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Abstract

There is an abundance of Galois representations in characteristic p that arise as

the mod p reduction of a characteristic zero representation from algebraic geometry.

Except for two-dimensional representations there is little known about the set of mod

p representations that should arise this way. As a first step in this direction, we

consider the problem of finding lifts to characteristic p2 for a representation ρ̄ : GK :=

Gal(Ksep/K) → GLn(κ), where κ is a finite field of characteristic p, K a local or

global field and n any positive integer.

If K is a local field, we can show that such lifts always exist. However if p|n, one

cannot always fix the determinant of a lift. We also present some partial results for

the existence of lifts to characteristic zero.

For global fields K, we can construct lifts only if, vaguely speaking, ‘the prime-to-p

image of ρ̄ is large inside GLn(κ)’. A sufficient condition for this is the vanishing of

H1(Im(ρ̄′),Mn(κ)), where ρ̄
′ is the restriction of ρ̄ to GK(ζp) and the action on Mn(κ)

is the adjoint action. Based on methods of Cline, Parshall and Scott, we will give a

group theoretic criterion for this first cohomology group to vanish.

1 Introduction

Throughout κ will be a finite field of characteristic p. We consider representations

ρ̄ : GK := Gal(K̄/K) → GLn(κ),

where K is a global or local field in the sense of [Neu], § II.5, K̄ its separable closure and

n is any positive integer. The central question that we will study is the existence of a lift

of ρ̄ to W2(κ), the ring of Witt vectors of length two. We note right away that for n = 1

this question is not a very interesting one, as using Teichmüller lifts, it is immediate that

one always has lifts to W (κ), the ring of Witt vectors of κ.

A strong motivation for the study of the above question is Serre’s conjecture in the

case n = 2, [Se2]: For ρ̄ : GQ → GL2(κ) an odd and absolutely irreducible representation

and p > 2, it predicts the existence of a lift to characteristic zero, which is associated to

a modular form of a level computable in terms of ρ̄. Despite the fact that this conjecture

is still wide open — and only recently a promising approach to its solution was given by

R. Taylor, [Tay] — it has served as a major inspirational source and was an important
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ingredient in the proof of Fermat’s last theorem and the Tanyama-Shimura conjecture,

[Wil, TW, BCDT].

More generally, there are many situations in arithmetic geometry where one obtains

Galois representations over a finite extension of Qp whose mod p reduction is a represen-

tation ρ̄ as above. In all these cases, the very construction of ρ̄ shows the existence of lifts

to characteristic zero. Here we want to study a problem in the opposite direction, namely

given a mod p representation, under what conditions can one hope to find lifts, at least to

characteristic p2. We now summarize what seems to be known.

In [Kha], Khare proved the existence of lifts to W (κ) for any ρ̄ : GK → GL2(κ) which

is reducible and for any field K. Based on this, he gave a proof that for n = 2 any

ρ̄ : GK → GL2(κ) admits a lift to W2(κ). For K = Q (and still n = 2), there has been

further progress through recent work of Ramakrishna, cf. [Ra1, Ra2]. He proves under very

general conditions on ρ̄ that there exist lifts to W (κ) for K = Q and n = 2. He only needs

to exclude a few even cases where the local at p representation is of a certain exceptional

shape and imposes some restrictions for small primes p ≤ 5 — in particular, p = 2 is

excluded. It also seems likely that some of the results of Ramakrishna can be generalized

to other number fields than Q.

If K is a function field of characteristic l 6= p, lifts to characteristic zero were obtained

by de Jong, [deJ], as a consequence of certain conjectures on the image of the arithmetic

fundamental groups of varieties in positive characteristic. In loc. cit. these conjectures

are proved for 1- and 2-dimensional representations and they yield the following: Suppose

ρ̄ : GK → GL2(κ) is absolutely irreducible when restricted to GKF̄l
. Let S be a finite set of

places outside which ρ̄ is unramified. Then there exists a lift to characteristic zero which

is unramified outside S.

The above results suggest to investigate the lifting problem also for higher dimensional

representations. As a first step towards obtaining lifts to characteristic zero, it seems

useful to consider the weaker problem of finding lifts to W2(κ). Already this question

provides various interesting problems. Furthermore it would be at the base of any hoped

for inductive procedure in the spirit of [Ra1, Ra2] to construct lifts to W (κ). We now

describe our results in some detail.

Let us fix some notation. By adρ̄ we denote the representation of GK onMn(κ) obtained

by composing the adjoint representation ad given by conjugation of GLn(κ) onMn(κ) with

the representation ρ̄. By ad0 and ad0ρ̄ we the corresponding subrepresentations on matrices

of trace zero. It is easy to see that ad is self-dual. For the dual ad0
∗
of ad0, which can

be identified with the quotient of ad by the scalar matrices, we write ad, and analogously

adρ̄. By L we denote the splitting field of ρ̄, i.e. the fixed field of ker(ρ̄) inside K̄. For any

representationM of GK , we denote by M(i) the i-fold Tate twist of it and by M∗ the dual

representation. Hence any subgroup of Gal(L(ζp)/K) will act on adρ̄(1) and adρ̄(1).

