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1. Introduction and statement of main results
1.1. Deformation rings of Galois representations

Let Gx be the absolute Galois group of a finite extension K of Q, and let p: Gx —
GL,,(F) be a continuous residual representation for IF a finite field of characteristic p. Let
W (F) be the ring of Witt vectors of F. We shall always write O for the ring of integers of
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a finite totally ramified extension of W (IF)[1/p] and denote by me its maximal ideal and
by woe a uniformizer. To simplify notation, we shall write O; for the quotient O/w}, O for
any integer ¢ > 1. Denote by ad the adjoint representation of p, i.e., the representation
on M, (F) induced from p by conjugation and by ad® the subrepresentation on trace zero
matrices.

For p as above, we consider the deformation functor from the category K}o of complete
Noetherian local O-algebras (R, mg) to the category of sets defined by

D;(R) :={p: Gk = GL,(R) | p mod mg = p and p is a cont. repr.}/ ~

where p ~ p' if there exists A € ker (GL,(R) mod gn GL,,(F)) such that p' = ApA~L.
An equivalence class [p] of p under ~ is called a deformation of p. Since Gk satisfies the
finiteness condition ®, from [24, §1.1], by [24, Prop. 1] with a slight strengthening by
[30] one deduces:

Theorem 1.1. The functor Dj always possesses a versal hull (Rz, mz) which is unique up
to isomorphism. If in addition Endg, (p) = F, then Dj is representable and in particular
(Rp,mz) is unique up to unique isomorphism.

We denote by ps: Gk — GL,(R;) a representative of the versal class.
For later use, we recall parts of the obstruction theory related to Dj;. Suppose we are
given a short exact sequence

0—J— R — Ry —0,

where the morphism R; — Ry is in I/X\ro, and my - J = 0 for m; the maximal ideal of Ry;
such a diagram is called a small extension of Ry. Suppose further that we are given
a deformation of p to Ry represented by po : Gx — GL,,(Rp). Then Mazur defines a
canonical obstruction class

O(po) S HZ(GK,ad) ®J

that vanishes if and only if py can be lifted to a deformation p; : Gx — GL,,(R1) of p,
see [24, p. 398]. By elementary linear algebra, the obstruction class O(pg) defines an
obstruction homomorphism obs: Homg (J,F) — H?(Gf,ad), and conversely from the
latter one can recover O(pg).

The following result describes the mod me tangent space of R; and a bound on the
number of generators of an ideal in a minimal presentation of 25 by a power series ring
over O.
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Proposition 1.2. (See [24].)

(a) If Fle] denotes the ring of dual numbers of F and m; := m;/moR;, then one has
canonical isomorphisms between the two tangent spaces

tp, = D5(F[e]) = H' (G, ad) = Homg (f;/m5, F) =: tg,.

hS]]

(b) Let hy := dimp H* (G, ad), let m be the maximal ideal of O|[z1,...,zs,]] and let
0—1— O[x1,...,71,]] — R; — 0
be a presentation of Rs. Then the obstruction homomorphism
obs: Homg (I/mI,F) — H?*(Gr,ad), f— (1@ f)(O(pp)),

is injective, and thus dimg H?(Gg,ad) bounds the minimal number dimg I/mI of
generators of I.

If in a presentation as in (b) the number of variables is minimal, i.e., if the mod me
tangent space of O[[z1, ..., x,]] is isomorphic to that of R;, then we call the presentation
minimal. Now fix a character ¥: G — O* which reduces to det p and denote by D;f the
subfunctor of D; of deformations whose determinant is equal to ¢ (under the canonical
homomorphism O — R).

Proposition 1.3. If p { n, then the results of Theorem 1.1 and Proposition 1.2 hold for
Dg} as well, if one replaces ad by the adjoint representation ad® on trace zero matrices,
the pair (Rp,mp) by the versal deformation ring (R%,m%) and the ideal I by a relation
ideal I in a minimal presentation

0— 1Y — R :=0z1,...,23]]' — RY — 0 with h = dims H (G, ad’). (1)

This article presents three results on the deformation rings R; and Rg’ introduced
above:

For n = 2, we improve the ring theoretic results from [2] by showing that the rings
R;f are integral domains. On the technical side, we clarify that for this result and the
main results in [2] the knowledge of a suitably defined (refined) quadratic part, see Defi-
nition 2.4, of the relation in a minimal presentation of Rg’ suffices.

Using the irreducibility of R;,f’, we deduce the Zariski density of crystalline points in
Spec R; for n =2, p > 2 and any p-adic local field K.

1 To avoid notation such as Mmpe, My, we use the simpler notation R instead of RY for the frequently
used ring R.
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For many n and K we give a cohomological description of the quadratic parts of the
relations in a minimal presentation of R? via a cup product and a Bockstein formalism
in the context of Galois cohomology of p-adic fields.

We now explain these results in greater detail. From now on we assume that p > 2.

1.2. Ring-theoretic results on local versal deformation rings

To describe some auxiliary ring-theoretic results and some ring-theoretic properties of
the versal deformation ring R;,f’ for a fixed 2-dimensional residual representation p: G —
GL2(F), we fix some further notation.

For a ring R in Z\ro and a proper ideal n of R, we denote by gr,(R) the associated
graded ring @, gri(R) with gr’(R) = n’/n’*!. By in,: R — gr,(R), we denote the
map that sends 7 € R~ {0} to its initial term in gr, (R), i.., if 4, is the largest integer
i > 0 such that 7 € n’, then in,(r) is the image of r in n’ /ni*!. Further, we set
in,(0) = 0 and note that (),n* = {0} for R in Aro. If we wish to indicate 4, in the
notation, we write inr (7). For an ideal I C R one denotes by in,(I) the ideal of gr,(R)
generated by {in,(r) | » € I'}. To describe the mod me reduction of pairs (R, mg) in
A\ro, we define R := R/moR and Mg := mgr/meR. Similarly, we write 7 for the image
of r € Rin R.

The following is the key technical result to deduce ring theoretic properties of R%:

Theorem 1.4. Suppose p is of degree 2 and p > 2. Fixz a minimal presentation of R}é’ as
in Proposition 1.5. Then there exist an mg-primary ideal ms of R = O[z1,...,zp]] of
the form (wp,x1,...,xp) D IV and generators fi, ..., fr of IV such that the following
hold:

(a) For j=1,...,r we have inals(fj) € m?/m3, and the el€m?nts t_o,:(jl,...,gr with
g; == in}, (f;) form a regular sequence in gry, (R) = Flto,t1,...,tn], where to =
ing, (wh) and t; = ing (x;) fori=1,...,h.

(b) The quotient ring gr, (R)/(g1,--.,3r) is an integral domain and one has (g1, ..., gr)
= ingy,, (I¥).

Theorem 1.4 will be proven after Corollary 3.6. A cohomological interpretation of the
g; is given in Theorem 1.14.

As a consequence of Theorem 1.4 and some purely ring-theoretic results summarized
in Proposition 2.2, we shall obtain the following main theorem in Section 2:

Theorem 1.5. Let the residual representation p be of degree 2 and suppose p > 2. Then
the following hold:

(a) The ring ]_%%’ is a complete intersection.
(b) The ring Rlﬁb is a complete intersection and it is flat over O.

(¢) The ring ng is an integral domain and in particular irreducible.
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In Lemma 4.1 we show that it suffices to prove Theorem 1.5 for any fixed choice of
lift 4, for instance for the Teichmiiller lift of det p.

Remark 1.6. Parts (a) and (b) of Theorem 1.5 were obtained already in [2]|. In fact,
our present proof heavily relies on the results of [2] because we shall simply quote the
relations of R%p in a minimal presentation from there. However, the present article allows
one to redo much of [2] by working with the simpler ring R? /m3 and this would avoid
most of the technical difficulties occurring in [2]. An example of this is given by the proof
of Lemma 3.7.

Remark 1.7. It does not seem possible to show irreducibility when n = 2, p = 2 and
K = Q. with ideas of the present article, i.e., by using suitable initial terms in an
associated graded ring of Rg’. For instance, if p is the trivial representation, then it
is simple to check that the natural degrees of such initial terms are 2 and 3 and that
they form a regular sequence. But the resulting associated graded ring is not an integral
domain! However, when K is a proper extension of Q2, as shown in the Master thesis of
M. Kremer, the methods of this article suffice to show that Rg is an integral domain for
the trivial representation p. For n =2, p = 2 and K = Qs, see however Remark 1.13.

1.8. Irreducible components of versal deformation spaces and Zariski density of
crystalline points

Denote by X(p) the versal deformation space of a fixed residual representation p :
Gk — GL,(F) that is the generic fiber over O[1/p] of its versal deformation ring R; in
the sense of Berthelot, see [13, §7]. The points of X(p) are in bijection with those p-adic
representations of G that have a mod p reduction isomorphic to p. To explain the
consequences of the ring-theoretic results in Theorem 1.5 to p-adic Galois representations,
we introduce the following notions due to Colmez, Kisin and Nakamura:

Definition 1.8. Let V' be a potentially crystalline p-adic representation of G of degree n.

(i) V is called regular if for each embedding o : K — @, the Hodge-Tate weights of
V @k » Qp are pairwise distinct.

(ii) V is called benign if V is regular and the Frobenius eigenvalues aq,...,a, of (the
filtered ¢-module corresponding to) V' are pairwise distinct and satisfy «;/a; # p!,
for any 7, j, with f = [Ko : Qp).

Using the following important structure result on the irreducible components of X(p),
we show in Lemma 4.2 that every component of X(p) contains a regular crystalline point.

Theorem 1.9. Suppose p > 2 and let p be a residual representation of G of degree 2.
Consider the canonical map Det: X(p) — X(det p) induced from mapping a deformation
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of p to its determinant. Then Det induces a bijection between the irreducible compo-
nents of X(p) and those of X(det p). Moreover, for both spaces, irreducible and connected
components coincide. Lastly, the connected components of X(det p) form a principal ho-
mogeneous space over the set fipo (K) of p-power roots contained in K.

The proof follows from Theorem 1.5 and Lemma 4.1, and is thus postponed to Sec-
tion 4.

Question 1.10. We wonder whether the assertions of Theorem 1.9 hold for all represen-
tations p: Gx — GL,,(F) of any degree n, and any p and any finite extension K/Q,? We
also wonder if Theorem 1.5 holds in this generality.

The following theorem is shown by methods similar to [22]. It generalizes a result
of Colmez and Kisin for K = Q,, cf. [10,22], and makes crucial use of an idea of Ch-
enevier [29, Thm. 2.9].

Theorem 1.11. (See [28, Theorem 1.4].) Suppose n = 2 and that every component of X(p)
contains a reqular crystalline point. Then the Zariski closure of the benign crystalline
points in X(p) is non-empty and a union of irreducible components of X(p).

We remark that the above result is also proven for arbitrary n. This is due to Chenevier
18] for K = Q, and to Nakamura [29] for arbitrary finite extensions K/Q,,.
Using Theorems 1.5 and 1.9, we show in Section 4 that Theorem 1.11 implies:

Theorem 1.12. Suppose n =2, p > 2, K is a finite extension of Q, and p: Gx — GLo(F)
is any residual representation. Then the benign crystalline points are Zariski dense in

X(p)-

In Corollary 4.3, we prove analogs of Theorems 1.9 and 1.12 for pseudo-representations,
in the sense of Chenevier [9].

In the case K = Q, and n = 2, Theorem 1.12 is an important ingredient in Colmez’
proof of the p-adic local Langlands correspondence. In that case it is essentially due to
Kisin, cf. [4], and it is used to establish the surjectivity of Colmez’ functor V, which
relies on an analytic continuation argument and the knowledge of the correspondence in
the crystalline case; see [11, proof of Thm. I1.3.3] or alternatively [22].

Remark 1.13. Suppose p = 2 and K = Q5. The assertions of Theorems 1.9 and 1.12 for
the universal framed deformation space of the trivial representation 1® 1 were proved by
Colmez, Dospinescu and Paskunas [5, Thms. 1.1 and 1.2]. The assertion of Theorem 1.9
was proved by Chenevier in the case n = 2 if the residual representation is an extension
of two distinct characters, and for arbitrary n if the residual representation is absolutely
irreducible [7, Cor. 4.2]. In these two cases the assertion of Theorem 1.12 is deduced in
[5, Rem. 9.8].
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1.4. Generation of quadratic parts of relation ideals through cohomological operations

One possible source of obstruction classes in H*(G,ad’) stems from the cup product
in cohomology: Namely, if one composes the Lie bracket [-,-]:ad’ x ad® — ad’, (4, B) —
AB — BA, with the cup product H'(Gg,ad") x H'(Gg,ad’) — H*(Gr,ad’ ® ad”),
which are both alternating, one obtains a symmetric F-bilinear pairing

b: HY(Gg,ad’) x H (Gg,ad’) — H*(Gk,ad’),

often called the bracket cup product. As remarked in [24, §1.6], if p # 2 the pairing b
gives the quadratic relations (up to higher terms) satisfied by a minimal set of formal
parameters for R?. We shall prove this and give a precise interpretation in Lemma 5.2.

