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Independence of `-adic representations
of geometric Galois groups

By Gebhard Böckle at Heidelberg, Wojciech Gajda at Poznań and
Sebastian Petersen at Kassel

Abstract. Let k be an algebraically closed field of arbitrary characteristic, let K=k be
a finitely generated field extension and let X be a separated scheme of finite type over K. For
each prime `, the absolute Galois group of K acts on the `-adic étale cohomology modules
of X . We prove that this family of representations varying over ` is almost independent in the
sense of Serre, i.e., that the fixed fields inside an algebraic closure of K of the kernels of the
representations for all ` become linearly disjoint over a finite extension of K. In doing this,
we also prove a number of interesting facts on the images and on the ramification of this family
of representations.

1. Introduction

Let G be a profinite group and L0 a set of prime numbers; from the middle of Section 4
onward, L0 will denote a certain fixed set of primes. For every ` 2 L0 let G` be a profinite
group and �`WG ! G` a continuous homomorphism. Denote by

�WG !
Y
`2L0

G`

the homomorphism induced by the �`. Following the notation in [35] we call the family
.�`/`2L0 independent if �.G/ D

Q
`2L0 �`.G/. The family .�`/`2L0 is said to be almost inde-

pendent if there exists an open subgroup H of G such that �.H/ D
Q
`2L0 �`.H/.

The main examples of such families of homomorphisms arise as follows: LetK be a field
of characteristic p � 0 with algebraic closure �K and absolute Galois group

Gal.K/ D Aut.�K=K/:
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2 Böckle, Gajda and Petersen, Independence of `-adic representations

Let X=K be a separated algebraic scheme1) and denote by L the set of all prime numbers. For
every q 2 N and every ` 2 L X ¹pº we shall consider the representations

�
.q/

`;X WGal.K/! AutQ`
.H q.X �K ;Q`//

and
�
.q/

`;X;cWGal.K/! AutQ`
.H q

c .X �K ;Q`//

of Gal.K/ on the étale cohomology groups H q.X �K ;Q`/ and H q
c .X �K ;Q`/. The following

independence result has recently been obtained.

Theorem 1.1. LetK be a finitely generated extension of Q and letX=K be a separated
algebraic scheme. Then the two families .�.q/`;X/`2L and .�.q/`;X;c/`2L are almost independent.

The proof of this statement in the important special case trdeg.K=Q/ D 0 is due to Serre
(cf. [35]). The case trdeg.K=Q/ > 0 was worked out in [13], answering a question of Serre
(cf. [33, 35]) and of Illusie [20].

The usefulness of almost independence is alluded to in Serre [35, Introduction] (cf. also
[33, Section 10]). Almost independence for a family .�`WGal.K/! G`/`2L over a field K
means that after a finite field extension E=K, the image of Gal.E/ under the product rep-
resentation

Q
`2L �` is the product

Q
`2L �`.Gal.E// of the images. This has applications if

one has precise knowledge of the shape of the images for all `. For instance, suppose that
there exists a reductive connected algebraic subgroup G of some GLn over Q such that, after
replacing K by a finite extension K 0, the image �`.Gal.K 0// is open in G.Q`/ \ GLn.Z`/
for all ` and surjective for almost all `. Denote by Gab the torus that is the quotient of G by
its derived group Gder, and assume that the induced family .�ab

`
WGal.K/! Gab.Q`//`2L has

adelically open image. Then if Gder is simply connected, the almost independence of .�`/`2L

implies that the image of Gal.K 0/ is adelically open, i.e., it is open in the restricted prod-
uct

Q0
`2LG.Q`/. For the case of general Gder we refer the reader to [18], where the authors

consider adelic openness for geometric families cf. [18, Conjecture 1.1] over number fields.
The adelic openness of .�ab

`
/`2L is in general not a consequence of almost independence.

However the case when .�ab
`
/`2L is a compatibly system of geometric origin is well-understood

by [34], and adelic openness holds ifK is a number field. The existence of a reductive groupG
as above, with a priori no condition on Gder, is predicted by the Mumford–Tate conjecture
(cf. [32, C.3.3, p. 387, C.3.8, p. 389], [33, p. 390]) if �` D �

.q/
`;X for a smooth projective varietyX

over a finitely generated extension K of Q.
The present article is concerned with a natural variant of Theorem 1.1 that grew out of

the study of independence of families over fields of positive characteristic. For K a finitely
generated extension of Fp it has long been known, e.g., [19] or [11], that the direct analogue
of Theorem 1.1 is false: If "`WGal.Fp/! Z�

`
denotes the `-adic cyclotomic character that

describes the Galois action on `-power roots of unity, then it is elementary to see that the family
."`/`2LX¹pº is not almost independent. It follows from this that for every abelian variety A=K,
if we denote by �`;AWGal.K/! AutQ`

.T`.A// the representation of Gal.K/ on the `-adic
Tate module of A, then .�`;A/`2LX¹pº is not almost independent. One is thus led to study

1) A scheme X=K is algebraic if the structure morphism X ! SpecK is of finite type (cf. [14, Defini-
tion 6.4.1]).
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independence over the compositum �FpK obtained from the field K by adjoining all roots of
unity. Having gone that far, it is then natural to study independence over any field K that is
finitely generated over an arbitrary algebraically closed field k. Our main result is the following
independence theorem.

Theorem 1.2 (cf. Theorem 7.7). Let k be an algebraically closed field of characteris-
tic p � 0. Let K=k be a finitely generated extension and let X=K be a separated algebraic
scheme. Then the families .�.q/`;X jGal.K//`2LX¹pº and .�.q/`;X;cjGal.K///`2LX¹pº are almost inde-
pendent.

It will be clear that many techniques of the present article rely on [35]. Also, some of the
key results of [13] will be important. The new methods in comparison with the previous results
are the following.

(i) The analysis of the target of our Galois representations, reductive algebraic groups
over Q`, will be based on a structural result by Larsen and Pink (cf. [25]) and no longer as
for instance in [35] on extensions of results by Nori (cf. [29]). In the proof of Theorem 1.2 we
use crucially that there exists a finitely generated subfield K0 of K and a separated algebraic
scheme X0=K0 such that kK0 D K and X0 �K0

Spec.K/ D X . The group theoretical results
mentioned above facilitate greatly the passage from Gal.K0/ to Gal.K/ when studying their
image under �.q/`;X;‹.

(ii) Since we also deal with cases of positive characteristic, ramification properties will
play a crucial role to obtain necessary finiteness properties of fundamental groups. The results
on alterations by de Jong (cf. [6]) will obviously be needed. However we were unable to deduce
all needed results from there, despite some known semistability results that follow from [6].
Instead we carry out a reduction to the case whereK is absolutely finitely generated and where
X=K is smooth and projective (this uses again [6]).

(iii) In the latter case, we use a result by Kerz–Schmidt–Wiesend (cf. [23]) that allows one
to control ramification on X by controlling it on all smooth curves on X . By Deligne’s results
on the Weil conjectures, the semisimplifications of the �.q/`;X form a pure and strictly compatible
system. On curves, we can then apply an `-independence result on tameness from [7] again
due to Deligne. Together this allows us to obtain a very clean result on a kind of semistable rami-
fication of .�.q/`;X/`2LX¹pº, cf. Remark 6.4.

Part (i) is carried out in Section 3. Results on fundamental groups and first results on
ramification are the theme of Section 4; there we carry out parts of (ii) and we refine some
results from [23]. Section 5 provides the basic independence criterion on which our proof
of Theorem 1.2 ultimately rests. For this we introduce notions that describe ramification and
semistability in families .�`/`2L. Section 6 establishes a semistability property for the families
.�.q/`;X/`2L, for any smooth projective variety X over any field K that is finitely generated over
a perfect field of positive characteristic. This is step (iii) in the above program. Finally, in
Section 7 we complete part (ii) and we give the proof of Theorem 7.7 which is a slightly
refined form of Theorem 1.2.

We would like to point out that an alternative proof of part (ii) of our approach could
be based on recent unpublished work by Orgogozo which proves a global semistable reduction
theorem (cf. [30, Proposition 2.5.8]). When our paper was complete we were informed by Anna
Cadoret that, together with Akio Tamagawa, she has proven our Theorem 1.2 by a different
method, cf. [5].

Authenticated | gajda@amu.edu.pl author's copy
Download Date | 7/24/15 7:12 AM



4 Böckle, Gajda and Petersen, Independence of `-adic representations

Acknowledgement. Gebhard Böckle thanks the Fields Institute for a research stay
in the spring of 2012 during which part of this work was written. He also thanks Adam
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2. Notation

Let G be a profinite group. A normal series in G is a sequence

G D N0 FN1 FN2 F � � � FNs D ¹eº

of closed subgroups such that Ni�1 is a normal subgroup of Ni for all 1 � i � 2. Through-
out this manuscript L denotes the set of all prime numbers. From Section 4 on we define
L0 D L X ¹pº where p � 0 is the characteristic of a base field k. For any ` 2 L we denote
by GC

`
the normal hull of the pro-` Sylow subgroups of G.

