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Abstract. We determine the universal deformation ring, in the sense of Mazur, of a residual
representation �r : GK ! GL2�k�, where k is a ¢nite ¢eld of characteristic p and K is a local ¢eld
of residue characteristic p. As one might hope for, but is not proven in the global case, the
deformation ring is a complete intersection, £at over W �k�, with the exact number of equations
given by the dimension of H2�GK ; ad�r�.
We then go on to determine the ordinary locus inside the deformation space and, using ideas of

Mazur, apply this to compare the universal and the universal ordinary deformation spaces. Pro-
vided that the universal ring for ordinary deformations with ¢xed determinant is ¢nite £at over
W �k�, as was shown in many cases by Diamond, Fujiwara, Taylor^Wiles and Wiles, we show
that the corresponding universal deformation ring ^ with no restriction of ordinariness or ¢xed
determinant ^ is a complete intersection, ¢nite £at over W �k� of the dimension conjectured
by Mazur, provided that the restriction of det� �r� to the inertia subgroup is different from the
inverse cyclotomic character.
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1. Introduction

If one is given a representation �r : GK ! GL2�k�, where K is a global ¢eld, k a ¢nite
¢eld of characteristic p > 2, and GK the absolute Galois group of K, and one tries
to investigate deformations of this representation unrami¢ed outside a ¢nite set
of places, as in [Maz1], one ¢nds that under some natural hypothesis, which are
that the centraliser of Im� �r� is precisely the set of homotheties, there is a universal
deformation, and that the universal ring is a power series ring over W �k�, the ring
of Witt vectors over k, modulo some relations that often come from the obstructions
of the associated local deformation problems �rp : GKp

! GL2�k�, where p is a ¢nite
place of K . For this reason, we shall study here the local case rather thoroughly
keeping possible applications to the global case in mind, e.g. Corollary 9.1.
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In [Bos2] the problem of ¢nding the universal deformation for �rp ^ or a smooth
cover of it whose precise de¢nition we shall give in Section 2 ^ was implicitly solved
in the case where the image of �rp in PGL2�k� contains elements of order prime
to p and where the characteristic of the residue ¢eld of Kp was different from p.
The group theoretic problem involved was to consider a pro-p group with two gen-
erators and one relation. Furthermore, in [Bos1, ½8] a special example was treated
where the residue characteristic was equal to 3 and the pro-3 group involved
was a Demu�skin group on four generators. Yet the general problem was not pursued
any further.

Here we will reconsider the problem of ¢nding the universal deformation, or a
smooth cover of it, in the local case where the relevant pro-p group is an arbitrary
Demu�skin group. We will mainly focus on the case that the image of �rp in
PGL2�k� contains an element of order prime to p, and only brie£y discuss in the
end the other case where our results are less explicit. The Demu�skin group in ques-
tion is the Galois group of the maximal pro-p Galois extension of FP where F cor-
responds to the inverse image under �r of the p-Sylow subgroup of Im� �r�, and
where P is a prime in F above p. Further, we assume that H2�GKp

; ad�r� 6� 0 where
ad�r is the adjoint representation of GL2�k� on M2�k� composed with �r, as otherwise
there are no local obstructions, and hence the universal deformation ring is simply
a power series ring over W �k�. We shall solve the problem of ¢nding the universal
deformation ring and determining the images of generators under the universal
deformation modulo triple commutators completely, see Theorems 2.6 and 6.2.
In all cases, the universal ring will be a complete intersection, £at over W �k�,
and of the dimension that one might expect from the estimate given in Proposition
2 of [Maz1].

Next we shall calculate the ordinary locus of the deformation space we consider,
see Corollary 7.4. This we apply to generalise [Maz2] to deformations over arbitrary
global ¢elds, not justQ, and to more general residual representations, and, following
an idea of [Maz3], we shall describe the consequences for the global universal
deformation ring in light of recent results by Diamond, Fujiwara, Hida, Taylor
and Wiles, as described in the abstract, see Corollary 9.8.

The organisation of the paper is as follows. In Section 2 we will de¢ne the universal
deformation problem that we will study here. In the cases we consider, the image of �r
will be solvable, and so we will, following [Bos1, ½6, ½9], rewrite the problem in terms
of G-equivariant homomorphisms from a pro-p Demu�skin group to GL2�R�
satisfying some additional constraints, where R is a complete Noetherian local ring
with residue ¢eld k. Then we will state a preliminary description of the universal
deformation space, and give an outline of the steps necessary to obtain it.

In the next section we shall classify Demu�skin groups with groupsG of order prime
to p acting on them and also morphisms from such groups into general pro-p groups.
For the latter it is important to observe that, in a sense, it suf¢ces to consider the
relations modulo the third step of the lower q-central series, Proposition 3.8.
For a similar result see [Win, Satz 2]. We will also address the natural question
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if there is some kind of nice Demu�skin relation for a nice set of generators compatible
with the group action. For many cases we shall show that one cannot expect the usual
relation. ForG � C2 however, we shall ¢nd a simple nice relation in terms of suitable
generators.

Section 4 contains the relevant facts we need about the Hilbert pairing for local
Galois groups, some general facts about symplectic spaces, of which the Hilbert
pairing is a special example, and the explicit calculations of those pairings needed
later on. In Section 5, we shall study closed pro-p subgroups H of GL2�R�, R com-
plete, Noetherian, local with residue ¢eld k. Mainly we shall need some information
about the ¢rst and second subquotient of the lower central series of H, in order
to describe the Demu�skin relation modulo the third step of the lower central series.
Explicit calculations of Pink and an idea of Lazard, that the category of p-nilpotent
p-groups is equivalent to that of p-nilpotent p-Lie algebras, facilitate the comput-
ations greatly. The subsequent section contains the precise description of the uni-
versal deformation spaces that we want to compute, and its proof.

In Section 7 we shall apply this description to ¢nd explicit equations describing the
ordinary locus. The following section describes brie£y the calculations and results in
the case that the image of �r in PGL2�k� is a p-group.

In the last section we shall give some applications to global deformation problems.
First we shall simplify and generalise an example given in [Bos1, ½8]. Then ^ and this
will occupy the major part of the last section ^ we shall use results by Diamond [Dia],
Fujiwara [Fuji], Hida [Hida], Taylor and Wiles [TaWi] and Wiles [Wil], and an idea
of Mazur, to tie together the global universal deformation space Runiv and the global
universal ordinary deformation space with ¢xed determinant, Rord;det�Z, for
representations �r : GM;S ! GL2�k�, M a totally real ¢eld, associated to an ordinary
Hilbert modular form, S a ¢nite set of places of M, containing all places above
p and 1. In all cases where they succeed in establishing an isomorphism between
Rord;det�Z and a universal Hecke algebra Tord;det�Z, it will follow that the universal
ring is a complete intersection, £at over W �k�, of relative dimension
2�M : Q� � 1� DM over W �k�, DM the defect to the Leopoldt conjecture at p for
M, provided that the restriction of det� �r� to the inertia subgroup of GK is not
the inverse cyclotomic character. For a slightly more general result, see Corollary
9.8. This is all con¢rming the conjectures of Mazur in [Maz1] regarding properties
of the universal deformation space. Our results are consistent with the philosophy
in [FoMa] that the intersection of the universal deformation ring and appropriate
quotients of the local versal deformation rings at p should meet transversally.

Regarding our computations of deformations of local Galois representations, we
should remark that if one could either carry out Lazard's correspondence explicitly
with a good description of the resulting Lie algebra, or alternatively, if one could
extend Pink's description, it might be possible to use the methods described here
for representations into GLn. An alternative approach might be to use Fontaine's
�F;G�-modules, which describe arbitrary local Galois representations, in order to
calculate the universal one. It might also be interesting to redo all of our calculations
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in terms of �F;G�-modules, hoping that one can extend this analysis to crystalline or
other types of deformations over rather general local ¢elds.

We would like to thank N. Boston for some interesting discussions and for
pointing out the calculations in [Pink] and Professor K. Wingberg for some helpful
comments on presentations of Demu�skin groups. Finally the referees deserve a
lot of credit for many corrections and useful suggestions to improve the
presentation.

2. De¢nition of the Deformation Problem

We start by recalling some notions concerning deformations of Galois
representations. Let k be a ¢nite ¢eld of characteristic p > 2, let K be any ¢eld,
and �K its separable closure. Let �r : Gal� �K=K� � GK ! GL2�k� be a Galois
representation, H the image of �r inside GL2�k� and L the Galois extension of K
corresponding to H. The ¢eld L is called the splitting ¢eld of �r. By GL�p� we denote
the maximal pro-p quotient of GL, by L�p� the corresponding pro-p extension of
L. As Gal� �K=L� is characteristic, L�p� is Galois overK . By G �r�p�we denote its Galois
group over K , and so we have 1! GL�p� ! G �r�p� ! H ! 1:

Let C be the category of complete Noetherian local rings �R;m�with residue ¢eld k
and local ring homomorphisms which induce the identity on residue ¢elds. If R is an
object of C, then it is a quotient ofW �k���T1; . . . ;Tr�� for some r. For R in C we de¢ne
G2�R� :� ker�GL2�R� ! GL2�k�� and ~G2�R� � GL2�R� as the subgroup generated by

G2�R� and the elements 1 r
0 1

� �
for all r 2 R.

Two lifts r; r0 : GK ! GL2�R� of �r are called strictly equivalent if there is an
M 2 G2�R� such that r �Mr0Mÿ1. A strict equivalence class of lifts of �r to R is
called a deformation. Let P be a topologically ¢nitely generated quotient of GK

through which �r factors. We de¢ne the functor DefP : C ÿ ÿ ! Sets by

DefP�R� � fdeformations of �r to R that factor through Pg:
THEOREM 2.1 ([Maz1]). If the centraliser of Im� �r� is precisely the set of homothe-
ties, then DefP is representable.

If Im� �r� is solvable, one can carry out the following construction to replace Def in
all relevant cases by a simpler functor. This is in particular satis¢ed, if K is a local
¢eld over Qp, or any Ql , and where P � G �r�p�. If H contains elements of order
p, we can and will assume that H lies inside the set of upper triangular matrices.
U will denote the set of unipotent elements ofH. By the lemma of Schur-Zassenhaus,
as U is a normal p-Sylow subgroup of H, we can pick a subgroup G of H of order
prime to p, such that U G � H.

We let F be the ¢xed ¢eld of U in L, and GF �p� the maximal pro-p quotient of GF .
As above we have a sequence 1! GF �p� ! G �r�p� ! G! 1 and also
1! GL�p� ! GF �p� ! U ! 1: Finally we ¢x a lift of G to GL2�W �k�� and one

�
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to G �r�p�. They exist by the pro¢nite version of Schur-Zassenhaus as GF �p� and
~G2�W �k�� are pro-p groups. Via this lift, G can be viewed inside any matrix group
GL2�R�, R 2 C and thus acts via conjugation canonically on the latter.

We let fgi : i 2 Ig denote a ¢nite subset of GF �p� such that the elements

�r�gi� � 1 ui
0 1

� �
generate U as an H-module, where H acts by conjugation. We

assume the ui to be nonzero, so that I is empty if U is trivial. If I is non-empty, then
we shall assume that I � f1; . . . ; jI jg. Furthermore, if I is non-empty, by con-
jugating �r if necessary, we shall assume that that u1 � 1. For each ui we choose
a lift ûi to W �k�, with the only requirement that û1 � 1. We shall also assume that
k is large enough so that any element of Im� �r� of order prime to p can be
diagonalised. This can be done without loss of generality, and it simpli¢es the cal-
culations in the dihedral case.

Henceforth, up to Section 8, we shall assume that the image of H in PGL2�k�
contains a non-trivial element of order prime to p. The following diagram
summarises all relevant ¢elds and Galois groups.

We now de¢ne the functor EP by

EP�R� :�fa 2 HomG�GF �p�; ~G2�R�� : a�g1� has (1,2) entry equal to 1 if I 6� ;;

a�gi� �
1 ui
0 1

� �
�mod m� for all i 2 I ; and a factors through Pg;

where the G action on GF �p� and GL2�R� is described above. In particular if U is
trivial, i.e. G � H, and if P � G �r�p�, then EP�R� � HomH �GL�p�;G2�R��.

Remark 2.2. If the image �G ofG in PGL2�k� is trivial, butU is non-trivial, we de¢ne
EP as above however we require that a�g1� have both, its �1; 1�-entry and its
�1; 2�-entry equal to one. We will use this functor in Section 8 where we brie£y discuss
the case where U is non-trivial, but �G is trivial. There we will ¢nd that this is also a
convenient choice for computing the ordinary quotient of the universal deformation
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ring. If the image of H in PGL2�k� is trivial alltogether, then
EP�R� � Hom�GL�p�;G2�R��.

The following proposition is easily derived from [Bos1, ½6,9].

PROPOSITION 2.3. The obvious morphism EP ! DefP is smooth, i.e. for any
surjection S! R in C, the morphism EP�S� ! EP�R� �DefP�R� DefP�S� is surjective.
It is an isomorphism if the centralizer of the image of H in GL2�k� is the set of scalar
matrices, i.e., if U is non-trivial or if the image of H in PGL2�k� is dihedral (we assume
p > 2). The induced map on tangent spaces tEP ! tDefP is always an isomorphism,
where tEP � EP�k�e�=�e2�� and similarly for DefP. Furthermore EP is always rep-
resentable ^ even if G is trivial, or both U and G are.

Remark 2.4. The functor that one would like to study is the functor DefP. As
already noted in [Maz1], unfortunately this functor is not always representable
(it fails to be so, if the centralizer of the image of �r is strictly larger than the group
of scalar matrices). On the other hand, the functor which represents all lifts of �r
factoring through P, we call it LiftP, is always representable. Usually the induced
map on tangent spaces tLiftP ! tDefP is only a surjection and not an isomorphism.
The functor EP is a rigidi¢ed version of LiftP ^ it imposes some additional con-
straints on the lifts. What the above proposition says is that this rigidi¢cation is
optimal in the sense that EP is still representable, while at the same time, one
has an isomorphism of tangent spaces tEP ! tDefP .

Remark 2.5. If we were to choose different gi and ûi however keeping the condition
û1 � 1, then the various functors EP would all be isomorphic. Thus we can ¢x this
choice conveniently in the proofs to come.

Up to Section 8 we will assume that K is a local ¢eld of characteristic zero and
residue characteristic p, i.e. a ¢nite extension ofQp, and thatP � G �r�p�. To alleviate
the notation, we shall in the following omit the subscript P.

Given �r, by �a we will denote the corresponding element in E�k�, by �aE;RE� the
universal pair representing the functor E, and similarly by �rDef ;RDef � a pair
representing Def , if it is representable. We recall from the introduction, that
ad � ad�r is the representation of GL2�k� on M2�k� given by the conjugation
operation, composed with �r. It can be regarded as a k�G�-module via
G � GL2�k�. We de¢ne hi � dimk Hi�GK ; ad� for any non-negative integer i. We
can now state our ¢rst main result.

THEOREM 2.6. The ring RE is isomorphic to W �k���T1; . . . ;Th1 ��=I where the ideal
I is generated by exactly h2 relations, which are transversal, and described
explicitly in Theorem 6.2. RE is a complete intersection and £at over W �k�. Fur-
thermore the universal homomorphism aE can be described explicitly modulo triple
commutators.
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Remark 2.7. Using Proposition 2.3 this theorem calculates the universal
deformation �rDef ;RDef � in all cases in which Def is representable. Also when
starting with a global deformation problem that is representable, one can always
^ but not necessarily canonically ^ de¢ne a map from the global deformation functor
to the local functor EP where P is any given absolute local Galois group.