In Section 6, we shall explain how further information on the relation ideal I¥ may
arise from cohomology, namely from a Bockstein homomorphism BS“: HY(GE, ado) —
H?(Gr,ad”). The Bockstein homomorphism can be defined whenever p admits a lift to
Os = O/wgO for some s. It measures to what extent lifts from the dual number Fle]
can be lifted to Osle]. In Section 6 we then combine the bracket cup product with the
Bockstein homomorphism, to show that these two cohomological operations (essentially)
suffice to describe the refined quadratic relations in a minimal presentation of Rg’.

The results of Sections 5 and 6 have the following consequences. First, we comple-
ment Theorem 1.4:

Theorem 1.14. Let the notation be as in Theorem 1.4. Then in addition to the assertions
of Theorem 1./, the following hold:

(a) The elements g; are the images of an F-basis of H?(Gg,ad”)V under the composite
of the dual obstruction homomorphism obs': H*(Gg,ad)V — IV /mgrI¥ with the
canonical homomorphism IV /mrI¥ — m2/m3.

(b) The dual of the map H*(Gr,ad®)Y — m2/m3 from (a) factors via -1 —Boi1.-

We prove Theorem 1.14 at the end of Section 6 by verifying the hypotheses needed
to apply Theorem 6.8. In particular, this shows that cohomological information alone
suffices to deduce all parts of Theorem 1.5.

Second, we observe in Example 2.3 that the bracket cup product alone need not suffice
to show that RZ—Z’ is an integral domain. Thus important ring-theoretic information is not
visible by the bracket cup product but requires in addition the Bockstein homomorphism.

Third, our results show that for 2-dimensional residual representations of G for
p > 2 the refined quadratic part of I¥ in a minimal presentation of Rg’ suffices to prove
Theorem 1.5. Theorem 6.8 then explains that essentially the cohomological operations
suffice to deduce all ring-theoretic properties we are interested in.

The third point above is particular to the set-up we work in. For general fields K
little is known about the pairing b and whether it generates a significant portion of the
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elements in the relation ideal I¥ of Proposition 1.3. However for K a finite extension
of Q, and p > 2, the universal deformation ps: Gx — GL2(R;) factors via a profinite
group that is an extension of a finite group by the pro-p-completion G 1, of the abso-
lute Galois group of a finite extension L of K. The group G L is either a free pro-p
group or a Demushkin group, and topologically finitely generated. In the former case,
R; will be unobstructed. In the latter case G L is isomorphic to the pro-p completion of
a group on generators ag, by, ..., ag, by with a single relation af - (a1,b1)-...-(ag,by) =1,
where g = [L : Q] and (x,y) denotes the commutator bracket x~1y~lzy; cf. [23] for
the classification of Demushkin groups. The Demushkin case should be compared with
the deformation results [17,18] by Goldmann and Millson, as already suggested in [24].
Goldman and Millson study the deformation theory of representations of fundamental
groups of compact Kéhler manifolds, and show in this context that all relations in a
minimal presentation of their deformation rings are purely quadratic. A typical exam-
ple is the fundamental group of a compact Riemann surface, which is a group on 2g
generators ai, by, ..., a4, by subject to a single relation (a1,b1) - ...- (ag,by) = 1. The
formal similarity of the relation except for the term af suggests that the deformation
rings might be very similar. The term a? might explain the importance of the Bockstein
homomorphism when trying to detect the refined quadratic relations from cohomology.

1.5. OQutline of the article

We briefly explain the organization of the article. In Section 2, we adapt some results
from commutative algebra in the way we later wish to apply them. In particular, these
results give a sufficient criterion for certain rings R in A\r@ to be complete intersections
and to be integral domains in terms of homogeneous initial terms of a presentation
of R. The main results of Section 2 together with Theorem 1.4 imply the ring-theoretic
properties stated in Theorem 1.5. In Section 3, we recall the explicit presentations of the
versal deformation rings for 2-dimensional representations p from [2]. In Lemma 3.7, we
also give a detailed treatment of some results from [2, §8], whose proofs are somewhat
sketchy. At the end of Section 3, we give the proof of Theorem 1.4.

The short proof of the Zariski-density of crystalline points in local deformation spaces
is the content of Section 4. We end this article with Sections 5 and 6 with (presumably
well-known) results regarding the bracket cup product and the Bockstein homomorphism.
These results might be relevant for tackling higher dimensional cases in future work. The
proof of Theorem 1.14 ends Section 6.

2. Results from commutative algebra

The aim of this section is to prove some results in commutative algebra in order to
deduce from Theorem 1.4 the ring-theoretic results stated in Theorem 1.5. In particular,
we wish to transfer ring-theoretic properties from a certain associated graded ring to the
ring itself. Recall that above Theorem 1.4 we define an initial term map in,, from a ring
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R in A\ro to the associated graded ring gr, R with respect to a proper ideal n C R, and
that we write O; for O/wi,O, R for R/moR, Mg for mp/moR and Z for the image of
z € Rin R.

Lemma 2.1. For a ring R in K}o and proper ideals I = (f1,..., fr),n C R, the following
hold:

(a) If gr, R is an integral domain, then so is R.

(b) If f1,..., fr is a regular sequence in R so that R/I is an integral domain, then R is
an integral domain.

(¢c) The natural homomorphism gr, R — gr(ny )1 (R/I) induces an isomorphism

(gry R)/ina(l) = gruypy 1 (R/1).

(d) If iny(f1),...,in.(f.) is a regular sequence in gr, R, then in,(I) = (in.(f1),...,
in.(fr)).

(e) If ing(f1),...,in.(fr) is a regular sequence in gr, R, then fi1,...,f. is a regular
sequence in R.

Proof. Part (a) is [15, Cor. 5.5], and (b) follows by induction on r: For » = 1 we have a

short exact sequence 0 — R R R/(f1) — 0 so that gri;y R = R/(f1)[t], and R is
an integral domain by (a). Parts (c), (d) and (e) are [31, middle p. 94], [31, Prop. 2.1]
and [31, Cor. 2.7], respectively. O

The next result is a refinement of Lemma 2.1 suited for our purposes. As a preparation
we introduce the following graded ring. Denote by m the ideal (@), x1,...,2) of R =
O|[z1,...,zp]]* for some integer s > 1. Setting to := ing, (wf) and t; := iny, (z;) for
i=1,...,h, we have gr,, R = Oylto,... tn], grm, R = Flto,t1,...,t5) and grgg , R =
F[t1,...,tn], where t; is identified with ing, (Z;) for i =1,...,h.

Proposition 2.2. Let R,ms and s be as above, and let I C R be an ideal generated by
elements f1,..., fr € R. Then the following hold:

(a) Ifing, (f1),...,ing, (f.) is a reqular sequence in San R, then so is wo, f1,..., fr
in R. In this case, ing, (I) = (inmy (f1), ..., ing. (f1)) in San R and R/I is flat
over Q.

(b) If ing, (f1), ..., ing. (fr) s a reqular sequence in San R and gro . R/ing, (I) is
an integral domain, then also R/I is an integral domain.

2 In this section, and here only, by (R, mg) we denote a formally smooth ring over O in A\ro and not
necessarily a ring in a presentation as in Proposition 1.3.
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(c) Ifing, (f1),...,ing, (fr) is a regular sequence in gr,, ’R then so is f1,..., fr in R.
In this case, inms(I) = (lnms(f1)7"'7lnms(fr)) CL’]’Ld lnms(I) = (lnms(fl)v"‘v

ing, (fr))-
(d) If ing_(f1),...,inm (f;), to is a reqular sequence in gry, R and gry, R/ing (I) is

an integral domain, then also R/I is an integral domain.

We postpone the proof of Proposition 2.2, and first explain some of its content.

Proof of Theorem 1.5. Theorem 1.4 together with Proposition 2.2 applied to the relation
ideal I¥ imply the assertions of Theorem 1.5 on R%b ~R/IY. O

The following instructive example shows the benefits of using the graded ring asso-
ciated with the ideal my in (c) and (d) instead of the one associated with mz in (a)

and (b).

Example 2.3. Define R := R/ for R = W(F)[[x1, z2, z3]], I = (f) with f = qz1 — 223,
g = p® and s > 1 an integer.® Then by Proposition 2.2(a) ingy, (I) = (inmg (f)) = (t2ts)
in gre . R = F[ty, t2,t3], and criterion (b) fails to show that R is an integral domain
since #3 and t3 are nonzero zero divisors in gry . R/ing, (). However, if we consider the

graded ring of R with respect to ms = (g, xl,xg,mg) then ing_(f) = fot1 — t2f3 lies in
gr3, R C gry,. R =TFlto, 11,12, 3] and R is an integral domain by Proposition 2.2(d).

In Sections 5 and 6, we show that one can use cohomological methods to compute
the quadratic relations in grﬁf172 R resp. gr2, R from the above example. To distinguish
there between these two quadratic relations, we introduce the following notions:

Definition 2.4. Let R, n, ms and s be as above, and let f € R.

(a) If f € m%, then the quadratic part of f is ingy, (f®) € grﬁ—m R, where f? is the
homogeneous part of f of degree 2 with respect to the grading of R defined by mx.

(b) If f € m2, then the refined quadratic part of f is ing_(f®) € gr2, R, where f®
is the homogeneous part of f of degree 2 with respect to the grading of R defined
by ms.

The (refined) quadratic part of an ideal I C R consists of the (refined) quadratic parts
of all elements in 1.

Proof of Proposition 2.2. It follows from the hypothesis of (a) and Lemma 2.1(e) that
(E)] 1,..,r is a regular sequence in R. Since clearly wp is a non-zero divisor of R,

3 The relation ideal of the ring R from [4, Thm. 5] has the shape 6d — bc modulo m?, where p = 3. So in
a qualitative sense R occurs as a versal deformation ring. At the expense of heavy notation, one could also
use R in the example.
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the first assertion of (a) is proved. From Lemma 2.1(d) it follows that ing, (I) =
(inn—IR (f1),.. .,inn—m(ﬁ)). Finally, since R is local, the order of the elements in the
regular sequence we, f1, ..., fr is arbitrary. Hence from the definition of a regular se-
quence it follows that we is a non-zero divisor of the O-algebra R/(f1,..., f.), which
means precisely that the latter algebra is flat over O.

To prove (b), we deduce by Lemma 2.1(c) and (a) that R/I is an integral domain. By
the last assertion of (a) and Lemma 2.1(b) we also have that R/I is an integral domain.

For the proof of (c), we define R; := gr,, R/(inm, (f1),...,in, (fi)) for i =0,...,7
and g; as the image of iny,  (f;) in R;. By the remarks preceding the proposition, gr,, R =
Os [to, - - -, tr] and clearly this ring is flat over Og. By our hypothesis, g; is a non-zero
divisor of R;_; for i = 1,...,r. We claim, and prove this by induction on 4, that R;
is flat over Oy and that g; is a non-zero divisor of R;_; for each ¢ = 1,... r. If this is
proved, then we have shown that ingy, (f1),...,ing, (f) is a regular sequence in gr, R.
Then the first assertion of (c) follows from Lemma 2.1(e). The first equality of ideals in
(c) follows from Lemma 2.1(d) and the assertion just proved, the second is immediate
by reduction modulo we.

To prove the claim, we consider for some j = 2,..., s the following diagram obtained
by tensoring the short exact sequence 0 = O;_; = O; = F — 0 of O-modules with the
right exact sequence R;_1 — R;_1 — R; — 0 where the map on the left is multiplication

by gi:

0 —0;-1®Ri1 —0; R —FQR,_1 —= 0
id ®g; id ®g; id ®g;

0 —=0;19Ri1 —=0;® R —=F®R_1 ——0

Ojfl ® R;

Oj@Ri

FR ——0

We assume that the claim is proved for ¢ — 1. Then the two top horizontal sequences are
exact since by induction hypothesis the ring R; 1 is flat over Q4. The left and middle
vertical sequences are exact because the tensor product is right exact. The right vertical
sequence is exact, because §; is a non-zero divisor of R,_; by hypothesis.

While i is fixed, we proceed by induction on j = 2,...,s to show that all rows and
columns in the above diagram are in fact left exact as well: In each induction step, the
left-most column is a short exact sequence by induction hypothesis. This implies the
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same for the middle column and it follows that all columns are short exact sequences.
In this situation, the 9-lemma implies that the lower row is also a short exact sequence,
and the induction step is complete. If we consider the central column for j = s, then
this shows that gl is a non-zero divisor of R;_1. If we consider the lower row for j = s,
we see that Tor1 (F, R;) = 0 and hence that R; is flat over O,. This proves the claim.
Finally, we prove (d). By the proof of (c), we know that the ring gr,, R/ing, (1) is

flat over O, and its reduction modulo we is gry, R/inm, (). Consider elements f, g in
R~ I. We claim that there exist integers a,b € {O7 1,...,s—1} such that f' = wd f and
g = wl(’gg have non-zero image in

T, R/, (1) = gty 1y/1(R/T) = P (m + 1) /(i + wom! + 1),
i>0

where the first isomorphism follows from Lemma 2.1(c). If the claim is shown, then this
means that there exist i,j > —1 such that f/ € (mi! + 1) (mi™2 + womitl + 1)
and ¢’ € (It 4+ 1)\ (mIT? + weml T + I). Since by hypothesis gr,, R/ing, (1) is an
integral domain, it follows that f’g’ € (miti+2 4 ) < (miti+3 + womg+ﬂ+2 +I) and
hence that the class of f'g’ is non-zero in R/I. But f'g' = w“o+bfg, and we deduce that
the class of fg is non-zero in R/I and thus assertion (d) follows.