Our first circle of results concerns the lifting of mod p representations in the case where

K is a local field. The following will be shown in Section 2:

Theorem 1.1 For any local field K and any representation ρ̄ : GK → GLn(κ), there exists

a lift to W2(κ).

Corollary 1.2 For K and ρ̄ as in Theorem 1.1, the following are equivalent.

2



(i) Given any lift η of det ρ̄ to W2(κ), there exists a lift ρ of ρ̄ to W2(κ) such that η =

det ρ.

(ii) The natural map H0(GK , adρ̄(1)) → H0(GK , adρ̄(1)) is surjective.

If p 6 |n both of the equivalent conditions are satisfied.

Example 2.6 will show how condition (ii) can fail for p|n. Example 2.7, will show that for

p|n it is in general not even possible to fix the restriction of a lift of the determinant to the

inertia subgroup IK of GK .

With regards to lifts mod pl, l > 2, or to characteristic zero, we only have partial

results for general local fields K, cf. Proposition 2.1 and Remark 2.15. By putting some

restrictions on the local fields and on ρ̄, in Section 3 we will obtain the following:

Theorem 1.3 Let K be a local field of residue characteristic different from p. Then any

representation ρ̄ : GK → GLn(κ) for which ρ̄(IK) is a p-group has a lift to W (κ).

A rather trivial result, whose proof is implicitly contained in that of Lemma 2.4, is the

following.

Proposition 1.4 Let K be a local field and ρ̄ : GK → GLn(κ) a representation whose

splitting field does not contain a primitive p-th root of unity. Then ρ̄ has a lift to W (κ).

For the problem of lifting mod p representations of the absolute Galois group of a global

field, we need to set up some more notation. For a number field K denote by Sp the set

of places above p, by S∞ the set of those above infinity, and by S a finite set of places

containing Sp ∪ S∞. For a function field K, let S be any finite set of places. GK,S will

denote the Galois group of the maximal separable, unramified outside S extension of K.

Furthermore, we let H = Gal(L(ζp)/K) and for each place p in S we fix decomposition

groups Hp ⊂ H and GKp
⊂ GK,S . Armed with this notation, we obtain the following

result on global mod p2 lifts, which is proved in Section 4.

We call a finite κ[H ]-module X globally unobstructed (for H2) if there exist cyclic

subgroups Hi of H such that kernel of the restriction map

H1(H,X∗(1)) →
∐

p∈S

H1(Hp, X
∗(1)) ⊔

∐

i

H1(Hi, X
∗(1))

is zero. It is easy to see that this condition is independent of the set S chosen, provided S

contains Sp ∪ S∞ and all places where Gal(L(ζp)/K) ramifies. The nomenclature will be

explained by Lemma 4.2.

Theorem 1.5 Let K be a global field of characteristic different from p. Then any repre-

sentation ρ̄ : GK → GLn(κ) such that adρ̄ is globally unobstructed has a lift to W2(κ).

In Section 4, we also formulate a similar result for lifts with a fixed determinant using the

notion of global unobstructedness for ad0ρ̄ instead of adρ̄, cf. Theorem 4.1.

The above result gives some obvious restrictions when attempting to use the methods

of [Ra2], to inductively obtain lifts to W (κ). For this another necessary step would be the

analysis of local versal deformation problems of representations GKp
→ GLn(κ) at primes

p, which for arbitrary n, p seems difficult.
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Remark 1.6 For n = 2, Theorem 1.5 does not recover the result in [Kha] for global fields,

cf. Remark 4.3. After the work of Khare, a rather obvious result is that if there exists

a p-Sylow subgroup P of ρ̄(GK) such that {A − I : A ∈ P} ⊂ Mn(κ) is concentrated in

the first row or last column, then there do exist lifts to W2(κ) without assuming global

unobstructedness for adρ̄. We do think however that the case n = 2 is rather special and

that general results for n > 2 which avoid this assumption should be rather difficult to

obtain.

In Section 4, we also prove the following rather simple theorem, based on Artin-Schreier

theory:

Theorem 1.7 Let X be an affine noetherian scheme over Fp and ρ̄ : Π1(X) → GLn(κ) a

representation of the arithmetic fundamental group Π1(X) of X. Then there exists a lift

ρ : Π1(X) → GLn(W (κ)) of ρ̄.

In particular, if K is any field of characteristic p and ρ̄ : GK → GLn(κ) any represen-

tation, then there exists a lift to W (κ). If K is a function field, one can find a lift which

is ramified at most at finitely many places.

Independently, this result is also to be found in [EK], Thm 0.2.

In the final section, we will prove the following result on sufficient conditions for adρ̄ to

be globally unobstructed:

Proposition 1.8 Let the notation be as in Theorem 1.5. Under any of the following

conditions, adρ̄ is globally unobstructed.

(i) The splitting field L of ρ̄ does not contain ζp.

(ii) ζp ∈ L and H1(H ′, adρ̄) = 0 where H ′ = Gal(L/K(ζp)).

(iii) ζp ∈ L and with respect to a suitable basis of κn, the group H ′ ∩ Bn(κ) contains a

p-Sylow subgroup of H ′ and satisfies the conditions of Theorem 1.9.

