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We formulate a finiteness conjecture on the image of the absolute Galois
group of totally real fields under an even linear representation over a local
field of positive characteristic. This is motivated by a recent conjecture of
de Jong in the function field case. We discuss the relation to some conjec-
tures of Boston which arise from the conjectures of Fontaine and Mazur and
give group-theoretical reformulations of our conjectures. As we will explain,
our conjectures have consequences for the structure of universal deformation
rings of even residual representations. Finally we give some evidence for the
conjectures themselves and for their consequences.
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1. INTRODUCTION

Notation. Throughout we fix the following notation. By κ we denote
a finite field of characteristic l > 2 and by W (κ) its ring of Witt vectors.
K will be a global field, K̄ a separable closure and GK := Gal(K̄/K) the
absolute Galois group of K. If K is a function field, we assume that it is
of residue characteristic p 6= l. We fix a continuous representation

ρ : GK → GLn(κ[[T ]]).

Its reduction module T is denoted ρ̄ and is called the residual representation
of ρ. By the splitting field of a representation, we mean the fixed field inside
K̄ of the kernel of that representation. The splitting field of ρ̄ is always
denoted by L. For any global field E, we denote by E∞ its cyclotomic
Zl-extension. S will always be a finite set of places of K, and if K is a
number field, then Sl will be the set of places of K above l. In any matrix
group, I denotes the identity matrix.

1



2 BÖCKLE

A finiteness conjectures for function fields. In [12], de Jong states
the following conjecture.

Conjecture 1.1 If K is a function field and ρ is ramified only at finitely
many places, then ρ(GKF̄p) is finite.

Because ρ(GL) is a pro-l group, one has ρ(GLF̄p) = ρ(GL∞). Since L/K is
finite, this shows that the above conjecture is equivalent to

Conjecture 1.2 If K is a function field and ρ is ramified only at finitely
many places, then ρ(GK∞) is finite.

The case n = 1 follows easily from class field theory. The central result
of [12] is the proof of this conjecture for n = 2. The proof is based on
Drinfeld’s reciprocity law between automorphic forms and two-dimensional
Galois representations of GK . In fact, de Jong only makes use of Drinfeld’s
reciprocity law in the special case of unramified representations.

Before discussing some consequences of the above finiteness conjecture,
let us present what we consider an analogue for number fields.

A finiteness conjecture for number fields. There are simple ex-
amples which show that the näıve analogue of Conjecture 1.2 for number
fields cannot hold. For instance the reduction modulo l of the explicit uni-
versal deformations described in [6] have an infinite image when restricted
to GK∞ . Thus there needs to be a restriction on the representations ρ for
such an analogue.

The proof of the following simple result is left to the reader. It uses the
facts that l > 2 and that the kernel of the reduction map GLn(κ[[T ]]) →
GLn(κ) is a pro-l group.

Lemma-Definition 1.3 For a number field K, the following assertions
on ρ are equivalent:

(a) The splitting field of the representation

ρ (mod {±I}) : GK → GLn(κ[[T ]])/{±I}

is totally real.

(b) The splitting field of ρ̄ (mod {±I}) is totally real.

(c) K is totally real and for any complex conjugation c ∈ GK (for any
infinite place), one has ρ(c) = ±I.

If any of the above assertions hold, we call ρ (and ρ̄) even.

The following we regard as a first analogue of de Jong’s conjecture:
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Conjecture 1.4 Suppose ρ is even and ramified only at finitely many
places. Then ρ(GK∞) is finite.

In Section 2, we explain the analogy between Conjectures 1.2 and 1.4 in
more detail. Furthermore we present an analogue of Conjecture 1.4 for
base fields that have complex multiplication. We compare Conjecture 1.4
with a conjecture of Fontaine-Mazur and a conjecture of Boston. In the
end, we give some group-theoretical reformulations.

Consequences of the above finiteness conjectures for Galois rep-
resentations of global fields. As observed by de Jong, [12], Thm. 3.5,
Conjecture 1.1 has the following consequence for Galois representations.

Theorem 1.5 (de Jong) Let K be a function field. Suppose we are
given a Galois representation τ̄ : GK → GLn(κ) which is unramified outside
a finite set S of places of K. Assume that the restriction of τ̄ to GKF̄p is
absolutely irreducible. Let η : GK → W (κ)∗ be a continuous character
such that η ≡ det τ̄ (mod l). If Conjecture 1.1 holds, i.e., in particular if
n ≤ 2, and if l 6 |n, then the universal deformation ring for deformations of
τ̄ , unramified outside S and with determinant η, is finite flat over W (κ).

Following the proof of Theorem 1.8, which we give in Section 3, one can
show that it suffices to assume that τ̄ restricted to GK∞ is absolutely
irreducible.

Suppose we are given a Galois representation τ̄ : GK → GLn(κ). By a lift
to characteristic zero, we mean a Galois representation τ : GK → GLn(O),
such that

(a) O is a finite flat local W (κ)-algebra with residue field κ.
(b) τ ≡ τ̄ (mod l),
(c) τ is ramified at most at finitely many places.