To prepare the proof of the claim, we make some technical remarks:

(i) We have I C m, since the hypothesis of (d) implies that ing_(f;) ¢ R/m, for all
1 <i <r.In particular, (ms+ I)/I = m,/I.

(i) If f € mJ ~mitt + 1 for j > 0, then ing (f) = ing,,(f + ). In particular,
to = iny, /1 (w§ + I) since by hypothesis ty is a non-zero divisor in gry, R/ing_ (1)
so that wg, € mg ~m?2 + I,

(i) If whing,  7(h) #0for h € R and 0 < b < s, then @whing, /7(h) = iny, ,(whh) as
follows from the definition of multiplication on gry /g R/I.

(iv) The graded components M7 = gry R/ = gl R/ing, (I) are finite over the
ring O, = MY. At the beginning of (d) we observed that the M7 are flat over Oy, and
hence they are finite and free over Oy. In particular one has Ker(wb: M7 — M7)
= Tm(wd s MI — M),

We now verify the claim for f; the proof for g is analogous. Choose 7 > 0 such that
f e (mi+1)~ (mit! +1I). This is equivalent to iny,, ,;(f + I) lying in the i-th graded
piece of gry, ,;(R/I). If the image of iny, ,;(f +1) in gry, ,;(R/I) is non-zero, we choose
a = 0 and are done. Else we have f € wom! + mit + I, and since gr,, R/ing, (I) is
annihilated by @, we can find a € {1,...,s — 1} such that @l 'f ¢ (mi*! + T) but
wdf € (mit! + I). To prove the claim, it remains to show that wf does not lie in
mit? 4 womitl + 1.

By (iv), there exists fo € mi ~mi! 41 such that wg; “ing, /1 (fo+1) = ing, /1 (f+1)
in gry, ,7(R/I). In terms of ideals this means wg, “fo — f € mi™! + I, using (iii), and
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fo ¢ wom’ +mit!l + I. By (ii) and the hypothesis in (d), the element #y is a non-zero
divisor of. gl /I(R/I), and so we have @ fy ¢ womi{t! + mit? + I. This implies
wd f ¢ mit? + womit! + I, because we have

wHfo —whf =wh - (@ “fo— f) € wpmit + whHI C womiT +mit? 4 1. O

We end this section with a simple result on regular sequences, flatness and integral

domains:
Lemma 2.5. Suppose I is an ideal of R = Ol[x1,...,xp]] such that I is minimally gen-
erated by m = dimgpI/mgl elements. Suppose ¢1,...,q; are elements of R and let

J=I+Rg+...+Rg.

(a) If R/J is a complete intersection ring of Krull dimension h+1 —1—m, then R/I
is a complete intersection ring and I is generated by a reqular R-sequence.

(b) If (a) holds and if R/ J is flat over O, then R/I is flat over O.

(¢) If (a) holds and if R/J is an integral domain, then R/I is an integral domain.

Proof. By induction, it suffices to prove the lemma for [ = 1. Let f1,..., f,, denote a
minimal set of generators of I. The hypothesis of (a) implies that R/(f1,..., fm,91)
is a complete intersection ring of dimension h +1 —m — 1 = h — m. It follows that
fis--+, fm, g1 must be a regular sequence, and now (a) is immediate. To see (b), observe
that its hypothesis implies that R/(J + we) is a complete intersection ring of Krull
dimension h — I — m. It follows from (a) that fi,..., fm, 91, @e is a regular sequence.
Part (b) is now clear. For (c) note that since g1 (mod I) is a non-zero divisor in R/I by
the proof of (a), we may now apply Lemma 2.1(b) to complete (c). O

3. Explicit presentations of the versal deformation rings

In order to prove Theorem 1.4 using the explicit minimal presentations of versal
deformation rings computed in [2], we note that we can work over the ring of Witt
vectors W (F) by [6, A.1]. First we need to introduce some notation: Denote by H the
image of a fixed residual representation p : Gx — GLo(F) of degree two, and by U a
p-Sylow subgroup of H. Since G is prosolvable, the group H is solvable. Either #H is of
order prime to p, or U is a normal subgroup of H. By the lemma of Schur and Zassenhaus,
we can find a subgroup G of H of order prime to p such that U x G = H. By H,G we
denote the images of H, G in PGLa(FF). Note that U is isomorphic to its image in PGLy ()
because its order is prime to the order of F* and hence we may identify U with its image.
The following can now be deduced from Dickson’s classification of finite subgroups of
PGLy(F), see [20, I11.7]. The group G is either cyclic or dihedral and if U is non-trivial,
G must be cyclic (we assume p > 2). We also introduce finite extensions L D F O K in
a fixed algebraic closure of K by the conditions G, = ker(p) C Gp = p~}(U) C Gg.
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For a character ¢ : Gx — F* we denote by F¢ the one-dimensional vector space
together with the action via £. We let triv : Gxg — F* be the trivial character and
¢ : Gk — F* be the mod p cyclotomic character. Observe that ad = End(p) & pQpp¥ =
F & ad” since p > 2 and thus ad’ = Homg (ad’,F). Using local Tate duality, one
obtains that H?(Gy,ad”) = ((ad”)V ® IE"E)G.

In the remainder of this section, we distinguish the following five cases.

(A) G # {1} is cyclic and U is trivial. Then p ~ ( O) ® n for some characters

1
0 ¢
&, n: Gg — F*. Moreover,

ad = (F™)? e F @ F ' and (ad”)V @ F° 2 F° @ F€ @ FS 7,

(B) G # {1} is cyclic and U is nontrivial. Then p ~ ® n for some characters

1 %
0 ¢
&,mn : Gg — F*; here x denotes a non-trivial extension, i.e., a non-trivial class in
H'(Gg,F¢). Moreover,

(ad)V 2 F" o F¢ " and (ad®)V @ FE = FE <.

(C) G is dihedral. Then H = G, and U is trivial. By [27, Prop. 2.1.1], there exists a
character ¢ of a normal cyclic subgroup C,, of G of index 2 such that p ~ Indgn &).
Then we have

ad X F"V @ F? @ IndS F¢ and ad’ © F° = F*° @ IndS, FE @ F°,

where ¢: G/C,, — F* is the unique non-trivial character of order two and ¢ : C,, —
F* is the character g — 5’(9)1_#kK for kg the residue field of K.
(D) G and U are trivial. Then H is trivial, and H is in the scalars of GLy(F). Moreover,

ad = (F*™)* and ad’ @ F® = (F*)*.

(E) G is trivial and U is nontrivial. Then p ~ *> ®mn for some character n : Gx —

1
01
F*, where * denotes a non-trivial extension. Moreover,

(ad)V = (F"V)2  and (ad”)V @ F° = F°.

Remark 3.1. We would like to correct a mistake in [2, Lem. 6.1] when U is nontrivial. As
the character 1 defined at the beginning of [2, §5] corresponds to the character ¢! in the
notation used here, in [2, Lem. 6.1] the line ((ad;)V @ p,(L))¢ = (kX @ k¥~ "X)¢ should
be replaced by ((ad;)V ® p,(L))¢ = (kX @ k¥X)Y. Further, in case (ix) the condition
should read ¥ = 1! and not y = ¢ as written.
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We know from [2, Theorem 2.6] that the versal deformation ring is isomor-
phic to the quotient W (F)[[z1,...,z4]]/I¥, where I? is generated by exactly ho :=
dimg H? (G, ad’) relations.

Lemma 3.2. (Cf. [2, Lem. 6.1].) If pp (F) = {1}, then hy = 0. Else, the dimensions hs
and h take the following values in the cases (A)—(E) introduced above.

(A) (i) If e = triv, then hg =1 and h = 3[K : Qp] + 2;
(i1) If e = & and the order of § is two, then ho =2 and h = 3[K : Q,] + 3;
(iii) Ife=€ ore=¢"" and € # €71, then ha =1 and h = 3[K : Q)] + 2;
(iv) In all other cases ho =0 and h = 3[K : Q,] + 1.

(B) (i) Ife =&71 and the order of € is two, then ho =1 and h = 3[K : Q,] + 1;
(i) Ife =&Y and € # €71, then ho =1 and h = 3[K : Q] + 1;*
(iii) In all other cases ho =0 and h = 3[K : Q).

(C) (i) Ife =, then hg =1 and h = 3[K : Q] + 1;
(i7) In all other cases ha =0 and h = 3[K : Q).

(D) (i) If e = triv, then hy =3 and h = 3[K : Q,] + 6;
(it) In all other cases ho =0 and h = 3[K : Qp] + 3.

(E) (i) If e =triv, then ho =1 and h = 3[K : Q)] +2;
(7t) In all other cases ho =0 and h = 3[K : Qp] + 1.

Proof. If F' contains no p-power roots of unity, then the maximal pro-p quotient Gg(p)
of Gr is a free pro-p group and hs = 0 by [23, §1.4]. Otherwise we use the above
decompositions of ad 2 F*V @ ad’ and (ad”)V @ F¢ in the cases (A)—(E), and obtain
the values of hy and hy := dimp H°(G K,ado). Recall next that the Euler—Poincaré
characteristic of ad® is 3[K : Q,] = —hg + h — hy from which one computes h. O

4

p b
functor Eyp from [2, Proposition 2.3]. It is always representable and its universal ring is

For the following explicit descriptions of minimal presentations of R:, we recall the
a versal hull for D}f. To describe Erp we need to fix some notation. Since U is a p-group
in GLy(FF) we shall assume that U lies in the set of unipotent upper triangular matrices
Us(F). If U is non-trivial, let {g,}, be a minimal set of topological generators of the
é ﬁl") for u,, € F generate U as
a G-module. If U is non-trivial, there is a smallest index ¢¢ for which u;, is a unit. Then by

conjugation by an element of the form (3 (1)), A € F*, which clearly lifts to GLo(W (IF)),
we will assume from now on that 4;, = 1. For any ring R in P/x\rW(F) we denote by f‘g(R)
the inverse image of Us(F) under the reduction homomorphism SLg(R) — SLo(F). We
set & := plg,(p)- If G = {1}, then we define the functor Ep: .Kx\rw(]p) — Sets by sending
(R, mp) to the set

maximal pro-p quotient G (p) of G so that the p(g,) = (

4 The reason for not combining (i) and (ii) in case (B) into a single case is that the cases of Lemma 3.2
are used throughout this section, and in later parts the distinction is necessary.
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{a € Homg (Gr(p),T2(R)) ‘a(gio) = (i }k) and a = & (mod mR)}

if U is non-trivial, and else to Homg(Gr(p),T2(R)). Observe that Ep(F) = {a}. As
noted above, Eyy is representable and its universal ring, we write R4, is isomorphic to
R%’. The gain is that it is rather elementary to write down explicitly Rs.

Lastly, we define ¢ as the number of p-power roots of unity contained in F' and g, as
the polynomial

(q=1)/2 q k—1
9q(@) := Z k1) I_I(fl2 — (2 +1)%)a*
k=0 T j=0

Note that the polynomial g, lies in fact in Z[z].

Remark 3.3. We take this opportunity to correct another mistake from [2, Rem. 5.5(i)]:
In the formulas for a,, , and b, i, the expressions (2k)! and (2k+1)!, respectively, should
be in the denominator.

Theorem 3.4. (Cf. [2, Thm. 6.2 and Rem. 6.3(iv)].) Suppose pip(F) # {1} and set
= [K : Q,]. There exists a minimal presentation 0 — I¥ — R — R}é’ — 0 of R%’,
where R and IV are as follows in the respective cases of the previous lemma.

(A) (1) R = WE[{b;, i}y, {d; T and 1Y = (3072 cibp—it1 — (1 + do)? —
(1 +do)~%);
(i) R =W (F)[[{bi, i, di}{2o]] and IV = (Z?;o bidm—i—bogq(boco), — 32i— Cidm—i
- Cogq(boco));
(iti) If= =, then R = W (F)[[{bi, di}o, {es b)) and I = (7 dib—i—abo )
Ife =7, then R = W(E)[{b}y. oy dy}ol] and I¥ = (S dicyni -
qco);
(i) R =W (F)[{bi, ci}2y, {d;}]eo]] and IV = (0).
(B) (i) R = W(I)[{bi,ci,di}[2o]l/ (big, dim—i,) and v = (_ Zin;(),i;éig Cillm—i —
dio(co + 2¢i,bo) - gq(bo(co + cigbo)) — 2(1 — 5i0)cogq(co)), where 6;, € {0,1}
is 0 if ig = 0 and else 1;
(ii) R = W (B){b: Y0, feg, ds}poll/(bia) and 1% = (S cidmmi — aco )
(iii) R = W(]F)[[{bl,cz,d L] and 1Y = (0).