For a field K with algebraic closure �K, we denote by Ks � �K a separable closure. Then
Gal.K/ is equivalently defined as Gal.Ks=K/ and as Aut.�K=K/, since any field automorphism
of Ks fixing K has a unique extension to �K. If E=K is an arbitrary field extension, and if �K is
chosen inside �E, then there is a natural isomorphism

Aut.�K=�K \E/ '�! Aut.�KE=E/:
Composing its inverse with the natural restriction Gal.E/! Aut.E �K=E/ one obtains a canon-
ical map

resE=K WGal.E/! Gal.K/:

For homomorphism �WGal.K/! G we denote � ı resE=K by �jGal.E/. IfE � �K, then resE=K
is injective and we identify Gal.E/ with the subgroup resE=K.Gal.E// of Gal.K/.

A K-variety X is a scheme X that is integral separated and algebraic over K. We denote
by K.X/ its function field. A K-curve shall be a K-variety of dimension 1. Let S be a normal
connected scheme with function field K. A separable algebraic extension E=K is said to be
unramified along S if for every finite extension F=K inside E the normalization of S in F
is étale over S . We usually consider S as a scheme equipped with the generic geometric base
point sWSpec.eK/! S and denote by �1.S/ WD �1.S; s/ the étale fundamental group of S .
If � denotes the maximal extension of K in Ks which is unramified along S , then �1.S/ can
be identified with the Galois group Gal.�=K/. A continuous homomorphism �WGal.K/! H

is said to be unramified along S if the fixed field Kker.�/
s is contained in �, i.e., if � factors

through the quotient �1.S/ of Gal.K/. In fact, we shall identify continuous homomorphisms
�1.S/! H with continuous homomorphisms Gal.K/! H which are unramified along S .
If S is a variety defined over a field k, then by a compactification of S we mean a proper
k-variety S containing S as an open subscheme.
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3. Concepts from group theory

In this section, we prove a structural result for compact profinite subgroups of linear
algebraic groups over �Q` (cf. Theorem 3.6) that will be crucial for the proof of the main
theorem of this article. It is a consequence of a variant (cf. Proposition 3.10) of a theorem of
Larsen and Pink (cf. [25, Theorem 0.2, p. 1106]). The proof of Proposition 3.10 makes strong
use of the results and methods in [25], and in particular does not depend on the classification
of finite simple groups.

Definition 3.1. For c 2N and ` 2 L we denote by†`.c/ the class of profinite groupsM
which possess a normal series by open subgroups

(1) M F I F P F ¹1º

such that M=I is a finite product of finite simple groups of Lie type in characteristic `, the
group I=P is finite abelian of order prime to ` and index ŒI W P � � c, and P is a pro-` group.

We observe that if M lies in †`.c/, then the normal series (1) is uniquely determined
by M . In fact, P is then the maximal normal pro-` subgroup of M and I is the maximal
normal pro-solvable subgroup of M . In particular, P and I are characteristic subgroups of M .
Note also that for any group M in †`.c/, the quotient M=MC

`
is abelian of order at most c.

Definition 3.2. For d 2 N and ` 2 L we denote by Jor`.d/ the class of finite groupsH
which possess a normal abelian subgroupN of order prime to ` and of index ŒH W N� � d . We
define Jor.d/ as the union of the Jor`.d/ over all ` 2 L.

The following lemma records a useful permanence property of groups in the classes†`.c/
and Jor`.d/.

Lemma 3.3. Fix c; d 2 N. Then for any ` 2 L the following holds:

(a) IfH 0 GH is a normal subgroup of someH 2 Jor`.d/, thenH 0 andH=H 0 lie in Jor`.d/.

(b) If M 0 GM is a closed normal subgroup of some M 2 †`.c/, then M 0 and M=M 0 lie
in †`.c/.

If M 0 in part (b) of the lemma was a non-normal closed subgroup of M; then clearly M 0

need not lie in †`.c/ again.

Proof. We only give the proof of (b), the proof of (a) being similar but simpler. Let M
be in †`.c/ and consider a normal series

M F I F P F ¹1º

as in Definition 3.1. ThenL WDM=I is isomorphic to a productL1 � � � � � Ls for certain finite
simple groups of Lie typeLi in characteristic `. SupposeM 0 is a closed normal subgroup ofM
and defineM 0 DM 0I=I . By Goursat’s lemma the groupsM 0 and L=M 0 are products of some
of the Li . From this it is straightforward to see that both M 0 and M=M 0 lie in †`.c/.

The following corollary is immediate from Lemma 3.3 (b).

Authenticated | gajda@amu.edu.pl author's copy
Download Date | 7/24/15 7:12 AM



6 Böckle, Gajda and Petersen, Independence of `-adic representations

Corollary 3.4. Fix a constant c 2 N. LetG be a profinite group, and for each ` 2 L let
�`WG ! G` be a homomorphism of profinite groups such that �`.G/ 2 †`.c/ for all ` 2 L.
Then for any closed normal subgroup N GG one has �`.N / 2 †`.c/ for all ` 2 L.

Definition 3.5. A profinite group G is called n-bounded at ` if there exist closed com-
pact subgroups G1 � G2 � GLn.�Q`/ such that G1 is normal in G2 and G Š G2=G1.

The following is the main result of this section.

Theorem 3.6. For every n 2 N there exists a constant J 0.n/ (independent of `) such
that the following holds: Any group G` that is n-bounded at some ` 2 L lies in a short exact
sequence

1!M` ! G` ! H` ! 1

such that M` is open normal in G` and lies in †`.2n�1/ and H` lies in Jor`.J 0.n//.

We state an immediate corollary:

Corollary 3.7. Let ` > J 0.n/ and let G` be a profinite group which is n-bounded at `.
With notation as in Theorem 3.6 and in Section 2, GC

`
is an open normal subgroup of M` of

index at most 2n�1.

In the remainder of this section we shall give a proof of Theorem 3.6. The content of the
following lemma is presumably well known.

Lemma 3.8. For every r 2 N, every algebraically closed field F and every semisimple
algebraic group G of rank r the center Z of G satisfies jZ.F /j � 2r .

Proof. Lacking a precise reference, we include a proof for the reader’s convenience.
Observe first that the center Z is a finite (cf. [27, I.6.20, p. 43]) diagonalizable algebraic group.
Let T be a maximal torus of G. Denote by X.T / D Hom.T;Gm/ the character group of T
and by ˆ � X.T / the set of roots of G. Then R D .X.T /˝R; ˆ/ is a root system. Let
P D Zˆ be the root lattice andQ the weight lattice of this root system. Then P � X.T / � Q.
The center Z of G is the kernel of the adjoint representation (cf. [27, I.7.12, p. 49]). Hence
Z D

T
�2ˆ ker.�/ and there is an exact sequence

0! Z ! T !
Y
�2ˆ

Gm

where the right hand map is induced by the characters �WT ! Gm (� 2 ˆ). We apply the
functor Hom.�;Gm/ and obtain an exact sequenceY

�2ˆ

Z! X.T /! Hom.Z;Gm/! 0:

The cokernel of the left hand map is X.T /=P . Thus jZ.F /j � ŒX.T / W P � � ŒQ W P �.
Furthermore, the root system R decomposes into a direct sum

R D

sM
iD1

.Ei ; ˆi /
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of indecomposable root systems Ri WD .Ei ; ˆi /. Let ri D dim.Ei / be the rank of Ri . Let Pi
be the root lattice andQi the weight lattice of Ri . Note that by definition we have P D

L
i Pi

and Q D
L
i Qi . It follows from the classification of indecomposable root systems that

jQi=Pi j � 2
ri (cf. [27, Table 9.2, p. 72]) for all i . Hence jZ.F /j � jQ=P j � 2r12r2 � � � 2rs D 2r

as desired.

Remark 3.9. The semisimple algebraic group .SL2;C/r has rank r and its center .�2/r

has exactly 2r C-rational points. Hence the bound of Lemma 3.8 cannot be improved.

The following result is an adaption of the main result of [25] by Larsen and Pink.

Proposition 3.10. For every n 2 N, there exists a constant J 0.n/ such that for every
field F of positive characteristic ` and every finite subgroup � of GLn.F /, there exist normal
subgroups L;M; I and P of � forming a normal series

� F L FM F I F P F ¹1º

with the following properties:

(i) Œ� W L� � J 0.n/.

(ii) The group L=M is abelian of order prime to `.

(iii) The group M=I is a finite product of finite simple groups of Lie type in characteristic `.

(iv) The group I=P is abelian of order prime to ` and ŒI W P � � 2n�1.

(v) P is an `-group.

Furthermore, the constant J 0.n/ is the same as in [25, Theorem 0.2, p. 1106].