As pointed out in [12], Rem. 3.6(b), the above Theorem has the following
consequence.

Corollary 1.6 (de Jong) If Conjecture 1.1 holds, e.g., if n ≤ 2, then
any τ̄ as in the previous theorem has a lift to characteristic zero which
ramifies precisely at the places at which τ̄ ramifies.

We will show in Section 3 that this has the following implication:

Corollary 1.7 Suppose K is a function field of characteristic p > 3
and of genus at least two. Then for infinitely many l, there exist a finite
constant field extension E of K and a continuous, irreducible, nowhere
ramified representation ρ′ : GE → SL2(O) for some finite flat Zl-algebra
O, such that ρ′(GEF̄p) = ρ′(GE∞) = ρ′(GE) is infinite.
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This gives examples of infinite, unramified l-adic analytic Galois extensions
of function fields E over finite fields with finite constant field. Previous
examples had been constructed by Ihara, [11], and Frey, Kani, Völklein,
[9]. The interest in such examples stems from a question posed by Holden,
[10], who asks for an analogue of a conjecture by Fontaine and Mazur as
studied in [4] over function fields.

Suppose now that K is number field and let τ̄ : GK → GLn(κ) be
an even representation unramified outside a finite set of places S of K.
Following the arguments in [12], which are used to derive Corollary 1.6
from Conjecture 1.1, we shall prove the following in Section 3:

Theorem 1.8 Let K, τ̄ and S be as in the previous paragraph and as-
sume that τ̄ is absolutely irreducible when restricted to GK∞ . Let η be any
lift of det τ̄ to W (κ). Assume that Conjecture 1.4 holds for any κ′ finite
over κ and any representation τ : GK → GLn(κ′[[T ]]) whose residual rep-
resentation is isomorphic to τ̄ . Then the universal deformation ring for
deformations of τ̄ unramified outside S and with determinant η is finite
flat over W (κ).

The arguments in [12], Rem. 3.6(b), which yield Corollary 1.6 as a conse-
quence of Theorem 1.5, carry over verbatim to show the following.

Corollary 1.9 Under the assumptions of the previous theorem, any τ̄
has a lift to characteristic zero which ramifies at most at the set S∪{l : l|l}.

For n = 1, the assertion of the above corollary is a simple consequence
of class field theory. For n = 2, one has the following theorem due to
Ramakrishna, [18], which does not rely on Conjecture 1.4.

Theorem 1.10 Let K = Q, l ≥ 7 and χ the cyclotomic (mod l) char-
acter. Assume that the restriction of τ̄ to a decomposition group at l is

not twist equivalent to
(
χ 0
0 1

)
or
(
χ−1 ∗

0 1

)
, then there exists a finite set of

places S′ ⊃ S and a lift τ : GQ → GL2(W (κ)) of τ̄ which is unramified
outside S′.

In terms of ramification the result of Ramakrishna is weaker than the result
predicted in Corollary 1.9. However it is stronger in the sense that one has
a lift to W (κ) and not just some local finite flat Zl-algebra O with residue
field κ.

There is hope that Ramakrishna’s methods will allow similar results for
two-dimensional Galois representations over arbitrary totally real ground
fields K.

Evidence for Conjecture 1.4. The above result of Ramakrishna,
which is close to the prediction stated in Corollary 1.9, may be viewed as
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some evidence towards the validity of Conjecture 1.4. In the last section
of this article, Section 4, we give further support for our conjectures. We
present some results by Khare, Ramakrishna and the author that support
the predictions of Theorem 1.8. The one-dimensional case is related to
Leopoldt’s conjecture. Reducible cases are investigated, and a positive
result is obtained in the case of completely reducible cases over the base
field Q. Finally for those pro-l Galois groups with restricted ramification
which are of a simple type, we can verify a reformulation of Conjecture 1.4.

2. VARIOUS FINITENESS CONJECTURES

Parallels between Conjectures 1.2 and 1.4. Because L/K is a finite
Galois extension and the group ρ(GL) is a pro-l group, Conjecture 1.2 is
equivalent to

Conjecture 2.1 If K is a function field, ρ is ramified at only finitely
many places and ρ(GK) is a pro-l group, then ρ(GK∞) is finite.

In the number field case, the situation is analogous:

Lemma 2.2 Conjecture 1.4 is equivalent to the following conjecture.

Conjecture 2.3 If K is a totally real number field, ρ is ramified at
most at finitely many places and ρ(GK) is a pro-l group, then ρ(GK∞) is
finite.

Proof of Lemma 2.2. As l is different from 2, any pro-l extension of K
is totally real and hence it remains to show that Conjecture 2.3 implies
Conjecture 1.4.