Remark 2.8. We are now about to embark on an outline of the proof. This outline
will hopefully serve two purposes. On the one hand, it wants to give the reader an
idea about the structure of the proof and the necessary steps to be carried out.
We apologize that at this point not all the terms are properly de¢ned. They will
be while carrying out the program sketched. On the other hand, we shall at the
end not repeat this sketch, but only ¢ll in the necessary details. So for example before
reading the proof of Theorem 6.2 it is advisable to ¢rst review this outline.

Proof (Outline). From the de¢nition of E it is clear that we need to analyze the
G-equivariant homomorphisms from GF �p� to ~G2�R� that agree with �a modulo m

and satisfy some further condition if U is non-trivial.
If GF �p� is free, it follows by Lemma 3.2 that one can lift the decomposition�Vi of

the Frattini quotient ofGF �p� into irreducible Fp�G�-modules, to a corresponding free
product decomposition of GF �p� with free pro-p factors Pi where the Pi carry a G
action and the Frattini quotient of Pi equals Vi. For each Pi one can choose a single
G-generator xi, i.e. an element of Pi whose G orbit generates Pi topologically. In
particular this means that Fp�G� �xi � Vi. The shape of the action on xi implies a cer-
tain shape for possible images Ai in ~G2�R�. By freeness of the Pi there are no further
constraints on the images, and so every choice of Ai gives a homomorphism and
vice versa. Finally one has to consider possibly some other constraints coming from

E, like x1 mapping to � 1

� �

� �
if U is non-trivial. So we will need to know the

G-module structure of GF �p� which will be recalled in Theorem 4.1, and we will need
some lemmas about good choices of images that will be provided in Lemma 5.3. The
calculation is rather straightforward.

If GF �p� is not free, then it is known to be a Demu�skin group, i.e., a group with a
single relation that is determined by the torsion part Z=�pn� of the abelianisation
of GF �p� and the cohomology pairing H1�GF ;Z=�p�� �H1�GF ;Z=�p�� !
H2�GF ;Z=�p��, or equivalently by giving a so-called Demu�skin relation in the second
part of the lower q-central series of a minimal free hull ofGF �p�. The number q � pn is
the number of p-power roots of unity contained in F . This will be recalled in
Theorem 4.1.

As in the previous case, one can pick G-generators xi that correspond to the pieces
of the decomposition �Vi of the Frattini quotient into irreducible Fp�G�-modules.
One can even ¢nd subgroups Pi inside GF �p� as above, by the remark after Lemma
3.2. Yet we also have a relation. Hence an arbitrary assignment of Ai's as above
will not necessarily de¢ne a homomorphism from the Demu�skin group we consider.
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Hence we need conditions on the choices of the Ai under which the image of the
Demu�skin relation is the identity. If we choose nice xi w.r.t. the G action, it seems
rather hopeless to ¢nd a nice form for the Demu�skin relation in them, and thus
for the relation in the Ai that has to be satis¢ed (Proposition 3.6) while on the con-
trary if we choose the xi so that the relation is nice, we lose all control over the
shapes of the Ai.

The way out of this dilemma is the following observation formalized in Proposition
3.8. If the Ai satisfy the Demu�skin relation modulo the third step of the lower
q-central series of the subgroup generated by all Ai, then one can ¢nd an element
r in the second step F�2;q� of the lower q-central series of a free pro-p group F with
the right number of generators that has the shape of a Demu�skin relation and that
is mapped to the identity under xi 7! Ai. This can all be done G-equivariantly,
and one has a classi¢cation of Demu�skin groups with a G action ^ where the order
ofG is prime to p ^ which says that this Demu�skin group is isomorphic to the original
one (Theorem 3.4). One can interpret this as follows. One can G-equivariantly
replace the xi by x0i that agree with the xi in the Frattini quotient such that the
map x0i 7! Ai is a well-de¢ned homomorphism. As we only want to construct a
universal, i.e. a suf¢ciently general, homomorphism �aE ;RE�, controlling
homomorphisms up to this degree will suf¢ce. Essentially the original problem is
thus reduced to a calculation modulo triple and higher commutators which can
be carried out. That this calculation is indeed suf¢cient will be checked at the
end ^ c.f. the last paragraph of this overview for the method used to accomplish this.

To perform the above calculation, we ¢rst need to understand the Demu�skin
relation in F modulo F�3;q� for a free group F mapping G-equivariantly to
GF �p� with the same number of generators, i.e. we need to understand the Hilbert
pairing. The results will be recalled in Theorem 4.2. In Section 4.2, we shall also
recall some general facts on symplectic modules and determine the relevant
hyperbolic pairings explicitly, i.e. G-equivariant pairings, for G cyclic or dihedral,
between absolutely irreducible k0�G�-modules, k0 the minimal ¢eld over Fp so that
a given Fp�G� representation decomposes into absolutely irreducible components.

The next step is to understand P modulo P�3;q� for P a closed subgroup of ~G2�R�.
Again in general this is quite hard despite some encouraging results by Pink
(Theorem 5.4) but due to the shape of the Ai given in Lemma 5.3, it is suf¢cient
to do this for certain subgroups. For those the results of Pink do allow a simple
calculation. At this point there is another idea, of Lazard, that comes into play.
It says that there is a rather simple equivalence between p-nilpotent p-groups
and p-nilpotent p-Lie algebras. As p > 2 this applies to our situation modulo third
and higher commutators. Therefore it will be enough to express the relation on
the side of Lie algebras and to compute its image in Lie algebras which is exactly
what can be achieved using Pink's calculation. (Strictly speaking, Lazard's results
are not really needed, as the results of Pink do contain all correspondences we shall
use, but it was a major guideline before being aware of Pink's results.) The advantage
in working with Lie algebras is that now the image of subgroups generated by certain
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Ai has naturally aW �k� scalar multiplication ^ obviously it isn't necessarily free over
W �k�. This happens exactly when working with a W �k�-structure is preferable, i.e.
when the splitting ¢eld of Vi is not Fp, but a ¢nite extension inside k. Thus one only
needs a description of pairings over the splitting ¢eld. This will all be explained
in Section 5.

Having done all this, one has an explicit form for a relation among the Ai modulo
some third and higher commutators. This determines an explicit ring A=I over which
the relation among the Ai is satis¢ed (Theorem 6.2). Our preparations imply that
there is a G-equivariant map in EP from GK to GL2�A=I�. For the induced map
from the universal ring RE to A=I , one ¢rst veri¢es that it induces an isomorphism
on mod p tangent spaces, and hence that it is surjective, and then, using Lemma
6.4, that it is injective as well. Thus the ring A=I we constructed is identi¢ed with
the universal ring RE . &

3. Demu�skin Groups with Group Actions

By D we will always denote a pro-p group that is a Demu�skin group. We assume
throughout that p > 2. Being a Demu�skin group is characterized by the following
three properties.

(i) n � dimFp H
1�D;Z=�p�� <1.

(ii) dimFp H
2�D;Z=�p�� � 1.

(iii) The cup product pairing H1�D;Z=�p�� �H1�D;Z=�p�� ! H2�D;Z=�p�� is an
alternating non-degenerate bilinear form.

This implies that D has n generators and one relation and so its abelianisation
D=�D;D� must be isomorphic to Znÿ1

p �Zp=�q� where q is a power of p, possibly
p1 � 0, that is uniquely determined by D. As p > 2 it is well known that n and
q characterize D completely, [Dem1, Dem2, Lab].

Our ¢rst aim will be to extend this to the case where we have a group G of order
prime to p acting on D. So in the following let G be such a group. The action
of G on D induces an action on Hi�D;Z=�pl�� for all natural numbers i; l, and this
action is compatible with the cup product pairing, e.g. [MacL, p. 351].

We denote for any pro-p group P its Frattini subgroup, i.e. the topological closure
of Pp�P;P�, by F�P�, and its Frattini quotient, i.e. P=F�P�, by �P. Concerning the
action of G on D, we quote the following Lemma from [Bos1, ½2].

LEMMA 3.1. Given two actions of G on the pro-p group P such that the actions on the
Frattini quotient �P agree, then the actions agree up to an inner automorphism of P.

Furthermore, if an action of G on �P is given, i.e. a homomorphism from G to Aut� �P�,
and if the image of G under this homomorphism is in the image of Aut�P� ! Aut� �P�,
then there exists up to conjugation a unique G operation on P extending the one
on �P.
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As a consequence, the action of G on D is already uniquely determined, up to an
inner automorphism, by the action on the Frattini quotient �D. Furthermore,
H1�D;Z=�p�� � Hom� �D;Z=�p��, and thus this action is also determined by the action
of G on H1�D;Z=�p��. This suggests that in fact any Demu�skin group with a group
action corresponds to a bilinear pairing with a group action and an invariant q
and vice versa, which will be shown below.

Let wÿ1 be the character by which G acts on H2�D;Z=�p��. As is well known
H2�D;Z=�p�� � Hom�R=�R;F�;Z=�p�� if

1!R! F ! D! 1 �1�
is a presentation of D where F a free pro-p group with n generators. As is shown in
the proof of [Bos1, Lemma 2.5], one can assume this sequence to be compatible
with the G operation. So G acts on R=��F ;R�Rp� � Z=�p� via w. As R is
one-generated as a normal subgroup, by which we mean that there is an element
r of F whose normal topologically closed hull is R, R=�R;F� � Zp. By Lemma 3.1,
the G action on it is given as the lift of w to Z�p via the Teichm�uller character, which
will also be denoted by w.

In the case that q 6� 0, we consider the G-equivariant sequence

1!R=�R;F� � Zp! F ab � F=�F ;F� � Zn
p! D=�D;D� � Znÿ1

p �Zp=�q� ! 1

that can be obtained as the inverse limit of the in£ation-restriction sequence associ-
ated to the sequence (1) with coef¢cients Z=�pl�, l going to 1. Using the
decomposition of the projective Zp�G�-module F ab into irreducible summands,
one may assume that R=�R;F� maps into exactly one of them with index q. Thus
the action of G on the torsion part Z=�q�, that has to be ¢xed by G, is also given
by w.

To prove the main result of this section, we need the following group theoretical
lemma which is a slight generalisation of a result of [Bos1, ½2].

LEMMA 3.2. Given F , a ¢nitely generated free pro-p group with an action of G,
and a decomposition F=�F q�F ;F�� � A1 � A2 where the Ai are projective
Zp=�q��G�-modules, then F � F 1 � F 2 where the F i are free pro-p groups carrying
a G action such that F i=�F q

i �F i;F i�� � Ai.
In particular, if F=�F q�F ;F�� has a free one-dimensional G invariant subgroup

generated by an element �r, i.e., G acts on �r by a character w, then there is a lift r
of it in F on which G acts by (the Teichmu« ller lift of) w.

Proof. This is a simple modi¢cation of the proof of [Bos1, Lemma 2.4]. The key
observation is that

Aut�F� ! Aut�F=�F q�F ;F��� � GLm�Zp=�q��;
where m is the rank of F , is surjective. This holds, as the image clearly contains all
permutation matrices and also all invertible upper or lower triangular matrices,
and hence by Bruhat decomposition all elements of GLm�Zp=�q��. So given Ai,

118 GEBHARD BO« CKLE



we choose a free pro-p group F i with the same number of generators as Ai. The G
action is given by a homomorphism to Aut�Ai�. By the lemma of Schur-Zassenhaus
this lifts to an action on F i. Finally by Lemma 3.1, the group F 1 � F 2 is isomorphic
to F as they have isomorphic Frattini quotients. &

Remark 3.3. If F in the above lemma is not free, then as in [Bos1, Lemma 2.4] one
can still ¢nd subgroups F i, i � 1; 2 with the desired quotients F i=�F q

i �F i;F i��, but
one cannot expect F to be their free product any more.

The following is the main result of this section ^ remember p > 2.

THEOREM 3.4. Let D be any Demu�skin group with n generators and invariant q. If a
group G of order prime to p acts on D, and we denote by V the Fp�G�-module
H1�D;Z=�p�� and by T the module H2�D;Z=�p��, then V � V ! T is a G-equivariant
non-degenerate alternating bilinear form, and the action of G on the torsion subgroup
of Dab, which is as a group isomorphic toZ=�q�, is given by the (Teichmu« ller lift of the)
character w, if wÿ1 describes the action on T.

Conversely, assume we are given some G-equivariant non-degenerate alternating
bilinear form k : V � V ! T and a number q which is either a power of p or zero
(which we think of as p1). If q 6� 0, we assume that Ftriv

p is a direct summand of
V. Then there exists a Demu�skin group D with an action of G such that this bilinear
form is the one given by H1�D;Z=�p�� 
H1�D;Z=�p�� ! H2�D;Z=�p��. Furthermore
this group D is unique up to isomorphism of pro-p groups with G action.

Proof. We only have to show existence and uniqueness, given the bilinear form.
We shall ¢rst show the existence. By Lemma 3.1 we choose a free Zp�G�-module
V1 whose Frattini quotient is isomorphic to V . Again by the same lemma we choose
a free pro-p group F with a G action, such that the Frattini quotient �F of F is
isomorphic to Hom�V ;Z=�p�� as an Fp�G�-module. By Lemma 3.1 we shall assume
that F ab � Hom�V1;Zp� as Zp�G�-modules. We now identify Hom�F ab;Zp� and
V1. As G is of order prime to p it is well known that the Grothendieck group
of free Zp-modules with G action is isomorphic to that of Fp vector spaces with
G action. So the bilinear form k considered as an element of HomG�V ^ V ;Fwÿ1

p �
can be lifted to a G-equivariant non-degenerate alternating bilinear form
V1 � V1 ! Zwÿ1

p . Dually we ¢nd a G-equivariant map f : Zw
p! F ab ^ F ab. By

Vm, F ab
m ;fm etc., we denote V1=�m�, F ab=�m�, f=�m�, etc. We also note that the

character w always appears when we are `on the side of groups', e.g. as the action
of G on R=�F ;R�Rq or on the part of F ab

q which corresponds via class ¢eld theory
to p-power roots of unity, while the character wÿ1 appears on the corresponding
dual `cohomological side', e.g. as the action on H2�D;Z=�q�� or on a certain piece
of H1�D;Z=�q��.

Let F�i;q� denote the i-th step of the lower q-central series, i.e. F�0;q� � F and
F�i;q� � �F �i;q�;F��F �i;q��q. All the F�i;q� are normal G invariant subgroups of F .
It is not hard to see that F�2;q�=F�3;q� � F ab

q � �F ab
q ^ F ab

q � as Zp=�q��G�-modules,
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if q 6� 0, where the ¢rst copy is generated by the q-th power elements and the second
by commutators. If q � 0, then F�2;q�=F�3;q� � F ab ^ F ab. If q 6� 0, by assumption
V contains a G invariant element. So we can decompose V1 � Ztriv

p �Zwÿ1
p �M

where the restriction of the given bilinear form to both, Ztriv
p �Zwÿ1

p and M, is
non-degenerate. Let x; y be generators of Zw

p. We de¢ne the element �r in
F�2;q�=F�3;q� as

�r � x �mod q� � fq�y �mod q�� 2 F ab
q � �F ab

q ^ F ab
q �

If q � 0, we de¢ne �r � fq�y �mod q��. By construction, G acts on the element �r via the
character w. We shall now construct a lift r of �r to F on which G acts again by w.

