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Abstract. We will study the generic fiber over Ql of the universal deformation
ring RQ, as defined by Mazur, for deformations unramified outside a finite set
of primes Q of a given Galois representation ρ̄ : GE → GL2(k), E a number
field, k a finite field of characteristic l. The main result will be that, if ρ̄ is tame
and absolutely irreducible, and if one assumes the Leopoldt conjecture for the
splitting field E0 of adρ̄, then RQ ⊗Ql defines a smooth l-adic analytic variety,
near the trivial lift ρ0 of ρ̄, whose dimension is given by cohomological constraints
and as predicted by Mazur. As a corollary it follows that, in the cases considered
here, RQ is a quotient of W (k)[[T1, . . . , Tn]] by an ideal I generated by exactly m
equations, where n = dimkH

1(GE, adρ̄) and m = dimkH
2(GE, adρ̄). Under the

above assumptions for E = Q and ρ̄ odd, using ideas of Coleman, Gouvêa and
Mazur it should now be possible to show that modular points are Zariski-dense
in the component of RQ ⊗Ql, that contains the trivial lift ρ0, provided this lift
satisfies the Artin conjecture and E0 satisfies the Leopoldt conjecture.

Furthermore, in the Borel case, we show that the Krull dimension of RQ can
exceed any given number, provided Q is chosen appropriately. At the same time,
we present some evidence that despite this fact, one might however expect that
the dimension of the generic fiber is given by the same cohomological formula
as in the tame case.

Mathematics Subject Classification (1991): Primary 11F34, 11F70; Secondary 14B12

1 Introduction

In Mazur’s seminal paper on deformations of Galois representations, several questions
are posed on the universal deformation rings R defined therein. A lower estimate for
the Krull dimension of R is given there, which depends only on the restriction of adρ̄,
to be defined below, to the infinite places. One might wonder if this number is indeed
the dimension of R, and if R is always flat over W (k), i.e. l-torsion free. We shall
assume from here on that l > 2. In many cases where E = Q and where ρ̄ : GE =
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Gal(Q̄/E) → GL2(k) is odd, i.e. a complex conjugation c satisfies det(ρ̄(c)) = −1,
this is known by [2] building on work of Diamond and Wiles, see [8], [16].

Here we will study the ring R ⊗ Ql independently of even or odd, i.e. indepen-
dently of the question if ρ̄ is related to modular or Hilbert modular forms. This ring
represents all the lifts, modulo strict equivalence, to W (k) algebras of characteristic
zero of a given residual representation ρ̄ as above. We shall obtain the following result
in the case where ρ̄ is tame, i.e., the order of Im(ρ̄) is not divided by l - more precise
definitions of the objects involved will be given later.

We shall now fix some notation. Let ρ̄ : GE → GL2(k) be a Galois representation,
where k is a finite field of characteristic l, and E is a number field. Let E0 be the
splitting field of the projective representation associated to ρ̄, i.e. the fixed field in Q̄
of the inverse image under ρ̄ of the set of homotheties in GL2(k). Let ρ0 be the trivial
lift of ρ̄ to GL2(W (k)), i.e. the one with Im(ρ0) ∼= Im(ρ̄), which exists by the pro-finite
version of the lemma of Schur Zassenhaus, as ρ̄ is tame, and which is unique up to
conjugacy. For more on this see §6 in [4]. Let adρ̄, or simply ad if no confusion arises,
be the adjoint representation, i.e. the representation of GE on M2(k) obtained by
composing the conjugation action of GL2(k) with the map ρ̄. Let Q be a set of places
of E containing all the places above l and infinity and all places where ρ̄ ramifies. Let
RQ be the universal deformation space for deformations of ρ̄, unramified outside Q –
the precise definition of RQ will be recalled in the following section –, and let x0 be
the point of Spec(RQ ⊗Ql) corresponding to ρ0.

Theorem 1.1 Suppose that ρ̄ : GE → GL2(k) is an absolutely irreducible tame Galois
representation, and that the splitting field E0 of the projective representation associated
to ρ̄ satisfies the Leopoldt conjecture. Then the l-adic space of continuous algebra
homomorphisms HomW (k)(RQ, Q̄l) is a smooth l-adic manifold in a sufficiently small
neighborhood of x0 of dimension equal to

n−m = 4[E : Q] + dimkH
0(GE , adρ̄)−

∑
ν|∞

dimkH
0(GEν , adρ̄)

where n = dimkH
1(GE , adρ̄), m = dimkH

2(GE , adρ̄).

We note that under our assumptions dimkH
0(GE , adρ̄) = 1. Furthermore the

local expressions are easy to calculate, and, whenever Eν = R, the dimension depends
on ρ̄ being even or odd at this particular place.

If RQ is reduced, then by generic smoothness, there is always an open subset of
points of Spec(RQ[1/l]) that are formally smooth, despite the fact that RQ itself is
usually not regular at its maximal ideal. However currently there seem to exist no
criteria for RQ being reduced. The above theorem gives us one smooth point explicitly
and hence a component of RQ that is reduced.