For this let ρ : GK → GLn(κ[[T ]]) be totally real with residual representa-
tion ρ̄. Let K ′ be the splitting field of ρ̄ (mod ± I) : GK → GLn(κ)/{±I}.
As ρ is totally real, K ′ is a finite totally real Galois extension of K. Let
GL1

n(κ[[T ]]) denote the subgroup of GLn(κ[[T ]]) which consists of matrices
that reduce to I modulo T . Define G′ := ρ(GK′). Because GL1

n(κ[[T ]]) as
well as {±I} are normal subgroups of G′, the group G′ is the direct product
of these two. Let ρ′ : GK′ → GL1

n(κ[[T ]]) be the component of ρ|GK′ into

GL1
n(κ[[T ]]). Then Conjecture 2.3 applies to ρ′ and predicts that ρ′(GK′∞)

is finite. It follows readily that ρ(GK∞) is finite as well.

To compare Conjectures 2.1 and 2.3, we fix some notation. Let S be a
finite set of places of K, let KS be the maximal separable extension of K
unramified outside S, and define GK,S := Gal(KS/K). For an arbitrary
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group H denote by H(l) its pro-l completion, and let KS(l) be the subfield
of KS corresponding to GK,S(l). Then

1 −→ GK∞,S(l) −→ GK,S(l) −→ Gal(K∞/K) ∼= Zl −→ 1. (1)

Suppose first that K is a function field. Then Gal(K∞/K) is topologically
generated by the arithmetic (or geometric) Frobenius automorphism. Fur-
thermore if X denotes the smooth projective model of K, then, at least
after a finite constant field extension, GK∞,S(l) is isomorphic to the pro-l
completion of the geometric fundamental group of X−S, cf. [20], Thm 2.5.
For the latter one has an explicit presentation. In particular it is a finitely
generated pro-l group. If K is rational or if S is non-empty, this group is
in fact free. In the remaining case it is a Demuškin group. Furthermore,
the abelianization of GK∞,S(l) is a free abelian pro-l group and has a ge-
ometric description as a Zl[[Gal(K∞/K)]]-module in terms of generalized
Jacobians.

Let K now be a number field. The expected analogy between func-
tion fields and number fields led Iwasawa to study abelian pro-l extensions
of K∞ for number fields K. This greatly enlarged our knowledge about
number fields and led to many deep insights into the structure of such ex-
tensions. Based on this analogy one conjectures that the µ-invariant of all
number fields is zero. So let us assume this. Suppose also that S contains
all places above l, in which case it is well-known that GK∞,S(l) is a free
pro-l group. Because of the vanishing of µ, the group GK∞,S(l) is finitely
generated if and only if K is totally real.

Taking the analogy used by Iwasawa a bit further into a non-commutative
setting, one might expect that for free finitely generated GK∞,S(l) the
extension GK,S(l) has a similar structure independently of whether K is
a function or a number field. For example, one might expect similarities
when considering l-adic or κ[[T ]]-adic representations. This suggests that
if Conjecture 2.1 holds, then so does Conjecture 2.3.

A finiteness conjecture for Galois extensions of CM fields. We
first give a further reformulation of Conjecture 1.4.

Lemma 2.4 Conjecture 1.4 is equivalent to the following conjecture.

Conjecture 2.5 If K is a totally real number field, ρ is unramified
outside Sl and ρ(GK) is a pro-l group, then ρ(GK∞) is finite.

Before proving Lemma 2.4, we need the following auxiliary result.
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Lemma 2.6 Fix 1 6= m ∈ 1 + lZl and let G be the semi-direct product

Zl n Zl := 〈s, t|sts−1 = tm〉(l).

Let H be the closed subgroup generated of G by t and ρ : G→ GLn(κ((T )))
a continuous representation of G. Then ρ(H) is finite.

Proof. We write M , N for the images of s, t under ρ, respectively.
Let us denote the eigenvalues of N by λ1, . . . , λn. Because G is com-
pact the λi lie in κ[[T ]], and because it is pro-l and κ is of characteristic
l, the λi lie in 1 + Tκ[[T ]]. The relation MNM−1 = Nm implies that

N and Nm have the same eigenvalues. Thus one has λm
n!−1

i = 1 for
each i. As mn! − 1 is in lZl − {0}, an explicit computation shows that
λi = 1 for all i. Therefore N − I is nilpotent. Because κ((T )) is of
positive characteristic, N must have finite order, whence ρ(H) is finite.

Proof of Lemma 2.4. We show that Conjecture 2.3 is equivalent to
Conjecture 2.5, which suffices due to Lemma 2.2. One direction is obvi-
ous, and so we assume Conjecture 2.5. Suppose we are given ρ : GK →
GLn(κ[[T ]]) such that ρ is unramified outside a finite set S, K is totally
real and ρ(GK) is a pro-l group. We claim that there exists a finite exten-
sion L of K inside the splitting field of ρ such that the restriction of ρ to
GL is unramified outside Sl. If we then apply Conjecture 2.5 to ρ|GL , we
find that ρ(GL∞) is finite, which readily implies that ρ(GK∞) is finite, as
asserted.