As a characteristic subgroup of F , F�2;q� carries a G operation, and hence we can
decompose

F�2;q�=�F �2;q�q�F �2;q�;F�2;q��� � Zw
p=�q� �N

provided q 6� 0, where Zw
p=�q� is generated by �r and N is a projective

Zp=�q��G�-module. By the Lemma 3.2 we ¢nd a lift r of �r in F�2;q� on which G acts
by w. In the case that q � 0, we can, again by the Lemma 3.2, ¢nd elements
rps 2 F�2;ps� for all s 2N such thatG acts on them via w and such that they are congru-
ent to �r modulo F�2;ps�. We take any element

r 2 C :�
\
t2N

�
closurefrps : sX tg

�
:

As the intersection of non-empty closed subsets in the compact group F , the set C is
non-empty. Since the set of x 2 F satisfying gx � xw�g� is closed, all elements in C
satisfy this relation. Finally the sets involved in forming the intersection of C lie
in �rF�2;pt� �mod F�3;0��. Hence r is a lift of �r as desired.

We de¢neD to be the quotient of F by the closed normal subgroup generated by r.
As the subgroup spanned by r is invariant under G, the normal subgroup generated
by it is invariant, too, and thus D carries an action by G. By Proposition 3 in [Lab],
which calculates the bilinear form H1�D;Z=�p�� 
H1�D;Z=�p�� ! H2�D;Z=�p��
explicitly, one can verify that it agrees with k : V � V ! T if we choose �r as
above.

Finally we have to show uniqueness. Here we use again Lemma 3.1. As we know
already that as pro-p groups two Demu�skin groups with same invariants n and
q are isomorphic, and that by assumption we have isomorphic actions of G on
the Frattini quotient of D, any two such groups have to be isomorphic, the
isomorphism being given by an inner automorphism ^ after having identi¢ed the
abstract groups in such a way that the Frattini quotients agree as Fp�G�-
modules. &

Remark 3.5. The construction in the proof of Theorem 3.4 did not provide us with
nice generators of the Demu�skin group, that are in some way compatible with the
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action of G and for which the relation, or even the relation modulo F�3;q� has the
usual form of a Demu�skin relation, as we assumed nothing particular for the element
�r. For general groups G we do not think that one is even able to choose nice
generators, respecting the G operation in some way. But even if one can choose such
generators, for the relation the best one should expect is a relation that has a nice
expression in terms of the generators and the desired action of G via w modulo
F�3;q�.

For example, if G acts as a permutation group on the Frattini quotient a choice of
nice generators is possible. Another case is when G is Abelian, and the exponent of G
divides pÿ 1. Then the Frattini quotient decomposes as the direct sum of
one-dimensional representations. So by Lemma 3.2 we can lift their generators
to generators of D on which G acts by the corresponding characters. In this case,
the pairing is also simple to express with respect to these generators ^ more about
pairings in the next section ^ and so one can achieve the usual Demu�skin relation
modulo F�3;q�. The following proposition shows that this is all that one can expect.
Obviously everything just remarked only depends on the fact that the Frattini
quotient decomposes into one-dimensional characters, so it is not really necessary
that G is abelian of exponent dividing pÿ 1.

If the Frattini quotient decomposes into absolutely irreducible Fp�G�-modules, i.e.,
Fp serves as the splitting ¢eld for all occurring representations, then one can also
expect reasonable generators for D.

We would like to thank Prof. Wingberg for showing some scepticism regarding the
existence of a nice form of the relation in terms of nice generators. This led to the
following.

PROPOSITION 3.6. Let G be Abelian of exponent dividing pÿ 1. Let D be a
Demu�skin group of rank sX 4 with non-trivial G action. Then it is not possible to
¢nd a presentation of Dwith generators xi, i � 1; . . . ; n, on which G acts via characters
wi : G! Z�p and a single relation of the form r � xq1�x1; x2� . . . �xnÿ1; xn�.

Proof. We assume that we have given such a presentation. Let w be the dual of the
Teichmu« ller lift of the character by which G acts on H2�D;Z=�p��. Then we must
clearly have wiwi�1 � w for i odd between one and n. Let R be the closed normal
subgroup generated by r. As G acts on D, R must be stable under G. In particular
it must contain rs for all s 2 G.

We will work inside ~F which will denote the quotient of F by the closed, G-stable
subgroup ��F ;F�; �F ;F�����F ;F�;F�;F�F p. The images of r;R in ~F will be ~r; ~R.
To simplify notation we will not add the tilde to the xi. We have the following exact
sequence 1! F� ~F� ! ~F ! �F ! 1, where �F as well as F� ~F� are elementary
p-abelian. It is easy to see that we can take the elements

�xi; xj� for i < j and ��xi; xj�xk� for i < j; iW k

as a basis for F� ~F�, by using the Jacobi rule on general commutators ��xi; xj�; xk�.
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Furthermore ~R has as a basis the elements

~r; �~r; x1�; . . . ; �~r; xn�:

It is clear that modulo ��F ;F�;F� we have rs � rw�s�. So let as � rsrÿw�s�. Then as is
inside the subgroup of F�~F� generated by triple commutators ��xi; xj �; xk�. One
calculates

as �
Yn
i�1
i odd

�xwi�s�i ; xwi�1�s�i�1 ��xi; xi�1�ÿw�s�

�
�Yn

i�1
i odd

��xi; xi�1�; xi�
wi �s�ÿ1

2 ��xi; xi�1�; xi�1�
wi�1 �s�ÿ1

2

�ÿw�s�

Furthermore it is easy to see that the elements

��xi; xi�1�; xk�; i � 1; . . . ; s odd; k � 1; . . . ; s

are linearly independent. Using the Jacobi identity, the basis of ~R and the expression
for as it follows that as lies in ~R if and only if all wi�s� � 1. As s was arbitrary, this
can only happen if G acts trivially, contrary to our assumption. &

EXAMPLE 3.7. Finally if G � C2 � fe; sg, there is a reasonable relation that
replaces the usual Demu�skin relation. We will use the notation from above, in par-
ticular that G acts on xi via wi. For i odd we de¢ne t��xi; xi�1�� by

t��xi; xi�1�� �
�xwi�s�i ; xwi�1�s�i�1 � if w is trivial,

�xwi�1�s�i�1 ; xwi�s�i � else.

(

We de¢ne

r � xq1
Yn
i�1
i odd

�xi; xi�1�
Y1
i�n
i odd

t��xi; xi�1��xq1

where the notation means that the entries in the ¢rst product are listed by increasing,
those in the second be decreasing order. One can then directly check that rs � rw�s�.
So one found a reasonably nice substitute for the usual Demu�skin relation, as
now clearly F=�r�, the quotient by the closed normal subgroup generated by r, is
a Demu�skin group with the desired action of G and invariants s, q. A similar sym-
metric expression can be given for G cyclic in the case w � triv.

Next we shall consider homomorphisms fromDemu�skin groups to arbitrary pro-p
groups. Given a group by generators and relations, one can de¢ne a homomorphism
from it into another group by freely mapping the generators, provided all the
relations are satis¢ed in the other group. For a Demu�skin group we will establish

122 GEBHARD BO« CKLE



the existence of a homomorphism given on generators under weaker assumptions
provided we are allowed to replace the originally chosen generators of the Demu�skin
group by new ones, that have the same images in the Frattini quotient as the old ones,
while keeping the same images. Similar results in this direction were obtained by
Wingberg in [Win, Satz 2] using some results of Jakovlev. We formulate the
following proposition which will later facilitate explicit calculations.

PROPOSITION 3.8. Let D be a Demu�skin group with an action of a group G. We
assume that we are given a G-equivariant presentation of D by 1!R!
F ! D! 1 where F is a free pro-p group with the same number of generators
as D, i.e. the same Frattini quotient. LetF�i;q� be the lower q-central series as de¢ned
in the previous paragraph. Let P be some pro-p group with an action of G. Let r
be an element of F whose normal topologically closed hull is R, and on which G acts
by a character. If we have a homomorphism a from F to P, such that the image
of a�r� 2 a�F �3;q��, or in other words, a�r� is the identity in a�F�=a�F �3;q��, then there
exists a homomorphism from D to P that agrees with a modulo a�F �2;q��. More
precisely, if we pick free generators xi of F and images ai in P such that the so de¢ned
a satis¢es a�r� 2 �a�F ���3;q� then we can ¢nd free generators x0i of F that agree with the
xi modulo F�2;q�, such that a0 de¢ned by x0i 7! ai de¢nes a homomorphism D! P.

Proof. First we suppose q > 0. Let Ni be the normal subgroup of F that is the
composite of F�i;q� and ker�a�. Thus Ni is a ¢nitely generated free pro-p group. Fur-
thermore Ni=�Nq

i �Ni;Ni�� contains an element such that the subgroup generated
by it is stabilised by G. So by Lemma 3.2 the subgroup Ni contains an element
ri on which G acts by a character and which agrees with r modulo F�i;q�. By a com-
pactness argument as used in the proof of Theorem 3.4 one can ¢nd r0 2 ker�a� with
the same property. In particular it agrees with r modulo F�3;q�. If q � 0 one can
use induction over pi powers and again compactness to obtain such an element.
As in the proof of Theorem 3.4, one sees that F=�r0� is a Demu�skin group D0

isomorphic to D. Finally as r0 is in the Kernel of a, a map from D0 to P is induced.
AsD and D0 agree modulo D�3;q�, this homomorphism considered as one on D agrees
with a modulo D�3;q�. The way the isomorphism between D and D0 can be realized is
by replacing the originally chosen generators xi of F by x0i as described at the
end of the statement of the proposition. &

For some purposes it is easier to work with the Lie algebra associated to the lower
q-central series of a pro-p-group. We will only use the ¢ltration F�i;0�. The following
is known from [Laz].

PROPOSITION 3.9. Let Ci�P� � P�i;0� for some pro-p group P and Ci�L� be the Lie
ideal of a p-Lie algebra generated by i fold commutators. Then there is an equivalence
between the category of p-Lie algebras L for which Cp�L� � 0 and the category of
pro-p groups P for which Cp�P� � 0. Given L one can de¢ne the associated pro-p group
in the following way. The elements are the same as those of L and the product of two
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elements is given by the Campbell^Hausdorff formula. For p > 2 this equivalence
exists in particular between the subcategories of the above categories where
C3 � 0. Then the pro-p group associated to a Lie algebra L has the composition
law X � Y � X � Y � �X ;Y �.

4. The Hilbert Pairing and G-Equivariant Pairings

For any ¢eld E, let mpn�E� denote the set of pn-th roots of unity contained in E. The
following theorem is a well-known consequence of the results of Demu�skin as stated
in [Lab], and the G-module structure of GF �p�ab as determined by Iwasawa, [Iwa], as
G has order prime to p. As usual, F=K is a Galois extension of local ¢elds of order
prime to p. We note that Hi�GF �p�;Z=�p�� � Hi�GF ;Z=�p�� for all i 2N.

THEOREM 4.1. If mp�F � � f1g, then GF �p� is a free pro-p group of rank 1� �F : Qp�
and its Frattini quotient is as an Fp�G�-module isomorphic to Ftriv

p � Fp�G�s, where
G � Gal�F=K� and s � �K : Qp�.

On the other hand, if mp�F � 6� f1g, the pairing

H1�GF ;Z=�p�� �H1�GF ;Z=�p�� ! H2�GF ;Z=�p�� � Hom�Z=�p�; mp�; �2�

induced from the cup-product pairing, is a non-degenerate alternating G-equivariant
pairing, the Hilbert symbol. Moreover GF �p� is a Demu�skin group with invariants
n � n�GF �p�� � dimFp H

1�GF ;Z=�p�� and q � q�GF �p��, the number of p power roots
of unity in F , and the Frattini quotient of GF �p� is isomorphic to
Ftriv
p � mp�F � � Fp�G�s as a G-module, where G acts on mp�F � and s � �K : Qp�. Finally,

the above pairing is still alternating, non-degenerate G-equivariant between free
Z=�q�-modules, if one uses Z=�q� coef¢cients.

Next we recall from [Koch, Sa« tze 6, 9 and 10] the main result about the
G � Gal�F=K�-structure of the above pairing (2).

THEOREM 4.2. Let w be the cyclotomic character on lim mpn� �K� � Zp. Then one can
decompose H1�GF ;Z=�p�� as an Fp�G�-module as

H1�GF ;Z=�p�� � Fwÿ1
p � Ftriv

p �U � V ;

where Fwÿ1
p is paired with Ftriv

p , U is paired with V, and the pairing between all other
pairs is trivial. It follows in particular that H1�GF ;Z=�p�� is hyperbolic under the
above pairing, i.e., the direct sum of two pairwise isotropic Fp�G�-modules.

As the categories of Fp�G�-modules and of projective Z=�q��G�-modules are
equivalent, as p does not divide the order of G, it is not hard to see that the previous
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theorem generalises to the pairing

H1�GF ;Z=�q�� �H1�GF ;Z=�q�� ! H2�GF ;Z=�q�� � Hom�Z=�q�; mq�;

where now one has to use four projective Z=�q��G�-modules. Also there are more
general results known by work of Jakovlev, Jannsen and Wingberg, [JaWi, Win]
and the references therein.

We now recall several basic properties of non-degenerate alternating G-equivari-
ant bilinear forms k : X � X ! T of Fp�G�-modules, where T is a one-dimensional
Fp vector space with its action given by the character wÿ1. This will then be applied
to X � H1�GF ;Z=�q�� and T � H2�GF ;Z=�q��. We shall keep in mind that the
X , in which we are interested, is hyperbolic.

Clearly we can decompose X into irreducible Fp�G�-modules. As the pairing is
non-degenerate, given an irreducible submodule V , by Schur's lemma, there must
be an irreducible V 0 such that V 0 � V� 
 T , and the pairing restricted to V � V 0

and its complement is non-degenerate. If X is hyperbolic, we can arrange things
so that the sum V � V 0 is always direct, even if V � V 0 which could happen in
general.

PROPOSITION 4.3. Let k be a ¢nite ¢eld over Fp and X a ¢nite dimensional
k�G�-module that carries an alternating non-degenerate bilinear form
k : X � X ! T compatible with the G action where T is, as a vector space, isomorphic
to k. Then one can decompose

X � V1 � . . .� Vl � V 01 � . . .� V 0l �W1 � . . .�Wm;

where the Vi;V 0i ;Wj are irreducible k�G�-modules, V 0i � V�i 
 T for i � 1; . . . ; l,
Wj �W �

j 
 T for j � 1; . . . ;m, the pairing k sets up a perfect duality between Vi

and V 0i , and between Wj with itself, and is trivial between all other pairs.
If in addition X is hyperbolic we can assume that m � 0.
In fact such a decomposition exists over any ring R in which jGj is a unit provided

X ;T are projective over R�G�. The modules in the decomposition will be irreducible
projective R�G�-modules. This applies to R � Z=�q� or W �k�=�q�.