Inspecting the proof of the above theorem, we also find the following.

Corollary 1.2 Under the above assumptions with the same notation, RQ is the quo-
tient of W (k)[[T1, . . . , Tn]], where n is minimal, by an ideal I generated by exactly m
relations, where again m is minimal.

Remark 1.3 Our result above cannot give any information about the ring being
flat over W (k), or all irreducible components of the generic fiber being smooth,
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or about the generic fiber being equidimensional, as can be seen from the exam-
ple W (k)[[x, y]]/(px(y+p)2, py(y+p)2), which satisfies our conclusion but fails all the
properties listed.

Problems 1.4 We cannot say anything about neighborhoods of other lifts to charac-
teristic zero. It would be interesting to know if all of them are smooth, or if modular
points, whenever this notion makes sense, are smooth.

Also it would be interesting to know how many irreducible components there are
in R ⊗Ql and what dimensions they have. One might hope that all the components
are smooth and of the same dimension. For E = Q and ρ̄ coming from a modular
form, one might expect that the number of connected components - at least over Q̄l -
is related to the number of certain new forms of a conductor only involving the primes
in S that give rise to ρ̄.

Remark 1.5 There is the following possible application of our result, for E = Q, to
the density of modular representations. Suppose ρ̄ : GQ → GL2(k) is tame, odd and
absolutely irreducible. The trivial lift ρ0 : GQ → GL2(W (k)) has finite image, hence
we may assume that in fact the image is contained in GL2(Q̄). If the Artin conjecture
holds for ρ0, then there is a modular form f of weight one corresponding to ρ0 and
hence giving rise to ρ̄ after reduction mod l. We also assume that E0 satisfies the
Leopoldt conjecture. We note, that in principle for a given representation ρ̄ all of our
assumptions can be checked explicitly. So then what we proved is that the generic
fiber near ρ0, which is now a modular point, i.e. associated to a modular form, is
smooth of dimension three.

In [10], it is shown that modular representations are dense in the universal defor-
mation space they consider. If one could construct l-adic analytic arcs of modular
curves as in [7] starting at f , i.e. a form of weight one, then arguments similar to those
in [10] would show that modular representations are Zariski-dense in the component
of RS ⊗Ql containing ρ0. The argument there works near any smooth modular point
in a variety of dimension three, i.e. something that looks like Ql ⊗ Zl[[X1, X2, X3]],
because one can keep all the modular arcs and all the twists inside such a given
neighborhood by restricting them to small l-adic discs near the starting point.

Remark 1.6 Apart from the fact that it is interesting to consider a ring describing
deformations to characteristic zero, there is another reason for considering RQ ⊗ Ql.
Unlike in the case where ρ̄ is absolutely irreducible, where one conjectures that RQ is
flat over W (k), of relative dimension as given in our theorem for the generic fiber, and
hence that all deformations lift to characteristic zero, in the case that Im(ρ̄) is of Borel
type inside GL2(k), and sufficiently large for RQ to be defined, matters are different.
There one has examples where the dimension of RQ/(l) exceeds any given bound, for
fixed ρ̄, provided Q is chosen appropriately. Also it seems that this phenomenon is
related to deformations that do not lift to characteristic zero, i.e. to torsion in RQ.
So it might be more natural to consider RQ ⊗Ql, hoping that it behaves similarly to
what one would expect, e.g. that its dimension is given by cohomological expressions
that come from obstruction theory, like the expression we write down in our theorem.

Further as one is often only interested in lifts to characteristic zero, RQ ⊗Ql is a
reasonable space to consider. E.g. for E = Q, this is the part containing all modular
points, and one could hope that they are Zariski-dense in this space. While it seems
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reasonable to hope that the image of the modular points is always Zariski-dense in
deformation spaces of Krull dimension three, it would seem unlikely that it could fill
out spaces RQ of large Krull dimension.

We will provide some examples of universal deformation spaces of a simplified type,
R′Q, in Section 4, where the dimension of R′Q/(l) is rather large, but after tensoring
with Ql their dimension is given in terms of dimensions of cohomology groups, where
the cohomologies take extra constraints like ordinary, ramification, etc. into account.
Those spaces R′Q can arise as surjective images of the spaces RQ, and so based on
this evidence, one might speculate that RQ ⊗Ql behaves well, also if ρ̄ is reducible.

This discussion fits in well with some conjectures by Tilouine, see §7 of [15],
according to which the dimension of Rn.oQ ⊗Ql should be equal to two for E = Q while
the dimension of Rn.oQ /(l) might be larger.

The paper is organized as follows. In Section 2, we give all the relevant definitions,
describe the deformation problem and indicate the reduction to a deformation problem
with fixed determinant. The following section contains the proof of Theorem 1.1. Here
the Leopoldt conjecture will be used to obtain information about the generators and
relations in a presentation of the pro-l Galois group that is relevant for our deformation
problem. This will result in some properties of the equations describing the universal
deformation space near the origin, which will then easily imply the above theorem.
In the final section we shall discuss our observations in the Borel case.