To prove the claim, we follow the proof of [12], Lem 2.12, which in turn
is based on a result of Grothendieck. Let ν be a place of S which is not
above l, let Dν be a decomposition group in GK above ν and let qν be
the cardinality of the residue field of K at ν. It is well-known that Dν is
isomorphic to the semi-direct product

Zl o Zl = 〈sν , tν |sνtνs−1
ν = tqνν 〉,

where tν is a generator of the inertia subgroup Iν of Dν . By Lemma 2.6,
Iν has finite image under ρ̄.

Thus for each place ν of S−Sl, we can find a positive integer nν such that
the tnνν have trivial image under ρ. As the group ρ(GK) is profinite, there
exists a finite Galois extension L of K inside the splitting field of ρ such
for each ν ∈ S − Sl there exists a place of L above ν whose inertia group
is inside Inνν . Because L is Galois over K, this implies that ρ restricted to
L is unramified outside Sl, and the claim is shown.

Now let E be a CM field with totally real subfield K. Assume that all
places of K above l are split in E/K. For a place l of K above l, denote by
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Kl(l) the maximal pro-l extension of the completion of K at l. Following
[19], we let Ẽ be the union of all finite l-extension E′ of E which satisfy

(a) E′/E is Galois

(b) For all L′|L|l|l, where L′ is a place of E′, L of E and l of K, one has
E′L ⊂ Kl(l)EL for the completions at L′, L and l, resp.

Following [19], we call Ẽ the maximal outside l unramified extension of E
which is positively ramified at all places above l. In [20], the term positively
decomposed is used instead of positively ramified.

The motivation for such a definition is the search for a pro-l Galois
extension for number fields whose Galois group resembles that of the pro-l
completion of the Galois group of a compact Riemann surface. It relies
on fundamental work of Wingberg, [20]. The following is shown in [19],
Thm. 1, Cor. 2, Thm. 6 and Cor. 7:

Theorem 2.7 Let E, Ẽ be as above and assume that the µ-invariant of
E is zero. Consider

1 −→ H := Gal(Ẽ/E∞) −→ G := Gal(Ẽ/E) −→ Gal(E∞/E) ∼= Zl −→ 1.

(a) If ζl /∈ E, then H is a free pro-l group of finite rank. Furthermore G
is either isomorphic to Zl, or a duality group of dimension 2.

(b) If ζl ∈ E, then H is trivial or a Demuškin group of finite rank such
that Hab is torsion free. Furthermore, either G ∼= Zl or G is a Poincaré
group of dimension 3.

Case (a) describes an analogue of the fundamental group of the projective
line over a finite field with a finite number of points removed or of the
fundamental group of a curve of genus greater than zero, with at least one
point removed. Case (b) is the analogue of the fundamental group of a
smooth projective curve over a finite field of genus at least one. As at the
end of the previous subsection, if this is truly a good analogy, then one
should expect that the κ[[T ]]-analytic linear representations of Gal(Ẽ/E)
display the same general properties as those of the arithmetic fundamen-
tal group of a curve over a finite field. Thus we are led to the following
conjecture:

Conjecture 2.8 Let E be a CM field with totally real subfield K and
assume that all places in K above l split in E/K. Then for any con-
tinuous Galois representation ρ : Gal(Ẽ/E) → GLn(κ[[T ]]), the group
ρ(Gal(Ē/E∞)) is finite.

Proposition 2.9 Let E, K be as above and assume that the µ-invariant
of E is zero. Then Conjecture 2.8 for E implies Conjecture 2.5 for K.
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Proof. Let ρ : GK,Sl → GLn(κ[[T ]]) be a continuous even represen-

tation whose image is a pro-l group. The definition of Ẽ implies that
KSl is a subfield of Ẽ. Thus the restriction of ρ to GE factors through
Gal(Ẽ/E) and by Conjecture 2.8 it follows that ρ(GE∞) is finite. The

assertion is now obvious as ρ(GE∞) ⊂ ρ(GK∞) is of index at most two.

Relations to conjectures by Fontaine-Mazur and Boston. Let us
first recall one of the conjectures of Fontaine and Mazur, [8], in a suitable
form.

Conjecture 2.10 (Fontaine-Mazur) Let K be a number field. Then
any finite-dimensional, finitely ramified l-adic representation of GK which
is unramified above Sl has finite image.

Let us compare Conjecture 2.5 with Conjecture 2.10. The former is an
assertion on κ[[T ]]-adic representations, the latter on l-adic ones. The
former allows ramification only at places of Sl, the latter only away from Sl.
So the conjectures as stated are not directly related. However by working
out some explicit cases, [4], Boston was led to the following strengthening
of Conjecture 2.10:

Conjecture 2.11 (Boston) Let R be a complete noetherian local ring
with finite residue field of characteristic l and S a finite set of places disjoint
from Sl. Then every continuous homomorphism GK,S → GLn(R) has finite
image.

In fact it is easy to see that Boston’s conjecture is equivalent to the follow-
ing:

Conjecture 2.12 Let S be disjoint from Sl, K be any number field,
and κ be any finite extension of Fl. Let ρ′ be either an l-adic representation
or a κ[[T ]]-adic representation, and assume that ρ′ is ramified only at S.
Then ρ′ has finite image.