Proof. We can assume that the field F is algebraically closed. Let J 0.n/ be the con-
stant from [25, Theorem 0.2, p. 1106]. Larsen and Pink construct in the proof of their theorem
([25, Theorem 0.2, pp. 1155–1156]) normal subgroups �i of � such that there is a normal series

� F �1 F �2 F �3 F ¹1º

and such that Œ� W �1� � J 0.n/, �1=�2 is a product of finite simple groups of Lie type in char-
acteristic `, �2=�3 is abelian of order prime to ` and �3 is an `-group. The construction of
the groups �i in [25, Theorem 0.2, pp. 1155–1156] shows that there exists a smooth algebraic
group G over F containing � such that, if we denote by R the unipotent radical of the con-
nected component Gı of G and by Z the center of the reductive group G WD Gı=R, then
�1 GG

ı.F /, �3 D �\R.F / and �2=�3 is contained inZ.F /. LetD D ŒG;G� be the derived
group of G and D D ŒGı; Gı�R.

Now define L D �1,M D �1 \D.F /, I D �2 \D.F / and P D �3. These groups are
normal in � , becauseD.F / is characteristic inGı.F / and because �1; �2; �3 are normal in � .
The group L=M is a subgroup of the abelian group Gı.F /=D.F /. As Gı=D is isomorphic
to the torus G=D, it follows that the order of L=M is prime to `. The group M=I is a normal
subgroup of �1=�2, hence it is a product of finite simple groups of Lie type in characteristic `.
The group I=P is a subgroup of �2=�3, hence I=P is abelian of order prime to `. Further-
more, I=P D I=�3 is a subgroup of G.F / which lies in D.F / and in Z.F /. Thus I=P lies
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in the center Z.F / \D.F / of the semisimple group D.F /. It follows by Lemma 3.8 that
ŒI W P � � 2rk.D/.

It remains to show that rk.D/ � n � 1. Let T be a maximal torus of D and denote
by � WGı ! G the canonical projection. Note that � induces an epimorphism ŒGı; Gı�! D.
The algebraic group B WD ��1.T / \ ŒGı; Gı� sits in an exact sequence

0! R \ ŒGı; Gı�! B ! T ! 0

and B is connected smooth and solvable, because R and T have these properties. The above
exact sequence splits (cf. [10, XVII.5.1]); henceB contains a copy of T . This copy is contained
in a maximal torus T 0 of SLn;F because B is a subgroup of SLn;F . Thus

n � 1 D dim.T 0/ � dim.T / D rk.D/

as desired.

Proof of Theorem 3.6. Suppose the group G` is n-bounded at `, so that it is a quotient
G2;`=G1;` with Gi;` � GLn.�Q`/. By Lemma 3.3, it will suffice to prove the theorem in the
case G` D G2;`. Thus we assume that G` is a compact profinite subgroup of GLn.�Q`/. By
the compactness of G` and a Baire category type argument (cf. [12, proof of Corollary 5]) the
group G` is contained in GLn.E/ for some finite extension E of Q`. Let OE be the ring of
integers of the local fieldE. Again by compactness ofG` one can then find an OE -lattice inEn

that is stable under G`. Hence we may assume that G` is a closed subgroup of GLn.OE /.
Let p be the maximal ideal of the local ring OE and let F D OE=p be its residue

field. The kernel K of the canonical map pWGLn.OE /! GLn.F/ is a pro-` group. Hence
Q` DK \G` is pro-` and open normal in G`. We now apply Proposition 3.10 to the finite
subgroupG`=Q` of GLn.F/ � GLn.F /with F D eF Š eF`. This yields normal subgroupsL`,
M`, I` and P` of G` such that there is a normal series

G` F L` FM` F I` F P` FQ` F ¹1º

with the following properties: The group G`=M` lies in Jor`.J 0.n//, and the group M` lies
in †`.2n�1/ – for the latter use that Q` is pro-` and normal in G` and P`=Q` is a finite
`-group.

4. Fundamental groups: Finiteness properties and ramification

The purpose of this section is to recall some finiteness properties of fundamental groups
and to provide some basic results on ramification. Regarding the latter we draw from results by
Kerz, Schmidt and Wiesend (cf. [23]).

We begin with a finiteness result of which a key part is from [13].

Proposition 4.1. Suppose that either k is a finite field and S is a smooth proper k-variety
or that k is a number field and S is a smooth k-variety, and denote by K D k.S/ the function
field of S . For d 2 N, let Md be the set of all finite Galois extensions E=K inside eK such that
Gal.E=K/ satisfies Jor.d/ and such that E is unramified along S . Then there exists a finite
Galois extension K 0=K which is unramified along S such that E � QkK 0 for every E 2Md .
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Proof. For every E 2Md the group Gal.E=K/ satisfies Jor.d/ and hence there is
a finite Galois extension E 0=K inside E such that ŒE 0 W K� � d and such that E=E 0 is abelian.
Consider the composite fields

�0 D
Y

E2Md

E 0 � � D
Y

E2Md

E:

Then�=�0 is abelian. Let k0 (resp. �0, resp. �) be the algebraic closure of k inK (resp. in�0,
resp. in �),

K �0 �

k k0 �0 �.

It suffices to prove the following:

Claim. The extension �=�K is finite.

In fact, once this is shown, it follows that the finite separable extension�=�K has a prim-
itive element !. Then � D �K.!/ and K.!/=K is a finite separable extension. Let K 0 be the
normal closure of K.!/=K in �. Then QkK 0 � �K 0 � �K.!/ D � as desired.

In the case where k is a number field the claim has been shown in [13, Proposition 2.2].
Assume from now on that k is finite. It remains to prove the claim in that case. The structure
morphism S ! Spec.k/ of the smooth scheme S factors through Spec.k0/ and S is a geomet-
rically connected k0-variety. The profinite group �1.S �k0

Spec. Qk// is topologically finitely
generated (cf. [16, Theorem X.2.9]) and Gal.k0/ Š OZ. Thus it follows by the exact sequence
(cf. [16, Theorem IX.6.1])

1! �1.S �k0
Spec. Qk//! �1.S/! Gal.k0/! 1

that �1.S/ is topologically finitely generated. Thus there are only finitely many extensions ofK
in QK of degree � d which are unramified along S . It follows that �0=K is a finite extension.
Thus �0 is a finite field. If we denote by S 0 the normalization of S in �0, then S 0 ! S is finite
and étale, hence S 0 is a smooth proper geometrically connected �0-variety. Furthermore,�=�0

is abelian and unramified along S 0. Hence �=��0 is finite by Katz–Lang (cf. [21, Theorem 2,
p. 306]). As �0=K is finite, it follows that �=�K is finite.

To introduce below a notion of tameness that is inspired by [23] and applies to cover-
ings of general schemes, we require further notation. For a Galois extension E=K of fields,
a discrete valuation vWK� ! Z of K and an extension w of v to E we define IE=K.w/ (resp.
IE=K.v/) to be the inertia group of w (resp. of v) in the extension E=K.2) Note that IE=K.v/
is well-defined only up to conjugation. We put I.v/ D IKs=K.v/. In the special case where v
is the trivial valuation, the valuation w must be trivial as well and IE=K.v/ is the trivial group.
Now let p be the residue characteristic of v and let ƒ � L X ¹pº. The extension E=K shall
be called ƒ-tame at v if the order of IE=K.v/ (viewed as a supernatural number) is divisible

2) If E=K is infinite, then w need no longer be discrete but its restriction to any finite Galois subextension
of E=K is so. For any E=K, the group IE=K.w/ is the inverse limit over ramification groups of finite extensions.
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10 Böckle, Gajda and Petersen, Independence of `-adic representations

only by primes in ƒ. Note that E=K is L X ¹pº-tame at v if and only if IE=K.v/ is a group
of order prime to p, i.e., if and only if E=K is tame at v in the usual sense.3) For us the case
whereƒ D ¹`º for a single prime number ` ¤ p will be particularly important, and in that case
we speak of `-tameness rather than of ¹`º-tameness. If K=k is a finitely generated extension
of fields, then we will denote by VK=k the set of all discrete valuations K� ! Z which are
trivial on k.

For the rest of this section let k be a field of characteristic p � 0, L0 D L X ¹pº and
ƒ � L0. Furthermore, let S be a regular variety over k andK D k.S/ its function field. Let G
be a locally compact topological group and �W�1.S/! G a continuous homomorphism. LetE
be the fixed field of ker.�/ in Ks .

Recall that we identify continuous homomorphisms �W�1.S/! G with continuous
homomorphisms �WGal.K/! G which are unramified along S .

Definition 4.2. Let v 2 VK=k . The homomorphism � is said to be ƒ-tame at v if the
order of the profinite group �.I.v// (viewed as a supernatural number) is divisible only by
prime numbers inƒ. The homomorphism � is calledƒ-tame if it isƒ-tame at every v 2 VK=k .

Note that the homomorphism � isƒ-tame at v if and only if the extensionE=K isƒ-tame
at v.