2 The set-up

Let k be a finite field of odd characteristic l. Let E be any number field. We assume
that we are given a representation ρ̄ : GE → GL2(k), which is tame and absolutely
irreducible. It will be called a residual representation. By H̄ we denote the image of
ρ̄ inside PGL2(k), by E0 the corresponding Galois extension of E.

Let C be the category of complete noetherian local rings with residue field k and
local ring homomorphisms which induce the identity on residue fields. So the objects
of C are in particular W (k)-algebras, where W (k) is the ring of Witt vectors of k. For
R in C we define N2(R) := ker(GL2(R)→ GL2(k)). Two liftings ρ, ρ′ : GQ → GL2(R)
of ρ̄ are called strictly equivalent if there is an M ∈ N2(R) such that ρ = Mρ′M−1.
A strict equivalence class of lifts of ρ̄ to R is called a deformation.

We now consider the following deformation problem. Let Q be a finite set of places
containing all places above l and ∞. Let GEp = Gp denote a decomposition group
inside GE for a prime p of E, and Ip the corresponding inertia group. Define

FQ(R) = {deformations [ρ] of ρ̄ to R unramified outside Q}

As we want to fix the determinant of our deformations, we shall assume the exis-
tence of a lift ρ0 of ρ̄ to a complete discrete valuation ring O, finite over W (k), whose
strict equivalence class is in FQ(O). If ρ̄ is tame, we shall assume that ρ0 is the trivial
lift to W (k) which then exists. We define ε = det(ρ0). By CO we denote the full
sub-category of O algebras inside C.

We define a second deformation problem that we will investigate here. For R ∈ CO
we let

DQ(R) = {deformations [ρ] ∈ FQ(R) such that det(ρ) = ε}.



G. Böckle, The generic fiber of universal deformations 5

Since strict equivalence preserves determinants, DQ is well-defined. Finally we define

DetQ(R) = {lifts of GE → {1} → k∗ to R∗ unramified outside Q}

Let ad0 = ad0
ρ̄ be the restriction of ad = adρ̄, defined in the introduction, to the set

of trace zero matrices inside M2(k).
As we impose no conditions at the primes above l and the conditions at the primes

p ∈ Q are rather simple we can appeal to [13] to obtain

Proposition 2.1 DQ, FQ and DetQ are representable. If the corresponding universal
objects are denoted by (RQ, ρQ), (SQ, αQ) and (ΛQ, εQ) where RQ, SQ,ΛQ ∈ CO, then
this means, for example for DQ, that ρQ represents a class in DQ(RQ), unique up to
isomorphism, such that

DQ(R) ∼= Hom(RQ, R).

where the isomorphism is induced from composing the class of ρQ with elements of
Hom(RQ, R) and Hom denotes homomorphisms in CO.

Furthermore ΛQ = Zl[[ΓQ]] where ΓQ is the maximal abelian pro-l extension of E
unramified outside Q, and (SQ, αQ) ∼= (RQ, ρQ)⊗̂(ΛQ, εQ).

Proof: All but the last statement can be found in [13]. The isomorphism

(SQ, αQ) ∼= (RQ, ρQ)⊗̂(ΛQ, εQ)

is easy to see. Given a representation ρ : GE → GL2(R), one can associate to it
the pair ((det(ρ)−1ε)1/2ρ, (det(ρ)−1ε)1/2) where the first element is a lift of ρ̄ with
determinant ε and the second a map GE → R∗, which is trivial after composition
with R∗ → k∗. Vice versa to any such pair one can associate a lift ρ : GE → GL2(R).
This is all compatible with strict equivalence and gives rise to the above isomorphism.
Here we make use of l > 2 to be able to take square roots inside R.

Remark 2.2 If E satisfies the Leopoldt conjecture, as has been remarked in [13],
then ΓQ is isomorphic to the product of ZcEl with a finite group where cE is the
number of complex places of E. It is then rather obvious to see that ΛQ ⊗ Q̄l is the
direct sum of copies of Q̄l[[T0, . . . , TcE ]] and thus of the form described in the main
theorem. If E0 satisfies the Leopoldt conjecture, then the same is clearly true for the
subfield E. Furthermore as ad = ad0 ⊕ ktriv, and

cE + 1 = [E : Q] + dimkH
0(GE , k

triv)−
∑
ν|∞

dimkH
0(GEν , k

triv),

the dimension is as predicted. So we only need and will consider from now on the
pair (DQ, ρQ) and establish the main theorem for it.