(iv) ζp ∈ L and H = Im(ρ̄) contains SLn(κ) and either |κ| > 5, or n > 2 and |κ| > 3.

The proof uses a vanishing theorem for H1(G, ad) and H1(G, ad), based on [CPS], for

certain subgroups G of GLn(κ), which we state below. It may be of independent interest,

for example in the theory of deformations of Galois representations.

Denote by Bn(κ) and Tn(κ) the set of those matrices inside GLn(κ) which are upper

triangular or diagonal, respectively. The subgroup of Bn(κ) of matrices with 1’s along the

diagonal is denoted Un(κ). Also let STn(κ) be Tn(κ) ∩ SLn(κ). For any subgroup G of

GLn(κ), we denote by Ḡ its image in PGLn(κ) = GLn(κ)/κ
∗. For 1 ≤ i, j ≤ n, we let ei,j

be the matrix that is one at the spot (i, j) and zero elsewhere, and we let I denote the

identity matrix. We say that (i1, j1), . . . , (il, jl) is a cycle if after a suitable permutation of

the indices one has j1 = i2, j2 = i3, . . . , jl−1 = il, jl = i1.

The following is obtained by adapting ideas taken from [CPS].

Theorem 1.9 Let G be a subgroup of Bn(κ) that satisfies the following conditions:

(i) G is the semidirect product U ⋊ T where U = G ∩ Un(κ) and T = G ∩ Tn(κ).
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(ii) There exists a subfield κ′ of κ of order at least 7, if n = 2, at least 5, if n = 3, or at

least 4, if n > 3, such that T̄ contains STn(κ
′).

(iii) There exist matrices uk := I + αkeik,jk ∈ U , k = 1, . . . , n′, αk ∈ κ∗ such that U is

generated as a group by the T -conjugates of the elements uk, k = 1, . . . , n′.

(iv) The set {(im, jm)|m = 1, . . . , k} contains no cycle.

Then H1(G, ad) = H1(G, ad) = 0.

In particular ([CPS]) H1(SLn(κ), ad) = 0, if |κ| ≥ 7 or |κ| ≥ 4 and n > 2.

Vaguely speaking, the above says that if G contains a sufficiently ‘large’ diagonal part and

if the unipotent part U is not very ‘irregular’, then H1(G, ad) vanishes.
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schungsgemeinschaft through a Habilitation grant as well as the hospitality of the Uni-

versity of Illinois that I received while working on this project. My warmest thanks to
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ticle and for his continuing interest. Also many thanks to the referee for the extremely

careful reading of the original manuscript and many helpful corrections and suggestions.

2 Local lifts

For a p-power q > 1 and m ∈ N, we define the group Dq(m) as the pro-p completion of

〈t1, . . . , t2m|t−11 t−1−q2 t1t2(t3, t4) . . . (t2m−1, t2m) = 1〉,

where for elements s, t in a group, (s, t) will denote the commutator s−1t−1st. Furthermore

for an integer f ≥ 2, we define the groups D
(1,f)
2 (m), D

(2,f)
2 (m) ,D

(3,f)
2 (m), as the pro-2

completion of

〈t1, . . . , t2m+1|t
2
1t

2f

2 (t2, t3) . . . (t2m, t2m+1) = 1〉,

〈t1, . . . , t2m|t2+2f

1 (t1, t2)(t3, t4) . . . (t2m−1, t2m) = 1〉,

〈t1, . . . , t2m|t21(t1, t2)t
2f

3 (t3, t4) . . . (t2m−1, t2m) = 1〉,

respectively. The groups Dq(m) and Di,f
2 (m), are Demuškin groups and are important in

the classification of the pro-p completion of the absolute Galois group of a local field, cf.

[Lab] and the proof of Theorem 1.1 given below. For any pro-p group P , let P̄ denote its

maximal p-elementary abelian quotient, and so in particular D̄q(m) ∼= F2m
p .

The main results of this section are the following propositions:

Proposition 2.1 Let m be any positive integer and q > 1 be as above. Let q = pλ for

some λ ∈ N ∪ {∞}, where p∞ := 0. Any representation τ̄ : Dq(m) → GLn(κ) has a lift

τ : Dq(m) → GLn(Wλ+1(κ)).

Proposition 2.2 Let i ∈ {1, 2, 3}, f ≥ 2 and m ∈ N. Any representation τ̄ : D
(i,f)
2 (m) →

GLn(κ) has a lift τ : D
(i,f)
2 (m) → GLn(W2(κ)).
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Before giving the somewhat technical proofs, we will derive Theorem 1.1. We first prove

two lemmas.

Lemma 2.3 Let K ∈ {R,C}. Then any representation ρ̄ : GK → GLn(κ) has a lift to

W (κ).

Proof: For K = C there is nothing to show, so let K = R and let g be the generator

of the group C2 := Gal(C/R) of order two. If p 6= 2, any representation is isomorphic to

a direct sum of one-dimensional representations where the image of g lies in {±1}. Such

representation obviously lift.