PROPOSITION 4.4. Given two irreducible k�G�-modules V ;V 0 and a one-dimension-
al k�G�-module T, such that V 0 � V� 
 T, there exists a bilinear non-degenerate alter-
nating pairing on V � V 0. If V and V 0 are not isomorphic, then it is unique up to
multiplication by an element in AutG�V �, the splitting ¢eld of V. Thus if V is absol-
utely irreducible, it is unique up to multiplication by an element in k�.

Proof. By Schur's lemma Hom�V 0;V� 
 T � is a skew ¢eld ¢nite over k, and by
Frobenius' theorem it must be a ¢nite extension of k, in fact the splitting ¢eld
of V , or V 0 which is the same. Given a non-zero homomorphism a in this set, which
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thus must be an isomorphism, one can de¢ne the form

k : V � V 0 � V � V 0 ! T : ��v; v0�; �w;w0�� ! a�v0��w� ÿ a�w0��v�
Non-degeneracy and skew-symmetry are obvious. If V and V 0 are not isomorphic,
given a pairing, one can de¢ne a homomorphism a by a�v0��v� � k��0; v0�; �v; 0��,
and in fact all non-degenerate pairings must arise in this way. The other claims
are now obvious. &

The last fact we want to recall is how bilinear forms behave under base change.

PROPOSITION 4.5. Let X and T be k�G�-modules where T has dimension one over k.
We assume that X is either irreducible, or the sum of two irreducibles V;V 0 such that
V� 
 T � V 0. Let k0 be the splitting ¢eld of X ^ this makes sense under the above
assumptions. Given an alternating non-degenerate, i.e. non-zero, bilinear form
X � X ! T, and a decomposition

X 
 k0 � Y � Y 1 � . . .� Ynÿ1

where Y is either irreducible, or the sum of two irreduciblesW;W 0 and the superscript
i means that one applies the ith power of the Frobenius automorphism s of k0 over k to
the matrices giving the representation Y, then the pairing can clearly be extended and
there are the following possibilities.

If X is reducible, we can choose W ;W 0 inside Y so that the restriction of the base
changed pairing to Y �W �W 0 is perfect and pairs W with W 0. Also in this case,
the bilinear form on Yi is simply si applied to the bilinear form on Y.

If X is irreducible there are two possible cases. Either Y is paired with Yn=2, in which
case n has to be even and then the bilinear form on Yi � Yi�n=2 is given by si applied to
the bilinear form on Y � Yn=2.

Or Y is paired with itself, and the pairing on Yi is given by applying si to the pairing
Y � Y ! T 
 k0.

As a consequence, for X irreducible, a non-degenerate alternating pairing
X � X ! T exists if and only if over the splitting ¢eld k0 there exists a non-trivial
homomorphism Y ^ Y ! T or alternatively Y� 
 T � Yn=2. In either case the
number of such pairings is the cardinality of the units of k0 � EndG�V �.

Proof. The proof for the case that X is reducible is rather simple and similar to the
other case and will thus be omitted. So from now we assume that X is irreducible.

Let t be the G-equivariant linear transformation that gives the isomorphism
X 
 k0 �Lnÿ1

i�0 Y
i, and let A denote a matrix representing the bilinear pairing on

X , and hence on X 
 k0, too. We choose a k0-basis B of Y � Y 0 � Yn, and take
for Yi the basis obtained from it by i-fold application of the Frobenius
automorphism s. Let A0 be the matrix giving the pairing on

Lnÿ1
i�0 Yi and denote

by tt the transpose of t. From our special choice of basis we ¢nd

A0 � tÿtAt and ts � Pt
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where P is the permutation matrix P � �di;i�n�i�1;...;n dimY (di;j is the Kronecker delta
function), and we regard the indices modulo n dimY . Let A0i;j denote the
dimY � dimY submatrix of A0 which describes the pairing between Yi and Yj.
As A is invariant under s, it follows that A0i;j � �A0iÿ1;jÿ1�s. Thus, if Y is paired with
Yi, i.e. A00;i is non-degenerate, then by the above A0nÿi;0 is non-degenerate, and
Ynÿi is paired with Y . Hence Ynÿi � Yi, as Yi and Yj can only be paired if
Yi � �Yj�� 
 T . But the Yi are pairwise non-isomorphic, as k0 is the splitting ¢eld
and X is irreducible, and it follows that Y can only be paired with itself or with
Yn=2. The statements about the bilinear form on the other pairs is now clear by
repeated application of the Frobenius automorphism. &

We will now analyze the relevant modules for the later calculations. So far we
know the abstract module structure of H1�GF ;Z=�p�� as an Fp�G�-module, and that
the cup-product pairing is non-degenerate, G-equivariant and hyperbolic. By the
above it follows, that for the sum of two irreducible paired pieces, over the splitting
¢eld of them, the pairing is determined up to a non-zero scalar. This will suf¢ce
for our purposes to ¢nd an explicit expression for `the' Demus kin relation modulo
third and higher commutators.

In the notation of Proposition 3.8, we simply want to ¢nd an element in F on
which G acts by a character, whose normal topological closure generates R, and
which we can describe explicitly modulo triple commutators. The element modulo
F�3;q� shall be �r. In the notation of Theorem 3.4, we found

F�2;q�=F�3;q� � F ab
q ^ F ab

q �F ab
q ;

where the ¢rst summand is generated by q-th powers and the second by com-
mutators. Correspondingly, we shall write �r � �r0 � �r00, so that �r0 is a linear combi-
nation of commutators. From the construction in the proof of Theorem 3.4, it
follows that G will act on both �r0 and �r00 via a character, and furthermore that �r0

can be recovered from the cup product pairing as follows.
It is the image of any generator ofT� under the map k� 2 Hom�T�;L2�X���, where

k,X and T are as de¢ned two paragraphs below Theorem 4.2, and we identifyL2�X��
with F ab

q ^ F ab
q . We observe that by Schur's lemma, if we assume a decomposition as

in Proposition 4.3, k� factors via
P

i L
2�V�i � V 0i

��. So we can write �r0 �Pi ri (to
alleviate the notation, we shall not use the notation �r0i for the individual components,
but simply ri). By Proposition 4.4, the ri are unique up to scalars in the splitting ¢eld
of Vi. So if we determine the ri individually, we shall know �r0 up to scalars for each ri.
A more careful analysis using the results quoted from [Koch] might explicitly
describe those scalars, but as they are not needed in the applications we have in
mind, we did not carry out this analysis. To summarize:

LEMMA 4.6. If 0 6� �r0 is in the image of k�, and if we chose for all i some ri 6� 0 in the
image of T� ! L2�V�i � V 0i

��, both maps coming from dualizing the pairing, then
there exist elements ei in the splitting ¢eld of each Vi such that �r0 �Pi eiri over
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the splitting ¢eld of X, or appropriately understood via the action of the various split-
ting ¢elds on the various modules V�i � V 0i

�.

LEMMA 4.7. Let G � Cn be cyclic or G � Dn be dihedral of order prime to p. Let T be
a one-dimensional k�G�-module, where the action of G is given by a. In the dihedral
case, a necessarily has to have order dividing two. Let V;V 0 be absolutely irreducible
k�G�-modules with a hyperbolic G-equivariant alternating non-degenerate pairing

2�V � V 0� ! T. By r we shall denote an element in L2�V� � V 0�� as the elements
ri described above. The element �x; y� 2 L2�V� � V 0�� shall denote the image of the
element x
 y� y
 x 2 
2�V� � V 0��, x 2 V�; y 2 V 0�, projected to L2�V� � V 0��.
Then

(i) If V � kc for a character c, then V 0 � kac
ÿ1
and in terms of basis elements v; v0 of

V�;V 0� in �V� � V 0��2, r is given by �v; v0� up to a non-zero scalar. Note that in
the dihedral case all characters have order one or two, and there are two of them,
if n is odd, and four, if n is even.

(ii) If G is dihedral and V � IndDn
Cn
kc for a character cof Cn of order unequal two, then

V 0 � V. If we pick a basis v;w, resp. v0;w0, of V�, resp. V 0�, so that Cn acts via the
characters c;cÿ1 on the v's and w's, respectively, and so that a ¢xed element of
order two not inside Cn acts by interchanging v's and w's, then, up to a non-zero
scalar, r is given by �v;w0� � �w; v0� if a is trivial, and it is given by
�v;w0� ÿ �w; v0� if a is of order two, trivial on Cn.

Analogous results hold, if we replace all the above modules by projective
Z=�q��G�-modules.

We omit the more or less obvious proof.

5. Closed Subgroups of GL2�R� and Special Matrices

We shall start by describing the basic matrices that will occur as images of the
Demu�skin group with the G action that we consider. As described in Section 2,
the image of G in PGL2�k� is non-trivial and either cyclic or dihedral.

We shall ¢rst ¢x some notation which we shall use until the end of Section 7. If G is
cyclic, let c be the Teichm�uller lift to W �k�� of the character by which G acts on the
�1; 2� entry of GL2�k�. Then ad�rjG � �ktriv�2 � kc � kc

ÿ1

If the image ofG in PGL2�k� is dihedral, isomorphic toDn, we shall assume thatCn

is inside the diagonal matrices. Note that for D2 this requires a choice that we will
make once and for all. Then ad�r � ktriv � kf � IndDn

Cn
kc. where f is the unique

non-trivial character that is trivial on Cn, and c is the character from above, once
the action is restricted to Cn. If n 6� 2, then IndDn

Cn
kc is irreducible. Else we can write

it as kc
0 � kc

00
where c0 and c00 are the characters trivial on the third and fourth
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matrix, respectively, of the following description of D2 � PGL2�W �k�� given by(
1 0

0 1

� �
;

1 0

0 ÿ1

� �
;

0 1

1 0

� �
;

0 1

ÿ1 0

� �)
:

Further let w be the character of GK by which it acts on the p power roots of unity
inside F . It factors through G and we shall denote the corresponding character
of G again by w.

DEFINITION 5.1. For any ¢nite ¢eld k and any n, and for projective
W �k�=�pn��G�-modules X ;Y , we de¢ne �X ;Y �G � dimk Homk�G��X=�p�;Y=�p��. X
and Y will be called relatively prime, if Homk�G��X ;Y � � 0, or equivalently
�X ;Y �G � 0. In fact it is not necessary that X ;Y are de¢ned over the same ¢eld.
One could simply base change them to a common larger ¢eld and take the de¢nitions
there.

LEMMA 5.2. Let P be a pro-p group with an action of G and a ¢ltration Pi such that
the subquotients are Fp�G�-modules. Let Q be another pro-p group with G action.
Assume that the Frattini quotient �Q is relatively prime to all subquotients of fPig,
then HomG�Q;P� is trivial, i.e. consists only of the map sending all of Q to f1g � P.

The proof uses the prime-to-adjoint principle as in [Bos1, ½2], or [Boe1, Lemma
2.4.4].

The above lemma applies to P � GL2�R� for any R 2 C and our usual G where one
has the obvious ¢ltration by powers of m, so that all subquotients are sums of
submodules of ad�r.

As described in the outline of the proof of Theorem 2.6, using the remark after
Lemma 3.2, we can ¢nd closed subgroups Pi, i � 0; . . . ;m, inside GF �p� such that
their Frattini quotients �Pi are irreducible, the �Pi inject into �GF �p� and the sum
of the �Pi is direct, summing up to �GF �p�. Hence by the Burnside basis theorem
the Pi generate GF �p�. By the results of the previous sections we can arrange so that
the �Pi are paired with �Pmÿi where m� 1 is the number of irreducible summands
of �GF �p� ^ hence m is odd. We shall now describe images of nicely chosen
xi 2 Pi under a homomorphism a to a matrix group. We ¢x the following notation.

D�a; b� � a 0

0 d

� �
; S�b; c� �

��������
1�bcp

b

c
��������
1�bcp

� �
:

Note that S�b; 0� and S�0; c� are upper and lower triangular, resp., with entry one
along the diagonal.

LEMMA 5.3.Given i and a 2 HomG�Pi;GL2�R��, we can pick an xi in Pi with non-zero
image in �Pi whose image in GL2�R� is as follows.
(i) If �Pi is relatively prime to ad, then a�xi� � D�1; 1�.
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(ii) If �Pi � Ftriv
p , then a�xi� �

������������
1� ai
p

D� ������������
1� di
p

;
������������
1� di
p ÿ1� for some ai; di 2 m, and

ai � di if G is dihedral.
(iii) If G is cyclic and �Pi 
 k contains kc or kc

ÿ1
, but not both (in particular we exclude

c � cÿ1) then a�xi� � S�bi � ûi; 0� or a�xi� � S�0; ci� with bi; ci 2 m, resp.
(iv) If G is cyclic and �Pi 
 k contains kc and kc

ÿ1
(this includes c � cÿ1) then

a�xi� � S�bi � ûi; ci� with bi; ci 2 m.
(v) If G is dihedral with n > 2 and �Pi 
 k contains IndDn

Cn
kc, then a�xi� � S�bi; bi� with

bi 2 m.
(vi) If G � D2 and �Pi 
 k equals kc

0
or kc

00
, then a�xi� � S�bi; bi� or a�xi� � S�bi;ÿbi�,

respectively, with bi 2 m.
(vii) If G is dihedral and �Pi 
 k � kf, then a�xi� � D� ������������

1� di
p

;
������������
1� di
p ÿ1� with b 2 m.

The images of the xi determine a completely as each Pi is topologically generated by
the G orbit of xi. To see the latter, one uses the Burnside basis theorem and the
irreducibility of the �Pi which implies that �Pi is generated over Fp by the G orbit
of �xi. As �Pi is not necessarily absolutely irreducible, only irreducible, we have to
use at several instances the word contains instead of equals.

For the proof we need the following theorem from [Pink]. Let y : SL2�R� ! sl2;R
denote the map sending x to xÿ tr�x�=2 � Id, where sl2;R is the set of two-by-two
matrices of trace zero considered in a natural way as a Lie algebra over R.

THEOREM 5.4. There is a canonical one-to-one correspondence between all closed
pro-p subgroups of O � SL2�R� and the following pairs �L;D�: First, L should be
a closed additive subgroup of sl2;R satisfying

(i)
T

n L
n � f0g,

(ii) �L;L� � L, and
(iii) tr�L � L� � L � L.

These three conditions imply that the formula

�x � �y :� y
�������������������������
1� tr�x2�=2

p
� x

������������������������
1� tr�y2�=2

p
is a well-de¢ned composition law on the set L=�L;L� making it into an abelian pro-p
group with identity �0. Then D should be a closed subgroup of �L=�L;L�; �� such that
the additive group L=�L;L� is topologically generated by the subset D.

Furthermore given O, L is the closed additive subgroup of sl2;R generated by y�O�
and D its image under y in L=�L;L�. Also, for nX 2 one has Ln=Ln�1 �
Cn�O�=Cn�1�O� via y for the n-th subquotient of the lower central series, where Ln

is an abbreviation for Cn�L�. The inverse to y on those subquotients, we will denote
by Y. Explicitly, Y is given by

Y : L! O : x7!x� Id
�������������������������
1� tr�x2�=2

p
:

To describe C1�O�=C2�O� � D one needs the structure de¢ned by � on L1=L2 and in
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general there is an inclusion of D into it. Finally, for x; y 2 O one has
�y�x�; y�y�� � y��x; y�� modulo L3 where the right pair of brackets is formed in O,
the left in the Lie algebra.

Proof of Lemma 5.3. In all but cases (iii), (iv) and (v), one can either appeal to
prime-to-adjointness, Lemma 5.2, or �Pi is absolutely irreducible and one-dimension-
al and one can apply Lemma 3.2 to obtain a generator xi as in that lemma. This
determines the shape of the image completely.