From now on we shall assume that ρ̄ is tame and that ρ0 is the trivial lift. By
PQ we shall denote the Galois group of the maximal pro-l extension of L that is
unramified outside Q, where L is the splitting field of ρ̄. E0 is a subfield of L. We let
H = Gal(L/E). By the lemma of Schur-Zassenhaus, as described in [4], the sequence

1→ GL → GE → H → 1
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is split, and uniquely up to inner automorphism. The same is true for

1→ N2(W (k))→ π−1
W (k)(H)→ H → 1

where πR is the natural map from GL2(R) → GL2(k), for R ∈ C. We fix such
splittings. Then by [4], §2, there is a natural isomorphism between DQ and the
following functor HEQ.

HEQ(R) = {H-equivariant homomorphisms from PQ to N0
2 (R)}

where N0
2 (R) are the matrices of determinant one inside N2(R).

3 The proof of the main theorem

To deduce Theorem 1.1, we first note, that one has, in general, a presentation of
RQ as a quotient of W (k)[[T1, . . . , Tn]] by an ideal I generated by at most m =
dimkH

2(GE , ad0
ρ̄) equations, see [3]. This follows by the same method as Proposition

2 in [13], where the same is shown to hold for RQ/(l) as a quotient of k[[T1, . . . , Tn]].
As a consequence, RQ⊗Ql describes near the origin an l-adic manifold cut out by at
most m equations. The number n and m will be fixed throughout this section.

We will show below, in Proposition 3.2, using the Leopoldt conjecture, that we
can find m equations near ρ0 that satisfy the Jacobian criterion and that are inside I.
So they alone cut out a smooth l-adic manifold near the origin of dimension n −m.
The above remark then excludes the existence of possible other equations, as they
would force the dimension to be smaller than n −m, and thus the main theorem is
shown.

As a consequence, this also shows that the number of equations is indeed m and
cannot be lower, and so Corollary 1.2 is shown as well. A priori, this is not clear, as it
could have happened that one of the relevant relations describing PQ is automatically
satisfied for H-equivariant maps to matrix groups - relevant meaning that it is not
prime to adjoint viewed inside R/[R,F ]Rp for a presentation

1→ R→ F → PQ → 1

that is compatible with the H action. For more on this see [3]. The following example
explains what we mean by this.

Example 3.1 Let H be the group of order two, H = {e, c}, where e is the iden-
tity. Let F be the free pro-l group on generators x, y. We assume that H acts
trivially on x and that c sends y to its inverse. We consider the relation r =
[[[x, y], x], y−1][y, [[x, y−1], x]]. Then c acts on r by sending it to its inverse. We define
R as the closed normal subgroup generated by r, then the pro-l group P = F/R
carries an action of H. We consider the functor from C to sets given by

R 7→ HomH(P, (1 + mR, ·)triv × (1 + mR, ·)χ)

where the superscripts on the multiplicative groups (1 + mR, ·) indicate that H acts
trivially or non-trivially, respectively. As the target space is abelian, all such H-
equivariant homomorphisms factor via P ab, but by the same argument, one could
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replace P by F without changing the set of H-equivariant homomorphisms. So the
relation r in the presentation of P is irrelevant for the functor.

In this example the module corresponding to adρ̄ is the module V = Ftrivp ⊕ Fχp .
We calculate

H2(P oH,V ) ∼= H2(P, V )H ∼= (Fp[H]⊗Fp (R/[R,F ]Rp)∗)H ∼= Fp

However, the space representing the above functor is W (k)[[T1, T2]], and hence the
relation module is trivial.

What we remarked above, is that this behavior cannot occur for universal de-
formation rings coming from tame, absolutely irreducible Galois representations into
GL2.

So our goal is the proof of the following proposition.

Proposition 3.2 Suppose E0 satisfies the Leopoldt conjecture, and that ρ̄ : GE →
GL2(k) is tame and absolutely irreducible. Then there is a presentation

0→ I → U = W (k)[[T1, . . . , Tn]]→ RQ → 0

such that I contains an ideal I ′ generated by equations of the form

leiTi − expression in (T1, . . . , Tn)2 i = n−m+ 1, . . . , n

This means that near the origin, i.e. near the trivial lift, U/I ′⊗Ql is a smooth l-adic
manifold of dimension n−m by the Jacobian criterion.

As we remarked earlier, to obtain the universal ring RQ, we can use the functor
HEQ assigning to a ring R ∈ C the set of H-equivariant homomorphisms from PQ
to N0

2 (R). To understand those sets, the following observations, described in [4], are
important. If we denote by P̄ the Frattini quotient of any finitely generated pro-l
group P , i.e. P̄ ∼= P ab ⊗ Fl, then the following hold.

(i) For any finitely generated closed subgroup P of N0
2 (R), all irreducible compo-

nents of P̄ ⊗ k as a k[H]-module are submodules of ad0.

(ii) If P is a pro-l group with an H-action, then for each irreducible summand A of P̄
as an Fl[H] module, one can find a closed H invariant subgroup PA of P whose
Frattini quotient is A. In particular if we are given such an A, a g ∈ H and a g
invariant element x̄ ∈ A, we can find a lift x ∈ PA of x̄ that is g invariant. In
fact, as was shown in [2], such lifts also exist for a decomposition of P ab⊗Zl/(lk)
k = 1, 2, . . . ,∞ into irreducible Zl[H] modules. Here it is important that the
order of H is prime to l.