Suppose therefore p = 2. Again any representation is completely reducible. The irre-

ducible representations are the trivial one and κ[C2]. The former obviously lifts and the

latter has the lift W (κ)[C2].

Lemma 2.4 Let K 6= R,C be a local field and ρ̄ : GK → GLn(κ) a representation whose

image is a p-group. Then ρ̄ has a lift to W2(κ).

Proof: As the kernel of GLn(W (κ)) → GLn(κ) is a pro-p group, any lift of ρ̄ will factor

through the pro-p completion GK(p) of GK . There are four cases to distinguish:

(i) K is of characteristic p.

(ii) K is of positive characteristic l 6= p.

(iii) K is of characteristic 0 and residue characteristic l 6= p.

(iv) K is of characteristic 0 and residue characteristic p.

In case (i), the group GK(p) is a countably generated free pro-p group, cf. [Koc], Satz 10.4.

Also, if we are in one of cases (ii)—(iv) and if K does not contain a primitive p-th root

of unity, GK(p) is known to be a free finitely generated pro-p group, cf. [Koc], Sätze 10.1,

10.5. (Note that for p = 2, case (iv) is an exception!) Thus in all these cases, ρ̄ will clearly

admit a lift to W (κ).

Let now q > 1 be the maximal p-power such that K contains a primitive q-th root of

unity. By [Koc], § 9, § 10 and [Lab], for q > 2 the group GK(p) is isomorphic to the group

Dq(m) for a suitable m, and for q = 2 to one of the groups D
(i,f)
2 (m) for suitable i, f,m.

The theorem now follows from the above propositions.

Remark 2.5 In cases (ii) and (iii), if ζp ∈ K, the group GK(p) is usually described as the

pro-p completion of 〈s, t|sts−1 = tl〉, where l is congruent to 1 modulo p. It is a simple

matter of replacing s by su for some u ∈ Z∗p to obtain the presentation we have for Dq(1),

where q now is the exact (maximal) p-power dividing l − 1.
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Proof of Theorem 1.1: By Lemma 2.3, we may assume K 6= R,C. Let F be the splitting

field of ρ̄, G := Gal(F/K), P a p-Sylow subgroup of G, and E the fixed field of P in F .

The obstruction to lifting ρ̄ is given by an element θ ∈ H2(GK , adρ̄), whose well-known

construction we now briefly recall for sake of completeness:

Let ρ1 : GK → GLn(W2(κ)) be a continuous set-theoretic lift of ρ̄. (One way to obtain

such a ρ1 is to choose for each ᾱ ∈ Im(ρ̄) ⊂ GLn(κ) a lift βᾱ ∈ GLn(W2(κ)) and to set

ρ1(s) := βρ̄(s) for s ∈ GK .) Then for each pair (s, t) ∈ GK one defines a unique element

c(s, t) ∈Mn(κ) by the formula

ρ1(s)ρ1(t)ρ1(st)
−1 = I + pc(s, t).

The assignment (s, t) 7→ c(s, t) defines a continuous 2-cocycle of GK with values in adρ̄.

Its image θ in H2(GK , adρ̄) is independent of the choice of ρ1. Now θ is trivial if and only

if it is a 2-coboundary d1b for some continuous 1-cocycle b : GK → adρ̄. Given b, the map

s 7→ (I − pb(t))ρ1(s) defines a homomorphism ρ : GK → GLn(W2(κ)) lifting ρ̄. Conversely,

if there is a group-theoretic lift, then the associated 2-cocycle and hence also θ are trivial.

Let us now analyze θ. As an additive group, adρ̄ is p-primary. Furthermore by the

definition of E, the index of GE in GK is prime to p, and so the restriction map

H2(GK , adρ̄) −→ H2(GE , adρ̄)

is injective. Furthermore, the image of θ under this map is the obstruction to lifting ρ̄|GE
.

By the above lemma this obstruction vanishes, and hence θ = 0, as desired.

Proof of Corollary 1.2: We fix a lift ρ of ρ̄ to W2(κ). Let tr : adρ̄ → κ be the trace map

and diag : κ→ adρ̄ the map λ 7→ λI, where κ is regarded as a trivial GK-module.

Recall that given ρ, there is a bijection between the set of lifts of ρ̄ to W2(κ) modulo

conjugation and the set H1(GK , adρ̄) defined in the following way: For any lift ρ′ of ρ̄, the

map ρ′ρ−1 : GK → I + pMn(W2(κ)) defines a 1-cocycle c := 1
p (ρ
′ρ−1 − I) : GK → ad. One

easily verifies that tr(c) : GK → κ is the 1-cocycle which arises in the analogous way from

det ρ′ det ρ−1 : GK → 1 + pW2(κ).

Therefore condition (i) of the corollary is clearly equivalent to the surjectivity of the

map H1(tr) : H1(GK , adρ̄) → H1(GK , κ). The map H1(diag(1)) in

H0(GK , ad(1)) −→ H0(GK , ad(1)) −→ H1(GK , κ(1))
H1(diag(1))

−→ H1(GK , ad(1)),

which is part of a long exact cohomology sequence, is by Tate local duality dual to H1(tr).

Thus (i) is equivalent to H1(diag(1)) being injective, which in turn is equivalent to the

surjectivity asserted in (ii).