The first assertion is precisely the above conjecture of Fontaine and Mazur.
The second, at least in the case of totally real K, is a consequence of our
conjectures:

Proposition 2.13 Let K be totally real. Then Conjecture 1.4 implies
Conjecture 2.11 for R = κ[[T ]].

We first prove a lemma.
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Lemma 2.14 Let G be a profinite group which is given as an extension

1 −→ H −→ G
π−→ Ḡ −→ 1,

where Ḡ is procyclic and H is finite. Then there exists a normal subgroup
N of G of finite index which contains H and such that N ∼= H × G0 for
some subgroup G0 of G.

Proof. To prove the lemma, let γ̄ be a generator of Ḡ and γ a preim-
age in G. Conjugation by γ induces an automorphism γ̃ of the finite group
H. Thus γ̃ has finite order, say n. Choosing G0 as the closed subgroup of G

generated by γn, the assertion follows easily.

Proof of Proposition 2.13. Let ρ : GK,S → GLn(Fq[[T ]]) be a continuous
Galois representation where S is a finite set of places disjoint from Sl.
Conjecture 1.4 states that ρ(GK∞) is finite. We need to show that ρ(GK)
is finite. Since the splitting field L of ρ̄ is finite over K, we may assume
that L = K. Furthermore by passing to a finite extension of K inside K∞,
we may assume that every subextension of K∞/K is ramified at a place
above l. Let L′ be the splitting field of ρ|GK∞ .

We apply the above lemma and Galois theory to

1 −→ Gal(L′/K∞) −→ Gal(L′/K) −→ Gal(K∞/K) −→ 1.

Thus there exist finite extensions K0 ⊂ K ′ ⊂ L′ of K such that K0 ⊂ K∞,

Gal(L′/K0) ∼= Gal(L′/K∞)×Gal(L′/K ′) and Gal(L′/K ′) ∼= Gal(K∞/K0).

But now, Gal(K∞/K0) is totally ramified above l. Hence by our assump-
tion on ρ, the image of Gal(L′/K ′) under ρ is trivial. In other words, the
restriction of ρ to GK′ is trivial. As K ′/K is finite, the proposition follows.

The following is left as a simple exercise:

Proposition 2.15 Let K be totally real and ρ a representation which
is unramified outside Sl and finitely ramified at any place above l. Then
Conjecture 2.11 implies Conjecture 1.4 for ρ.

Group-theoretical reformulations. For K a number field and S dis-
joint from Sl, the structure of GK,S(l) remains rather mysterious. For S
sufficiently large it is always infinite. But if Conjecture 2.11 is valid, this
cannot be detected by looking at linear representations. In recent work, cf.
[5], Boston conjectures that such groups can have infinite representations
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on the pro-l completion of the automorphism group of a rooted tree. Yet,
no examples seem to be known.

For K a number field and S ⊃ Sl, one has the short exact sequence (1).
While this still does not give a complete description of GK,S , at least it
shows that it is an extension of Gal(K∞/K) ∼= Zl by the free, possibly
infinitely generated pro-l group GK∞,S(l). Say we impose the further con-
dition that K is totally real and assume that the µ-invariant is zero. Then
GK∞,S(l) is finitely generated. In this situation, our conjecture predicts
that GK,S(l) admits non-solvable infinite l-adic representations, cf. Theo-
rem 1.8, but no non-solvable infinite κ[[T ]]-adic representations. This leads
naturally to the following purely group-theoretical question:

Question 2.16 Let G be a pro-l group which is the extension of Zl by a
free finitely generated pro-l group F . Give group-theoretical conditions on
G such that for any representation % : G→ GLn(κ((T ))) the group %(F ) is
finite.

Via a non-canonical lift of a generator of Zl, we may regard G as the semi-
direct product of F with Zl. If γ denotes a topological generator of Zl,
then it may be regarded as a continuous automorphism of F . So one may
reformulate the above question as follows:

Question 2.17 Can one classify those continuous automorphisms of F
which generate a group isomorphic to Zl and have the property that the
resulting semi-direct product G := F o Zl satisfies #%(F ) < ∞ for any
% : G→ GLn(κ((T )))?

As explained on page 6, the expected situation in the case of function
fields is very similar. Unless K is of strictly positive genus and no ramifica-
tion is allowed, one is led to precisely the same group-theoretical questions
as above. In the remaining case, one is led to:

Question 2.18 Can one classify those continuous automorphisms of a
given Demuškin group D which generate a group isomorphic to Zl and have
the property that the resulting semi-direct product G := D o Zl satisfies
#%(D) <∞ for any % : G→ GLn(κ((T )))?

3. CONSEQUENCES OF THE STATED CONJECTURES

Infinite, everywhere unramified l-adic extensions of function
fields with finite constant fields.
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Proof of Corollary 1.7. As we assume that p > 3, there exist infinitely
many primes l such that p does not divide l3 − l. We carry out the con-
struction for any such l which also satisfies l > 5.