(iii) If we have any H-equivariant homomorphism α from a pro-l group P with an
H action, and if P̄ ∼= ⊕si=1Ai, where the Ai are as in (ii), such that A1, . . . , Aj
are isomorphic to submodules of ad0 and the other ones are prime to ad0, then
α factors through the quotient of P by the closed normal subgroup generated
by the PAi for i > j.



G. Böckle, The generic fiber of universal deformations 8

We shall first analyze the ad0 components of P abQ . As the order of H is prime to l,
one can write Zl[H] as a direct sum of irreducible projective Zl[H] modules. As one has
corresponding idempotents, one can decompose P abQ as a Zl[H] module into a direct

sum of irreducible ones, P abQ
∼= ⊕Ai, such that all the Ai ⊗ Fl are irreducible Fl[H]

modules. Furthermore there is a bijection between irreducible Fl[H] and irreducible

projective Zl[H] modules. Hence we can define the ad0-part of P abQ , P ab,0Q , to be
the direct sum over all Ai such that Ai ⊗ k contains a (then unique) non-trivial
subrepresentation of ad0. We also can talk about ad0-components.

Lemma 3.3 If E0 satisfies the Leopoldt conjecture, then the number of torsion free
ad0-components of PQ is n−m.

Proof: We shall compare the ad0-components of P abQ and P abQ,E0
, where PQ,E0 is the

Galois group of the maximal pro-l extension of E0 unramified outside the places
above Q. We shall see that they are isomorphic. Then the claim will follow from the
Leopoldt conjecture for E0.

By class field theory P abQ is the cokernel of the map

UL ⊗ Zl →
∏
L|l

ULL

This map is H-equivariant. We are interested in the ad0-part of the torsion free part
of the quotient. We have the diagram

UE0 ⊗ Zl

UL ⊗ Zl

∏
l|l UE0l

∏
L|l ULL

-

-
? ?

Here all the Zl modules in the diagram have an action of H = Gal(L/E). In the
first row the action of the subgroup Gal(L/E0) is trivial. By the remarks above
about Zl[H], one has the same diagram if one considers ad0-parts everywhere, as all
maps between modules corresponding to non-isomorphic irreducible projective Zl[H]
modules are zero. As Gal(L/E0) acts trivial on ad0, and as the invariants of this group
taken on the second row gives an isomorphism with the first row, the vertical arrows
in the diagram for the ad0-parts are isomorphisms. Hence the number of torsion free
ad0-components is the same for both cokernels.

Assuming the Leopoldt conjecture for E0 means that the top arrow is an injection.
So we only have to count the number of ad0-components inside UE0⊗Ql and

∏
l|l UE0l

⊗
Ql. By a modification of the argument in [6], §2.2, one obtains for the rank of the
first expression

∑
ν|∞H

1(GEν , ad0) and for that of the second 3[E : Q]. One way
to obtain this is to enlarge E0 to its normal closure, calculate everything there and
descend to E0 by using restriction of induced characters. Using the global Euler
Poincaré characteristic formula as in [13], §1.10, one finds n −m for this difference.
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Proof of Proposition 3.2: By the remarks above the previous lemma, we can decom-
pose P abQ into a direct sum of irreducible Zl[H] modules, and we can assume that the

ad0-components are the submodules Ai, i = 1, . . . , n. That n is the number of such
components can be found in [1], Proposition 2.8. Strictly speaking, in [1] it was shown
that the number of such components in P abQ ⊗Z/(l) is n. But this can easily be lifted

to P ab as the number of components is invariant under tensoring with Fl.
We pick PAi as in part (ii) above. By checking all possible modules ad0 than can

occur, i.e. all adjoint representations on M2(k) of a non-abelian subgroup of GL2(k)
of order prime to l, one can find an element x̄i ∈ Ai for i = 1, . . . , n, and a non-trivial
element gi ∈ H̄, the image of H in PGL2(k) such that x̄i is gi invariant. The list of
possible subgroups of PGL2(k) is given for example in [9], Sections 255, 260. By xi
we denote lifts of the elements x̄i to PAi . By the Burnside basis theorem, it is clear
that the H-orbit of xi generates PAi . In particular, any H-equivariant map α from
PQ to N0

2 (R) for R ∈ C is uniquely determined by the images of the elements xi, by
(iii) above.