(C) () R = WE)[{b:}m, {d;} )] and I¥ = (372 biboam—ir1 — ((1 + do)? —
1 + do %))
(ii) R W (F)[{bi}37, {d;}7eq]] and 1Y = (0).
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Remark 3.5. We point out that in front of the sum > ¢;d,,,—; in the second generator of
the relation ideals in [2, Theorem 6.2(ii) and Prop. 7.3(ii)] & minus sign is missing. This

, b;
originates from a sign mistake in [2, Lem. 5.6(B)]: There the matrix 0 0 should

(&
read instead ( 0 bi).
—C; 0

Proof. The relation ideal of the versal hull of the deformation functor without fixing the
determinant is listed in the respective cases in [2, Theorem 6.2]. We remark that the
relation (1+ag)?—1 from there is omitted due to our condition on the determinant, and
we used a change of variables according to [2, Remark 6.3(iv)] to simplify the expressions
for the relations and variables. In order to obtain the right number of indeterminates of
the power series ring R, we follow the steps described in the proof of [2, Theorem 2.6].

Since by assumption F' contains a p-power root of unity, Gr(p) is a Demuskin group,
and its Frattini quotient G (p) is isomorphic to F™"V @ F* @ F,[G]™ as a G-module. By
the Burnside basis theorem, there are closed subgroups P,, of Gr(p) such that the Frat-
tini quotients P, of P, are irreducible and G (p) = @, P,,. Since the tangent space t :=
En(F[t]/(t?)) of Ex is isomorphic to the tangent space tp and ad® = Ty (F[t]/(t?)) as a
G-module, we have h = dimp tp = dimptp < dimp Homg(GFr(p), ado). We can compute
the right hand side in terms of those G-submodules P, of G (p) that occur in decom-
positions of both Gg(p) and ad® into irreducible G-modules, because the G-submodules
that do not occur in a decomposition of ad’ have trivial image (prime-to-adjoint prin-
ciple). As remarked in [2, §6], the multiplicities of the G-submodules occurring in a
decomposition of ad’ are (Gr(p), Indgn F¥)g = 2m if G is dihedral, (Gr(p),F")g = m
for any non-trivial character 7 # ¢, and (Gr(p),F""V)g = (Gr(p),F¥)g = m + 1 + 0k,
where (X,Y)q := dimp (Homg(X,Y)) for G-modules and dx is 1 if € acts trivially and
0 otherwise. By [2, Lem. 5.3], we can choose z,, € P,, such that Gx,, topologically gener-
ates P,, and whose image under a homomorphism « : P, — I',(R) is either the identity
if P, does not occur in a decompositions of ad’ or a matrix of the type

[ VItbhe b _(vVitd 0
S(b,c) := ( . m) or D(d) = ( 0 ml)

for any ring R in EW(F) and b,c,d € mp. If U is non-trivial, we shall take for the g,
in the definition of Ey the generators x,,. If p(zg) # id, then we take g; := xg, else we
shall assume that ¢g; := z1 by a suitable permutation of the indices n. In cases (A)—(C),
we will consider the power series ring R over W (F) in the variables b, ¢, d occurring in
the images S(b,c) and D(d) of all generators. Then we will obtain the universal object
(Ra, ag) representing Erp, where Rz is the quotient ring of R modulo the respective
relations in terms of the variables b, ¢,d from [2, Lemma 5.6 and Theorem 6.2].

We begin with explicitly describing R and the relation ideal I¥ in case (A). Then we
have that ad® = F"V @ FE @ FE ' and h = dimptp = (Gr(p), F"")¢ + (Gr(p),F&)g +
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(Gr(p),Fé 71)(;. The following table displays the respective multiplicities of the subrep-
resentations F'V, F€ and F¢ ' in G (p):

k1= (Gr®).F"™)e k= Gr@).F)e k= (Gr(p).F )c
(i) € = triv m+ 2 m m
(i) e=¢e=¢ ! m+1 m+1 m+1
(iii) e=¢ e#e ! m+1 m+1 m
e=¢"1 e#£e ! m+ 1 m m+ 1
(iv) e ¢ {triv,&,67 1} m+1 m m

By [2, Lem. 5.3(ii)—(iv)], there exist by, cp/,dpr € mp (with n = (m+ 1 — k2),...,m,
n'=(m+1—ks),...,mand n” =0,...,k —1) such that a generator z,, of a subgroup
P, gets mapped to either

S(bn,0), S(0,¢n), S(bn,cn), D(dpr) or D(0)

under a G-equivariant homomorphism P, — GL3(R). Finally, in [2, Lem. 5.6(A)—(D),
(F)] the image of the Demuskin relation involving these matrices is completely described.
The thereby obtained equations define the respective relation ideal I¥ (as in [2, Theo-
rem 6.2(1)—(iv)]).

In case (B), we have that ad’ X FV @ FE@FE ' and h = dimptp = dimptg < b’ =
(Gr(p), F"™)¢ + (Gr(p),F&)e + (Gp(p), FE )¢ due to the further conditions that o €
En(F[t]/t?) has to satisfy if U is non-trivial. As in case (A), there exist by, ¢/, d, € mp
(withn=(m+1—-k),....m,n =(m+1—ks),....,mand n” =0,...,k — 1) such
that a generator x, of a subgroup P, gets mapped to either

S(tpn + b,,0), S0,¢n), S(an+bn,cn), D(dn) or D(0)

under a G-equivariant homomorphism P,, — GL2(R). Due to the condition on the image
of x;,, the variable b;, occurring in the image of z;, must vanish. In [2, Lem. 5.6(A)—(D),
(F)] the image of the Demuskin relation involving these matrices is completely described.
By [2, Theorem 6.2(ii)(iii)], this gives rise to the following generators of I¥:

Z (’l]l + bi>dm_¢ — (’17,0 + bo)gq((ﬂo + bo)Co) and
1=0

m
— > cidm—i — cogq((tip + bo)co) in case (i)
i=0
and in case (ii) to Z;’;O)#io ¢idm—i — qco. In (i), we use the first relation dy,—;, =

(o + bo)gq((uo + bo)co) — Z;’;O)#io (@ + b;)dm—; to also eliminate d,,_;,. Then the
second equation reads

=3 Cidm—i — cogq((to + bo)co) = — > (¢ — iy (U + b;) ) dm—i
i=0 i=0,iio

— (Co + ¢, (’I_LQ + bo))gq((ﬂo + bo)Co).
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We perform a linear change of coordinates by replacing ¢; + ¢;, (@; + b;) by ¢; for i # .
Note that g = 0 if ig > 0 so that we obtain the respective generators of I¥ displayed in
case (B). B

In case (C), we have that ad’ = F¥ ¢ Indgn F¢ and h = dimptg = (Gr(p),F¥)e +
2(Gr(p), Indgn F¢)e. This means that the multiplicities of the subrepresentations
Indgn F¢ in Gp(p) are 2m, and the ones of the subrepresentations F¥ are m + 1 if
e = p and m if € # ¢. By [2, Lem. 5.3(ii), (v)-(vii)], there exist b,,d, € mp (with
n=1,...,2m,n =0,...,min (i) and n’ = 1,...,m in (ii)) such that a generator xz,
of a subgroup P,, gets mapped to either

S(bn,brn), S(bn,—=byn), D(dn) or D(0)

under a G-equivariant homomorphism P, — GLy(R). Finally, in [2, Lem. 5.6(E)—(F)]
the image of the Demuskin relation involving these matrices is completely described.
The thereby obtained equations define the respective relation ideal I¥ (as in [2, Theo-
rem 6.2(v)—(vil)]). O

We define n to be the ideal in R generated by all the variables b;, ¢;/, d;» occurring in
the respective definitions of R in the previous theorem. Further, define the ideal mgy C R
as mg := ¢R+n. In cases (A)—(C) it is now a simple matter to read off from the previous
theorem the initial terms for the graded rings naturally associated to R. Checking that
these initial terms form a regular sequence will imply most parts of Theorem 1.4 and,
when combined with Proposition 2.2, the assertions of Theorem 1.5 in cases (A)—(C).

Corollary 3.6. In the cases (A)-(C) of the previous lemma, denote the two generators of
IV in case (A)(ii) by fi and fa, and in the other cases the generator of IV by f.

(a) Let in be the initial term map R — gry R. Then the following are the initial terms
of the generators of I inin(I¥) C gry R in the cases (A)-(C) of Lemma 3.2, where
we only list those cases in which ho is non-zero.

(4) () () = S Gibmis1; )
(i) in(f1) = -3, bﬁim—i and 1r_1(_f_2) =3 Cidm—i;
(iii) If e =1, then in(f1) = > " dibpm—i;
Ife =47, then in(f1) = Y diCm—i;
(B) (i) in(F) = = Yo sssy Cillni — L= 030 - § - 37
(i) in(f1) = 370 Cidm—i;
(C) (i) in(f1) = 321, bibam—it1.

(b) Let in be the initial term map R — gr,, R and set to := in(q). Then the following
are the initial terms of the generators of IV in in(I¥) C g, R in the cases (A)—(C)
of Lemma 3.2, where we only list those cases in which hs is non-zero.

5 Note that the term involving Eg vanishes unless ¢ = 3.



100 G. Béckle, A.-K. Juschka / Journal of Algebra 444 (2015) 81-123

(A) (i) in(f1) = Zzléiém—i+1 —fodo; L )
(i) in(f1) = 3720 bidm—i — tobo and in(fo) = — 3272 €idim—i — toCo;
(iii) If € =1, then in(f1) = > 1" o dibpm—i — tobo;
Ife =471, then in(f1) = Y1 diCm—i — toCo;
(B) (i) in(f1) = Zz 0,0 Cihm—i — 2 — 04, - toCo — 1 — 0 -
(“) m(_fl) = 27, =0 Cidm—i — tOC();
(C) (i) in(f1)=>", bibam—i+1 — todo.

wia|

Rs)
. CO ;

Proof of Theorem 1.4. First note that we can reduce to the case O = W (IF) as follows: by
(25, §12 Prop.| there is an isomorphism R; = R; w r) @w r) O, where R; and R w (g are
the universal deformation rings of p that parametrize all deformations of p to coefficient
rings in Aro and ArW (F), respectively. If the fixed character ¢: Gx — O takes values
in W(F)*, then the same argument shows that R}f 2 Rﬁ’W(F) Qw )y O, where Rﬁﬁw(m)
is the universal deformation ring of p that parametrizes all deformations of p with fixed
determinant 1 to coefficient rings in I/X\rW(F). If ¢: Gxg — OF is arbitrary, by Lemma 4.1
below it can be twisted so that its image lies in W (F)".

We next give the proof in cases (A)—(C): In all cases of (A)—(C) with hy # 0, Theo-
rem 1.4(a) holds since the initial terms given in Corollary 3.6(b) together with ¢y form

regular sequences in gr,, R with o := in(g). Moreover, by Proposition 2.2(c) the ini-
tial terms from Corollary 3.6(b) generate in(I¥) in the respective cases and one checks

that gr.. R/ in(7%) is an integral domain. Thus Theorem 1.4(b) follows from Proposi-
tion 2.2(d) in cases (A)—(C).

Theorem 1.4 in the remaining cases (D) and (E) is a direct consequence of the following
lemma. O

Lemma 3.7. In the cases (D) and (E) let q denote the minimum of p and the number of
p-power roots of unity in K. Then there exists a minimal presentation

O—)Iw:(rl,...,rm)—)R%W(F)[[zl,...,zhﬂ—>R7§—>O

such that, letting mg = (q, 1, ..., 2n), the following hold:

(a) m2 D IY and in(q),in(r1),...,in(ry) € grd_ R is a regular sequence in gry, R;
(b) gry. R/(in(ry),.. ln(rm)) is an integral domain and in(I¥)= (m(rl) 71n(rm));
(¢) in(r1),...,in(7n,) € gra R form a regular sequence in gre  R;

(d) gra, R/(in(r1),...,in(71)) is an integral domain and in(Iv) = (in(r),...,in(m));
(e) m = dimg H2(GK,ad0) and dimg,u Rfé’ =h+1—-m

Proof. The proof proceeds along the lines of the proof of [2, Theorem 2.6], but it is
simpler in our case as we shall only determine the initial parts of the g; and r;, and since
there is no action of a finite group of order prime to p. We recall that p ~ ( é I) ® n for
some character 1 : Gxg — F*, where * denotes an extension. As a preliminary reduction,
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! so that the image of p is a p-group. Twisting all deformations by

we may twist p by n~
the Teichmiiller lift of n~! provides an isomorphism to the deformation functor of the
twist of p. In particular both functors are represented by isomorphic versal rings. Since
now det p is trivial, we shall also assume that its fixed lift ) is the trivial character, since
again, changing v has no effect on the versal deformation ring up to isomorphism. After
this reduction, the first case to consider is that when K does not contain a non-trivial
p-power root of unity. Then by Lemma 3.2 we have hy = 0. Hence Rfé’ is unobstructed
and thus formally smooth, and assertions (a)—(e) are obvious.