It remains to show that (ii) is satisfied if p 6 |n. In this case, however, the sequence

0 → κ
diag
→ ad → ad → 0 is split exact and so the assertion is obvious.

Example 2.6 Let K be a local field of residue characteristic l 6= p and assume that

K contains a p-th root of unity. We choose the presentation Dq(1) for GK(p) where

q is the highest power of p such that K contains a q-th root of unity, i.e., GK(p) ∼=
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〈s, t|sts−1 = tq+1〉. Let A = I + N ∈ Up(W2(κ)) be a simple Jordan block and let

ρ̄ : GK → GK(p) → Up(κ) be the (unramified) representation of GK given by mapping s

to A (mod p) and t to I.

A simple computation shows that adGK and ad
GK

have the same dimension over κ. The

left exact sequence 0 → κGK → adGK → ad
GK

implies that condition (ii) in Corollary 1.2

is violated. More precisely, we claim that for any lift ρ, which may or may not be ramified,

of ρ̄ to W2(κ) the map det ρ : GK →W2(κ)
∗ is unramified:

Note first that a lift of ρ̄ is given by mapping s to A and t to I. Therefore an arbitrary

lift ρ is given by mapping s to A(1 + pM) and t to 1 + pM ′ where M,M ′ ∈ Mp(W2(κ))

are subject to the condition

A(1 + pM)(1 + pM ′)(1 − pM)A−1 = (1 + pM ′)q+1,

which is equivalent to pAM ′ = pM ′A. The solutions to this equation are the matrices M ′

which are upper triangular and which on any parallel to the diagonal take a single value.

Therefore the trace of pM ′ is zero since it is p times the value on the diagonal. As asserted

it follows that det ρ(t) = det(1 + pM ′) = 1 for any lift ρ of ρ̄.

Example 2.7 One might argue that the above example is not very interesting since trying

to fix a ramified lift of det ρ̄ for an unramified representation is rather pathological. This

opinion is supported even further by some calculations we did, which suggest that in the

case where GK(p) is a Demǔskin group on two generators and where the image of ρ̄ is a

p-group, the following holds: For any lift η of det ρ̄ to W2(κ), one can find a lift ρ of ρ̄ with

det ρ|IK = η|IK , where IK is the inertia subgroup of GK .

We did not pursue this, as there do exist finite extensions K of Qp, ramified represen-

tations ρ̄ : GK → GLp(κ) and lifts η of det ρ̄ such that for no lift ρ : GK → GLp(W2(κ))

one can have det ρ|IK = η|IK . The following is an example:

Let q ≥ 3 be a p-power and let K be a finite extension of Qp which contains a q-th

but not a qp-th root of unity. (The construction can also be carried out in the case where

p = q = 2.) We choose for GK(p) the presentation Dq(m) given at the beginning of this

section and assume that the subgroup generated by the variables t2m−1, t2m lies inside IK .

We define ρ′ : GK(p) → GLp(W2(κ)) on the generators ti of GK(p) by sending t2m to the

matrix A of the previous example and by sending all other tν to the identity. Let ρ̄ be the

reduction modulo p of ρ′.

Then any lift of ρ̄ is of the form tν 7→ Zν := I + pMν , ν = 1, . . . , 2m− 1, t2m 7→ Z2m :=

A(I + pM2m), where the Mν are matrices in W2(κ) subject to the Demuškin relation

Z−11 Z−1−q2 Z1Z2(Z3, Z4) . . . (Z2m−1, Z2m) = I.

In the situation at hand, this relation simplifies to I + p(A−1M2m−1A−M2m−1) = I. As

in the previous example it follows that tr pM2m−1 = 0 for all solutions M2m−1, and hence

det(ρ(t2m−1)) = 1 for all lifts ρ of ρ̄. However as det ρ̄ is trivial, a possible lift to W2(κ)

is given by sending all tν except t2m−1 to 1 and by sending t2m−1 to 1 + p, and we have

constructed the desired example.

In the remainder of this section we will prove Proposition 2.1. The proof of Proposi-

tion 2.2 is quite analogous, cf. Remark 2.14. Details are left to the reader. From now on,
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we simply write Dq for Dq(m). So let τ̄ : Dq → GLn(κ) be given as in the proposition and

let Γ be denote the image of τ̄ . As Γ is a p-group, after a suitable change of basis one could

assume that it is contained in Un(κ). We will construct a suitable basis of κn below.

We now define certain subgroups of Un(κ) which will be important in the combinatorics

leading to the proof of Proposition 2.1. We abbreviate J := {(i, j)|1 ≤ i < j ≤ n} ⊂ N×N.