Using the above lemma, we shall assume that A1, . . . , An−m is the complete list of
torsion free ad0-components of P abQ . The images of the xi we shall call Bi ∈ N0

2 (R).
At this point we want k to be large enough, so that all elements gi can be diagonalized.
This can always be assumed without loss of generality by base changing to a possibly
larger field (the unique quadratic extension of k is always sufficient). This means that
with respect to an appropriate base change of on GL2(W (k)), depending on gi, the

image of Bi is of the form
(

1+Ti 0
0 (1+Ti)

−1

)
. It is then clear that RQ is a quotient of

W (k)[[T1, . . . , Tn]] modulo the ideal I that is generated by all the equations that have
to be satisfied among the Bi in order to satisfy all the relations that hold among the
xi inside PQ. The universal representation is given by sending the xi to the above
matrices. As n = dimkH

1(GE , ad0), none of the Ti is superfluous.
Let n −m < i ≤ n. Then the image of xi in P abQ is torsion. Thus there exists a

positive integer ei such that xl
ei is in the commutator subgroup of PQ. The image of

the commutator subgroup under α is generated by arbitrary commutators of the H
orbits of the Bi as a closed subgroup. It is easy to check that all such commutators
are congruent to the identity modulo (T1, . . . , Tn)2. It is also easy to check that, in

the appropriate basis for Bi, the element Blei
i is given by

(
1+leiTi 0

0 1−leiTi

)
modulo

(T1, . . . , Tn)2. Hence considering the (1, 1) entries, one obtains equations

0 = leiTi − fi(T1, . . . , Tn) i = n−m+ 1, . . . , n where fi ∈ (T1, . . . , Tn)2

We now take for I ′ the ideal generated by those m functions. If we evaluate the
Jacobian with respect to the variables Tn−m+1, . . . , Tn at the origin, we obtain the
diagonal matrix with entries (len−m+1 , . . . , len). Applying the inverse function theorem,
shows that U/I ′ describes near zero a smooth l-adic manifold of dimension n−m.

Remark 3.4 Without having a bound on the number of equations, it is not clear
at this point that the above equations describe the space that we are interested in.
There could well be more equations necessary. Also, we only used one relation for
every generator of PQ that becomes torsion in P abQ . But there may well be relations
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among the other generators, too, as long as they are trivial inside the abelianization,
see [17].

4 Digression to the Borel case

Here we shall briefly expose some examples related to Remark 1.6 of a restricted
deformation problem in the Borel case with Q as the base field. The first examples
in this direction were described in [4]. A rather detailed account of such examples is
given in [14]. Our examples are basically the ones treated in [4]. For the background
we refer to the above sources.

Let S be a finite set of places of Q. Let L over Q be an abelian extension of
order prime to l, let L∞ be the maximal cyclotomic Zl-extension of L and MS be
the maximal abelian pro-l extension of L∞ unramified outside S, CS = Gal(MS/L),
AS = Gal(MS/L∞). We shall from the start assume the following amenable situation.
As a Zl[[T ]] Iwasawa module, AS is isomorphic – and not just pseudo-isomorphic – to

∐
χ odd

Zl[[T ]]χ ⊕
∐
χ

( ∐
(i,χ)

Zl[[T ]]χ/(f(i,χ)(T ))

)

where χ denotes any character of H = Gal(L/Q), odd refers to complex conjugation,
and so the first coproduct is zero if L is totally real, and all the f(i,χ) are distinguished
polynomials. We also assume that the functions f(i,χ) for fixed χ are relatively prime
over Ql[[T ]]. The superscript refers to the χ action ofH. Finally Gal(MS/L) ∼= ASoZl
where the right term refers to Gal(L∞/L) and H acts trivially on it. Let G be the
resulting semi-direct product. By our assumption, G is a quotient of GQ,S .

We now start with a map from H into the diagonal matrices GL2(k) with image
in PGL2(k) of order strictly larger than two. The action of H on the (1, 2) entry
of M2(k) via conjugation composed with this map will be the character denoted by
ψ. We assume that the ψ-component of AS is non-trivial. We then extend the map
constructed so far to a representation ρ̄ into the Borel matrices by selecting one of

the ψ-components and sending its generator 1̄ to
(

1 1
0 1

)
. There are essentially three

cases to consider.

(i) The resulting representation is even. Then Zl[[T ]]ψ = 0.

(ii) The representation is odd and the chosen ψ-component is Zl[[T ]]ψ.

(iii) The representation is odd and the chosen ψ-component is Zl[[T ]]ψ/(f(1,ψ)).

Even and odd refers to the image of complex conjugation being trivial or non-trivial
in PGL2(k).

By [13], there exists a universal deformation RG for the deformations of ρ̄ that
factor via G. We will now briefly derive its explicit shape as in [4]. As described there,
or in [2], Proposition 2.3, RG is the universal ring representing H-equivariant maps
from AS oZl to GL2(R) for local rings R, such that the generator 1̄ from above gets

sent to
(

1 1
0 1

)
and the other elements get send to the kernel of GL2(R)→ GL2(k) for

R ∈ C. Thus we only need to consider the parts of AS where H acts trivially or via
ψ, as it is not hard to see that there cannot be any images with other characters – for
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ψ−1 one uses, that the images of elements in AS have to commute with the element(
1 1
0 1

)
.