Suppose from now on that K contains a primitive p-th root of unity (,. Then the
maximal pro-p-quotient Gk (p) of Gk is known to be a Demushkin group of rank 2g =
[K : Qp] + 2, cf. [23, §5]. By the classification of Demushkin groups with ¢ > 2 [23,
Theorem 7], the pro-p group Gk (p) is isomorphic to the pro-p completion II of the
discrete group

(1,..., 229 | T)

for the Demushkin relation r = z{(zq, z2)(z3,24) ... (£2g—1, T2g) — recall that (z,y) =

27y~ lzy. In the following we fix an isomorphism G (p) = I1.° Note also that 2g > 4,

because K has to contain Q,(¢,) and [Q,((,) : Q] =p — 1 > 2. If im(p) is non-trivial,
the functor En: Aryry — Sets is given by

* ok

a(z;) = ((1) ull) (mod mg) for all z} )

and else by (R, mp) — Hom(II,Ty(R)). As the elements {g, } from the bottom of page 95
we take x1,...,224. As noted there, Er is always representable and its universal ring

(R,mp) —> {a € Hom(II, Ty (R)) ‘ a(y,) = (1 1) 7

R4 is isomorphic to Rg’.
In order to find an explicit presentation of Rg, we define S := W (F)[[b;, ¢;,d; : i =
1,...,2g]]. For each 1 < i < 2g let

a; b +u; . 10
M; =1 th 15 := ,

where we choose a lift u; € W(TF) of u; € F, subject to the requirement u; = 0 whenever
u; = 0, and where a; € S is chosen so that det M; = 1, ie., a; = ((b; + u;)c; —
di) > ,>0(—1)"d}. Observe that in case (D) all u; = 0. We define polynomials rj, in S
by

6 By slight abuse of notation we shall therefore regard the topological generators x; of II as elements
of GK
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r T
1y + ( : 2) = MY [My, Ms]... [Mag_1, Mag],
s T4

where [M;, M;/] is the commutator bracket M; "M, ' M; M. Note that (1-+71)(1+74) —
rors = 1 and that, as we shall explain in a moment, (rq,...,7r4) C mg = (¢, b, ¢, d; 10 =
1,...,2¢). It is now straightforward to see that the ring

W(F)([bi,ci,di i =1,...,29]]/(r1,72,73) in case (D)
R@ = . .
W(F)[[bs,ci,di i =1,...,2g]]/(r1,72,73, b, diy — Ciy) in case (E)

together with the homomorphism s : II — SL2(Rs) defined by mapping z; to M; —
the latter regarded as a matrix over R5 — is a universal object for Ey. Note that ag is
well-defined precisely because we imposed the condition that all 7 vanish. In case (E) we
may and shall assume that ig < 4 by permuting the indices of the z; in pairs (2i’ — 1, 2¢’)
fori' € {2,...,9}.

For k =2,3 and j = 0,1 we define

GRE=i(§) = {12 + (Z Z) € SLy(S) : cemh a,b,d € mfj}.

We set §q—3 = 1if ¢ = 3 and d;—3 = 0 if ¢ # 3. One can easily check the following facts,
where starting from (2) we let j = 0 in case (D) and j =1 in case (E):

(1) the sets G¥¥~7(S) defined above are subgroups of SLz(S), and moreover G337 (S)
is a normal subgroup of G*?77(S) for j € {0,1};

(2) the matrices M{ and [Mg;_1, My;], for i = 1,..., g, lie in G*?79(S);

(3) in case (D), computing modulo G*3(S), for i = 1,...,g one has M; = 15 +
(wdl qbl) and

ger gqdy

bai—162; — baicai- 2b2;_1d2; — 2baida;
[Ma;_1, My;] =12 + 2i-162 2iC2i—1 2i—102 225 —1 :
—2c9;—1da; + 2¢c2;dai—1  —bai—1c2; + baicai1

(4) in case (E), computing modulo G*2(S), for i = 1,..., g one has

0 1 e
12 —|— ( > . (q +5q:301)a lf 10 = 1,
C1 0

Ml =
12+<0 0)7 if ig > 1,
ger 0



G. Béckle, A.-K. Juschka / Journal of Algebra 444 (2015) 81-123 103

[Ma;—1, Ma;] = 15 +

- 3 2 . 2 ¢
( U2§—1€24 T U24€24—1 ufi_1€2¢ U521 +T2ug;1dg;—2ugida; ) .
Y

ugied; 1 —2(ug;_1—ugg)egi_1c2;—ugi_1c5;—2eg;_1da;+2cp;do;_1 —ugi_1€2{Tu24€24—1
(5) for M, M’ € G*277(8) one has MM’ = M + M’ — 15 (mod G3377(8)).

Using these facts we can explicitly compute the initial terms of the relations r; since
for j =0,1:

g
1 + (Tl TQ) = M} ][ 1Mo, Mei

"3 T4 i=1

g
= M{I + Z ([Mgz'_l, Mgi] — 12) I’IlOd GS’Sij(S).

i=1

In case (D) we have r1, 72,73 € m? from (3) and (5), and in case (E) we deduce r1,72 € mg
and r3 € m? from (4) and (5). Below we make the initial terms of the 7 more explicit.
To then analyze properties of Rg, we shall need the following results from commutative
algebra, which are simple exercises:

(a) if R is a ring and ay, as,as € R, then using total degrees w = xy — a;x — agy + as
is a non-zero divisor in the polynomial ring R[z,y] over R; if moreover R is an
integral domain and as # ajag, then R[z,y]/(w) is an integral domain, as can be
seen by performing a linear coordinate change with = and y, and then passing to
Frac(R)[z,y]/(w).

(8) if R is an N-graded Noetherian ring and if f1,...,f, € R are homogeneous of
positive degree, then they form a regular sequence if they do so in any order (see
[26, Remark after Thm. 16.3]);

(v) if R and fi,...,f, are as in (B), if the f; form a regular sequence and if
R[ﬁ]/(fl,...,fw/) is an integral domain for any 1 < w’ < w, then

Forpae
R/(f1,..., fu) is an integral domain, as well.

We first show assertions (a)—(e) in case (D). Here we take R = S. Because m? contains
(r1,72,73), the presentation 0 — (r1,79,73) — R — RY — 0 is minimal. We shall
consider the canonical reduction map mR — R’ = R/(b;,¢;,d;,i = 5,...,2g), and we
let m, = m(m,) and 7}, = 7w(ry) for k = 1,2,3. The ring R’ is a power series ring over
W(F) in 12 variables. Thus grg_, R’ and 8l R'/(to), for to := in(q), are polynomials

rings over I in 12 variables. The elements in®(7,) = in*(r}) (mod #y) are homogeneous
elements of degree 2 for k = 1,2,3, which by (3) are given by the expressions

6152 — 5261 + 6354 - 1_7463, 51622 — 5231 + 63J4 — 1_74623 and 51622 — 52621 + E3CZ4 — 64623.
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Using («) and (8), one easily deduces that ¢, ds, b3, by together with the three displayed
relations above form a regular sequence in any order in R = F[Ek, Gyt k=1,... ,4].
To complete the argument, we wish to apply (7). If we invert by in R, then forming the
quotient of R by the first two relations is equivalent to eliminating és,ds in R. This will

change in”(r}) (mod o) to

bo b1 bo by
w = c1dy — —d4C1 — b—C4d2 cody —|— C4d1 + ba 62d4
4
, 1
€ R':=TF[b1,ba,b3,by,c2,c4,d1,dy, a][clad2]~

Since (badyg)(b1cs) # bi(—czdl—i—g—iqdl—i—g—iqd@ in the polynomial ring F[by, b, b3, by, ca,
¢c4,d1,dy], the ring R'/(w) is an integral domain by (a). Therefore by (v) the ring

. R'/(to,in(r}),in(rh),in(r})) is an integral domain, as well. This implies that

to,in(r1),in(r2),in(r3), bs, s, ds, - . . , bag, Cag, day is a regular sequence in gry,. R and
that the corresponding quotient ring is an integral domain. Invoking Lemma 2.1(b) for
the domain property, this completes the proof of (a) and (b) in case (D). The proof of

(c) and (d) is analogous since the elements in(7},) and in(r},) (mod ¢y) are formally given
by the same expressions for k = 1,2, 3. Part (e) follows from Lemma 3.2.

We now turn to case (E). Recall that here we have u;, = 1 by definition of FEry.
Let i1 # ip denote the index in {1,2,3,4} such that {ig, 41} is either {1,2} or {3,4}.
Using (4) above, one finds that the coefficients of ¢;; in r; and of d;; in rg are in
{£1,£2} ¢ W(F)". In particular in'(7%), k = 1,2, and in'(r},) (mod o), k = 1,2, are
F-linearly independent elements in Mz, /M%, and m,/(m’)2 (mod %), respectively. We

define R = §/(r1,72,,biy, diy — ¢iy)- Using r1 and ro as replacement rules to eliminate
the variables ¢;, and d;,, we ﬁnd that the homomorphism

W(]F)[[Cioabiubkackadk k€ {]., .. ,29} AN {20,21}]] — R

which sends each formal variable to the same named variable in R, is an isomorphism.
By 73 we denote the image of r3 in R. It is clear from (2) that 73 lies in mg, where now mg
is the image of (q,b;,c;,di,i = 1,...,2g) in R. In particular, 0 — (73) = R — RY — 0
is a minimal presentation.

As in the analysis of (D), we consider the reduction map m: R — R’ = R/(b;, ¢, d;, 0 =
5,...,2g), we define m, = w(my) and 75 = 7(73). The ring R’ is now a power series ring
over W (F) in 8 variables. A short computation shows

w = in*(74) = in*(r})  (mod o)

2d3¢4 — 2d4C3 + other terms, if ig € {1,2},
2d, G5 — 2d2c, if ig € {3,4}.

From w # 0 we deduce (a) and (c). The proof of (e) follows from Lemma 3.2. Arguing
as for (D), to prove (b) and (d) it suffices to show that w is a non-zero divisor in
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grs R =gty R /(f) = Fllciy. biy, by ey di - b € {1,2,3,4) N {io, i1}]].

We need to show that w is irreducible, i.e., not a product of two linear terms. For this
one may consider w as a bilinear from. If w was reducible, the representing Gram matrix
would have rank at most 2. However, the displayed coeflicients of w imply that this rank
is at least 4. O

Remark 3.8.

(a) In Section 2, we showed Theorem 1.5 by combining Theorem 1.4 with Proposition 2.2.
Alternatively, in cases (D) and (E) Theorem 1.5 follows easily from Lemma 3.7(c),
(d) combined with Proposition 2.2(a), (b).

(b) In cases (D) and (E), Theorem 1.4 can also be deduced from [2, §8]. However, we
felt that the arguments there are somewhat sketchy. To make them more precise, we
would have needed to introduce much notation. Since the above proof follows nicely
from the ideas of Section 2, we chose this path.

4. Crystalline points in components of versal deformation spaces

Let X(p) be the versal deformation space of a fixed residual representation p : G —
GL,,(F). The Zariski density of benign crystalline points in X(p) for n = 2 is an important
consequence of the integrality results of the previous sections. The purpose of this section
is to prove Theorem 1.9 on irreducible components of X(p), and Theorem 1.12 on the
Zariski density of crystalline points by showing that any component of X(p) contains a
crystalline point.

We fix a character ¢: Gxg — O* that reduces to detp. As is well-known, e.g. [1,
Prop. 2.1] for results of this type, one has the following result:

Lemma 4.1. Suppose p does not divide n and ¢': Gx — O is a second lift of det p. Then

(a) Dp — Dg’ X Daet 5> [p] = ([p® (1 det p=1)1/"], det p) is an isomorphism of functors
with inverse ([p'],¢') = [0’ @ (¢"b™1)Y/"]. In particular one has a natural isomorph-
ism Ry = R%@ORdet 5

(b) D%ﬁ — Dg", [p] = [p ® /¥~ 1Y'] is an isomorphism of functors so that R}g and Rg’/
are isomorphic.