In case (v) one can also apply Lemma 3.2 to obtain a generator xi on which
0 1

1 0

� �
, a special lift of the C2 quotient in PGL2�W �k��, acts trivially. By

considering the determinant representation, the shape of a�xi� must be as described

above.
Case (iii) can be handled by a simple induction argument via the ¢ltration on

GL2�R� given by

1�a b

c 1�d

� �
: a; c; d 2 mn�1

� �
n

and re¢nements, or its transpose, and using prime-to-adjointness. In case (iv), if n is
even, then we pick xi for the action of D2 � Dn.

There remains the case (iv) when n is odd. Using the determinant representation
and prime-to-adjointness, it is clear that Im�a� lies in SL2�R�. Now we can apply
the structure theorem on closed pro-p subgroups of SL2�R� quoted above. We shall
use the notation from there.

Let �L;D� be the pair consisting of a Lie algebra L inside sl2;R and D � �L1=L2; �� a
closed subgroup. Let zi be any element in Pi non-zero in the Frattini quotient. Let
g 2 Cn be a generator. Then yi � zi�zgi �ÿ1 is also such an element. By explicit
calculation one ¢nds that the difference between �y�a�zi��; y�a��zgi �ÿ1��� 2 L2 and

y�yi� 2 L is of the form 0 b

c 0

� �
. This is clearly in L and as we modi¢ed the element

y�yi� with image in D modulo L2 by an element in L2, the modi¢ed element will
be in y�Im�a��. We take as xi the corresponding element in Im�a�. It is easy to

see that, under the y correspondence, S�b; c� corresponds to 0 b

c 0

� �
. &

Remarks 5.5. We want to make a few comments on the matrices that appear as
images.

(i) Matrices of the type S�b; c� seem to have appeared in [Bos2] for the ¢rst time in
this context. There, it was remarked on the fact that the matrix coe¤cients of
their powers are related to cyclotomic polynomials. In fact it is also possible
to write down explicit power series that express those coe¤cients. If we denote
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by bn; cn the power series in b; c de¢ned by

S�b; c�n � S�bn; cn�

then one has the explicit expressions

bn�b; c� � bgn�bc� cn�b; c� � cgn�bc�
�����������������
1� bncn

p
� fn�bc�;

where fn�x� �
P

k an;kx
k and gn�x� �

P
k bn;kx

k with

an;k � 1�2k�!
Ykÿ1
j�0
�n2 ÿ �2j�2� and bn;k � n�2k� 1�!

Ykÿ1
j�0
�n2 ÿ �2j � 1�2�:

For example g3�x� � 3� 4x.
(ii) All the matrices that are involved in the description of the images of D2 generate

abelian subgroups of GL2�R�.This can be checked by explicit calculation. A more
conceptual way to see this is to use the exponential and logarithm maps for
R � Zp��b�� after tensoring this with Qp. There it is clear that the images under
the logarithm are of a shape that always commute with each other, so that after
applying the exponential map the elements will still commute. For example if

we take S�b;ÿb�, its logarithm is of the shape 0 b

ÿb 0

� �
. As all commutators

between matrices of this shape are zero, their exponentials form a commuting
family.

A second application of the above theorem of Pink will be on the closed image
generated by Pi and Pmÿi in GL2�R�. First we make a few de¢nitions. In all but
cases (iii), (iv) and (v), we de¢ne k1 � k0 � Fp. In those cases we de¢ne k1 to be
the minimal extension of Fp over which c is de¢ned. In case (iii) and in case (v),
if �PijCn

is reducible, we de¢ne k0 � k1. In the remaining cases we de¢ne k0 as
the unique sub¢eld of k1 such that �k1 : k0� � 2. This ¢eld exists as the irreducibility
of �PijCn

implies that cÿ1 � csn for some integer n, where s is the Frobenius
automorphism. Hence k1 � Fp2n .

LEMMA 5.6.We keep the assumptions of the previous lemma and assume that the xi
are chosen accordingly. We de¢ne the Lie algebra L as the image under y of the closed
subgroup generated by the images of the G orbits of xi and xmÿi.

Then L1=L2 and L2=L3 carry naturallyW �k1�-module structures. The Lie bracket is
compatible with the W �k0�-structure. If xi falls into one of the cases (iii), (iv) or (v),
one has �L1=L2; �� � �L1=L2;��. Also in the cases where k1 6� k0, the Lie bracket
extends naturally to a Lie bracket

�L1=L2;�� 
W �k0�W �k1� � �L1=L2;�� 
W �k0�W �k1� ! �L2=L3;��:
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Furthermore, if ri is the Demu�skin relation restricted to PiPmÿi, as de¢ned above
Lemma 4.6, one has the following expression for y�a�ri�� in L2=L3 where ei is a unit
scalar of W �k�, up to possibly interchanging i and mÿ i.

(A) If �Pi � Ftriv
p , �Pmÿi � Fw

p , w
2 6� 1, then y�a�ri�� � eibmÿidi

������������
1� di
p ÿ1 0 1

0 0

� �
if w � c

and y�a�ri�� � eicmÿidi
������������
1� di
p ÿ1 0 0

1 0

� �
if w � cÿ1.

(B) If �Pi � Ftriv
p , �Pmÿi � Fw

p , w has order two, w � c and G is not dihedral, then

y�a�ri�� � ei
dmÿi������������������
1� dmÿi
p 0 bi

ci 0

� �
:

(C) If G is cyclic, w is trivial, and �Pi 
 k contains kc, but not kc
ÿ1
, and so �Pmÿi contains

kc
ÿ1
, then y�a�ri�� � eicmÿibi

1 0

0 ÿ1

� �
.

(D) If G is cyclic and �Pi 
 k contains both kc and kc
ÿ1
, and if w is trivial, then

y�a�ri�� � �emÿibicmÿi ÿ eibmÿici� 1 0

0 ÿ1

� �
:

(E) If G is dihedral with image D2 in PGL2�k�, and if w � c0c00, and hence w is of order
two, and �Pi � kc

0
, or if G is dihedral, w � f and �Pi 
 k contains IndDn

Cn
kc, then

y�a�ri�� � eibibmÿi
1 0

0 ÿ1

� �
.

(F) In all other cases y�a�ri�� � 1.

Proof. The ¢rst half is obvious unless we are in one of the three special cases, as
pro-p groups always admit exponentiation by elements of Zp. In the three special
cases, we ¢rst show �L1=L2; �� � �L1=L2;��. This we will carry out only for xi
belonging to case (iii). The other two cases are analogous. Note ¢rst that if
�Pi 
 k contains kc and kc

ÿ1
, then the same is true for �Pmÿi 
 k.

L is the smallest topologically closed Lie algebra containing a�xi� and a�xmÿi�
which is closed under theG operation ^ via conjugation. In particular L1=L2 contains
all G conjugates of a�xi� and a�xmÿi�. Using Zp linear combinations of the set

�y�a�xi��; y�a�xgi ���g2G one ¢nds that the W �k1� span of bici
1 0

0 ÿ1

� �
lies inside L2

and similarly that of bmÿicmÿi
1 0

0 ÿ1

� �
. By calculating commutators between these

matrices and y�a�xgi �� or y�a�xgmÿi��, one sees that all matrices b2i c
2
i a�xgmÿi� and

b2mÿic
2
mÿia�xgi � are in L2. Thus from the de¢nition of � and using series expansions

it follows that x � y � x� y in L1=L2.
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Next Zpfc�g� : g 2 Gg �W �k1� and c�g�ÿ1 � sn�c�g��, and so we can de¢ne for
x 2W �k1�

xS�bi; ci� � S�xbi; sn�x�ci�:
This way we de¢ne a W �k1�-module structure. But the Lie bracket from L1=L2 to
L2=L3 is only W �k0� linear, as can be seen from

�ay�S�b; c��; a0y�S�b0; c0��� � �sn�a0�abc0 ÿ sn�a�a0b0c�D�1;ÿ1�:
Moreover the above calculation shows that L2=L3 does have a W �k�-structure, so in
particular a W �k1�-structure. Finally using the explicit basis(

0 bi

ci 0

� �
;

0 c�g�bi
c�gÿ1�ci 0

� �
;

0 bmÿi

cmÿi 0

� �
;

0 c�g�bmÿi
c�gÿ1�cmÿ1 0

� �)
of L1=L2, one can see that Lie bracket of L1=L2 
W �k0�W �k1� has its image naturally
in L2=L3.

It remains to calculate the expression y�a�ri��. Again, all but the three special cases
are obvious. We will give a full proof for xi belonging to case (iii). Using Theorem 5.4
and Proposition 3.9, we can work with the associated Lie algebras. By the above,
L1=L2 has a W �k0�-structure, but for purposes of calculating Lie brackets, we
can assume a W �k1�-structure. Morally we then have one copy of W �k1�c,
W �k1�c

ÿ1
W �k1�wc, W �k1�wc

ÿ1
and a Lie bracket that respects the G action, `morally'

meaning, that one could have torsion, depending on ai; amÿi; bi; bmÿi.
If the pairing on W � Pab

i � Pab
mÿi is given by the matrix A � �al;l0 � with respect to

some basis fyi;lg [ fymÿi;l0 g, then
ri �

X
l;l0

al;l0 �yi;l; ymÿi;l0 � 2 L2W :

Under tensoring with W �k1�, a extends uniquely to a map between W �k1� Lie
algebras

�W � L2W � 
W �k1� ! L1=L2 
W �k0�W �k1� � L2=L3:

The space W 
W �k� decomposes into one-dimensional eigenspaces for certain
characters of G, and the G-equivariant pairing on individual pieces was calculated
in Lemma 4.7. If we pick an appropriate basis fzi;lg [ fzmÿi;l0 g respecting the
eigenspaces, then there are units el such that

ri �
X
l

el �zi;l; zmÿi;l �;

where the product of the characters for zi;l and for zmÿi;l is w. The image contains only
components with an action by the four aforementioned characters. It follows that
y�a�ri�� has the shape given in the lemma. &

Remark 5.7. It might appear surprising at ¢rst, that there is no relation in the
dihedral case, if w is trivial and �Pi 
 k contains IndDn

Cn
kc, as there is a non-trivial
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pairing. But the reason is rather simple. Clearly, as w is trivial, the action of G on ri
must be trivial modulo C3�Im�a��. But we also know that the image of ri must have
determinant one, while on the other hand, in the dihedral case the image on which
G acts trivially are the homotheties. From there it is clear that the image of ri must
be trivial.

Alternatively one could break up the deformations into deformations of the deter-
minant and deformations with image inside SL2�R�. In the dihedral case with w being
trivial, it is easy to calculate that there are no obstructions for SL2�R�-valued
deformations. This is an alternative reason why y�a�ri�� � 1 in this case.

6. The Proofs and Precise Statements

We ¢rst list, using local Tate duality and the Euler^Poincarë characteristic (see [Mil,
Ch. 1, ½2]), the cohomological conditions that should govern the relations describing
RE .

LEMMA 6.1. If mp�L� � f1g, then H2�GK ; ad�r� � 0. Else we obtain the following for
h2, the k dimension of H2�GK ; ad�r� � �Hom�ad�r;Fp�U 
 mp�L��G.

. If U is trivial and G is abelian, then

�ad�r 
 mp�L��G � ��kw�2 � kwc � kwc
ÿ1�G:

(i) If w acts trivially, then h2 � 2.
(ii) If w � c and the order of c is two, then h2 � 2.
(iii) If w � c or w � cÿ1 and c 6� cÿ1, then h2 � 1.
(iv) In all other cases, h2 � 0.

. If U is trivial and G is not abelian, then

�ad�r 
 mp�L��G � ��kw� � kwf � IndDn
Cn
kc 
 kw�G:

(v) If w is trivial, then h2 � 1.
(vi) If w � f, then h2 � 1.
(vii) In all other cases h2 � 0.

. If U is non-trivial, then

��ad�r�U 
 mp�L��G � �kw � kc
ÿ1w�G:

(vii) If w is trivial, then h2 � 1.
(ix) If w � c, then h2 � 1.
(x) In all other cases h2 � 0.

Furthermore h1 � 4�K : Qp� � dimk H0�GK ; ad� � h2.

We are now in a position to completely determine the universal deformation
�RE; aE� in all the cases considered here. In Section 5, we calculated the shapes
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of all the ri, that appear. We only have to piece together these expressions to calculate
the Demu�skin relation modulo C3�Im�a�� and then construct a representation using
Proposition 3.8, which we will then show is the universal one.

We shall continue to use the notation from the previous section and we shall
assume that the xi are chosen as in Lemma 5.3. We shall always assume that
P0 � Zw

p and Pm � Ztriv
p correspond via duality to Fwÿ1

p and Ftriv
p in Theorem 4.2.

In particular, x0 modulo �GF �p�;GF �p�� is the q torsion element of the abelianisation.
IfU is non-trivial, we shall take for the gi, as de¢ned after Theorem 2.1, the elements
xi. If �r�x0� 6� I , then we take g1 � x0, else we shall assume that g1 � x1 by a suitable
permutation of the indices i ^ without permuting however i � 0;m. For the choices
of the ûi we also refer to the de¢nitions after Theorem 2.1.

We remark that if we de¢ne s � �K : Qp�, then

� �GF �p�;Ftriv
p �G � s� 1� dK � � �GF �p�;Fw

p�G;
� �GF �p�; kt�G � s for any non-trivial character t 6= w of G;

� �GF �p�; IndDn
Cn
kc�G � s if G surjects onto Dn when mapped to PGL2(k);

where dk is one if K contains p-th roots of unity and zero else.

THEOREM 6.2. Let A be the power series ring over W �k� where the indeterminates
are exactly the ai; bi; ci; di that occur in the expressions for all the a�xi�. Then there
exist

(A) x0i which satisfy x0i � xi modulo GF �p��2;q�,
(B) an ideal I inside A as described below,
(C) and a representation a0 2 E�A=I� such that a0�x0i� � a�xi� where by a�xi� we mean

the formal expressions given in Lemma 5.3.

The functor represented by Hom�A=I; � has the same tangent space as the functor
E and in fact they are isomorphic, i.e. �a0;A=I� � �a;RE�. For the de¢nition of I
we will use the cases (i) to (vii), as described in the previous lemma. The cases (i)
to (iv) will be used for all cases where G is cyclic, so also in the cases where U is
non-trivial.

The description of I is as follows. In cases (i) to (iv), below, we only list the ideal for
trivial U. If U is non-trivial and g1 � x0, one has to add the variable b0 to the ideal, and
if g1 � x1, one has to add the variable b1 to it. Also an expression like

P
bi means that

we sum over all the bi that exist as variables.

(i) I � ��1� a0�q ÿ 1;
P

i eici�ûmÿi � bmÿi� ÿ ��1� d0�q ÿ 1��1� d0�ÿq=2�.
(ii) I �

�P
i
ei�ûi � bi�dmÿi�1� dmÿi�ÿ1=2 ÿ �û0 � b0�gq��û0 � b0�c0�;P

i
eicidmÿi�1� dmÿi�ÿ1=2 ÿ c0gq��û0 � b0�c0�

�
:
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(iii) I � �P eidi�1� di�ÿ1=2�ûmÿi � bmÿi� ÿ q�û0 � b0�� ifw � c; and

I � �P eidi�1� di�ÿ1=2cmÿi ÿ qc0� ifw � cÿ1:

(iv) I � �0�.
(v) I � ��1� a0�q ÿ 1�.
(vi) I � �P eibibmÿi ÿ ��1� d0�q ÿ 1��1� d0�ÿq=2�
(vii) I � �0�.