Lemma 4.3. Let v 2 VK=k . Then there exists a normal compactification S of S and
a codimension 1 point s 2 S such that v D vs is the discrete valuation of K attached to s.

Proof. Let S0 be a normal compactification of S , which exists by the theorem of
Nagata [26]. By [37, Proposition 6.4], there exists a blow-up S of S0 with center outside S
such that v is the valuation of a codimension 1 point s 2 S . By normalization, we may further
assume that S is normal. Both operations, blow-up and normalization, do not affect S , and
so there exist a normal compactification S of S that contains a codimension 1 point s with
valuation v D vs .

Remark 4.4. As an immediate consequence of Lemma 4.3 we see that the following
statements are equivalent.

(a) The homomorphism � is ƒ-tame.

(b) For every normal compactification S of S and every codimension 1 point s 2 S the exten-
sion E=K is ƒ-tame in the discrete valuation vs of K attached to s.

In particular, � is L0-tame if and only if E=K is divisor tame in the sense of [23].

For a morphism f WS 0 ! S , we denote by f�W�1.S 0/! �1.S/ the induced continuous
homomorphism of fundamental groups. The following base change property of ƒ-tameness is
quite useful.

3) Note that if the residue field extension at the valuation v for E=K is inseparable, then p will divide the
order of IE=K.v/.
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Böckle, Gajda and Petersen, Independence of `-adic representations 11

Lemma 4.5. Let k0=k be an arbitrary field extension and S 0 a regular k0-variety. Let
K 0 D k0.S 0/ and recall that K D k.S/. Assume that there is a diagram

S 0
f

//

��

S

��

Spec.k0/ // Spec.k/

where f is dominant.

(a) If �W�1.S/! G is ƒ-tame, then the composite homomorphism

� ı f�W�1.S
0/! �1.S/! G

is ƒ-tame.

(b) If f is finite, K 0=K is purely inseparable and � ı f� is ƒ-tame, then � is ƒ-tame.

Proof. Recall that E is the fixed field of ker.�/. Let E 0 be the fixed field of ker.� ı f�/.
Then E 0 D EK 0 in some separable closure K 0s � Ks of K 0, and we have a diagram of fields

E E 0

K K 0

where E=K and E 0=K 0 are Galois. Let v0 2 VK0=k0 and v D v0jK. The restriction map

r WGal.E 0=K 0/! Gal.E=K/; � 7! � jE

is injective because E 0 D EK 0. It is easy to check that r.IE 0=K0.v0// is conjugate to a closed
subgroup of IE=K.v/. If � is ƒ-tame, then the order of IE=K.v/ is divisible only by primes in
ƒ, and thus the order of IE 0=K0.v0/ is divisible only by prime numbers in ƒ; hence E 0=K 0 is
then ƒ-tame at v0 as desired. This proves part (a).

To prove (b) assume that f is finite, that K 0=K is purely inseparable and that � ı f�
is ƒ-tame. Then E 0=K 0 is ƒ-tame at v0. As K 0=K is purely inseparable, the map r is an
isomorphism and r.IE 0=K0.v0// is conjugate IE=K.v/. Thus the order of IE=K.v/ is divisible
only by primes in ƒ and it follows that � is ƒ-tame. This completes the proof of part (b).

The following proposition is a useful criterion to establishƒ-tameness for a given homo-
morphism �1.S/! G. It is a variant of parts of [23, Theorem 4.4].

Proposition 4.6. Assume that for every regular curve C=k and for every morphism
f WC ! S the homomorphism

� ı f�W�1.C /! �1.S/! G

is ƒ-tame. Then � is ƒ-tame.

Proof. We can assume that G is finite and � is surjective. Let v 2 VK=k and let w be
an extension of v to E. Let I D I.w/ and J D �.I /. Then J is solvable. We have to prove
that the order of J is divisible only by primes in ƒ. Assume to the contrary that there exists
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12 Böckle, Gajda and Petersen, Independence of `-adic representations

a prime number `0 2 L Xƒ such that jJ j is divisible by `0. Then, by the solvability of J ,
there exists a subgroup J1 of J and a normal subgroup J2 of J1 such that J1=J2 Š Z=`0.
For i 2 ¹1; 2º let Ki be the fixed field of ��1.Ji /, let Si be the normalization of S in Ki
and wi the restriction of w to Ki . Then w2 is totaly ramified in K2=K1, and restricting �
to �1.S1/ yields an epimorphism �1.S1/! J1 ! Z=`0. By Lemma 4.3 there exists a normal
compactification S1 of S1 such thatw1 is the discrete valuation attached to some codimension 1
point s1 of S1. As S1 is regular in codimension 1, it follows that the maximal regular open
subscheme W1 of S1 contains s1. Furthermore, S1 � W1.

Now let C1=k be an arbitrary regular curve and let f WC1 ! W1 be a non-constant
morphism with f .C1/ \ S1 ¤ ¿. LetD1 D f �1.S1/. For every discrete valuation u on k.C1/
the composite homomorphism

�0W�1.D1/! �1.S1/! J1=J2 Š Z=`0

maps the inertia group I.u/ to zero, because �0.I.u// is of order divisible only by primes
in ƒ and a subgroup of Z=`0 at the same time. In particular, �0 factors through �1.C1/. This
implies that S2 �S1

D1 ! D1 extends to a not necessarily connected étale cover of C1. Now
by [23, Proposition 4.1], which can be paraphrased as curve-unramifiedness implies unrami-
fiedness over a regular base, it follows that the normalizationW2 ofW1 inK2 is étale overW1.
But then K2=K1 is étale along w, a contradiction.

Remark 4.7. Combining notions in [23] with our notion of ƒ-tameness, it is straight-
forward to define a notion of ƒ-curve-tameness. Then Proposition 4.6 asserts that ƒ-curve-
tameness implies ƒ-tameness. Following [23] one can show that in fact the two notions are
equivalent.

5. An independence criterion

Throughout this section let k be a field of characteristic p � 0 and L0 D L X ¹pº.
Let S=k be a regular k-variety with function field K D k.S/. For every ` 2 L0 let G` be
a locally compact topological group and �`WGal.K/! G` a continuous homomorphism.

If for all ` 2 L0 the groups �`.Gal.K// are n-bounded at `, then by Theorem 3.6 we have
a short exact sequence

1!M` ! �`.Gal.K//! H` ! 1

with H` 2 Jor`.J 0.n// and M` 2 †`.2
n�1/. In this section, we shall show in Proposition 5.5

and Theorem 5.8 how to control H` and M` in a uniform manner, if one has a uniform control
on ramification. We begin by introducing the necessary concepts and then give the result.

Recall from [6, Section 2.20] that a morphism f W V ! U between k-varieties is an
alteration if it is proper and surjective and there exists a dense open subscheme U 0 of U such
that f �1.U 0/! U 0 is finite.

Definition 5.1. The family .�`/`2L0 satisfies

(i) condition R.S=k/ if there exists a dense open subscheme U of S such that for every
` 2 L0 the homomorphism �` factors through �1.U /.
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(ii) condition S.S=k/ if there exists a dense open subscheme U of S , a regular k-variety V
and an alteration f W V ! U such that for every ` 2 L0 the homomorphism �` factors
through �1.U / and such that for every ` 2 L0 the composite homomorphism

�` ı f�W�1.V /! �1.U /! G`

is `-tame. Such a triple .U; V; f /, or simply f WV ! U , is called a witness of the condi-
tion S.S=k/, or we say that it witnesses the condition S.S=k/.

Note that condition S.S=k/ implies condition R.S=k/. The condition R.S=k/ is a uni-
form constructibility condition; S.S=k/ is a uniform semistability condition. Example 5.3
shows that both conditions are satisfied for the family of `-adic representations attached to
an abelian variety A over the function field K of S .

Lemma 5.2. Assume that .�`/`2L0 satisfies condition S.S=k/.

(a) If f WV ! U witnesses condition S.S=k/, then for any alteration g W W ! V with W
regular, the composition f ı gWW ! U witnesses condition S.S=k/.

(b) There exists a witness .U 0; V 0; f 0/ of condition S.S=k/ such that f 0 is finite étale.

Part (b) is useful in Proposition 5.5 when studying the property S.S=k/ under base
change: being finite étale is preserved under base change, while being an alteration is not.

Proof. The hypothesis in (a) means that �` factors through �1.U / and the composition
�` ı f�W�1.V /! G` is `-tame, for any ` in L0. Lemma 4.5 now implies that �` ı f� ı g� is
`-tame because g is dominant. Since the composition of alterations is an alteration, part (a)
holds true.