Lemma 4.1 shows that it suffices to prove Theorem 1.5 for any fixed choice of lift 1,
for instance for the Teichmiiller lift of det p. Furthermore, together with Theorem 1.5, it
implies Theorem 1.9:

Proof of Theorem 1.9. By Theorem 1.5 and part (a) of the previous lemma, the map
Det: X(p) — X(detp) of Theorem 1.9 induces a bijection of irreducible components.
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Moreover the irreducible components of both spaces will be connected components if
this holds for X(det p). To prove this and the remaining assertion of Theorem 1.9, it will
suffice to describe Ryet 5 explicitly. This however has been carried out in [24, §1.4]: Denote
by II the abelianized pro-p completion of G g, which by class field theory is isomorphic
to (Zp,+) x (1 + mg,-). Then R; = O[[lI]] = O[[To, ..., Tk, ][X]/((1 + X)? — 1)
for any character 7: Gxg — F*, where ¢ = #fp0< (K). The remaining assertions are now
immediate. O

Proof of Theorem 1.12. By [27, Thm. 0.0.4], we may choose a crystalline p-adic Galois
representation po: G — GL2(Q,) which is a lift of p, i.e., so that [pg] € X(p). By the
construction in [27], we can assume pg to be regular. We want to show that any compo-
nent of X(p) contains a regular crystalline point so that the hypothesis of Theorem 1.11
holds. Denote by ¢ the determinant of pg, so that ¢ is crystalline, and by X(p)¥ the rigid
analytic space that is the generic fiber of Rg’ in the sense of Berthelot. By Lemma 4.1,
we have the isomorphism

X(p)" x X(det p) = X(p), ([p],¢) — [0 @ (9" )",

By the following lemma, we have a crystalline point ¢} in any component i of X(det p).
Now the components form a torsor over fi,e (K), which is a finite cyclic group of p-power

2 still exhaust all components of

order. Because 2 is prime to p, the characters (¢})
X(det p), and the same holds for the translates 1(¢})?. Now under the above map we
have ([po], ¥(¢})?) = [po®@¢!], and by Theorem 1.9 we see that the latter representations
give a regular crystalline lift in any component of X(p). Applying Theorem 1.11 completes

the proof of Theorem 1.12. O
Lemma 4.2. Any component of X(det p) contains a crystalline point.

Proof. By twisting by ¢~! it will suffice to prove the lemma for the trivial character
1 in place of det p. The crystalline points in X(1) correspond to characters Gx — Q,*
with trivial reduction 1. We shall use the classification of one-dimensional crystalline
representations to describe the crystalline points. Let rx: 7 x O — G%’ be the local
Artin map. Consider the induced projection pry: G3> — O%, and let Pk be the set of
embeddings K < Q. Then for any 75 € Pk one defines a character x, as the composite

Xro : G — G 22 0% 2 Q,"
One has the following assertions, cf. [12, App. BJ:

(a) The character x., is crystalline with labeled Hodge-Tate weights (a,),cp, where
ar, =1 and a, =0 for 7 € Pr ~\ {r0}.”

7 For the definition of labeled Hodge Tate weights, see [14, Def. 3.2].
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(b) Any crystalline character of G is of the form v[] cp x5 for integers £, and an
unramified character v. The tuple (¢;),cp, is its labeled Hodge—Tate weight.

As discussed in the proof of Theorem 1.9, Ry = O[[II]] = O[Ty, . . ., Tix.q,)][X]/((1+
X)? — 1) so that X(1) has ¢ = #pup~(K) connected components. In order to find a
crystalline point in any component of X(1), we introduce a labeling of its connected
components by fi,(K): Any point in X(1) corresponds to a character Gx — Q,* with
trivial mod p reduction, which factors via the abelianized pro-p completion II of G,
i.e., it induces a character i : Il — Q,*. Via the isomorphism rx ,: Z, X (1 + me, ) — II
induced from rx by pro-p completion, the torsion subgroup ppe (K) of (1 4+ mep,) is
isomorphic to the torsion subgroup of II so that we can define the label of n to be
MO TK p luyee (1) (C) € Hpee (K) for a chosen generator ¢ of pp(K). Equivalently, one
can say that the component of X(1) that contains 7 is determined by the restriction
1O TR p ljupoe (K)-

Now we use the above labeling of components to find a crystalline character in each
component. Recall that f = [Ky : Qp], and denote by 79 € Pk our usually chosen
embedding K — Q,. By (b) above, for any ¢ € Z the character xﬁgqffl):GK - Q)
is crystalline. Because of the factor ¢/ — 1 in the exponent, its image is a pro-p group,
and it is straightforward to see that for the induced character n:1I — Q, we have

2(¢f -1 . .
NOTK p |1+m0K = To(q )|1+m<9;<' Hence norg ), |Mp°° (k) 1s equal to the homomorphism

e () — pypee (K),  a— /@' =D = a7,

By choosing ¢ suitably, it is clear that 17 can be made to lie in any connected component
of X(1). O

For the following result, we assume that the reader is familiar with the the-
ory of determinants as introduced in [9]. Following [33] we shall call them pseudo-
representations. Let R be in Arp. To any representation p: Gx — GL,,(R) one can
attach a pseudo-representation of degree n, i.e., a multiplicative R-polynomial law
T = 7,: R[IGk] — R homogeneous of degree n. To describe the latter, denote for any
R-module M by M the functor from R-algebras A to sets that assigns to A the set
M ®pr A. Then 7 is the natural transformation R[Gx]| — R that on any R-algebra
A is given by 74: A[Gk] — A, Y rigi — det (X rip(g:)). In particular, any resid-
ual representation p: Gx — GL,(F) has an associated pseudo-representation 7. By

[9], if 7 arises from a representation p over R, then the characteristic polynomial
Xp(g) of p is equal to x,(g,T) := Tri)(T — g) € R[T] for any g € Gg. The de-
terminant of 7 is defined as the representation det7 := 7 = (—=1)"x,(_,0):Gx —
GL1(R).

In [9, §3.1], Chenevier defines a deformation functor D, for a residual pseudo-
representations 7: F[Gx] — F. By [9, Prop. 3.3 and Ex. 3.7], the functor D; is rep-

—
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resentable by a ring Rz in Arp. By XP%(7) we denote the generic fiber of Spf R; in the
sense of Berthelot, see [13, §7]. If T is associated to p then there are natural functors

X(p) 5 XP*(7) = X(det ), (2)

where 71 is defined by mapping a deformation to the associated pseudo-representation,
and me by mapping a pseudo-representation to its determinant. Note that the composi-
tion 7y o 7y is given by the usual determinant of representations.

Corollary 4.3. Suppose p is a semisimple 2-dimensional residual representation of Gk
and p > 2.

(a) The morphisms of connected components

mo(X(p)) " o (X7 (7)) T o (X(det ),

induced from (2) are bijective.
(b) The benign crystalline points are Zariski dense in XP5(p).

Proof. To prove (a) observe that by Theorem 1.9, the composite mo(m2) o mo(m1) is a
bijection. Moreover the map mo(m) is surjective: For this it suffices to show that any
pseudo-representation 7 over @, i.e. any closed point in XPS(T), arises from a rep-
resentation p, i.e. a closed point in X(p). By [9, Thm. 2.12], it is known that 7 is
the pseudo-representation for a semisimple representation Gy — GLQ(@). The lat-
ter can be realized over a finite extension E of @, and then, in turn by a representation
p:Gg — GLo(Og) for O the valuation ring of F. Moreover, by possibly enlarging E
and choosing a suitable lattice, one can also assume that the reduction p’ of p’ mod-
ulo mp, is semisimple. Now on the one hand, we have x; = Xj5. On the other hand
mi(p) = 7 yields x, = x,, and reducing mod mp, we deduce xp = xr = xp- By
the semisimplicity of p and p’, the theorem of Brauer—Nesbitt now implies p = p.
But then p’ represents an element of X(p) that maps to 7, completing the proof
of (a).

To prove (b), observe that, by what we just proved, the map 77 is surjective on (closed)
points. Moreover for rigid spaces all Zariski closed subsets are the Zariski closures of their
closed points. But then the image under m; of a Zariski dense subset is Zariski dense. It
follows from Theorem 1.12 that the set of benign crystalline points in XP*(7), which is
the image of the set of benign crystalline points in X(p), is Zariski dense in XP5(7). O

5. The cup product and quadratic obstructions

In the remainder of the article, we consider a residual representation p:Gx —
GL,(F) for n € N arbitrary. Let 0 — I¥ — R 5 Rlﬁp — 0 be a minimal presenta-

tion of Rg’ as in (1) of Proposition 1.3. In this section, we show that the bracket cup
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product b: Sym?*(H'(Gg,ad")) — H?(Gk,ad’) determines the quadratic part of the
relation ideal ¥ in the sense of Definition 2.4.

As recalled in Propositions 1.2 and 1.3, Mazur attaches to any small extension 0 —
J—= Ry — Ry —0in K\ro and deformation po: Gx — GL,(Rp) with determinant ¢ an
obstruction class O(pg) € H*(Gx,ad’) ® J for lifting po to a deformation to R;. First
one chooses a continuous set-theoretic lift p1: Gx — GL,(R1) of po which still satisfies
det op; = 1.® Then O(py) € H?(Gk,ad’ ® J) is given by the 2-cocycle

(g9, h) — p1(gh)pr(h) " p1(g)~" — 1. (3)

Similarly, O(pg) can be described by the obstruction homomorphism obs: Homp (J, F)
— H?(Gg,ad%). The latter is defined as follows: For any f € Homg (J,F), form the
pushout on the left of the given small extension and denote the result by 0 - F —
Ry — Ry — 0. If p;: Gx — GL,(Ry) is a continuous set-theoretic lift of py satisfying
detopy = 1, then we set obs(f) := (O(po), f) := (id®f)(O(po)) € H?(Gr,ad"), ie.,
obs(f) is given by the 2-cocycle (g, h) — pr(gh)ps(h)tps(g)~t — 1.

The following lemma shows that the obstruction class is independent of a chosen small
extension. Its simple proof is left as an exercise.

Lemma 5.1. Consider a morphism of small extensions

0 J Ry Ry 0
i s \L T \L ™0
0 J’ R, R), 0,

i.e., a commuting diagram with both rows a small extension and the right hand square
in Arp. Let O(po) € HQ(GK,adO ® J) be the obstruction of a deformation py : Gx —
GL(Ry) of p. Then

(id®m)(O(po)) = O(mo 0 po) € H* (G ad’ ® J') =2 H*(Gk,ad’) & J'.

Recall that ~ means that we pass to rings mod me, and minimality of the presentation
of Rg’ implies that 7 induces an isomorphism My /M% = 11_1? / (n_lg)z. In particular, I¥ C
m%. In this section, we consider the filtration {m, };>0 on R, and let in denote the initial
term map R — Sl R. The following basic result relates the bracket cup product and
the quadratic part of I¥:

8 Such a map always exists: For instance choose a continuous set-theoretic splitting Ry — R1 of the given
homomorphism R; — Rg. Observe that since the R; are local, it induces a continuous set-theoretic splitting
of GL,(R1) — GL,(Ro). Finally, fix the determinant similar to Lemma 4.1.
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Lemma 5.2. We assume p > 2. Then the following diagram is commutative:

Hom]F (HQ(GK,adO),IF) 04173»- jw/tﬁwa —_—> (fw —I—I'l_i%) /‘ITI%

| [

Sym? (Homp (Hl(GK,adO),IE")) —~ 5 Sym? (Mg /M%) — = m3 /i,

where bV s induced by the dual of the bracket cup product, and obs is dual to the
obstruction homomorphism. In particular, the quadratic part inz(fw) of IV in tﬁ%/tﬁ%
agrees with the image of bV.

Proof. Let J := (IV + m3, ) /m%. We prove that the following diagram is commutative:

Sym? (HI(GK,adO)) —~ 5 Sym? (HomF (ﬁn/ﬁ%,lﬁ‘) ) —~ > Homp (tﬁ%/rﬁ%,lﬁ‘)

. |

H?(G,ad”) <————— Homg (I /g ", F) <———— Homg (J,F).

The first isomorphism in the upper row is the canonical isomorphism from Proposi-
tion 1.2(a). We shall show that the image of any ¢; € H'(Gg,ad’) in H?(Gx,ad")
is independent of whether we apply —%b or the clockwise composite morphism that
passes via obs. Since both maps are F-linear and elements of the form c¢? generate
Sym? (H (e K,ado)) as an F-vector space, this will prove commutativity. Before we
embark on the lengthy computation of the composite morphism, we observe that the
bracket cup product of ¢; with itself is represented by the explicit 2-cocycle (g,h) +—
[c1(g), Ad p(g)ci(h)], see [32, §2] — we write Ad p for the adjoint action of Gx on ad® to
have clear notation.

We now compute the clockwise composite morphism that passes via obs. First we
extend ¢; to a basis {ci,...,cn} of H (G ,ad®). Via the isomorphisms H'(Gf,ad”) =
Homp (‘[’(_173/11_1%,15‘ ), we obtain a basis of Homp (11_173/(1_1%,]1?), which by slight abuse of
notation, we also denote {ci,...,cs}. For the corresponding dual basis of Mg /M% we
write {Z1,...,Zx} so that ¢;(z;) is the Kronecker symbol d;;. We lift the latter el-
ements to a system of parameters {z,...,zp} of mg; this defines an isomorphism
R = Fl[x1,...,x]]. With this notation, the image of ¢} in Homp (% /Mm%, F) is char-
acterized by ¢3(Z;7;) = 0 if one of 4,5 is at least 2 and ¢}(z7) = 1. The image of ¢?
in Homp (J,F) is the restriction ¢f|; to the subspace J C m% /m%. Finally, the com-
position of the canonical homomorphism I¥/mgI¥ — J and c?|; defines an element
f in Homg (I¥/mgI¥,F). To evaluate obs(f) = (O(ps), f), we consider the following
diagram which displays three morphisms of small extensions:
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0 —— IY/mpl¥ —— R/mpl? R/IY 0
l !