A subset I of J is called admissible, if for all (i, j) ∈ I, the elements (1, j), (2, j), . . . , (i, j)

and (i, j), (i, j+1), . . . , (i, n) lie in I. For an admissible set I, we define the number s = s(I)

of corners of I and its characteristic sequence s = s(I) as follows:

s is the number of elements (i, j) of I such that neither (i+1, j) nor (i, j− 1) lies in I,

i.e. the number of corners towards the diagonal, if one depicts I in a n×n grid by marking

all the squares with index (i, j) ∈ I.

s is the sequence of such corners. This means that s is given by sequences of integers

1 ≤ i1 < i2 < . . . < is < n and 1 < j1 < j2 < . . . < js ≤ n with ir < jr for r = 1, . . . , s

such that

I = {(i, j)|∃r ∈ {1, . . . , s} : i ≤ ir and j ≥ jr},

and each pair (ir, jr) is a corner of I. Clearly there is a bijection between admissible subsets

of J and their characteristic sequences. We always set js+1 := n+ 1.

For an admissible set I and r ≥ 1, we define sets I(r) by

I(r) := {(l0, lr)|∃l1, . . . , lr−1 : (l0, l1), . . . , (lr−1, lr) ∈ I}.

The sets I(r) are again admissible. For any ring R, and any admissible set I, we define

uIn(R) := {M = (mi,j) ∈Mn(R)|mi,j = 0 if (i, j) /∈ I} and

UIn (R) := {M = (mi,j) ∈ Un(R)|M − I ∈ uIn(R)}.

Clearly UIn (R) is a normal subgroup of Un(R) and uIn(R) a Lie ideal of the Lie algebra

un(R). Often, we simply write UIn if the ring R is clear from context, or if the statement

is independent of R.

On admissible subsets one defines a partial ordering I < I ′ by the following condition

∃r ∈ N : ∀j ≤ r ∀i : (i, j) ∈ I ⇒ (i, j) ∈ I ′ and ∃i : (i, r) ∈ I ′ − I.

Given an admissible set I, we define various auxiliary admissible subsets from I. First

let r ∈ {1, . . . , s}. Define Ir ⊂ I by

Ir := {(i, j) ∈ I| if i = ir, then j ≥ jr+1},

i.e. in row ir we erase the entries jr, . . . , jr+1 − 1. Next let (i′, j′) ∈ I. Define

I(i′, j′) := {(i, j) ∈ I|i < i′ or (i = i′ and j ≥ j′)}

İ(i′, j′) := {(i, j) ∈ I|i < i′ or (i = i′ and j > j′)}.

For future reference, we formulate the following lemma. Note that the groups v(i, j),

defined therein, will be used below.

Lemma 2.8 Let I be admissible. Then

9



(i) UI
(2)

n contains the commutator subgroup of UIn , and uI
(2)

n the commutator ideal of the

Lie algebra uIn.

(ii) The group
⋂s
r=1 U

Ir
n contains UI

(2)

n .

(iii) For (i, j) ∈ I define r ∈ {1, . . . , s} by the condition that jr ≤ j < jr+1. Then u
İ(i,j)
n

is a Lie ideal in u
I(i,jr)
n , both stabilized by right and left multiplication by elements of

Un. On their quotient v(i, j) right and left multiplication by elements of UIn is trivial.

Proof: We only prove part (ii) and the second part of (iii), and leave the other parts to

the reader. For (ii), observe that it suffices to show that
⋂s
r=1 Ir ⊃ I(2). For the latter,

it suffices to consider elements (ir, j), 1 ≤ r ≤ s, since in rows different from the rows ir,

the set I agrees with
⋂s
r=1 Ir and contains I(2). More precisely we have to show that if

(ir, j) lies in I(2), then it lies in Ir: Suppose (ir, j) lies in I(2). Then there exists k such

that (ir, k) and (k, j) lie in I. We may clearly assume that k = jr. Since elements of I ‘lie

above the diagonal’, we have jr > ir. Because (ir, jr) is a corner, the second coordinate of

(jr, j) must be at least that of the following corner, i.e., j ≥ jr+1, and thus (ir, j) ∈ Ir.

For the second part of (iii), let j̃ be in {jr, jr + 1, . . . , j} and fix x = (xk,l) ∈ UIn . Then

(x − 1)ei,j̃ lies in column j̃ above row i, and hence the assertion on left multiplication is

clear. (In fact, x could be any element of Un.)

For right multiplication observe that by the definition of r one has xj,l − δj,l = 0 if

j > ir and l < jr+1. Therefore ei,j̃(x − 1) lies in row i, and on or to the right of column

jr+1 > j. This shows the assertion for right multiplication.

For A ∈ GLn(κ), let cA be the automorphism on GLn(κ) that sends an element g to

A−1gA. So the elements cA are simply given by a change of basis of the vector space κn on

which GLn(κ) acts tautologically. A basis of κn is called minimal for Γ, if there exists an

admissible I with the following property: The group UIn (κ), whose definition depends on

the choice of basis, contains Γ and for all A ∈ GLn(κ) and all admissible I ′ < I the group

cA(Γ) is not contained in UI
′

n (κ). As there always exists a basis with respect to which Γ

lies inside Un(κ), and as there are only finitely many admissible sets I, there must exist

such a minimal basis. The corresponding I is called minimal for Γ.

Lemma 2.9 Let I be minimal for Γ. For r = 1, . . . , s, define

πr : D̄q → Vr = UIn (κ)/U
Ir
n (κ) ∼= (κjr+1−jr ,+)

as the map induced from τ̄ , where we recall that D̄q
∼= F2m

p is the maximal p-elementary

abelian quotient of Dq. Then for any r = 1, . . . , s, the set πr(D̄q) generates Vr as a vector

space over κ.