By xi we denote the generator 1̄ of Zl[[T ]]triv/(f(i,triv)). By Xi its image. So

Xi = (1 + ai)
( √

1+di 0

0
√

1+di
−1

)
.

Similarly the image of a generator x of Zl = Gal(L∞/L) is mapped to

X = (1 + a)
( √

1+d 0

0
√

1+d
−1

)
.

By yj we denote the generator 1̄ of Zl[[T ]]ψ/(f(j,ψ)), by y that of Zl[[T ]]ψ, by Yj its

image
(

1 bj
0 1

)
and by Y the image

(
1 b
0 1

)
, resp.

As explained in [4], from the comparison of the action of Gal(L∞/L) on AS and
on the images – one has to make sure that the images of f(j,ψ) and f(i,triv) get mapped
to the identity –, one finds the following conditions for the above cases. If ci is the
zeroth coefficient of the polynomial f(i,triv) and mj the degree of f(j,ψ), then

(i) (1 + ai)
ci = 1, di = 0, f(1,ψ)(d) = 0, bjf(j,ψ)(d) = 0 for j ≥ 2, b1 = 1. (There is

no b in this case.)

(ii) (1 + ai)
ci = 1, di = 0, bjf(j,ψ)(d) = 0, for all j, b = 1.

(iii) (1 + ai)
ci = 1, di = 0, f(1,ψ)(d) = 0, bjf(j,ψ)(d) = 0 for j ≥ 2, b1 = 1, and b is

arbitrary.

Thus RG is explicitly given by

(i) W (k)[[a, d, ai, bj ]]/((1 + ai)
ci − 1, f(1,ψ)(d), bjf(j,ψ)(d) for j ≥ 2, b1 − 1),

(ii) W (k)[[a, b, d, ai, bj ]]/((1 + ai)
ci − 1, bjf(j,ψ)(d), b− 1),

(iii) W (k)[[a, b, d, ai, bj ]]/((1 + ai)
ci − 1, f(1,ψ)(d), bjf(j,ψ)(d) for j ≥ 2, b1 − 1).

The images of the generators of the universal deformation are as above.
For RG/(l) we obtain.

(i) k[[a, d, ai, bj ]]/(a
ci
i , d

m1 , bjd
mi for j ≥ 2, b1 − 1).

(ii) k[[a, b, d, ai, bj ]]/(a
ci
i , bjd

mj , b− 1).

(iii) k[[a, b, d, ai, bj ]]/(a
ci
i , d

m1 , bjd
mj for j ≥ 2, b1 − 1).

And so after modding out d we obtain a ring of dimension equal to zero or one, plus the
number of summands in

∐
j Zl[[T ]]ψ/(f(j,ψ)) The latter can be made arbitrarily large

by suitably enlarging S, and thus the universal deformation ring for the ramification
set S, of which the above is a quotient, can have arbitrarily large dimension in the
Borel case.

After tensoring with Ql on the other hand, where now the functions f(j,ψ) become
units modulo f(1,ψ), due to our assumption that the f(j,ψ) are relatively prime, we
find for RG ⊗Ql.
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(i) (W (k)[[d]]/(f(1,ψ)(d)))⊗Ql[[a, ai]]/((1 + ai)
ci − 1).

(ii) To understand RG ⊗Ql, we first consider the map

W (k)[[d, bj ]]/(bjf(j,ψ)(d))→

W (k)[[d, bj ]]/(bj)⊕
∐
j′

W (k)[[d, bj ]]/(fj′(d), bjf(j,ψ)(d))

coming from the primary decomposition of 0 of this ring. We note that by our
assumption there is a power ln in all ideals generated by any two of the bj . For
the rings appearing here, tensoring with Ql was described in the other cases -
or is obvious in the case of W (k)[[d, bj ]]/(bj). As the primary decomposition
is interchangeable with tensoring, the ring Ql ⊗W (k)[[d, bj ]]/(bjf(j,ψ)(d)) has
dimension one, and hence RG ⊗Ql has dimension two.

(iii) (W (k)[[d]]/(f(1,ψ)(d)))⊗Ql[[a, b, ai]]/((1 + ai)
ci − 1).

Hence the universal ring tensored with Ql has dimension one in the even case and two
in the odd case.

At the same time it is not difficult to calculate the difference

dimkH
1(G, τ)− dimkH

2(G, τ)

explicitly, where τ is the adjoint action of G on the upper triangular matrices in
M2(k). It is one in the even and two in the odd case. We shall sketch the necessary
steps. First one uses the Hochschild Serre spectral sequence twice - to pull out H and
then Zl.

H i(Zl, Hj(AS , τ))H ⇒ H i+j(G, τ).

The H action is easy to analyze, and also τ = ktriv ⊕ V2 where V2 is indecomposable
with composition series

0→ kψ → V2 → ktriv → 0. (1)

The dimension of H1 we already calculated above as the minimal number of topolog-
ical generators of RG. For H2 one finds

(H1(AS , τ)Zl)
H = H1(Zl, H1(AS , τ))H = H2(G, τ).