To prove (b), let f be as in (a) and let E be the maximal separable extension of K
inside k.V /. Then E=K is separable and k.V /=E is purely inseparable. Let T be the normal-
ization of U in E. There exists a dense open subscheme U 0 of U such that the restriction of f
to a morphism V 0 WD f �1.U /! U 0 is finite. By generic smoothness, after shrinking U 0

further, we can assume that the canonical morphism f 0WT 0 WD U 0 �U T ! U 0 is finite and
étale. Let hWV 0 ! T 0 be the canonical morphism. We know by assumption that the homo-
morphism

�` ı f
0
� ı h� D �` ı .f jV

0/�W�1.V
0/! G`

is `-tame for all ` 2 L0. Part (b) of Lemma 4.5 now shows that �` ı f 0�W�1.T
0/! G` is `-tame

for all ` 2 L0. Hence f 0 witnesses condition S.S=k/ as desired.

Example 5.3. Let A=K be an abelian variety. For every ` 2 L0 denote by

�`;AWGal.K/! AutZ`
.T`.A//

the representation of Gal.K/ on the `-adic Tate module

T`.A/ D lim
 �
i2N

AŒ`i �:

By the spreading-out principles of [15] there exists a non-empty open subscheme U of S and

Authenticated | gajda@amu.edu.pl author's copy
Download Date | 7/24/15 7:12 AM



14 Böckle, Gajda and Petersen, Independence of `-adic representations

an abelian scheme A over U with generic fiber A. This implies (cf. [17, IX.2.2.9]) that �`;A is
unramified along U , i.e., that �`;A factors through �1.U / for every ` 2 L0. Hence the family
.�`;A/`2L0 satisfies condition R.S=k/.

In order to obtain also condition S.S=k/ from Definition 5.1, we choose an odd prime
`0 2 L0, and we define K 0 D K.AŒ`0�/. After shrinking U accordingly we can assume that
the normalization U 0 of U in K 0 is étale over U . Now let v0 2 VK0=k be a non-trivial discrete
valuation and Rv0 the discrete valuation ring of v0. Let Nv0=Spec.Rv0/ be the Néron model
of A over Rv0 . The condition K 0 � K.AŒ`0�/ forces Nv0 to be semistable (cf. [17, IX.4.7]).
This in turn implies that �`;AjI.v0/ is unipotent (and hence �`;A.I.v0// is pro-`) for every
` 2 L0 (cf. [17, IX.3.5]). It follows that the family .�`;A/`2L0 satisfies condition S.S=k/.

Recall that for a separated algebraic scheme X=K, for q 2 N and for every ` 2 L X ¹pº
we consider the representations

�
.q/

`;X WGal.K/! AutQ`
.H q.X �K ;Q`//

and
�
.q/

`;X;cWGal.K/! AutQ`
.H q

c .X �K ;Q`//

of Gal.K/ on the étale cohomology groups H q.X �K ;Q`/ and H q
c .X �K ;Q`/.

Proposition 5.4. For a separated algebraic scheme X=K, the two families .�.q/`;X/`2L0

and .�.q/`;X;c/`2L0 both satisfy condition R.S=k/.

Proof. There exists a separated morphism f WX ! S of finite type with generic fiberX .
Next there exists a dense open subscheme U of S such that for every ` 2 L0 the sheaves
Rqf�.Q`/jU and RqfŠ.Q`/jU are lisse (cf. [22, Theorems 3.1.2–3.1.3], [20, Corollary 2.6]).
Let �WSpec.�K/! U be the geometric generic point of U afforded by the choice of �K. Then
the stalk Rqf�.Q`/� (resp. RqfŠ.Q`/� ) is H q.X �K ;Q`/ (resp. H q

c .X �K ;Q`/), cf. [2, Théo-
rème VIII.5.5.2, p. 386]. Thus the representations �.q/`;X and �.q/`;X;c factor through �1.U / for
every ` 2 L0.

For p > 0, we shall treat condition S.S=k/ for the families .�.q/`;X/`2L0 and .�.q/`;X;c/`2L0

in Corollary 7.4. Both conditions R.S=k/ and S.S=k/ behave well under base change in the
following sense.

Proposition 5.5. Let k0=k be an arbitrary field extension and S 0 a regular k0-variety.
Assume that there is a diagram

S 0
f

//

��

S

��

Spec.k0/ // Spec.k/

where f is dominant. Let K 0 D k0.S 0/ and for ` 2 L0 let �0
`
D �`jGal.K0/. If .�`/`2L0 satis-

fies condition R.S=k/ (resp. condition S.S=k/), then the family .�0
`
/`2L0 satisfies condition

R.S 0=k0/ (resp. condition S.S 0=k0/). Moreover, if �` factors via �1.S/ and is `-tame, then �0
`

factors via �1.S 0/ and is `-tame.
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Proof. Assume that the family .�`/`2L0 satisfies condition R.S=k/. Then there exists
a dense open subscheme U � S such that each �` factors through �1.U /. Let U 0 D U �S S 0.
From the commutative diagram

Gal.K 0/ //

��

Gal.K/

��

�1.U
0/ // �1.U /

we see that each �0
`

factors through �1.U 0/, i.e., that .�0
`
/`2L0 satisfies condition R.S 0=k0/.

Assume from now on that .�`/`2L0 satisfies condition S.S=k/. By Lemma 5.2 (b) we can
find a witness hWV ! U of condition S.S=k/ such that h is finite étale – we may need to
shrink the above U . Let V 0 be a connected component of V �U U 0. Then V 0 is a connected
finite étale cover of U 0. Let gWV 0 ! V be the canonical map. It is enough to prove that the
composition �` ı h� ı g�W�1.V 0/! G` is `-tame for every ` 2 L0. But this is immediate from
Lemma 4.5 (a), as is the last assertion.

The following lemma describes a situation in which a family .�`WGal.K/! G`/`2L0

becomes everywhere unramified after a finite base change. In its application, all G` will be
finite.

Lemma 5.6. Assume that .�`/`2L0 satisfies condition S.S=k/. Then there exists a finite
extension k0 over k, a smooth projective k0 variety W , and a witness gWW ! U of condition
S.S=k/ such that W is a dense open subscheme of W . In particular, if G` is of order prime
to `, then �`jGal.k.W // factors through �1.W /.

Proof. Let f WV ! U be a witness of condition S.S=k/ for the family .�`/`2L0 . By
de Jong’s theorem [6] there exists a finite extension k0=k, a smooth projective k0-variety W ,
a dense open subschemeW ofW and an alteration hWW ! V . Then the first assertion follows
from Lemma 5.2 (a) for g WD f ı h. Fix now ` 2 L0 and assume that ` does not divide the
order of G`. If v denotes the discrete valuation of any codimension 1 point of W , then the
group �` ı g�.Iv/ is trivial because it is pro-` and of order prime to ` at the same time. By the
purity of the branch locus it follows that �` ı g� factors through �1.W / as desired.

Combining ramification properties with finiteness properties of fundamental groups, we
obtain the following criterion for a family .�`WGal.K/! G`/`2L0 to become trivial over
Gal.�kK 0/ for some finite K 0=K, provided certain finiteness conditions on �`.Gal.K// hold.

Proposition 5.7. Assume that the family .�`WGal.K/! G`/`2L0 satisfies condition
R.S=k/. If p > 0, then assume .�`WGal.K/! G`/`2L0 satisfies S.S=k/. Under either of
the following two conditions there exists a finite Galois extension K 0 of K such that for all
` 2 L0 we have �`.Gal. QkK 0// D ¹1º.

(a) The field k is finite or k is a number field, and there exists a constant d 2 N such that for
each ` 2 L0 the group �`.Gal.K// lies in Jor`.d/.

(b) The field k is algebraically closed and there exists a constant c 2 N such that for each
` 2 L0 the group �`.Gal.K// is of order at most c.
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Proof. Because of R.S=k/ there exists a dense open subscheme U of S such that
each �` factors through �1.U /. Let K` be the fixed field of ker.�`/ and let E D

Q
`2L0 K`.

Then K`=K is unramified along U . We have to prove that QkE= QkK is finite.
Assume p D 0. In case (a) Proposition 4.1 yields that the extension QkE= QkK is finite. In

case (b) we have Qk D k and thus the (geometric) fundamental group �1.U / is finitely generated
(cf. [16, Théorème X.2.9]). Hence, independently of `, there are only finitely many possibilities
for the fields K`, and so E=K is finite in case (b), as well.

Assume from now on that p > 0. Note that in both cases (a) and (b) the order of the finite
group G` is prime to ` for all but finitely many ` 2 L0. By Lemma 5.6 there exists a finite
extension k0=k and a finite extension F=K and a smooth projective k0-varietyW with function
field F such that the extensionK`F=F is unramified alongW for almost all ` 2 L0. In case (a)
Proposition 4.1 yields that QkEF= QkF is finite. Hence QkE= QkK must be finite. Finally, in case (b)
the group �1.W / is finitely generated (cf. [17, II.2.3.1]), and thus E=K must be finite.

The following independence criterion is the main result of this section:

Theorem 5.8. Assume that k is algebraically closed. Assume that the following condi-
tions (a) and (b) are satisfied.

(a) The family .�`/`2L0 satisfies R.S=k/, and it satisfies S.S=k/ if p > 0.