Note that it follows easily from parts (i) and (ii) of the previous lemma that UIrn is normal

in UIn and that the quotient is abelian. So in particular, πr is a homomorphism.

Proof: We argue by contradiction. Throughout we regard Vr as vector spaces of row

vectors indexed by jr, . . . , jr+1−1. Choose any r such that the κ-span of πr(D̄q) is not all of

Vr. This means that the image lies in a hyperplane of Vr . Therefore we can choose a minimal

10



j̃ ∈ jr, . . . , jr+1 − 1 and a row vector α := (0, . . . , 0, αj̃, . . . , αjr+1−1) ∈ κjr+1−j̃ with αj̃ = 1

such that πr(Dq) lies in the hyperplane {v ∈ Vr|v ·α
t = 0}. Define A = (ai,j) ∈ Un(κ) such

that A is 1 along the diagonal, ai,j̃ = αi for i = j̃ + 1, . . . , jr+1 − 1, and all other ai,j = 0.

Applying the automorphism cA : g 7→ A−1gA of GLn(κ) preserves the subgroup UIn (κ).

Furthermore the component (ir, j̃) of every element of cA(Γ) is zero.

Apply now the automorphism cP of GLn(κ) where P is the permutation matrix corre-

sponding to the permutation cycle (jr, jr + 1, . . . , j̃). One can check that cP maps UIn (κ)

to a subgroup of Un(κ). Let I
′ be minimal admissible such that cP cA(Γ) ⊂ UI

′

n (κ). Then

for all j < jr and all i one has (i, j) ∈ I ⇔ (i, j) ∈ I ′, while the element (ir, jr) ∈ I − I ′.

Thus I ′ < I, contradicting the minimality of I for Γ.

From now on, we assume that Γ ⊂ UIn (κ) where I is minimal for Γ. In particular, the

above lemma applies to all the maps πl.

Remark 2.10 For the following argument, it is not really necessary that I is minimal for

Γ. We only need an admissible I such that Γ ⊂ UIn (κ) and such that all the maps πr have

the property that πr(Dq) generates Vr as a vector space over κ.

Another method to obtain such an I is to inductively apply the step described in the

proof of Lemma 2.9. Starting from the top left to the bottom right and repeating this

procedure over and over again until all the maps πr have the desired property. As there

is only a finite number of I’s and as each time we apply this step, I will become strictly

smaller, this process will terminate.

Proof of Proposition 2.1: We proceed by induction on 1 ≤ l ≤ λ and assume that we

have already found a lift τl : Dq → UIn (Wl(κ)) of τ1 := τ̄ . We will show that τl has a lift to

UIn (Wl+1(κ)), if l < λ, and, if l = λ, to Bn(Wl+1(κ)), the set of upper triangular matrices

inside GLn(Wl+1(κ)).

Let X1, . . . , X2m ∈ UIn (Wl(κ)) be the images of the elements t1, . . . , t2m ∈ Dq under τl,

so that they satisfy

X−11 X−1−q2 X1X2(X3, X4) . . . (X2m−1, X2m) = 1.

Let Yν ∈ UIn (Wl+1(κ)) be any lift of Xν , ν = 1, . . . , 2m. Consider matrices Mν ∈

Mn(Wl+1(κ)), ν = 1, . . . , 2m, as variables and define for µ = 1, . . . ,m: Z2µ := Y2µ(I +

plM2µ−1), Z2µ−1 := Y2µ−1(I+p
lM2µ). We claim that one can choose upper triangularMν

such that

Z−11 Z−1−q2 Z1Z2(Z3, Z4) . . . (Z2m−1, Z2m) = 1 (1)

and such that furthermore the Zi lie in the asserted subgroup of GLn(Wl+1(κ)).

For matrices A,B ∈Mn(R), R a commutative ring, we write [A,B] for AB −BA. We

state the following simple, if tedious lemma without proof:

Lemma 2.11 For any (commutative) ring R and A,B ∈ GLn(R) define

F (A,B) :=

q−1
∑

j=1

jAjBAq−j−1 ∈Mn(R).

Then the following hold:
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(i) ((I + plM)A)q = Aq + plA−1F (A, [M,A])A for A,M ∈Mn(Wl+1(κ)).

(ii) Z−11 Z−1−q2 Z1Z2

= Y −11 Y −1−q2 Y1Y2 + plY −11 [Y −1−q2 Y1Y2,M1] + pl[Y −11 Y −1−q2 Y1,M2]Y2

−plY −11 F (Y −12 , [M1, Y
−1
2 ])Y −12 Y1Y2.

Note that the expression from part (ii) of the lemma with F replaced by 0, with q = 0 and

indices 1 replaced by 2µ − 1 and 2 by 2µ, µ = 2, . . . ,m gives the analogous formula for

(Z2µ−1, Z2µ).