Remarks 6.3.
(i) As described in [Maz1, ½1.6], by computing the cup-product H1�GK ; ad��

H1�GK ; ad� ! H2�GK ; ad�; one could recover the quadratic parts of the relations
generating I. IfU is trivial, then this can be carried out following the calculations
in [Lab]. Apart from the quadratic part there is in some cases a qth power part.
This seems unaccessible using cohomological methods.

(ii) In the cases where U is non-trivial, one has to observe, that one or two of the
equations in I can be used to eliminate variables of A. This is in agreement with
the fact, that for cases (viii) to (x) the number of variables of A is one or two
larger than the dimension h1 of H1�GK ; ad�. After eliminating those variables,
the number of equations needed to generate the resulting ideal I 0 is exactly h2.

(iii) From the description of RE, given in the theorem, it follows that RE is a complete
intersection which is £at over W �k�.

(iv) The ei are still units in W �k�, but not necessarily the same as in Lemma 5.6.
Furthermore, by replacing the matrix entries bi; ci or di by eÿ1i bi, eÿ1i ci or
eidi , respectively, one could eliminate the ei in the relations for I. Furthermore
by a change of variables one could replace the expressions di

������������
1� di
p ÿ1=2 simply

by di. Both operations however do complicate the images of the xi modulo triple
and higher commutators.

(v) Finally we note that the equations we ¢nd are di¡erent from, but necessarily
equivalent to those, that one would ¢nd by a direct calculation using

xq0�x0; x1� . . . �xmÿ1; xm� � 1:

Again this is not the true relation of our Demu�skin group, but just an approxi-
mation good enough to determine the universal deformation ring. The reason
for this discrepancy is simply that we used Theorem 5.4 to calculate the com-
mutators in a linearised form. In many cases one could indeed calculate the above
expression directly, for example in all non-dihedral cases where w is of order
greater than two.

Proof. To derive the relation(s) in I , we rewrite the Demu�skin relation modulo
C3�Im�a�� asX

i

y�a�ri�� � y�a�x0�q�:
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We note that this is equivalent to equating yÿ1 of the left hand side to a�x0�q inside
Im�a�=C3�Im�a��.

In all cases, but c � wÿ1 6� 1 and w2 � 1, it is obvious how to calculate a�x0�q. In
the remaining case we use the functions fn from Remark 5.5. Then by Proposition
3.8, there is a deformation a0 2 E�A=I� with the properties (A) to (C). The statement
about the tangent spaces is obvious from the construction.

It remains to show that �a0;A=I� is isomorphic to the universal deformation
�aE;RE�. By universality of the latter, there exists a map RE ! A=I mapping aE
to a0. As the tangent spaces are isomorphic, it follows that the map is surjective.

In the case where U is non-trivial, let A0 be the ring A with the super£uous
variables eliminated, i.e. with b0 � 0 if g1 � x0, or b1 � 0 if g1 � x1, and possibly
one more variable eliminated. In the other cases one simply takes A0 � A. Let I 0

by the resulting ideal. So then the number of topological generators of A0 is exactly
h1. From the smoothness of A0 and the completeness of RE it follows that we
can ¢nd a surjective lift as indicated in the following diagram.

So we can now think ofRE as a quotient of A0 by an ideal J that is contained in I 0. Let
n0 be the ideal generated by q and all the remaining variables. Then clearly I 0 � n02.

Now let �a;R� be an arbitrary deformation, with n the ideal corresponding to n0

and where we chose generators according to Lemma 5.3. If U is trivial, then
one easily ¢nds that the third step of the Frattini ¢ltration of Im�a� is contained
in the set of matrices that are the identity modulo n3. If U is non-trivial, then
one has to be a bit more careful. One can show easily that the fourth step of
the Frattini quotient is inside the set of matrices

M � 1�a b

g 1�d

� �
: a; b; d 2 n2; g 2 n3

� �
:

The possible remainders of the third step of the Frattini ¢ltration modulo M are of
the type

��ûi � bi�cj ÿ �ûj � bj�ci� 0 ûk�bk
ck 0

� �
Also the equations where we eliminate an element after setting b0 � 0 or b1 � 0,
resp., come from the �1; 2�-entry of the relation matrix written above. So after
the elimination there remains at most one equation, and this equation is an explicit
expression in products of ci's and dj 's up to sums of unknown expressions in

��ûi � bi�cj ÿ �ûj � bj�ci�ck
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modulo n3. By the following lemma the proof is complete, independently of the shape
of U . &

LEMMA 6.4. Let �R;m� be a complete Noetherian regular local ring and n an ideal
that contains a power of m. Let grn�R� be the associated graded ring. Let
F1; . . . ;Ft be functions in nk ÿ nk�1 that are linearly independent in nk=nkm over
R=m. Let G1; . . . ;Gt0 be functions such that Fi � Gi �mod nkm� for i � 1; . . . ; t,
and assume that the ideal �G1; . . . ;Gt0 � is contained in �F1; . . . ;Ft�, then the ideals
are equal.

Proof. By the containment of the ideals there are li;j 2 R such that Gi �
P

j li;jFj.
By the linear independence of the Fj modulo nkm, and the fact that Fj �
Gj�mod nkm� it follows that the square matrix �li;j�i;j�1;...;t is invertible modulo m

and hence invertible over R. Therefore the Fj are in the ideal generated by the Gi.&

Remark 6.5. It is important that we know the precise shape of the relations in the
construction of the above deformation, and not just relations up to n3, for example!
Only this allows us to conclude that I 0 � J, and only then the lemma on the rings
is true. The lemma cannot apply in cases where one ring is Zp��T ��=�qT � and the
other is Zp��T ��=��1� T �q ÿ 1�, even though modulo n3 the expressions of the
relations agree, because the ideals �qT � and ��1� T �q ÿ 1� are not contained in each
other. &

7. The Ordinary Locus

We now apply the methods of the previous sections to identify the ordinary locus of a
local representation, and eventually to obtain some information on the ordinary
locus of global representations. We follow the de¢nition of ordinary as given in
[Maz2]. We note that the de¢nition of ordinary as given in [Dia] or [Wil] corresponds
to co-ordinary in [Maz2]. In particular the transition between the two, which can be
achieved by a simple twist by the character det� �r�ÿ1, changes the determinant to
its inverse. So whenever later on we will refer to the determinant of �r in [Dia]
or [Wil] one has to be aware of this.

Let IK be the inertia group of GK . A two-dimensional representation
r0 : GK ! GL2�R� for R 2 C is called ordinary, if for R2, given a GK -module struc-
ture via the class of r0, the R-submodule of IK invariants is a free R-module of rank
one and a direct summand of R2, in the sense of R-modules, and the same for
any quotient of R. Equivalently one could say that, with respect to a suitable basis
of R2, r0 has the property that

r0jIK � f
1 x

0 y

� �
: x 2 R; y 2 R�g

and that r0�IK � contains either an element of ¢nite order prime to p, or an element
1 x

0 y

� �
where x is a unit in R. In particular, if �r is ordinary, H cannot be dihedral.
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We de¢ne the analogous notion for the functor E. We now assume that �a is
ordinary, and that G has non-trivial image in PGL2�k�, and is mapped under �a
to diagonal matrices, as explained in Section 2, so that the image of �a is as described
in the previous section. We de¢ne the functor Eord as

Eord �R� � fa 2 E�R� : ajIK has (1,1)-entry 1 and (2,1)-entry 0g:

In Theorem 6.2, we determined the shape of RE very precisely. However so far, we
did not care about possibly choosing thePi so that the closed normal of all but one of
them equals IK . In fact we used a Demu�skin relation that in many cases is too simple
to guarantee the above. Until now, we only took into account the non-degenerate
alternating pairing on H1�GL;Z=�p�� and the choice of an element in our presen-
tation that generates the torsion subgroup of Gab

L (all assuming that zp 2 L).
Now we also have to incorporate IK . This is why we need the following re¢ned
versions of Propositions 3.4 and 3.8. (We present them here and not in Section
3, as their proofs and statements involve tools and notions from Sections 4 and 5.)

PROPOSITION 7.1. LetDbe aDemu�skin group as in Theorem 3.4 with an action of G
(we assume that we have the same assumptions and use the same notation as in
Theorem 3.4 and its proof). Suppose we have a G-equivariant surjection
p : D! G, where G is isomorphic to Zp with trivial G action, and suppose that
the Zp�G�-module Dab contains at least two copies of Ztriv

p as summands, and that
q > 0. Then we can ¢nd a G-equivariant presentation

1!R! F !pr D! 1 �3�

such that:

(i) �F � �D under pr.
(ii) F is the free pro-p product of subgroupsF�i�, i � 0; . . . ;m, where theF�i� are closed

under the action of G, and the �F�i� are irreducible Fp�G�-modules. By the last
requirement, m is uniquely determined.

(iii) F�0� � F�1� � Zw
p and F�m� � F�mÿ 1� � Ztriv

p . By xi we denote a topological
generator of F�i� for i � 0; 1;mÿ 1;m.

(iv) Under the perfect pairing

k : �F ab
q ����F ab

q �� � H1�D;Z=�q���H1�D;Z=�q��
! H2�D;Z=�q���Z=�q�wÿ1;

�F�0�abq �� is paired with �F�m�abq ��, �F�1�abq �� is paired with �F�mÿ 1�abq ��, and each
�F�i�abq �� is either paired with itself, or a unique �F�j�abq �� where 2W i; jWmÿ 2.

(v) The image of �mi�2 F�i� under pr in Dab is a free Zp-module of rank nÿ 2, that of
F�0� � F�1� is isomorphic toZp �Z=�q�. If t is a ¢xed generatorof Dab

tors , the torsion
subgroup of Dab, then there exist a; b in Z, unique modulo q, such that the image of
xa0x

b
1 under pr in Dab equals t. Furthermore �a; b� � Z.
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(vi) There is an element r in R on which G acts via w, and whose topologically closed
normal hull is R, such that

r � ~rr0; ~r � xaq0 xbq1 �x0; xm��x1; xm ÿ 1� ~fq�x�

where r0 is in F�3;q� \ F �2;0�, and ~fq is the composite of the map
fq : Z=�q�w! F ab

q � F ab
q from the proof of Theorem 3.4 with the map

~ :
2̂

F ab
q !!

2̂

�mÿ2
i�2
F�i�abq

� �
;

and x is a generator of Z=�q�w. In a less technical language, ~fq�x� is simply the
product of all partial Demu�skin relations that come from the pairings among
the �F�i�abq �� for 2W iWmÿ 2. Also G acts on the image of ~r in the abelian group
F�2;q�=�F �3;q� \ F �2;0�� via w.

Conversely if one has a group with such a presentation it is clearly a Demu�skin group
with an action of G (by the proof of Theorem 3.4) that comes with a distinguished
quotient isomorphic to G, where the kernel of this quotient map is the image in D
of the closed normal hull of �mÿ1i�0 F�i�.

Proof.We can assume that we have a G-equivariant presentation (3) satisfying (i).
We need to studyF ab

q � Dab
q . Let t̂ be an element of F mapping to t 2 Dab on whichG

acts via w (this uses Lemma 3.2). We choose xm 2 F on which G acts trivially and
which maps under pr � p to a generator of G. We use s; t for the images of xm
and t̂ in F ab

q , and let xs denote the map from F ab
q to G=�q� induced from p.

For a free submodule V of �F ab
q �� we denote by V? the free submodule of �F ab

q ��
that is annihilated by all elements ofV under the alternating pairing k. As the pairing
is perfect, it is not hard to prove that V? is again free, and of complementary
dimension to V , i.e. dimV=�p� � dimV?=�p� � dimF ab

p . This will be the property
of a perfect pairing that we will need most often below. For an element e of
F ab

q that is nonzero in F ab
p , we denote by ker�e� the free submodule of �F ab

q �� of
maps that vanish on e. (There are two natural dualities we have to deal with.)

We ¢rst observe that V2 :� hxsi? \ ker�s� is a free submodule of F ab
q of codimen-

sion two. Otherwise �q=p�hxsi? � ker�s�, and so �q=p�xs�s� � 0, a contradiction.
As ker�s� is free over Z=�q�, closed under the action of G, and of codimension one,

it follows that ker�s�? is free of dimension one and closed under the action of G. By x0s
we denote a generator of it. It is easy to see that hx0si? � ker�s�. It follows that k�xs; x0s�
must be a unit, and so we may choose x0s so that this unit is one. Furthermore k
induces a non-degenerate pairing on V2, because we have V2 � hxsi? \ hx0si?.

Now we look at ker�t� \ V2. It is closed under the action of G, and modulo p it has
codimension at most one. Thus it is always possible to ¢nd a freeZ=�q� submoduleV3

inside ker�t� \ V2 of codimension one in V2, which is closed under the action of G,
and so that it has a complement inside V2 on which G acts via the character wÿ1

(this uses that Dab=�p� contains at least two copies of Ftriv
p and therefore of Fw

p).
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By xt we denote a generator of this complement, and as before, we construct an
element x0t inside V2 such that hx0ti? � V3 (inside V2), and k�xt; x0t� � 1. We let
V4 be the complement in V2 of x0t and xt. As before k restricted to V4 is
non-degenerate and closed under the action of G.

By Proposition 4.3, we can decompose V4 into projective irreducible
Z=�q��G�-modules, V4 � �mÿ2

i�2 Wi, such that under k each Wi is paired with a unique
Wj. We de¢ne W0 � hx0si, W1 � hx0ti, Wmÿ1 � hxti, and Wm � hxsi. Thus
F ab

q � �m
i�0W

�
i , where by our construction W �

m � hsi and t 2W �
0 �W �

1 .
We now use Lemma 3.2 to choose a lifting of this decomposition to F . As the

elements xi we take lifts of generators of the W �
i for i � 0; 1;mÿ 1;m. It is then

immediate that conditions (i) to (v) are satis¢ed. One checks that the kernel of
F ab! Dab is generated by ~r, and as in the proof of Theorem 3.4, that ~r also generates
the kernel of F=F�3;q� ! D=D�3;q�. From this (vi) follows. Finally one can again
appeal to the proof of Theorem 3.4 to see that any group D with a presentation
(3) satisfying the conditions (i) to (vi), is a Demu�skin group with an action of
G. From the properties of the presentation in (3), one deduces the existence of a
distinguished G-equivariant quotient isomorphic to G. &

Remark 7.2. If D above is the pro-p completion of the absolute Galois group of a
local ¢eld of characteristic zero and residue characteristic p, then the constants
a; b above can be determined, e.g. as in [Koch, ½10.3]. (There the variables a0
and a1 can be chosen so that G acts via w on them, and hence the G action poses
no problems here.)

The following is a re¢nement of Proposition 3.8 to the above situation.

PROPOSITION 7.3. Let D be a Demu�skin group with an action of a group G. We
assume that we are given a G-equivariant presentation of D as in the previous
proposition, and so, in particular, G has a distinguished G-equivariant quotient G.
Let P be some pro-p group with an action of G. Let r and ~r be as above. If we have
a homomorphism a from F to P, such that a�~r� 2 a�F �3;q� \ F �2;0��, then there exists
a homomorphism a0 from D to P with image a�F� that agrees with a modulo
a�F �3;q� \ F �2;0��. In particular, the image under a0 of the kernel of D! G and the
image under a of the kernel of F ! G agree.