(b) There exists a constant c 2 N and a finite Galois extensionK 0=K such that for all ` 2 L0

one has �`.Gal.K 0// 2 †`.c/.

Then there exists a finite Galois extension E=K containingK 0 such that Gal.E=K 0/ is abelian
and such that the following holds true.

(i) For every ` 2 L0 the group �`.Gal.E// lies in †`.c/ and is generated by its `-Sylow
subgroups; if ` > c, then the group �`.Gal.E// is generated by the `-Sylow subgroups
of �`.Gal.K//.

(ii) The restricted family .�`jGal.E//`2L0X¹2;3º is independent and .�`/`2L0 is almost inde-
pendent.

Proof. Let G` D �`.Gal.K 0// for all ` 2 L0. The group G` WD G`=G
C

`
is finite and of

order prime to `. Denote by �`WG` ! G` the natural projection. LetK 0
`

be the fixed field inKs
of the kernel of the composite morphism

Gal.K 0/
�`
�! G`

�`
�! G`:

As G` lies in †`.c/, so does its quotient G` by Lemma 3.3 (b). Now any group in †`.c/ of
order prime to ` is abelian of order at most c, and thus the latter holds for G`. Thus K 0

`
=K 0 is

an abelian Galois extension of degree prime to ` and � c. Moreover, as GC
`

is a characteristic
subgroup of G`, it follows that the finite extension K 0

`
=K is Galois. Thus the compositum

E D
Q
`2L0 K

0
`

is Galois overK, and Gal.E=K 0/ is an abelian group annihilated by cŠ. Let S 0

denote the normalization of S in K 0 and S 00 a dense regular open subscheme of S 0. Then
�`jGal.K0/ satisfies condition R.S 00=k/ and it satisfies condition S.S 00=K/ if p > 0 (cf. Propo-
sition 5.5). From Proposition 5.7 (b) we conclude that E=K is finite.

We turn to the proof of (i). For every ` 2 L0, the group �`.Gal.E// is normal in G`,
and hence it lies in †`.c/ by Lemma 3.3. Let M` D �`.Gal.E//. By construction, M` GG

C

`
,
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and G`=M` is abelian and killed by cŠ because it is a quotient of Gal.E=K 0/. Thus GC
`
=M` is

an abelian `-group which is killed by cŠ; if ` > c then this implies GC
`
DM`. To establish (i)

it now suffices to prove that M` DM
C

`
for all ` 2 L0 with ` � c. Clearly, M`=M

C

`
is abelian,

and hence GC
`
=MC

`
is a finite solvable group that is generated by its `-Sylow subgroups. In

addition, the groupGC
`
=MC

`
lies in†`.c/, and therefore it must be an `-group. ThusM`=M

C

`

is an `-group as well, and by the definition of MC
`

, we deduce M` DM
C

`
. Hence part (i)

holds true.
We now prove (ii). Denote by „` the class of those finite groups which are either a finite

simple group of Lie type in characteristic ` or isomorphic to Z=`. The conditions in (i) imply
that every simple quotient of �`.Gal.E// lies in„`. But now for any `; `0 � 5 such that ` ¤ `0

one has „` \„`0 D ¿ (cf. [35, Theorem 5], [1], [24]). The first part of (ii) now follows from
[35, Lemme 2]. The second part follows from the first, the definition of almost independence
and from [35, Lemme 3].

Remark 5.9. We would like to point out that hypothesis (a) in the proof of Theo-
rem 5.8 can be weakened considerably. For this we denote for a continuous homomorphism
�`WGal.K/! G` by Q` the maximal normal pro-` subgroup of �`.Gal.K//, and by ��` the
composite homomorphism

Gal.K/
�`
�! �`.Gal.K// �! �`.Gal.K//=Q`:

If �` is an `-adic representation, then ��` is simply the semisimplification of the mod ` reduction
of �`. The proof of Theorem 5.8 only needs that the family .��`/`2L0 satisfies condition R.S=k/

or condition S.S=k/, if p > 0, respectively, because this weaker hypothesis suffices for the
finiteness of E=K.

We chose to work with conditions R.S=k/ and S.S=k/ as introduced in Definition 5.1,
since they seem most natural for the motivic families we consider in Theorem 1.2. These con-
ditions are established in Proposition 5.4 and Corollary 7.4. For other purposes, the variant
of Definition 5.1 using .��`/`2L0 instead might be useful: There are infinitely ramified `-adic
representations of curves over finite fields, that can be constructed following [31]. Families of
such will never satisfy R.S=k/. Also, if a family .�`/`2L0 satisfies R.S=k/ and if �` is an
extension of �` by itself where the extension class is ramified at a divisor depending on `, then
R.S=k/ might fail for .�`/`2L0 .

6. Effective semistability of families .�.q/

`;X
/`2L0 for p > 0

Let k be a perfect field of characteristic p > 0, S a separated algebraic scheme over k
with function field K D k.S/, and let X=K be a smooth projective variety. Let q 2 N. The
main result of this section, Corollary 6.3, gives an effective proof of condition S.S=k/ for
the family .�.q/`;X/`2L0 . We shall describe explicit finite Galois extensions K 0 of K, such that
for all ` 2 L0 the representation �.q/`;X jGal.K0/ is `-tame, cf. also Remark 6.4. Our proof uses
a reduction to k D Fp in which case we can apply the Weil conjectures and an `-independence
result on tameness from [7], both due to Deligne. Our method sheds no light on the existence
of a semistable geometric model ofX=K over some smooth proper scheme S=k0 with function
fieldK 0. Such an approach is given in [30]. However, in [30] it might be hard to find an effective
description of K 0.
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18 Böckle, Gajda and Petersen, Independence of `-adic representations

Throughout this section we let p > 0 be a prime number, and we set L0 D L X ¹pº.
We use the subscript 0 for fields and separated algebraic schemes that are finitely generated
over Fp. In particular, S0=Fp will be a smooth variety with function field K0 D Fp.S0/.

For every open subschemeU0 of S0 and every closed point u 2 U0, let k.u/ be the (finite)
residue field of u, and let D.u/ � �1.U0/ be the corresponding decomposition group (defined
only up to conjugation). Denote by Fru 2 D.u/ the preimage under the canonical isomorphism
D.u/

�
�! Gal.k.u// of the arithmetic Frobenius

�uW ek.u/! ek.u/; x 7! x
1
jk.u/j :

Note that within �1.U0/, the automorphism Fru is also defined only up to conjugation. The
following proposition is an immediate consequence of the Weil conjectures proved by Deligne.

Proposition 6.1. Let X0=K0 be a smooth projective variety. There exists a dense open
subschemeU0 of S0 such that for every q 2 N and every ` 2 L0 the representation �.q/`;X0

factors
through �1.U0/ and such that the family of representations .�.q/`;X0

/`2L0 is strictly compatible
and pure of weight q, that is: For every closed point u 2 U0 the characteristic polynomial
pu.T / of �.q/`;X0

.Fru/ has integral coefficients, is independent of ` 2 L0, and the roots of pu.T /
all have absolute value jk.u/jq=2.

Proof. There exists a dense open subscheme U0 of S0 and a projective U0-scheme
f WX0 ! U0 such that X0 �U0

Spec.K0/ D X0 (cf. [15, 8.8.2] and [15, 8.10.5 (v) and (xiii)]).
By the theorem of generic smoothness, after shrinking U0 and X0, we can assume that f is
smooth.

Let q � 0, u 2 U0. Define k WD k.u/ andXu WD X0�U0
Spec.k/. Then for every ` 2 L0

the étale sheafRqf�Z` is lisse and compatible with any base change (cf. [28, VI.2, VI.4]). Thus
�.q/`;X0

factors through �1.U0/, and furthermore it follows that H q.X0; �K ;Q`/ can be identified
withH q.Xu; Qk;Q`/ in a way compatible with the Galois actions. The assertion now follows by
Deligne’s theorem on the Weil conjectures (cf. [8, Theorem 1.6]).

Lemma 6.2. Let X0=K0 be a smooth projective variety, and let q be in Z. Suppose
that for some prime `0 � 3 in L0 there is a Z`0

-lattice ƒ of the Q`0
-representation space

underlying �.q/`0;X0
that is stabilized by Gal.K0/ and such that Gal.K0/ acts trivially onƒ=`0ƒ.

Then for all ` 2 L0, the representation �.q/`;X0
is `-tame.

Proof. Let C be any smooth curve over Fp and let 'WC ! U0 be any non-constant
morphism. Denote by P.C/ a smooth projective model of C , and by '�W�1.C /! �1.U0/ the
homomorphism on fundamental groups induced by '. We claim that the representation

(2) .�
.q/

`;X0
ı '�/

ss

is semistable4) at all places of P.C/ X C and for all ` 2 L0. Having shown this for all pairs
.C; '/, the assertion of the lemma is deduced as follows: Passing from an `-adic representation

4) We call a representation of �1.C / semistable at v if the Frobenius semisimplified Weil–Deligne repre-
sentation at v is unramified when restricted to the Weil group.
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to its semisimplification does not affect `-tameness, and so �.q/`;X0
ı '� will be `-tame for all `.