By the pro-p′ completion of a profinite group G, we mean the filtered
inverse limit lim←−G/H over all (closed) normal subgroups H such that G/H
has order prime to p. It is well-known that the pro-p′ completion of the geo-
metric fundamental group of the smooth proper model of KF̄p is isomorphic
to the pro-p′ completion G′ of the discrete group with the presentation

〈a1, b1, . . . , ag, bg|a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g 〉,

where g is the genus of K. As we assumed that g ≥ 2, G′ has a quotient
which is isomorphic to the free pro-p′ group F ′2 on two generators.

Our assumption p 6 | l3 − l implies that SL2(Fl) occurs as a quotient Ḡ′

of F ′2. Let L′ be the corresponding extension of KF̄p with Galois group
SL2(Fl). Consider the short exact sequence

1 −→ Gal(L′/KF̄p) −→ Gal(L′/K) −→ Gal(KF̄p/K) ∼= Ẑ −→ 1.

By Lemma 2.14 and Galois theory, there exist finite extensions E ⊂ E′ of K
inside L′ with E ⊂ KF̄p such that Gal(L′/E) = Gal(E′/E)×Gal(KF̄p/E).
It follows that there is a continuous unramified surjective morphism τ̄ :
GE → SL2(Fl) such that τ̄(GEF̄p) ∼= SL2(Fl) is absolutely irreducible.

By Theorem 1.5 the universal deformation ring R′ for unramified defor-
mations of τ̄ with trivial determinant is finite flat over Zl. Therefore, the
ring R′[1/l] is a finite Ql vector space whose dimension equals the rank
of R′ over Zl. So if O denotes the quotient of R′ by some minimal prime
ideal, it is an integral domain whose fraction field is a finite extension of
Ql. By the universality of R′, we obtain a lift ρ′ : GE → SL2(O) of τ̄ .

We first show that the image of ρ′ must be infinite. If this was not
the case, then choose any inclusion of O into the complex numbers C
and consider the resulting representation ρ′′ into PGL2(C). As the map
GL2(C) → PGL2(C) has abelian kernel and as the image of ρ′ has a quo-
tient isomorphic to SL2(Fl), the image of ρ′′ must surject onto PSL2(Fl).
But this is absurd, as this group does not occur as a quotient of any of the
possible finite subgroups contained in PGL2(C), cf. [7], Sections 255, 260.

It remains to prove the assertion that ρ′(GE) = ρ′(GE∞) = ρ′(GEF̄p).
We use arguments similar to those of [3]. Let D be the subgroup of SL2(Fl)
generated by the matrices(

0 1
−1 0

)
and

(
x 0
0 x−1

)
x ∈ F∗l .

Let E′ be the finite extension of E corresponding to the subgroup D of
Ḡ′ ∼= SL2(Fl) and, as usual, let L be the splitting field of τ̄ . We claim that
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ρ′(GE′) = ρ′(GE′∞). This will finish the proof, since (a), it implies that
ρ′(GL) = ρ′(GL∞) = ρ′(GLF̄p), because ρ(GL) is a pro-l group, and (b),
we have by construction that τ̄(GE) = τ̄(GEF̄p).

To prove the claim, let L∅(l) denote the maximal unramified pro-l ex-
tension of L. This extension is clearly Galois over E′. We observe that
D is of order prime to l. Therefore by a profinite version of the Lemma
of Schur-Zassenhaus, the quotient D of Gal(L∅(l)/E

′) can be realized as a
subgroup, so that

Gal(L∅(l)/E
′) ∼= GL,∅(l) oD.

Let γ′ denote an element of GL,∅(l) whose image in Gal(L∞/L) ∼= Zl is a
generator. By the arguments given in [3], §2, we may choose a γ′ on which
D acts trivially. Thereby we may further identify

Gal(L∅(l)/E
′) ∼= GL∞,∅(l) o (Gal(E′∞/E

′)×D).

Since the kernel of GL2(O) → GL2(Fl) is a pro-l group, ρ′ restricted to
GE′ must factor through Gal(L∅(l)/E

′). Also ρ′ yields a two-dimensional
irreducible representation of D. Because D acts trivially on γ′, the image
of ρ′(D) must commute with ρ′(γ′). By irreducibility, ρ′(γ) is in the center

of SL2(O), i.e. in the subgroup
{
±
(

1 0
0 1

)}
. Hence ρ′(γ) is trivial, as l 6= 2,

and we have shown ρ′(GE′) = ρ′(GE′∞).

On universal deformation rings of even Galois representations.
For the remainder of this section, we assume that K is a totally real number
field. Let us fix an even residual representation τ̄ : GK,S → GLn(κ) and
some lift η : GK → W (κ)∗ of det(τ̄). By RηK,S we denote the universal
deformation ring in the sense of Mazur, [14], of deformations of τ̄ that are
unramified outside S and whose determinant is η.