This time we omit the proof, as it is a simple variation of the proof of Proposition
3.8.

With the above tools at hand, it is now clear, how to obtain a description ofRord
E as

a quotient of RE . We ¢rst have to recalculate the relations generating the ideal I of
A=I using the above re¢ned Demu�skin relation ~r. (We only need this in cases (i)
to (iii) in the notation of Lemma 6.1.) Then we have to see what further equations
we must impose to cut out Rord

E from RE . For this, we need the previous proposition
which gives us a precise description of the image of the inertia group.

To ¢x the notation, we take for the subgroups Pi the images of the F�i� after
choosing a presentation for D � GF �p� as in Proposition 7.1 - assuming that
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zp 2 F . We choose the xi for i � 2; . . . ;mÿ 2 as we did in Section 5, and the element
g1 2 GF �p� is chosen as follows (providedU is non-trivial). If �r�x0� 6� 1, then we take
g1 � x0, else, if �r�x1� 6� 1, we take g1 � x1. If neither case applies, and if U is
non-trivial, we assume that the F�i� (2W iWmÿ 2) are ordered in such a way that
�r�x2� is non-trivial, and then we take g1 � x2. With respect to the above presentation
of GF �p� and choices of xi, one can now calculate the following equations, i.e. gen-
erators of I , by the same method as in Section 6. We use the cases as in the previous
section and obtain.

(i)
I �

�X
i

eici�ûmÿi � bmÿi� ÿ �1� d0�aq�1� d1�bq �

� �1� d0�ÿaq�1� d1�ÿbq; �1� a0�aq�1� a1�bq ÿ 1
�
:

(ii)
I �

�X
i

ei�ûi � bi�dmÿi�1� dmÿi�ÿ1=2 ÿ

ÿ �û0 � b0�gaq��û0 � b0�c0� ÿ �û1 � b1�gbq��û1 � b1�c1�;X
i

eicidmÿi�1� dmÿi�ÿ1=2 ÿ c0gaq��û0 � b0�c0� ÿ c1gbq��û1 � b1�c1�
�
:

(iii)
I �

�X
eidi�1� di�ÿ1=2�ûmÿi � bmÿi� ÿ q�aû0 � ab0 � bû1 � bb1�

�
ifw � c;

I �
�X

eidi�1� di�ÿ1=2cmÿi ÿ q�ac0 � bc1�
�

if w � cÿ1:

As in the previous section we assume that û1 � 1, and the corresponding bi � 0. So in
all cases whereU is non-trivial, this allows to eliminate one variables using one of the
equations.

To ¢nd the equations in the case w � c, we used that one can use the square of ~r as a
relation where the order of the individual components is rather arbitrary. Thus we
can use xaq0 x2bq1 xaq0 as a part of that relation. When writing y of the corresponding
matrix, one can simplify this expression by peeling off parts that belong the triple
and higher commutator parts in the Lie algebra that one considers. This simpli¢es
the equations considerably.

To obtain the ordinary quotient, we have to set all the ci � 0, and have to impose
the equations �1� ai��1� di� � 1 for all variables but i � m. The number of those
equations can be read of from the little table right above Theorem 6.2. Sometimes
one of the equations is already implied by imposing all but this equation. We sum-
marise this in the following corollary.

COROLLARY 7.4. The functor Eord is representable, and the corresponding univer-
sal ring Rord

E is isomorphic to the quotient of A=I by the ideal �ci; aj � dj � ajdj j 6�m�.
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In particular, we mod out by exactly 2s equations if w 6� cÿ1; triv or w � triv and U is
non-trivial, and by 2s� 1 equations otherwise. Furthermore, Rord

E is a complete
intersection, £at over W �k� of relative dimension dord � dimH0 �GK ; ad��
2�K : Qp�, and with dord � dK � dw�c topological generators over W �k�.

We de¢ne dK; �r to be one if w � cÿ1 6� triv and zero otherwise. Thus, unless U is
trivial and w � triv, 2s� dK; �r is precisely the number of equations needed to cut
out Rord

E from RE . The reason for this will become somewhat clearer after part (ii)
of the remark below.

Remarks 7.5.
(i) We note that the number of equations needed to cut out Rord

E as a quotient ofRE is
exactly the loss of dimension in the tangent space of the respective rings modulo p.
So the number of equations is in all cases as small as possible. However the Krull
dimension decreases in all cases only by 2s. Furthermore one can directly verify
our results on the size of tangent spaces modulo p by purely cohomological
methods, as for example done in [Wil] in special cases. In cases where Rord

E
is known to be smooth, this purely cohomological method su¤ces to calculate
the number of equations, yet in general it doesn't.

(ii) In cases where Rord
E is cut out by 2s� 1 equations from RE , it seems tempting to

try to ¢nd a quotient of RE that has the same Krull dimension as Rord
E , surjects

onto the latter, is cut out by 2s equations and has an interpretation as a universal
ring representing a naturally de¢ned subfunctor of E. So far we were unable
to provide a g̀eometric' condition describing such a subfunctor in cases where
cÿ1 � w 6� triv. (This is the case where dK; �r � 1.)
If w � triv one could use the subfunctor describing deformations such that the
image of the deformation is of Borel type and that the action on the �1; 1�-entry
is trivial on a chosen maximal torsion free subgroup of the image of IF inside
Gab

F �p�. One can check that this corresponds to a quotient Q of RE that is cut
out by 2s equations, and that Rord

E is a quotient of Q by an equation d � 0 where
the variable d satis¢es an equation �1� d�q � 1 inQ, and thatQ is £at overW �k�.
The issue of having only to mod out by 2s equations to obtain Rord

E from RE will
become important in the last section.

(iii) If we let Z : GK !O�, forO 2 C, be such that Z�mod mO� � det� �r�, we can de¢ne
EZ and Eord;Z as the subfunctors de¢ned over CO where one assumes that
det�r� � Z. Then one can show easily that those functors are representable and,
as in the previous corollary, that the universal ring Rord;Z

E is obtained from
RZ

E by dividing out 2s� dK; �r equations, and furthermore that Rord;Z
E is a complete

intersection, £at over W �k� of relative dimension dord;Z � dimH0

�GK ; ad0���K : Qp�, and with dord;Z � dw�c topological generators over W �k�.
One way to see this is to notice that by twisting with one-dimensional characters,
the problem can be reduced to considering maps into SL2�R� instead of GL2�R�
and then everything can be adapted to this case.
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8. The Case Where No Prime-to-p Group Acts

Here we want to embark on a short discussion of the case where �G is trivial. The
functor EP that we shall consider is the functor described in Remark 2.2 with
P � GK �p�. If U is trivial, it is simply the functor of homomorphisms from P to
G2�R�. We still assume that K is a local ¢eld as in Section 2. Relevant for determining
the ordinary locus inside the whole space is only the case where U is non-
trivial.

In this section, we shall not carry out all the details. We only set up the notation,
explain the steps one needs to carry out and present fairly explicit equations from
which the theorem at the end of this section will follow readily. We shall consider
only the case where zp 2 K , so that GK �p� is a Demu�skin group. As �G is trivial
there is no group action that simpli¢es the shapes of the images of generators
of GF .

We can and will assume that G itself is trivial. To justify this assumption, we
remark that the triviality of �G implies that the image of G comes to lie in the
set of scalar matrices, and so one can replace �r by a twist for which G is trivial.
On the level of universal deformation spaces such a twist gives an isomorphism.
Furthermore if �r is ordinary, then the same holds for the twist, which must then
be a twist by an unrami¢ed character, and so there is also an isomorphism of
the corresponding ordinary universal deformation spaces.

We use the notation as in Proposition 7.1 and remark, that all the references to G
can simply be ignored, that all the F�i� are isomorphic to Zp, that for each i we
pick any generator xi of each F�i�, and that the relation we need to consider is

~r � xaq0 xbq1 �x0; xm��x1; xm ÿ 1��x2; xmÿ2� . . . �x�mÿ1�=2; x�m�1�=2�:

(This is the Demu�skin relation, as given for example in [Koch, ½10.3].) The image of

xi we represent as a matrix
������������
1� ei
p

Mi where Mi � ai ûi�bi
ci di

� �
is of determinant

one. One now introduces a new variable zi � ai ÿ di. Because of our condition
on the determinant it is possible to express ai and di in terms of ûi � bi, ci and
zi. We take these three together with ei as independent variables. We also let
di � �ûi � bi�ci � z2i .

Again the calculus of Pink will be crucial. Using Cayley^Hamilton, one can show
that y�Mn

i � � gn�di�y�Mi�, gn the function from Remark 5.5. We remark that
gnm�di� � gm�dign�di�2�gn�di�, and modulo p, gpi �di� � d�p

iÿ1�=2
i , and gn�di� is a unit

whenever n is a unit in Zp.
When setting up the equation corresponding to ~r in the Lie algebra de¢ned by

Pink, the use of a symmetric expression for the image of xaq0 xbq1 modulo the image
of F�3;q� \ F �2;0� simpli¢es the matrix relation signi¢cantly. One needs to check that
this can indeed be done modulo L3. With these simpli¢cations one obtains two
relations that give four equations for the universal deformation space, namely
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�1� e0�aq�1� e1�bq � 1, andX
i

�ûi�bi�cmÿiÿ�ûmÿi�bmÿi�ci 2zi�ûmÿi�bmÿi�ÿ2zmÿi�ûi�bi�
2cizmÿiÿ2cmÿizi ci�ûmÿi�bmÿi�ÿcmÿi�ûi�bi�

� �
�

�����������������������������
1� d0gaq�d0�2

q
gbq�d1�

z1 û1�b1
c1 ÿz1

� �
�

�����������������������������
1� d1gbq�d1�2

q
gaq�d0�

z0 û0�b0
c0 ÿz0

� �
Modulo p, the expression gaq�d0� can be written as d�qÿ1�=20 ga�d0�q. From this one can
see that the universal ring RE is £at over W �k� of relative dimension
h1 ÿ h2 � 4�K : Qp� � h0.

It is now obvious how to describe the ordinary locus and the number of equations
needed to cut it out. If the analysis is carried out properly one obtains the following
result that holds trivially if K does not contain zp.

THEOREM 8.1. If we are given �r : GK ! GL2�k�, K a local ¢eld of residue charac-
teristic p, and if the image of �r in PGL2�k� is a p-group, then the universal space
RE is a complete intersection, £at over W �k� of relative dimension 4�K : Q� � h0.

If further �r is ordinary, then Rord
E is a quotient of RE by exactly 2��K : Q� � dK �

equations, and the same is true for Rord;Z
E;O as a quotient of RZ

E;O, if we have a given
determinant Z : GK !O that agrees modulo p with det� �r�. Also, all the universal rings
above are complete intersection and £at over W �k�.

In this case we de¢ne dK; �r � dK . In the same way as in part (ii) of Remark 7.5, one
can show that RE has a reasonably de¢ned quotient which is a complete intersection,
£at overW �k�, we call itQ, cut out by 2s� dK; �r equations such thatRord

E is a quotient
ofQ by an equation d � 0 where modulo p, the expression d satis¢es dq � 0 inQ (and
so RE=�p� and Q=�p� have the same reduced quotients.) This explains the choice of
dK; �r.

We also mention that, when computing the equations for the ordinary quotient,

there is one particular case, the case when xm maps to 1 1

0 1

� �
under �r, when it

is more convenient to work with a different description as given in Remark 2.2.

Then it is better to rigidify LiftP by requiring that r�xm� � � 1

� �

� �
and in addition

r�xi� � 1 �
� �

� �
for some i 6� m.

9. Applications to the Structure of Global Deformation Rings

We shall now apply the above results to the global situation. For the proper de¢-
nitions see [Maz1, Maz2].

In the following, we letM be a number ¢eld. Sp � fpi : i � 1; . . . ; tg will denote the
set of places of M above p. S will denote a ¢nite set of places of M, containing all
places above p and above1, GM;S the Galois group of the maximal Galois extension
of M, unrami¢ed outside S. Exceptionally, we shall denote by GM;fp;1g the Galois
group GM;S with S the set of all places of M above p and 1.
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We present as a ¢rst application of Theorem 6.2 a generalisation of an example in
[Bos1, 8.1] ^ in fact the proof as presented there contains a small oversight, as, in the
notation from loc. cit., �W2; ad� � 1 and not zero as claimed there. So the argument
there would need to be modi¢ed.

COROLLARY 9.1. Given �r : GQ;S ! GL2�k� an odd, absolutely irreducible Galois
representation with splitting ¢eld L over Q where S is a ¢nite set of places of Q con-
taining p and1. In particular, the global universal deformation ring RS of the global
deformation problem in the sense of [Maz1] for deformations unrami¢ed outside
S exists. Assume the following conditions.

(i) �rjGQp
� w1 0

0 w2

� �
such that w1w

ÿ1
2 � w is the mod p cyclotomic character, where

GQp
is some (any) chosen decomposition group of p inside GQ;S.

(ii) H1�Gal�L=Q�; ad� � 0 (this holds for example if Gal�L=Q� � GL2�Fp�, if
Gal�L=Q� � SL2�k� and p > 5, or if �r is tame).

(iii) p does not divide the class group of L�zp� ^ or, weaker, the semisimpli¢cation of
the class group of L�zp� as an Fp�Gal�L�zp�=Q��-module admits no non-trivial
map to ad�r or ad0

�r�1�.
(iv) As an Fp�Gal�L=Q��-module, the cokernel of mp�L� ! �

qjl2Sÿfp;1g
mp�Lq� admits no

non-trivial map to ad�r.

If p � 3, then RS is isomorphic to W �k���X1; . . . ;X5��=I where the ideal I has the
following description. There are variables U1; . . . ;U6 in the ideal �X1; . . . ;X5�, the
images of a set of coordinates of the local at p deformation problem, such that

I � �U1U3 �U4U6 ÿU4�3� 4U4U5�;U2U3 �U5U6 ÿU5�3� 4U4U5��:

If p > 3, then

RS �W �k���X1; . . . ;X4��=�U1U2 �U4�U3 ÿ q��

where again U1; . . . ;U4 are images of a set of coordinates of the local at p deformation
problem.

If we suppose further that zp 2 L, or that there is a complex conjugation c of
Gal�L=Q� which lies inside Gal�Lp=Qp� for some place p of L above p such that c
acts non-trivially on Qp�zp� (by assumption (i) Lp contains zp), then the following
identi¢cations can be made. If p � 3, and if the image of �r is conjugate to a subgroup
of GL2�F3�, or if �r is tame, then we can choose X4 � U4 and X5 � U5. If p > 3
and �r is tame, then we can choose X2 � U2 and X4 � U4.