The present lemma now is immediate from this and Proposition 4.6, which is a variant of
a result of Kerz–Schmidt–Wiesend.

It remains to prove the claim. By Proposition 6.1, the representations (2) are pure of
weight q and semisimple for all ` 2 L0, and they form a strictly compatible family of repre-
sentation of �1.C /. By [7, Théorème 9.8], it follows that in fact for any v 2 P.C/ the repre-
sentation rv;` underlying the Weil–Deligne representation .rv;`; Nv;`/ of the restriction of (2)
to a decomposition group at v is independent of `. Thus it will suffice to show that rv;`0

is
unramified for all v 2 P.C/.

We consider the representations (2) for ` D `0 as an action of �1.C / on the latticeƒ that
is trivial modulo `0ƒ. Any filtration of ƒ˝Z`0

Q`0
that is preserved by the action of �1.C /

induces a filtration of ƒ. Denote by ƒC the induced lattice for (2). Then it follows that the
induced action of �1.C / on ƒC =`0ƒC is trivial. Let n D rankƒ. In the following we fre-
quently identify AutZ`0

.ƒ/ with GLn.Z`0
/. We define

GL1n.Z`0
/ WD ker.Aut.ƒC /! Aut.ƒC =`0ƒC //:

Since `0 > 2, we have pairwise inverse `0-adic exponential and logarithm maps

exp`0
W `0Mn.Z`0

/! GL1n.Z`0
/ and log`0

WGL1n.Z`0
/! `0Mn.Z`0

/;

given by the usual power series expressions

X 7!
X
m�0

1

mŠ
Xm and .1C A/ 7!

X
m�1

.�1/mC1

m
Am

(cf. [4, III.7.2], [4, III.7.6]). It follows that log`0
converges on the image of (2). This image

being in GL1n.Z`0
/, following the standard argument (cf. [36, Corollary 4.2.2]) shows that rv;`0

is unramified: By the continuity of rv;`0
(with the target carrying the discrete topology), any

element A in the image of inertia at v has finite order. Thus A 2 GL1n.Z`0
/ satisfies Am D 1

for some m 2 N. One deduces 0 D log`0
Am D m log`0

A which gives log`0
A D 0 and thus

A D exp`0
.log`0

A/ D 1n.

For a smooth projective variety X=k we have the following effective `-tameness result
for the family .�.q/`;X/`2L0 .

Corollary 6.3. Let k be perfect of characteristic p > 0, let S=k be a smooth variety
with function field K, and let X=K be a smooth projective variety. Choose a prime `0 � 3
and a Gal.K/-invariant lattice ƒ of �.q/`0;X

, and denote by K 0 the fixed field of the kernel
of �.q/`0;X

.mod `0ƒ/. Then there exists a regular k-scheme U 0 with function field K 0 such that
for all ` 2 L0 the family .�.q/`;X jGal.K0//`2L0 factors via �1.U 0/ and is `-tame.

In particular, .�.q/`;X/`2L0 satisfies condition S.S=k/

Proof. Suppose first that k D Fp is finite, so thatX=K D X0=K0 in the notation above.
LetU0 � S be as in Proposition 6.1 for .�.q/`;X/`2L0 , letU 00 be its normalization inK 0. By generic
étaleness, we may shrink U0 such that U 00 ! U0 is étale, and hence U 00=k is smooth. Using
Lemma 6.2, the second assertion follows for U 0 D U 00. The first is clear from the construction.
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20 Böckle, Gajda and Petersen, Independence of `-adic representations

Let now k be any perfect field of characteristic p, and letƒ andK 0 be as in the corollary.
By standard arguments from algebraic geometry, there exist an absolutely finitely generated
subfield K0 of K and a smooth projective scheme X0 over K0 such that

X D X0 �SpecK0
SpecK:

Then .�.q/`;X/`2L0 D .�
.q/
`;X0
jGal.K//`2L0 for the canonical map Gal.K/! Gal.K0/. Since ƒ is

stabilized by Gal.K/, we may assume by passing from K0 to a finite extension contained in K
that ƒ is stabilized by Gal.K0/. If we furthermore define K 00 � K0 as the fixed field of the
kernel of �.q/`0;X0

.mod `0ƒ/, then K 00 � K
0.

Let S0 be a smooth Fp-variety with function field K0. Let U0 � S0 and U 00 be as in
the first paragraph of the proof, and assume without loss of generality that both are affine
U0 D SpecA0 and U 00 D SpecA00. Then we have that kA0 � K and kA00 � K

0 are finitely
generated k-algebras. Because k is perfect, they are generically smooth over k and kA0 � kA00
is generically étale. We can choose U � Spec.kA0/ dense open such that U � S and such
that the normalization U 0 of U in K 0 is étale over U ; note that U 0 is an open subscheme
of Spec.kA00/. The corollary now follows from Proposition 5.5 applied to U 0 ! U 00 over
Spec k ! Spec Fp.

Remark 6.4. We would like to point out the parallel between Corollary 6.3 and
Example 5.3. In both cases we select a prime number `0 � 3. In the effective part of Corol-
lary 6.3 we enlarged K to K 0 so that Gal.K 0/ acts trivially on ƒ=`0ƒ via the representation
�.q/`0;X

for a Gal.K/-stable latticeƒ. Then we could use the uniformity provided by automorphic
representations (after restricting ourselves to the case where k is finite by standard arguments,
and after restricting the �.q/`;X to any curve) from Lemma 6.2, to deduce that for all `, all rami-
fication of �`;X was `-tame over K 0. The semistability of an automorphic representation, and
hence the `-tameness of the associated compatible system of `-adic Galois representations,
spreads from a single `0 to all `.

In Example 5.3 we setK 0 D K.AŒ`0�/, which again is the minimal choice so that Gal.K 0/
acts trivially on the quotient T`0

.A/=`0T`0
.A/ for the lattice T`0

.A/ from the Tate-module.
Then we use the semistability of the Néron model N of the abelian variety A over K 0 over
any discrete valuation ring, that is implied by a condition at a single prime `0: We deduce the
`-tameness of T`.A/ overK 0, uniformly for each prime `. In both cases, the fieldK 0 is defined
in the same way. For general X as in Corollary 6.3, it seems unlikely that X always acquires
some geometric semistability over K 0, as it is the case for X an abelian variety.

7. Reduction steps and the proof of Theorem 1.2

Throughout this section let k be a field of characteristic p � 0, let L0 D L X ¹pº and
let S=k be a smooth variety with function field K. By X=K we denote a separated algebraic
scheme, and by �`;X the representation of Gal.K/ on

L
q�0.H

q
c .X �K ;Q`/˚H

q.X �K ;Q`//.

In this section, we give the necessary reduction steps to deduce hypotheses (a) and (b) of
Theorem 5.8 for the family .�`;X /`2L0 . Thereby we shall complete the proof of Theorem 1.2.
Recall that hypothesis (a) is condition S.S=k/, and that hypothesis (b) is the uniform contain-
ment �`;X .Gal.K 0// 2 †`.c/ for all ` for some finite extension K 0 � K.
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As a preparation to establish S.S=k/ we introduce the following notion.

Definition 7.1. For a given representation �`WGal.K/! GLn.Q`/ we define its strict
semisimplification �sss

`
as the direct sum over the irreducible subquotients of �` where each

isomorphism type occurs with multiplicity one.

Note that �sss
`
.Gal.K// D �ss

`
.Gal.K// where �ss

`
denotes the usual semisimplification

of �`.

Lemma 7.2. For every ` 2 L0 let �` and �0
`

be representations Gal.K/! GLn.Q`/.
Suppose that the families .�`/`2L0 and .�0

`
/`2L0 both satisfy condition R.S=k/. Suppose that

one of the following two assertions is true:

(a) �sss
`
D .�0

`
/sss for all ` 2 L0,

(b) �` is a direct summand of �0
`

for all ` 2 L0.

Then the following hold: If the family .�0
`
/`2L0 satisfies S.S=k/, then so does .�`/`2L0 .

Proof. The proof under hypothesis (a) is an immediate consequence of the simple fact
that the kernel of �`.Gal.K//! �ss

`
.Gal.K// D �sss

`
.Gal.K// is a pro-`-group.

Under hypothesis (b) the proof is trivial.

The following important result is taken from the Seminaire Bourbaki talk of Berthelot on
de Jong’s alteration technique (cf. [3, Theorem 6.3.2])

Theorem 7.3. Let X be a separated algebraic scheme overK. Then there exists a finite
extension k0=k, a finite separable extension K 0=Kk0 and a finite set of smooth projective vari-
eties ¹YiºiD1;:::;r overK 0 such that for all ` 2 L0 the representation .�`;X jGal.K0//

sss is a direct
summand of .

L
i �`;Yi

/sss.