0 J R/m3 —— R/(IY +m%) — 0
i

0 —— m% /m3 R/m3, R/m2 0
;

0 F R/ ker(c?) R/m2% 0,

where the last row is obtained by pushout along ¢7 and where we denote by ker(c?) the
ideal of R that is the preimage under R — R/m% of the kernel of ¢?:m% /m3 — F.
Note that since R/m2, = R}é’/(n_lg)Q, the right column is the morphism defining the
deformation pfg (mod (tT‘L%)Q) to R/m%.

By Lemma 5.1, we can use the last row to compute obs(f). For this, we need a suit-
able set-theoretic lift of p;é’ (mod (n_1 )2) to R/ ker(c?). We begin with a cohomological
description of p? (mod (ﬁl?)Q): using vector space duality, the canonical isomorph-
ism H'(Gg,ad’) = Homg (Mg /%, F) can be described equivalently by the 1-cocycle
2?21 ¢;®%; in Z' (G, ad’@mg /M ). Therefore, p? (mod (11_1?)2) is given by the formula

h

g— (1+ X alo) @2:)alg).

i=1

We want to obtain a formula for a set- theoretlc hft to R/ ker(c?). It will be convenient
to use the exponential map expy(z) = 1 + x + 222 to level 2, which is well-defined as
the rings (R, mp) in fA\r(g have characteristics different from 2. Moreover, exp, can be
applied to matrices A € M, (mg). If in addition m%, = 0, then one can also verify that
det(expy(A)) = expy(Tr(A)). In particular, exp,(A) has determinant equal to 1 if A is
of trace zero. Now we take as our set-theoretic lift

h
po: Gk — GL,(R/ker(c?)), g+ expy (ch ) ® x1> g) (mod ker(c?)).
i=1

By the remark above on exp,, we have det(p((g)) = det(p(g)) = ¥(g9) (mod mp) for
all g € Gk. In R/ker(c}), we have z;z; = 0 whenever i > 1 or j > 1. Hence, the
expressions exp,(c;(g) ® z;) commute for all i and we have exp, (Z?Zl cilg) @ z;) =
H?:l exps(ci(g)x;). Using these properties, the class obs(f) is represented by the
2-cocycle

(g, h) — ph(gh)po(h) " ph(9) ™" — 1= pi(gh)pi(h) " pi(g) " — 1,
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where p} is the lift Gk — GL,(R/ker(c?)), g — exp, (c1(g) ® 21)p(g) (mod ker(c?)),
of p. At this point, it is a simple if lengthy computation to verify that the right hand side
of the previous expression is the 2-cocycle (g, h) — —1[c1(g), Ad p(g)c1(h)] @ 23. Now z3
is our chosen F-basis of the lower left term in the above diagram and via ¢? it is mapped

to 1. Hence, obs(f) agrees with the expression for —2b(c1,c1) given above. O

Remark 5.3. The use of the exponential map in the above proof seems standard, e.g. [16,
1.3].

Corollary 5.4. Suppose p is of degree 2 and p > 2. Then the homomorphism
b:Sym? H' (G ,ad’) — H?(Gg,ad®)
induced from the bracket cup product is surjective.

Proof. Consider a minimal presentation 0 — I¥ — R — Rz — 0 of R5. By Lemma 5.2,
it suffices to show that the images of the quadratic parts of generators of I¥ span a
subspace of dimension equal to dimg H?(G,ad"). This follows from Corollary 3.6(a) in
cases (A)—(C), Lemma 3.7(c)—(e) in cases (D)—(E) and Lemma 3.2 by direct inspection
in the respective cases of Section 3. O

6. Further quadratic obstructions from the Bockstein homomorphism

Let p:Gg — GL,(F) be a residual representation and 0 — I¥ — R 5 Rg =0
be a fixed minimal presentation as in Proposition 1.3. In the previous section we gave
a description of the contribution of the bracket cup product b: Sym?(H'(Gg,ad’)) —
H?(GF, ado) to the relation ideal I¥. By Lemma 5.2, knowing b is equivalent to knowing
the quadratic part of I¥. In Example 2.3 we saw that knowing the refined quadratic part
may have stronger ring-theoretic implications than knowing the quadratic part only. The
theme of this section is the Bockstein homomorphism and its additional contribution to
the relation ideal I¥. The upshot is a cohomological description of the refined quadratic
part of I¥ in cohomological terms in Lemma 6.6 and Theorem 6.8.

We suppose that there is a representation psy1: Gxg — GL,(Osy1) lifting p for some
integer s.” Observe that pyq defines a homomorphism ay1: R?/(wéﬂ) — Os41. For
the following discussion it will be convenient to choose a regular sequence of parameters
of R that is compatible with a1 in the following sense: Since the morphism ag4q 0

(7 (mod wi)): R/(wh!) — Osy1 is a surjective homomorphism of formally smooth

Osy1-algebras, it possesses an Oy y1-splitting. Thus we may choose 1, ...,z of R with
h = dimp H' (G, ad’) such that R/wi ™ = Ogi1[[z1,. .., 25]] and such that under this

identification the homomorphism asiq o (7 (mod wi™)) sends all x; to zero. Define

9 The delicate matter of the correct choice of ¢ = p® is discussed in Lemma 6.9 and Remark 6.10.
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;= ag41 (mod wé):R%’/(w%) — 0; and p; := pst1 (mod wh): Gxg — GL,(0;) for
1 < i < s. Further, for 1 < i < s+ 1, the adjoint representation Adp; : Gg — ad?
of Gk on trace zero matrices ad) := Mat? (0;) is given by conjugation with p; so that
zaud(lJ = ad’. Then for all 2 < i < s+ 1 there is a short exact sequence of G g-modules

0 — ad? ;| ©2 ad? Py ad® — 0.
Definition 6.1. For 2 < i < s+ 1, the i-th Bockstein operator or the p*-Bockstein ho-

momorphism is the connecting homomorphism §; in the induced long exact cohomology
sequence

= HY(Gg,ad ) 2= H' (G, ad?) — > H'(Cx,ad) )

Bi

C—> H2(Gad? ) =2 H2(Gy,ad?) — = H2(Gx,ad®) — ...
Now we give an explicit description of 3; that will be useful later.

Lemma 6.2. Let 2 < i < s+ 1, let ¢ € ZY(Gk,ad’), and let " denote a set-theoretic
splitting of ad? — ad’. The i-th Bockstein operator is given explicitly by

Bi(le)) = ((9.h) — @5 - (Ad pi(g)c(h) — Egh) +&(g)) ) (mod BX(Gi,ad!_,)). (5)

Proof. The connecting homomorphism (; is defined by applying the snake lemma to the
following commutative diagram with exact rows:

CY G ad? ) 2% MG, ad?) —— = OV (G, ad”) — 0

ok

0 —— Z2(GK’ad?—1) mo ZZ(GK,ad?) - ZQ(GKvadO),

pr;

where we let C’l(GK,adg) = Cl(GK,adg)/Bl(GK,adg) and 0; is induced by the
coboundary map

C'(Gk,ad}) — C*(Gk,ad)), b+ ((g.h) = (Adp;(g)b(h) — b(gh) + b(g)))

for any 1 < j < s+ 1. We lift the given 1-cocycle ¢ € Z'(Gg,ad’) to the 1-cochain
bo == (g9 ¢(g)) : Gk — ady, and denote the image of ¢ and by in C*(Gy,ady) by ¢
and by, respectively. Since by assumption 0;(¢) vanishes and the right hand side of the
diagram is commutative, we conclude that 9;(by) € ker(pr}). Using the exactness of the
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lower row, we may define 3;([c]) := wg' - 9i(by) (mod B?(Gx,ad)_,)) so that the desired
formula (5) follows from the definition of 9;. O

The meaning of the Bockstein operator for obstructions is given by the following
straightforward result.

Lemma 6.3. Let i € {2,...,s+ 1} and consider a deformation p. = (1+ce)-p: Gxg —
GL,.(F[e]) of p for some ¢ € Z'(Gk,ad"). Then p; has a deformation to O;[e] that lifts
pe if and only if 5;([c]) = 0.

Proof. As in the mod we case we can write any deformation to O;g] of p; as
Pici = (L4 cie) - pi : Gxg — GL,(O;]g])

for some ¢; € Z'(Gk,ad?). Using the functorial homomorphism prf : C*(Gg,ady) —
Cl(Gx, ado), we find that the image of p; ., under reduction mod wp is given by

(1+pri(c)e) - p: Gx — GL,(Fle]).
Hence, such a deformation p; .,: Gk — GLy,(O;[e]) of p; that lifts p. exists if and only
if prf(c;) = ¢. The long exact sequence of group cohomology (4) implies that the latter

holds if and only if [¢] lies in the kernel of ;. O

Corollary 6.4. Let i be in {2,...,s+ 1} and consider the presentation

0— Ii — Ri = Oi[xl,...,xh]/(xl,...,xh)2
T Ry = Rg’/ﬂ((xh...,xh)g +whR) — 0 (6)

induced from (1) in Proposition 1.3. Then B; = 0 if and only if I; = 0, i.e., if and only
if m; is an isomorphism. In particular, if B, =0, then 8; =0 for all j =2,...,s.

Proof. Suppose that I; is non-zero and let f # 0 be an element of ;. By multiplying

f by a suitable power of wep, we may assume that f lies in w};lRi, i.e., that f is of
the form wgl(Z?ﬂ Ajz;) for suitable A; € O; such that at least one \; lies in O. Let
ae: R; — Fle] be an O-algebra homomorphism such that &5<Z?:1 Ajz;) is non-zero.

Since §; = 0, there exists an O-algebra homomorphism
a; ot Ry = Oile]
such that o; . = & (mod we): R; — Fle]. We deduce
h

h
0™ 2™ (4. 0m) (wg1 (2 /\jxj)) L™ i (@i o m)(Z Aﬂj) € Oile],
j=1

J=1
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and it follows that (a;. o m—)(Z?:l Ajz;) lies in wpO;le], or, in other words, that
&5(2?:1 Ajz;j) = 0. This is a contradiction. O

Lemma 6.5. Suppose that 85 = 0, so that also B2 = ... = Bs_1 = 0. Then the following
hold:
(a) Fori=2,..., s, the short exact sequence

i—1
- )
0 —ad’ =% ad? X5 ad? | —0

i—1 *
yields a short exact sequence 0 — H?(Gg,ad) Zo, H?(Gg,ad?) SN H?*(Gk,
ad) ;) — 0.
(b) The Bockstein homomorphism Bsy1: H' (G ,ad’) — H?(Gg,ad?) induces a homo-
morphism

Bor1: H (G ad®) — H? (G, ad’)
with Bsy1 = wg—1,§5+1 and the following property: A deformation p. = (1 + ce)p :
Gx — GL,(F[e]) of p given by ¢ € Z'(Gg,ad’) lifts to a deformation of psi1 to
Osi1le] if and only if Bs11([c]) = 0.

¢) If ¢ e Z1(Gg,ad’ denotes a set-theoretic lift of ¢ € Z'(G,ad"), then one has
s+1
the explicit formula

Bora (i) = ((9:1) — @5° (Ad psa (9)2(h) — Egh) +7(9)) ) (mod B(Gic,ad").

Proof. For (a), recall that one has scd Gx = 2 for the strict cohomological dimension
of K. Thus from s = 0 and from (4) we obtain the short exact sequence

0 — H?*(Gg,ad’_)) =8 H*(Gg,ad?) 25 H?(Gk,ad") — 0.
The groups H?(Gg,ad}) are finite, and we deduce
#H? (G, ad)) = #H*(Gg,ad)_y) - #H*(Gg,ad”). (7)

The sequence in (a) of second cohomology groups is part of a long exact cohomology
sequence. Its right exactness thus follows from scd G = 2, and then its left exactness is
immediate from (7).
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For (b) and (c) we consider the commutative diagram

H'(Gg,ad")

~ -
Bs+1 _ ~ Bs
— Bs+1
~
£ s—1 *

0 — = H2(Gg,ad’) — = H2(Gg,ad’) — = H*(Gg,ad’_;) — = 0

with exact second row. Because 35 = 0, the dashed arrow §3+1 exists, and this proves (b).

Finally the formula for 8,11 in (c¢) follows from multiplying the formula (5) for Ss11 by
—(s—1)

@y . O

The next result gives the meaning of the Bockstein operator for the relation ideal I¥.