Theorem 3.1 Suppose that τ̄ is absolutely irreducible when restricted to
GK∞ . Then Conjecture 1.4 for K implies that RηK,S is a complete inter-
section, finite flat over W (κ).

Conversely, let lv denote the maximal l-power dividing n and K̃ the
unique subextension of K∞ of order lv over K. If R̄η

K̃,S
:= Rη

K̃,S
/(l) is

finite and if the Leopoldt conjecture holds for K, then Conjecture 1.4 holds
for all τ : GK,S → GLn(κ[[T ]]) whose reduction modulo T is τ̄ .

A similar formulation in the case n = 2 was given in [1], Theorem 4.14.
Note that the above theorem implies Theorem 1.8!

Proof. (This is a variation of 3.14 in [12].) By Theorem 2.4 of [2] the
ring RηK,S is a quotient of a power series ring W (κ)[[x1, . . . , xm]] modulo
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at most r ≤ m equations f1, . . . , fr. Our assertion follows if we show
that RηK,S/(l) is finite, because then the height of the ideal (f1, . . . , fr, l) is
m+ 1 ≤ r + 1, and hence m = r and f1, . . . , fr, l is a regular sequence.

So we assume that dim R̄ηK,S > 0. The ring R̄ηK,S parameterizes mod l

deformations of τ̄ with determinant det(τ̄). Let A be any quotient of R̄ηK,S
by a prime of coheight one, and let τ̄A be the corresponding representation.
If A′ denotes the normalization of A, then A′ ∼= κ′[[T ]] for some finite
extension κ′ of κ.

We apply Conjecture 1.4 to τ̄A as a representation into GLn(κ′[[T ]]).
Therefore τ̄A(GK∞) is finite. By Lemma 2.14, there exists a finite extension
E of K inside K∞ and a finite extension E′ of E inside the splitting field
of τA, such that τ̄A(GE) = τ̄A(GK∞)× τ̄A(GE′).

Because τ̄A(GK∞) is absolutely irreducible, the group τ̄A(GE′) maps to
the center of GLn(A). But the determinant map GLn(κ′[[T ]]) → κ′[[T ]]∗

has finite kernel when restricted to the center. Because det τ̄A = det τ̄ it
follows that τ̄A(GE′) is finite, and hence so is τ̄A(GK).

By [12], Lem. 3.15, the representation τ̄A, viewed as a representation into
GLn(κ′[[T ]]), must factor via GLn(κ′). Thus we may factor R̄ηK,S → A→
κ′[[T ]] as the composite R̄ηK,S → κ′ → κ′[[T ]]. Let m̄ be the maximal ideal

of R̄ηK,S . It must map to the maximal ideal of κ′, hence to zero. But this

implies that m̄ is also in the kernel of the surjection R̄ηK,S → A, whence
A ∼= κ, a contradiction.

We now turn to the second assertion, and so we assume that R̄η
K̃,S

is

finite. We denote by τ : GK,S → GLn(κ[[T ]]) any lift of τ̄ and let η′ be its

determinant. Then the character ψ := η′
−1

det τ̄ of GK,S takes its image
in (1 +Tκ[[T ]], ·). We would like to twist τ by the n-th root of ψ. But this
may not exist. So we proceed as follows.

First we note that (1 + Tκ[[T ]], ·) is a torsion free pro-l group. As we
assume the Leopoldt conjecture for K, class field theory shows that ψ
must factor via Gal(K∞/K) ∼= Zl. Let γ be a topological generator of
Gal(K∞/K) and let w be the unique n/lv-th root of ψ(γ) in 1 + Tκ[[T ]].
The following character of GK̃ provides us with an ‘n-th root of ψ|GK̃ ’:

ψ′ : GK̃ → Gal(K∞/K
′)→ (1 + Tκ[[T ]], ·) : γl

v

→ w.

Therefore τ ′ := τ|GK̃ ⊗ ψ
′ is a deformation of τ̄|GK̃ . Hence it arises from

the universal such deformation via a local ring homomorphism R̄η
K̃,S
→

κ[[T ]]. This shows that τ ′(GK̃) and hence also τ ′(GK̃∞) = τ ′(GK∞) are

finite. As clearly ψ′(GK∞) is trivial, it follows that τ(GK∞) is finite.
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4. EVIDENCE FOR CONJECTURE 1.4

Throughout this section let K be a totally real number field.

Results which support the implications of Conjecture 1.4. In
Theorem 3.1, we showed, under suitable hypothesis, that Conjecture 1.4 is
equivalent to the finite flatness of RηK,S over W (κ). In fact all the rings

RηK,S which are explicitly known and arise from residual representations τ̄
as in Theorem 3.1 are finite flat over W (κ). However there are very few
examples for which the corresponding deformation ring is obstructed and
different from W (κ).

The only such examples are based on [15] and [16], and shown to be finite
flat over W (κ) in Corollary 7.9 of [2]. There is numerical and theoretical
evidence that there is an abundance of such examples, cf. the probabilistic
results in [17].