The following result is an immediate consequence of Theorem 7.3, Lemma 7.2 and
Corollary 6.3.

Corollary 7.4. Let k be perfect of characteristic p > 0; recall thatK D k.S/. Then for
every separated algebraic K-scheme X the family .�`;X /`2L0 satisfies condition S.S=k/.5)

Proof of Theorem 7.3. For completeness we provide details of the proof in [3]. For
‹ 2 ¹c;¿º we denote by �`;X;‹ the representation of Gal.K/ on

L
q�0.H

q
‹
.X �K ;Q`//. It suf-

fices to prove the theorem separately for the families .�`;X;‹/`2L0 . We also note that whenever
it is convenient, we are allowed (by passing from K to a finite extension) to assume that X
is geometrically reduced over K. This is so because H q

‹
.X �K ;Q`/ Š H

q
‹
.X �K; red;Q`/ for any

q 2 Z and ‹ 2 ¹¿; cº. We first consider the case of cohomology with compact supports. The
proof proceeds by induction on dimX .

5) Not assuming that k is perfect, one can show that after a finite field extension k0 of k and a corresponding
base change S 0 of S , condition S.S 0=k0/ holds.
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The scheme X �K is generically smooth. After passing from K to a finite extension, we
can find a dense open subscheme U � X that is smooth overK. By the long exact cohomology
sequence with supports (cf. [28, Remark III.1.30]) we have for any ` an exact sequence

� � � ! H i
c .U �K ;Q`/! H i

c .X �K ;Q`/! H i
c ..X X U/ �K ;Q`/! � � � ;

so that for all ` the representation .�`;X;c/sss is a direct summand of .�`;U;c/sss ˚ .�`;XXU;c/
sss.

By induction hypothesis, it thus suffices to treat the case that U is smooth overK. By induction
hypothesis, it is also sufficient to replace U by any smaller dense open subscheme, and it is
clearly also sufficient to treat the case where U is in addition geometrically irreducible.

By de Jong’s theorem on alterations (cf. [6, Theorems 4.1, 4.2]), after passing from K to
a finite extension, we can find a smooth projective scheme Y; an open subscheme U 0 of Y and
an alteration � WU 0 ! U . By replacingK yet another time by a finite extension, we can assume
that U 0 ! U is generically finite étale. And now we pass to an open subscheme V of U and
to V 0 WD ��1.V / � U 0 such that V 0 ! V is finite étale. By the induction hypothesis applied
to Y X V 0 and again the long exact cohomology sequence for cohomology with supports, we
find that the assertion of the theorem holds true for the family .�`;V 0;c/sss

`2L0 . From now on �
denotes the restriction to V 0 and Q`;X will be the constant sheaf Q` on any scheme X . Since
� is finite étale, say of degree d , there exists a trace morphism Trace� W��Q`;V 0 ! Q`;V

whose composition with the canonical morphism Q`;V ! ��Q`;V 0 is multiplication by d
(cf. [28, Lemma V.1.12]). In particular, we have that the constant sheaf Q`;V is a direct sum-
mand of ��Q`;V 0 . SinceH i

c .V
0�K ;Q`/ Š H

i
c .V �K ; ��Q`/, we deduce that .�`;V;c/sss is a direct

summand of .�`;V 0;c/sss, and this completes the induction step.
Now we turn to the case ‹ D ¿. The case when X is smooth over K but not necessarily

projective is reduced, by Poincaré duality, to the case of compact supports. If X is connected,
one has H q.X �K ;Q`/ Š H

2d�q
c .X �K ;Q`.d//

_ for d D dimX (cf. [28, Corollary VI.11.12]),
and one can reduce to the connected case by considering the connected components of X
separately.

Suppose now that X is an arbitrary separated algebraic scheme over K. By what we said
above, we may assume that X is geometrically reduced. Again we perform an induction on
dimX . The first step is a reduction to the case whereX is irreducible, which may be thought of
as an induction by itself. Suppose X D X1 [X2 where X1 is an irreducible component of X
andX2 is the closure ofX XX1. Consider the canonical morphism f WX1 tX2 ! X . It yields
a short exact sequence of sheaves

(3) 0! Q`;X ! f�Q`;X1tX2
! F ! 1

where F is a sheaf on X . Consider the inclusion i WX0 ,! X for X0 WD X1 \X2. We claim
that F Š i�Q`;X0

. To see this observe first that if we compute the pullback of the sequence
along the open immersion j WX XX0 ,! X , then F vanishes and the morphism on the left
becomes an isomorphism. In particular, F is supported on X0. To compute the pullback along
the closed immersion i , we may apply proper base change, since f is proper. But now the
restriction of f toX0 is simply the trivial double coverX0tX0� X0, so that i�F Š Q`;X0

.
This proves the claim because F Š i�i

�F , as F is supported on X0. By an inductive appli-
cation of the long exact cohomology sequences to sequences like (3), it suffices to prove the
theorem for schemes X that are geometrically integral and separated algebraic over K. In this
case, the proof follows by resolving X by a smooth hypercovering X� see [6, p. 51], [9, 6.2.5]
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and the proof of [3, Theorem 6.3.2]. Since the hypercovering yields a spectral sequence that
computes the cohomology of X in terms of the cohomologies of the smooth Xi , for all `, and
since only those Xi with i � 2 dimX , contribute to X , the induction step is complete because
we have reduced the case of arbitrary X to lower dimensions and to smooth Xi .

We now consider hypothesis (b) of Theorem 5.8. One has the following simple reduction
result.

Lemma 7.5. Let .�`WGal.K1/! G`/`2L0 be a family of Galois representations, and
consider the diagram of fields

K1
� � // K2

k1

?�

OO

� � // k2

?�

OO

inside an algebraic closure �K2 of K2, where ki is algebraically closed and Ki is finitely gen-
erated over ki for i D 1; 2. Then (�1) implies (�2) for the following assertion depending on i :

(�i ) There exists a constant c 2 N and a finite Galois extensionK 0i=Ki such that for all ` 2 L0

one has �`.Gal.K 0i // 2 †`.c/.

Proof. Consider the following homomorphisms of Galois groups, given by restriction:

Gal.K2K 01/
r3
�! Gal.k2K 01/

r2
�! Gal..k2 \ �K1/K 01/ r1

�! Gal.K 01/:

One easily verifies that r1 has closed normal image, r2 is surjective, and r3 has open image. Let
E=k2K

0
1 be a finite Galois extension such that r3.Gal.K2K 01// contains Gal.E/, and defineK 002

as the fixed field in �K2 of r�13 .Gal.E//, i.e., as EK2. Applying Corollary 3.4 to r1, r2 and r3
shows that the conclusion of (�2) holds withK 002 in place ofK 02. The lemma follows by another
application of Corollary 3.4 for K 02 the Galois closure of K 002 over K2.

Corollary 7.6. For k be algebraically closed, hypothesis (b) of Theorem 5.8 holds for
the family .�`;X /`2L0 .

Proof. Let k0 be the prime field of K, let K0 � K be an absolutely finitely generated
subfield field, and let X0=K0 be a separated algebraic scheme with X D X0 �SpecK0

SpecK.
Then we have .�`;X /`2L0 D .�`;X0

jGal.K//`2L0 . By [22, Section 3] there exists n 2 N such
that dim.�`;X0

/ � n for all ` 2 L0. For each ` we apply Theorem 3.6 to �`;X0
, to obtain a short

exact sequence
1!M` ! �`;X0

.Gal.K0//! H` ! 1

with H` 2 Jor`.J 0.n// and M` 2 †`.2
n�1/. Because of Corollary 7.4 and Proposition 5.4,

there exists a smooth variety S0 over k0 with function fieldK0 D k0.S0/ such that .�`;X0
/`2L0

satisfies S.S0=k0/ if p > 0, or satisfies R.S0=k0/ if p D 0. Then Proposition 5.7 (a) yields
a finite Galois extension K 00=K0 such that �`;X0

.Gal. Qk0K 00// is a closed normal subgroup
ofM` for all ` 2 L0. Corollary 3.4 together with Lemma 7.5 now provide a finite Galois exten-
sion K 0 of K such that for all ` 2 L0 one has �`.Gal.K 0// 2 †`.2n�1/, and so hypothesis (b)
of Theorem 5.8 is satisfied.
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Using Proposition 5.4, Corollary 7.4 and Corollary 7.6, Theorem 5.8 yields our main
theorem:

Theorem 7.7. Let k be a field of characteristic p � 0 and let K=k be a finitely gener-
ated extension. Let X=K be a separated algebraic scheme. Then there exists a finite extension
E=K and a constant c 2 N with the following properties:

(i) For every ` 2 L0 the group �`;X .Gal. QkE// lies in †`.c/ and is generated by its `-Sylow
subgroups.

(ii) The family .�`;X jGal. QkE//`2L0X¹2;3º is independent and the family .�`;X jGal. QkK//`2L0 is
almost independent.
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