The decomposition of AS into the single summand with image
(

1 1
0 1

)
and all the

others gives a decomposition of the cohomology - for the second summand the co-
efficients change. The second term is calculated as a set of homomorphisms. Using
the H action, one easily can see that its k dimension is one less than the number of
summands of AS , which are Zl[[T ]] torsion and on which H acts trivially or by ψ. For
the first summand one can use the long exact homology sequence associated to (1) to
see that its k dimension is one. Subtracting respective numbers gives our claim on
dimkH

1(G, τ)− dimkH
2(G, τ), and we showed the following.

Proposition 4.1 The Krull dimension of RG⊗Ql for the above deformation problem
agrees with the cohomologically computed one and the resulting ring is smooth over
Ql. On the other hand RG is not flat over W (k), it has components of different
dimensions and can have arbitrarily large Krull dimension, depending on S.
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There is an easier way to see that the dimension of the universal deformation
ring RQ, as defined in Section 2, can be arbitrarily. First, it is clearly enough to see
this for RQ/(l). Further, if we replace the original deformation problem by one that
corresponds to a quotient group property in the sense of Mazur [13], §2.1, it is enough
to show it for that one.

Let ρ̄ : GQ → GL2(Fl) be given, where the image in PGL2(Fl) is inside a Borel
subgroup and contains elements of order l and of order prime to l and greater than
two. Let U be the unipotent part of Im(ρ̄). By L we denote the field corresponding
to the inverse image of U under ρ̄. Let H = Gal(L/Q), so H is abelian, and let ψ be
the character by which H acts, via the adjoint representation, on the (1, 2) entry of
M2(Fl) - respectively its Teichmüller lift.

We denote by L̃ the maximal outside Q unramified l-extension of L containing
L∞, for which the corresponding Galois group is isomorphic to Ztrivl ×

∐
i Vi as a Zl[H]

module, where all Vi are isomorphic to Fψl . We shall now consider the deformations

factoring through L̃. Let N2 be as in Section 2. The following is an easy, but crucial,
observation. For R ∈ C,

HomH(Fψl , N2(R/(l))) = HomFl−algebras(Fl[[T ]], R/(l))

and Fl[[T ]] represents the corresponding functor.
By the equivalence of functors as in [2], Proposition 2.3, now for Fl-algebras

instead of all rings in C, the universal Fl-algebra that we want to find is the universal

ring representing elements in HomH(Gal(L̃/L), N2(R)) that commute with
(

1 1
0 1

)
.

We shall denote the elements by Hom′H(Gal(L̃/L), N2(R)). For (R,m) a local ring of
characteristic l, we calculate

Hom′H(Gal(L̃/L), N2(R)) = Hom′H(Ztrivl , N2(R))⊕
∐
i

HomH(Fψl , N2(R))

= Hom(Ztrivl , {aI : a ∈ 1 + m})⊕
∐
i

Hom(Fl[[T ]], R)

= Hom(Fl[[T ]], R)⊕
∐
i

Hom(Fl[[T ]], R)

So the universal ring is Fl[[T1, . . . , Tm]], where m is the number of summands in∐
i Vi. The number of such summands can be easily calculated using class field theory,

providedQ is large enough so that VQ = E∗l in the notation of [12], §11. If one enlarges
Q in this situation by a prime p, the number of additional components Vi is given by

dimFl Hom(Fψl , IndHHpµl(Lp)) = dimFl Hom(Fψl |Hp , µl(Lp)).

In particular this number is one for every completely split p such that p ≡ 1(mod l).
Hence m can become arbitrarily large depending on Q.

Remark 4.2 The same reasoning can be made for representations ρ̄ : GE → GL2(k)
where k is any finite field of characteristic l. Furthermore the argument, slightly
modified, is still valid if one imposes the condition that the deformations are ordinary,
or nearly ordinary at the primes above l. For the definitions of those terms, see [11],
for the modifications necessary at those primes above l, see §7 in [2].
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So for all those deformation functors, given a number n > 0, there exists a finite set
of places Q, containing all places above p and infinity, such that the Krull dimension
of RQ/(p), or RordQ /(p) or Rn.o.Q /(p) is larger than this given bound. At the same time
as mentioned in the introduction, in §7 of [15], it is conjectured that the dimension of
Rn.o.Q ⊗Ql is equal to a certain cohomological expression. In particular, conjecturally
there is a large number of torsion classes.

We would like to end with the remark that despite our evidence, it seems still
an open problem to give an example of any particular universal deformation ring RQ
associated to a residual representation of Borel type, such that the Krull dimension
of RQ ⊗ Ql equals the cohomological expression given in Theorem 1.1, while that of
RQ/(p) is larger than this expression, i.e. that there exist cases where one has torsion
classes.
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[1] G. Böckle, Explicit Universal Deformations of Even Galois Representations,
to appear in Math. Nachr.
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