Lemma 6.6. For i = 1,...,s + 1, let m; be the kernel of the composition morphism
RS Rg —» R%’/(w%) X0, de, m = (w@,xl, ...yxp). Let Isyq be the relation ideal
in (6) and denote by IV — I,yy the canonical homomorphism. Suppose B; = 0. Then
one has the following commutative diagram:

H2(Gx,ad’)Y — " IV IV Toi
_B;/+1 \L J
Hl(GKaadO)v —N> ITlR/n_LQR t V:

W
where V= (m24+wh R) /(m2,  +wi  R) is an F-vector space with basis {wgHw;}j=1,. -

Proof. As in the proof of Lemma 5.2, we prove commutativity of the dual diagram

H2(Gg,ad’) < Homg (IY /mp ¥, F) <~ Homg (I,41, F)

] |

H'(Gr,ad”) Homp (Mg /Mm%, F) Homp (V,F).

—s
@Wo

We start by computing obs(f) € H?(Gg,ad), where f is the image in Homg (Iw/mRI’l’,
IE‘) of a homomorphism f € Homp (V,F). For this, we use f to construct certain defor-
mations of p and corresponding 1-cocycles that at the end of the proof also determine
the image of f in H?(Gg,ad’) under the other composite morphism passing through
H'(Gg,ad).

In order to compute obs(f) with the help of Lemma 5.1, let fy1:V = ol Foha; —
Os+1 be a set-theoretic lift of f, and define foy11:Rs41 — Os41[e] by mapping x; to
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‘f;+1(w%xi) - €. Then we consider the quotient Rsy := Rsﬂ/(mg + wngR) of Ret1.
Note that R, is the ring fiber product

Rer —— Rs

| o

Os+1 —— Os.

The deformation psy; defines a homomorphism R;f — Og41, and since B, = 0
there is a surjection Rg’ — TR by the previous lemma. By universality of the
fiber product Rsy, there exists a homomorphism g : R%’ — R.4 that corre-
sponds to a deformation psy:Gg — GL,(Rsy) of p. Moreover, the homomorphism
(fs+1 (mod @w$HeOsqq)) 0 g:R? — Rey — Osi1le]/(w5He0s41) defines a deformation
ps+: G — GL,(Os11[e]l/(@wEHeOs41)). Finally, we form the pushout Ry of V < Ry14
and f so that there is a commutative diagram

00— IY/mgl? R/mpl? RY 0
$ | Y
0 Is\Ltl Rerl Rs+1 - 0
| !
0 Vv Rs+1 Ry 0

lf i \fs+1 ‘
0 F Ry — Rey 0

l L/ |

0 ’ZD%{:‘OS_H 05_5_1[8] e Os+1[€]/w?95(95+1 0
whose rows are small extensions in I/X\ro. Using Lemma 5.1, we obtain
ObS(J?) ® wpeDsq1 = (O(Ps+), f) ® wpeDs 11
= O(ps4) € H*(Gk,ad” @F wHe0s41). (8)

Now we follow the steps explained above Lemma 5.1: Namely, we first define a suitable
set-theoretic lift Gxg — GL,,(Os41[¢]) of ps+ and then compute the obstruction class (8)
by applying formula (3). Composing the surjection R:é’ — R, and fo41 (mod wd): Rs —
Osle] determines a deformation ps . = (1 + ecs)ps: Gk —> GL,(Os[e]) for some 1-co-
cycle ¢s € HY(Gk,ads). Let é; € Z'(Gg,adl,;) be a set-theoretic lift of ¢y that by
construction defines a set-theoretic lift

ﬁs,a = (1 + 56:9)ps+1: GK — GLn(Os-‘rl[a]) (9)
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of ps. Using formula (3), we calculate a representative in Z2 (G, ad’ ® (whe)) for (8)
by evaluating

(R, k) ¥ Do, ()P, (k)™ s (h)7H = 1

D (1 + 262 (hk)) pagr () pas (k)" (1 = Ga(k)) para (R) "1 (1 — eéa(h)) — 1

= wo' (Gs(hk) — Ady () & (k) = G5(h)) - woe.

Hence, the class obs(f) € H>(Gk,ad") is obtained from dividing by ewg,.

It remains to compute the image of the homomorphism f € Homp (V,F) un-
der the composite morphism passing through H(G K,ado). First note that the map
fs+1 (mod we):Flzy,...,z4]/(z1,...,2n)?> — F[e] induces a homomorphism f; €
Homy (Mg /M%,F), which under multiplication by w§, is mapped to f € Homg (V,F).
We want to compute 3,11 ([c]), where ¢ € Z1(Gk,ad’) is a representative of the image
of f; under the canonical isomorphism Homp (11_172/11_1%,15‘) 5 HY(G K7ad0). Since by
construction ps . = (1 + ecs)ps: Gx — GL,(Os[e]) lifts (1 + ec)p: Gk — GL,(Fle]), it
is clear that ¢; € Z'(Gr,ad),,) is a set-theoretic lift of ¢. By Lemma 6.5(c), it thus
provides us with the representative

(k) > 5" (Ady, 0 E(K) = G(hR) + E(R) € 2°(Gie,ad?)
for Bs+1([c]). This shows that Es+1([c]) = —obs(f), proving the lemma. O

If p has a lift to O, then there is a natural refinement of the above with regards to
the filtration of R given by ms. Denoting by in the initial term map with respect to this
filtration, one has isomorphisms

h
m?/(md + m3,) = F - in(w))? @ PF - in(wd) - in(e:) = F - in(wh)? & V
=1

and

ker (m2/m3 — m2/(m3 + m3,)) = @ F-in(z;) - in(z;) & m% /Mm%,
1<i<j<n

In other words, we have a natural 2-step filtration of grZ, R whose first subquotient is
isomorphic to Mm% /Mm% and whose second subquotient is isomorphic to F - in(w§,)? & V
with V' as above. A variant of the above lemma is the following whose proof we leave to
the reader:

Lemma 6.7. Let I, be the relation ideal in (6) and let IY — I, 1 be the canonical
homomorphism. Suppose that ps+1 possesses a lift to Oz and that By = 0. Then one has
the following commutative diagram:
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H?(Gg,ad”)V —— IV /mpl¥ ———— I,

| J

HY(Gg,ad’)V —— mg/m} = F-in(wy)? & V.

The use of the above 2-step filtration of gr% R allows one to apply our results on
the Bockstein operator on one piece and that of the bracket cup product on the other.

This gives precise information on the refined quadratic parts in gr2, ‘R which arise from
H?(Gg,ad") — with the possible exception of the quotient in(w,)? - F. Namely, we have
the following result:

Theorem 6.8. Suppose p has a lift to Osy1 and that s = 0. Then Iy is contained in

m2 + W%HR and the following diagram is commutative, where all homomorphisms are

the natural ones, as given either in Lemma 5.2 or Lemma 6.6:

H?(G,ad")" I fmpl¥ ————— I?/(I"N (w3 + = 'R))

—E:mefébvl l

H (Gic,ad’) @ Sym? Y (G ad") —= fig /M © Wk /My C— > arf, R/(F-in(@h)?).
wWo ncl.

If in addition p has a lift to Osg, then the above diagram still commutes if one removes
the symbols “+-wwi 'R’ in the top right and T - in(w)?’ in the lower right corner.

We now discuss various issues about the Bockstein homomorphism that were left open
so far, for instance the existence of lifts psy1 and the choice of s.

Lemma 6.9. Let p > 2 and p: G — GL,(F) be a representation. Let s be an integer.'?
We fix a minimal presentation of Rg as in Proposition 1.8 and an isomorphism R =
Ollz1,...,zn]], and set my == (wh,x1,...,2n). Then the following hold:

(a) If n =2, then p has a lift to O.

(b) For general n, if p(Gk) is a p-group and if p° = #pe (K) > 1, then p has a lift to
the ring O /@i O.

(c) If the relation ideal IV lies in m2, then p has a lift to Oas.

(d) If p has a lift to Oss and if B = 0, then any choice y; € x; + WHR, i = 1,...,h,
induces a change of coordinates isomorphism R = O[[z1,...,zp]] = Olly1,- - -, yn]]
such that my is independent of whether we use the x; or the y; to define it.

10 In different items, s may take different values.
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(e) If Rg’ is flat over O, then there exists a finite totally ramified extension of O[1/p]
with ring of integers O’ and a homomorphism R%’ — O in Arp, i.c., p has a lift to
characteristic zero, and in particular lifts to O'/(w(,)® for every integer s.

Regarding (e) note that A. Muller [27] has constructed crystalline lifts of a large class
of mod p Galois representations p for any n. Whether such a lift always exists is still an
open question.

Proof. For O = W(F), part (a) can be obtained from a simple adaption of [21, Theo-
rem 2] — Khare’s proof using Kummer theory works for all field of characteristic zero —
and part (b) is [3, Prop. 2.1]. For general O, one can apply Lemma 4.1 to replace the
fixed character ¢: Gx — O* by a twist of ¢ whose image lies in W (F)". Part (c) is rather
trivial: the hypothesis implies that R;’f ~ R/IY surjects onto R/(p**,1,...,2) = Oa.
Part (d) is also obvious. For (e) observe that by flatness the ring Rg[l /p] is non-zero.
Hence, its generic fiber X(p)¥ is a non-empty rigid analytic space over O[1/p]. Thus it
has points over some finite extension of O[1/p]. These points are the desired lifts. O

Remark 6.10. The definition of the Bockstein operators (3; depends on a choice of a
base point, i.e., a lift ps11 of p to Osy1. We do not know in general in what sense
the vanishing of s and the non-vanishing of 511 could be independent of such a lift.
A change of base point as described in Lemma 6.9(d), clearly does not change the integer
s for which 8, = 0 and Ss4+1 # 0, assuming the existence of psy1. We also do not know,
what an optimal choice of s, independently of a choice of the lift ps41 means, although
Lemma 6.9 provides some reasonable guesses. If one does have an explicit choice of ps41,
and a situation where one can then determine its infinitesimal deformations, then one
can determine whether 8, = 0 and fs4+1 # 0. Such an approach is sketched in the proof
of Proposition 6.11.

Before giving the proof of Theorem 1.14, we discuss the existence of such a base point
in cases (D) and (E) of Section 3. For the remainder, suppose that ¢ = #ppe (K) > 1
and set s :=log, g. Suppose also that the image of p is a p-group and that the fixed lift
1 of det p is the trivial character — both can be assumed without loss of generality by
twisting; cf. the proof of Lemma 3.7.

Proposition 6.11. In cases (D) and (E) of Section 3 there exists a deformation ps, in
Dg’(W(IF)) such that s = 0 and Bs41 # 0.

Proof. We ask the reader to have the notation and concepts used in the proof of
Lemma 3.7 at hand. We define

—1
M; = L fori=1,3,...,2g and My := vi—a 42 ,
0 1 0 v1i—gq
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where the u; are all zero in case (D). Then it is easy to verify that the M; satisfy the
Demushkin relation M{[My, Ms]. .. [Mag_1, Ms,] = 1. Hence, the map II — GLo(W (F))
defined by mapping z; to M; yields the desired lift po-

We use this base point to determine the Bockstein relations, and thus to determine the
correct value of s such that S5 = 0 and Bs4+1 # 0, by computing explicitly infinitesimal
deformations of po,. Namely, we define N; := M;(1 + eA;) € GL2(W (F)[e]) for matrices
A; = (ai bi . Computing the Demushkin relation N{ [Ny, No]...[Nag_1, Nog] =1,

C; —a;
we obtain a linear relation whose coefficients lie in ¢W (F) but not in pgW (IF). The
assertion follows. 0O

Remark 6.12. We note that the base point lift chosen in the proof of the previous propo-
sition is obtained as a specialization of the variables in the proof of Lemma 3.7 within
gW (F). Hence, by Lemma 6.9(d), the trivial specialization that sends all variables to
zero gives a lift to W (F)/¢*W (F) (in fact to W (F)) so that 8s = 0 and Bs11 # 0.

Proof of Theorem 1.14. By the same reduction as in the proof of Theorem 1.4, given
after Corollary 3.6, it suffices to treat the case O = W(F). By Theorem 3.4, we have
in cases (A)—(C) of Section 3 that a lift pos: G — GL2(W(F)/p**W (F)) exists for
s = log, q if we specialize all variables to zero. Then all the specialized relations will
vanish modulo ¢2. Moreover for this choice, we have 8, = 0 and (s,1 # 0 because the
linear terms of the relations vanish modulo ¢ but not modulo pg. By Corollary 3.6(b),
the images of the quadratic parts of generators of I span a subspace of dimension equal
to hy = dimp H?(GF, ado). Thus Theorem 1.14 follows from Theorem 6.8.

It remains to consider cases (D) and (E). We take the specialization from Remark 6.12
as our lift to W (F)/¢*W (F) so that 85 = 0 and Bs11 # 0. By Lemma 3.7(c), (e), there
exists a presentation

O—)(rl,...,rm)—>R—>RZ—b—>O

such that in(71),...,in(7,) € gra . R form a regular sequence in grg R and m =
dimp H?(G, ado). We complete the proof of Theorem 1.14 by a further appeal to The-
orem 6.8. 0O
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