As stated in Theorem 1.10, in the case n = 2 and K = Q there is ample
evidence that the conclusion of Corollary 1.9 holds in general. Based on
the methods that led to Theorem 1.10, it is observed in [13] that for given
τ̄ and S sufficiently large, any RηQ,S contains a component which is finite
flat over W (κ). Both can be viewed as further evidence for Conjecture 1.4.

Reducible representations. Let us first look at the simplest case of a
representation ρ.

Proposition 4.1 Suppose K is totally real. For one-dimensional repre-
sentations, Conjecture 1.4 for K is equivalent to Leopoldt’s conjecture for
K.

Proof. For one-dimensional representations the conjecture is a conjec-
ture on abelian extensions of number fields. If Leopoldt’s conjecture holds,
then the maximal abelian quotient of GK,S is a finite extension of Zl ∼=
Gal(K∞/K). The conjecture is immediate. If Leopoldt’s conjecture is
wrong, then GK,S has a quotient isomorphic to Zl × Gal(K∞/K). Ob-
viously this implies the existence of representations that violate Conjec-

ture 1.4.

By ρ̃ we will always mean a Galois representation GK → GLn(κ((T ))).
Given ρ as in the introduction, one can canonically attach a ρ̃ as the com-
posite

GK
ρ−→ GLn(κ[[T ]]) −→ GLn(κ((T ))).

Conversely if one is given ρ̃, by compactness of GK one can choose a suit-
able basis of κ((T ))n such that the image of ρ̃ lies in GLn(κ[[T ]]). Hence
Conjecture 1.4 is equivalent to:
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Conjecture 4.2 Suppose ρ̃ : GK → GLn(κ((T ))) is even and ramified
only at finitely many places. Then ρ̃(GK∞) is finite.

The reason for introducing ρ̃ is that over fields it is simpler to talk about
reducibility of representations.

Proposition 4.3 Suppose that the µ-invariant of all totally real number
fields is zero. If ρ̃ is even, continuous and reducible, and if Conjecture 4.2
holds for all irreducible subquotients of ρ̃, then the conjecture holds for ρ̃.

Proof. By passing to a finite totally real extension E of K, we may as-
sume that all irreducible subquotients have the property that when the
representation is restricted to Gal(ES/E∞), it is trivial. It follows that
Gal(ES/E∞) maps to a unipotent subgroup of GLn(κ((T ))). Any unipo-
tent subgroup of GLn(κ((T ))) is of nilpotency degree at most l[logl n]+1.
Thus ρ(Gal(ES/E∞)) is of finite nilpotency degree. Moreover it is topo-
logically finitely generated, because we assumed that the µ-invariant of L
is zero. Hence ρ(Gal(ES/E∞)) is finite, and the same must therefore hold

for ρ(GK∞).

Corollary 4.4 If ρ̃ : GQ,S → GLn(κ((T ))) is completely reducible with
one-dimensional composition factors, then Conjecture 1.4 holds uncondi-
tionally.

Proof. Clearly Leopoldt’s conjecture holds for Q, and so by Proposition 4.1
there exists a finite abelian extension L of Q, such that the image of GL un-
der ρ is a unipotent pro-l group. Because L is abelian, it is known that its µ-
invariant is zero. The result follows from the argument given in the previous

proof.

Galois groups of simple structure with restricted ramification.
The other evidence we have for our conjectures comes about by considering
pairs K,S such that GK,S(l) has a particularly simple structure and by
investigating Conjecture 2.3. For every pair of a totally real number field
K and a finite set of places S, we denote by CK,S the following assertion:

CK,S Any κ[[T ]]-linear representation ρ of GK,S satisfies #ρ(GK∞) <∞.

Clearly Conjecture 2.3 is equivalent to the assertion CK,S for all pairs
(K,S).

The simplest structure of GK,S(l) to occur is that it is isomorphic to
Zl. Here Conjecture 2.3 trivially holds. The case we treat in the following
proposition might be considered as the simplest non-trivial case.

Proposition 4.5 If GK,S(l) is a non-abelian Demuškin group of rank
2, then Conjecture 2.3 holds for the pair (K,S).
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Proof. Our assumption means that there is an isomorphism

GK,S(l) ∼= Zl n Zl ∼= 〈s, t|sts−1 = tm〉

for some 1 6= m ∈ 1+lZl. Furthermore, if H denotes the closed subgroup of
GK,S generated by t, then the fixed field of H must be K∞. As we assume
that the images of the representations we consider are pro-l groups, they
factor via GK,S(l). Lemma 2.6 completes the proof.

Remark 4.6 If one assumes Leopoldt’s conjecture for K and if GK,S(l)
is a Demuškin group, then it it cannot be abelian.

In [21] explicit conditions in terms of invariants attached to K and S are
given (for l 6= 2) such that GK,S(l) is a Demuškin group of rank 2. We
quote the following examples: (a) l = 3, K = Q, S = {3, 7,∞}, (b) l = 3,
K = Q(

√
6), S = {3,∞}, (c) l = 37, K = Q(ζ37 + ζ−1

37 ), S = {3,∞}.
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