that A G 

(l$Ti (mod m2) implies that A"" G '+Tn 0 1-7.;" ) (mod mP"+l) over a ring 

of characteristic p .  But it can be checked by a somewhat tedious but straightforward 
calculation. - This implies that 

( 

msp" - 1 c (T;", . . , , T~")m(s - l )p" - l  c mSpn . 

Hence rnsP"-l = 0, and soRL is artinian. 0 

The above problem might be compared with conjectures of FONTAINE and MAZUR 
[FoMa, $71 concerning representations of GF into GL,(W(k) ) ,  F any number field, 
that are unramified at  all primes above p and only ramified at  finitely many primes, 
where as usual k has characteristic p .  They conjecture that in this case the image of 
the representation must be finite. 
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