Proof. Conditions (iv) and (ii) together with the part of (iii) referring to ad�r imply
that

H2�GQ;S; ad� ! H2�GQp
; ad�

is an isomorphism (this follows from the Poitou-Tate sequence, e.g. [Boe2, ½6]).
From [Boe2, ½5], it follows that the only relations necessary in a minimal presen-

DEMU �SKIN GROUPS WITH GROUP ACTIONS 147



tation of RS are those coming from the local deformation problem at p. (In the tame
case any references to [Boe2] are unnecessary; one can always use the methods pro-
vided in [Bos1].) From Theorem 6.2 we can then read off the explicit shape of
the relations given above where the Ui are images of coordinates of the deformation
problem at p. If necessary we can also make a change of variables
Ui

��������������
1�Ui
p ÿ1=2 7!Ui. This establishes the ¢rst part of the corollary. It remains to

verify that in the special cases we can identify the variables as described in the
proposition. (As in [Bos1], one can only hope to identify some of the local variables.)

Let Rp denote the (versal) deformation ring of the local at p deformation problem.
Then there is a canonical map from Rp to RS. If mA denotes the maximal ideal of a
local ring A, we need to study the induced map

mRp=� p;m2
Rp
� ! mRS=� p;m2

RS
�;

or equivalently its dual map H1�GQ;S; ad� ! H1�GQp
; ad�. For this we consider the

following diagram where the rows are in£ation-restriction sequences.

0! H1�GQ;S; ad0� ! HomGal�L=Q��GL;S; ad0� ! 0
a b

0! H1�GQp
; ad0� ! HomGal�Lp=Qp��GLp

; ad0� ! 0

The four outer zeros in the diagram follow from assumptions (i) and (iii) together
with the tameness of �r, or the property that Im� �r� is inside GL2�F3�. a is injective
by assumption (iii). We want to study b. The structure of Gab

Lp
=�p� as a Galois module

was given in Section 4 to be

Fp � Fw
p � Fp�Gal�Lp=Qp��:

By assumptions (iii) and (iv), invoking the methods from [Bos1], in particular the
results from ½3 of loc.cit., b surjects onto the quotient HomGal�Lp=Qp��Fw

p; ad0� of
HomGal�Lp=Qp��GLp

; ad0�. Thus we can choose the images in RS of the corresponding
local variables to be basis elements of mRS=�p;m2

RS
�. In the case p � 3, this achieves

what we wanted. For p > 3 it allows us to choose X4 � U4. In the tame case if
p > 3, one can actually show that b surjects onto HomGal�Lp=Qp���Fw

p�2; ad0�, where
the second copy of Fw

p is a summand of Fp�Gal�Lp=Qp��. This uses that there is a
complex conjugation that acts non-trivially on Qp�zp�. Thus the choice X2 � U2

is justi¢ed. (The names of the global variables to which we assign local ones are
arbitrary, as we did not ¢x a choice of the global variables at the beginning.) &

Remark 9.2. The problem with identifying local and global variables in the case
that �r is not tame is that there isn't necessarily a zero at the right end of the
top row (but the group H2�Gal�L=Q�; ad0�). Thus it could happen that the part
of HomGal�L=Q��GL;S; ad0� that surjects onto HomGal�Lp=Qp��Fw

p; ad0� maps
non-trivially toH2�Gal�L=Q�; ad�. It seems very dif¢cult to study when this happens.

# #
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The next goal is a generalisation of the Main Proposition of [Maz2] from which we
shall then derive results on the universal deformation spaces with no restrictions at
the place p.

Let �r : GM;S ! GL2�k� be a Galois representation such that the centraliser of
Im� �r� inside GL2�k� is the set of homotheties. Z : GM !O� will denote a character
extending det� �r� for some ¢xed O 2 C ¢nite over W �k�. The splitting ¢eld of �r will
be the ¢eld corresponding to the kernel of �r. We suppose that �r is ordinary at
all primes in S � fp1; . . . ; prg � Sp, rW t, i.e., the restriction of �r to the local Galois
groups GMpi

are ordinary in the above sense for i � 1; . . . ; r. Let si � �Mpi : Qp�
and di � dMpi ; �r

, which was de¢ned in the previous two sections. From now on,
hi is used for the k-dimension of Hi�GM;S; ad�.

We shall de¢ne several universal deformation problems, which are easily seen to be
representable. �rS;O;RS;O�will be a universal couple representing all deformations of
�r to rings in CO, unrami¢ed outside S. IfO �W �k�,Owill be omitted in the notation.
Note that RS;O � RS 
W �k� O whenever RS is de¢ned, and O is ¢nite £at over W �k�.
The superscript Sÿord will mean that the deformations are supposed to be ordinary
at all pi 2 S, the superscript Z, that the determinant of the deformations is ¢xed to be
Z, and several superscripts separated by commas shall mean that all the conditions
listed are supposed to be veri¢ed. We obtain immediately from the results in
Section 8.

COROLLARY 9.3. If all the conditions on M and �r listed above are satis¢ed, then
�rSÿordS ;RSÿord

S � is a quotient of �rS;RS� obtained by dividing RS by at mostPr
i�12si � di equations. The same holds for �rSÿord;ZS;O ;RSÿord;Z

S;O � as a quotient of
�rZS;O;RZ

S;O�.

Remark 9.4. If we specialise this to the situation M � Q and S any set of places
containing f1; pg as in [Maz2], then Rord

S is a quotient of RS by at most two

equations, provided that wÿ11 w2 6� w if �r is given by g 7! w1�g� a�g�
0 w2�g�

� �
. This is cer-

tainly satis¢ed if det� �r� 6� w if restricted to the inertia group at p. So Corollary

9.3 strengthens the Main Proposition of [Maz2].
We will now discuss the consequences for �rS;RS� if we know certain

ring-theoretic properties of RSÿord;Z
S;O . The rings for which such properties have been

established recently are the rings RSpÿord;Z
S;O where M is totally real and satis¢es some

further assumptions stated below.

LEMMA 9.5. Let O be a ¢nite £at local W �k�-algebra in C, and so for O-modules,
£atness over O and over W �k� is equivalent. Let R;R0 2 CO, and suppose we are given
surjections S � O��x1; . . . ; xn�� ! R0 ! R where R is ¢nite £at over O, the kernel
of S! R0 is an ideal generated by m equations, and that of R0 ! R by l so that
l �mW n. Then l �m � n, R, R0 are complete intersections, and R0 is £at over O
of relative dimension l.
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Furthermore, if R0 is obtained by base change fromW �k� toO from a quotient R0 of
W �k���x1; . . . ; xn��, cut out by at most m equations, then R0 itself is a complete
intersection, £at over W �k� of relative dimension l over W �k�.

Proof. The prove of the ¢rst part is straightforward, as the quotient of a ring of
dimension n� 1 by s equations has dimension greater or equal to n� 1ÿ s. If
the top ring is smooth, and the quotient ring has dimension equal to n� 1ÿ s, then
the quotient ring is a complete intersection. Regarding the £atness, let f1; . . . ; fm
be elements of S generating the kernel of S! R0, and let fm�1; . . . ; fn be lifts to
S of elements of R0 spanning the kernel of R0 ! R. Then by £atness of R over
W �k�, the elements f1; . . . ; fn; p form a regular sequence. As S is local, any sub-
sequence of any reordering is a regular sequence, in particular f1; . . . ; fm; p. The state-
ment about R0 is also straightforward. &

From now on we shall assume that M is totally real. For R we will take the ring
RZ

S;O, and for R0 the ring RSpÿord;Z
S;O where we assume that there exists an ordinary

Hilbert modular eigenform f whose associated p-adic representation
rf ;p : GM ! GL2�O� takes values in O, or equivalently such that all the Hecke
eigenvalues of f are in O, where O 2 C is a discrete valuation ring, ¢nite over
W �k�. Also we shall assume that �r is such that the deformation functor is
representable.

By [Maz1, Prop. 2], it is known thatRS=�p� is a quotient of k��x1; :::; xh1 �� by at most
h2 equations. In fact as is noted in [Boe2], one can check that Mazur's argument also
shows that RS is a quotient of W �k���x1; . . . ; xh1 �� by at most h2 equations.

For RSpÿord;Z
S;O it has been established in many cases that it is ¢nite £at over O, by

constructing an explicit isomorphism to a certain universal Hecke algebra. We
now state several suf¢cient sets of conditions under which the structure of
RSpÿord;Z

S;O is known. References are [Dia], [TaWi], [Wil] for the ¢rst part and [Fuji]
for the second.

THEOREM 9.6. If M � Q, and if �r is absolutely irreducible if restricted to GQ�zp�,
modular and p-ordinary, then for any ¢nite set S, Rpÿord;Z

S;O is ¢nite £at over O, where
O is determined as described above by a cusp form that gives rise to �r.

If M is totally real, linearly disjoint from Q�zp�, unrami¢ed over Q at all places
above p, if p is prime to the class number of M and if �r is absolutely irreducible
if restricted to GM�zp�, p-ordinary, has a minimal modular lifting, and is unrami¢ed
outside p and in¢nity, then Rpÿord;Z

�p;1�;O is ¢nite £at over O, O associated to a Hilbert
modular cusp form as above.

The results of Fujiwara are stronger than we quote them in the second part above.
But we only use the above as an example to demonstrate the general method, that we
learned from [Maz3], that leads to Corollary 9.8 below.

LEMMA 9.7. Suppose R 2 C and y 2 R is an element satisfying an equation
g�y� 2W �k��y� such that R=�p; y� is ¢nite and g�y� � yl�mod p� for some integer l,
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and suppose that one has an surjectionO��x1; . . . ; xn�� ! R whose kernel is generated
by at most n elements f1; . . . ; fn, where O=W �k� is ¢nite £at. Then R is a complete
intersection, ¢nite £at over W �k�.

By induction it is obvious that the statement also holds if we mod out by several
variables yi all subject to analogous conditions to the y above.

Proof. In R=�p� the image �y of y satis¢es �yl � 0. So �R=�p��red � �R=�p; y��red . This
implies that R=�p� is zero dimensional. Hence f1; . . . ; fn; p form a regular sequence.
But then R � O��x1; . . . ; xn��=� f1; . . . ; fn� is a complete intersection, £at over
W �k� and hence ¢nite over it, as it has relative dimension zero. &

COROLLARY 9.8. We assume that M, �r, S are as in the previous theorem, in par-
ticular S � Sp [ finfinite placesg, if M 6� Q, and that S is any subset of Sp. Further
we assume that there exists a totally even k�-valued character x of M such that
di � 0 for all primes pi in M dividing p for the residual representation �r
 x. Then
RS and RZ

S;O are complete intersections, £at over W �k� of relative dimension
2�M : Q� � 1� dM, 2�M : Q�, resp. If x is trivial, then also RSÿord;Z

S;O is a complete
intersections, £at over W �k�, and of relative dimension 2

P
i:pi =2S si. Finally for

M � Q our condition on the vanishing of the di for some twist of �r is equivalent
to the condition that the restriction of �r to a decomposition group at p is neither
peu rami¢ë nor tre© s rami¢ë in the sense of Serre ([Ser]).

The proof in the case of ¢xed determinant Z is an immediate consequence of the
Theorem 9.6 using Corollary 9.3 and Lemmas 9.5 and 9.7. (It also uses that twisting
�r by a character induces isomorphisms of the corresponding universal rings RS and
RZ

S;O, where Z will be different for the twisted representation.)
To obtain the results without having to ¢x the determinant, one can use the

following isomorphism, which holds in fact also for the associated deformation
spaces, RS;O � RZ

S;O
̂Z��GS�� where GS is the maximal abelian outside S unrami¢ed
extension of M. This can be found in [Hida] or [Boe2].

Remarks 9.9.
(i) Similar results on RSÿord

S;O can be derived from results obtained by Hida in [Hida].
(ii) One can prove that RS and RZ

S are complete intersections, £at over W �k� and of
the dimension predicted by Mazur, by reasoning as above, also in the following
cases.
(a) Suppose M � Q, �r restricted to the decomposition subgroup at p is associ-

ated to a ¢nite £at group scheme over Zp, �r is modular and S is ¢nite.
This can be seen as follows. By work of Ramakrishna, see [Ram], the local
universal deformation ring associated to ¢nite £at deformations with ¢xed
determinant is isomorphic to Zp��x��, and the local deformation ring RZ

for deformations with ¢xed determinant is isomorphic to Zp��x1; x2; x3��.
So the former is a quotient of the latter by two equations. Now one can
conclude as above using the results by Wiles and Diamond in [Wil] and
[Dia].
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(b) SupposeM is arbitrary totally real and satis¢es all the conditions of Theorem
9.6 but the condition of p-ordinariness. Instead we require that the restriction
of �r to the inertia groups at primes above p is either £at or ordinary and
satis¢es di � 0 at all ordinary places (so some of the places can be of
one type and some of the other). Then one can use [Fuji] and [Ram] to con-
clude. It is conceivable that this also works, if one uses the weaker
assumptions considered in [Con] instead of £atness at the primes pi.

(iii) It seems rather unfortunate, that, as we mentioned in Remark 7.5 (ii), we do not
have a geometric condition at the place p replacing ordinariness, in the cases
when �r restricted to p is peu or tre© s rami¢ë, and such that the quotient corre-
sponding to this condition is cut out by precisely 2s equations. Then for
M � Q, one could try to investigate in the global case if deformations satisfying
this condition at p and having ¢xed determinant are represented by a universal
ring that is ¢nite £at over W �k�.

(iv) Let S0 be the union of the set of places where �r rami¢es and the set of all places
above p and in¢nity. It can be shown, see [Boe1], that if the minimal universal
ring, i.e. the one where one has as little freedom as possible for the deformations
at all places away from p, is ¢nite £at over W �k�, then the ring RS0 has the same
property.
Deriving results on RS0 from RS, if S0 contains S, seems in general rather di¤cult.
The only primes that one could add, we believe, are the primes of the type used by
Wiles as auxiliary primes, as those are the only unrami¢ed primes where the local
equation does only depend on the local rami¢cation group.
So enlarging the set S of primes where rami¢cation is allowed should always be
¢rst treated for the s̀mall' deformation spaces, i.e. with ordinariness restrictions
and ¢xed determinant, or with a £atness condition at p, as there one has good
control over the universal deformation by comparing it with correspondingHecke
algebras. Then raising of the level can usually be achieved by some criteria of
Lenstra and Wiles. Only afterwards one can apply our methods to remove
the constraints at places above p.

(v) It could be hoped that our results might help answering the following question. Is
the set of modular points, i.e. elements of Spec�RS� that correspond to modular
forms, Zariski dense in it? Is there a universal Hecke algebra that is isomorphic
to the universal deformation space RS ? There has been some progress by Gouveª a
and Mazur [GoMa] for M � Q, in special cases. They show the density using
some results of Coleman, and they construct a candidate of a p-adic Hecke
algebra. In fact Coleman's results seems to provide a way to ¢ll up Zariski dense
three-dimensional neighbourhoods of a modular point of RS�1=p�. By our results,
Spec�RS�1=p�� has dimension three in many cases, and so one could hope that this
would help in the density question. This requires that one have at least one
modular point. Regarding the isomorphism with the p-adic Hecke algebra, again
it might be important to know that RS has relative dimension three.We plan to
further discuss this in a future publication.
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[Mil] Milne, J. S.: Arithmetic Duality Theorems, Perspect. Math. 1, Academic Press,

Boston, MA, 1986.
[Pink] R. Pink, Classi¢cation of pro-p subgroups of SL2 over a p-adic ring, where p is an

odd prime, Compositio Math. 88 (1993), 251^264.
[Ram] Ramakrishna, R.: On a variation of Mazur's deformation functor, Compositio

Math. 87 (1993), 269^286.

DEMU �SKIN GROUPS WITH GROUP ACTIONS 153
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