Admittedly these expressions do look quite complicated. However in the analysis below,

it will turn out that we only need what could be call the ‘leading term’ and this will be

very computable and rather simple. To simplify the notation, we introduce the following

abbreviations:

P1 := Y −11 Y −1−q2 Y1Y2,

Q1 := Y −11 [Y −1−q2 Y1Y2,M1] + [Y −11 Y −1−q2 Y1,M2]Y2 − Y −11 F (Y −12 , [M1, Y
−1
2 ])Y −12 Y1Y2,

Pµ := Y −12µ−1Y
−1
2µ Y2µ−1Y2µ, µ = 2, . . . ,m,

Qµ := Y −12µ−1[Y
−1
2µ Y2µ−1Y2µ,M2µ−1] + [Y −12µ−1Y

−1
2µ Y2µ−1,M2µ]Y2µ, µ = 2, . . . ,m.

Using this notation, we can rewrite condition (1) as

I − P1 . . . Pm = pl
m
∑

µ=1

P1 . . . Pµ−1QµPµ+1 . . . Pm. (2)

By induction hypothesis and the choice of the Yν , the expression I − P1 . . . Pm lies in

the linear subspace pluIn(Wl+1(κ)). If pl+1|q, the expression will in fact be contained in

pluI
(2)

n (Wl+1(κ)), since then Y
−q
2 ∈ UI

(2)

n (Wl+1(κ)). Let pµ ∈ UIn (κ) denote the image of Pµ
under the reduction map Wl+1(κ) → κ, and xν that of Yν , i.e., xν = τ̄(tν). Let x ∈ uIn(κ)

be the mod p reduction of some matrix in X ∈ uIn(Wl+1(κ)) with plX = I − P1 . . . Pm.

Finally for m1, . . . ,m2m ∈Mn(κ), define

q1 := x−11 [x−1−q2 x1x2,m1] + [x−11 x−1−q2 x1,m2]x2 − x−11 F (x−12 , [m1, x
−1
2 ])x−12 x1x2

qµ := x−12µ−1[x
−1
2µ x2µ−1x2µ,m2µ−1] + [x−12µ−1x

−1
2µ x2µ−1,m2µ]x2µ, µ = 2, . . . ,m.

Equation (2) is then equivalent to the following equation

x =
m
∑

µ=1

p1 . . . pµ−1qµpµ+1 . . . pm, (3)

where the qµ are linear expressions in the mν . The following lemma implies that Equa-

tion (3) has a solution with mν of a form such that the Zµ lie in the asserted subspace of

GLn(Wl+1(κ)), and thus it completes the proof of the proposition.

Define bn(κ) := {A = (ai,j) ∈Mn(κ) | ∀i > j : ai,j = 0}, i.e., as the set of upper triangular

matrices.
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Lemma 2.12 For any x ∈ uIn(κ), there exist m1, . . . ,m2m ∈ bn(κ) such that

x =

m
∑

µ=1

p1 . . . pµ−1qµpµ+1 . . . pm.

Furthermore, if x ∈ uI
(2)

n , one may choose m1, . . . ,m2m ∈ uIn(κ).

Proof: For a pair (i, j) ∈ I define i′ to be the maximal i such that (i′, j) ∈ I. Let

(i′, j′) be the ‘corner’ in row i′. Furthermore let r be the number of the corner (i′, j′), i.e.,

(i′, j′) = (ir, jr).

We will prove the following assertion by upward induction in i, and then for fixed i by

downward induction on j, thus establishing the first part of the lemma. For all (i, j) ∈ I,

there exist m1, . . . ,m2m ∈ bn(κ) such that:

(i) All qµ ∈ u
I(i,j′)
n (κ) (and hence

∑m
µ=1 p1 . . . pµ−1qµpµ+1 . . . pm ∈ u

I(i,j′)
n (κ)).

(ii) Modulo u
İ(i,j)
n (κ) one has ei,j ≡

∑m
µ=1 p1 . . . pµ−1qµpµ+1 . . . pm ∈ u

I(i,j′)
n (κ).

The proof of this assertion will use the following sublemma.

Sublemma 2.13 For any α ∈ κ, the map παi,j, defined as

παi,j : Dq −→ uIn(κ) : g 7→ [τ̄ (g), αei,i′ ],

takes its values inside u
I(i,j′)
n (κ). The induced map

π̄αi,j : Dq −→ v(i, j) = uI(i,j
′)

n (κ)/uİ(i,j)n (κ)

factors via πr : Dq → D̄q → Vr, defined in Lemma 2.9. The resulting map Vr → v(i, j) can

be described as follows:

Consider an element α ∈ Vr as a row vector with entries

(αir ,jr , αir ,jr+1, . . . , αir ,jr+1−1)

and consider elements of v(i, j) as row vectors (βi,jr , βi,jr+1, . . . , βi,j). Then the map Vr →

v(i, j) simply truncates the first vector after position j and multiplies it by −α.

Proof: One has [τ̄(g), ei,i′ ] = (τ̄ (g) − 1)ei,i′ − ei,i′(τ̄ (g) − 1). Arguing as in the proof of

Lemma 2.8 (iii) it follows that παi,j takes its image in u
I(i,j′)
n . The same line of reasoning

shows that UIrn maps under g 7→ [g, αei,i′ ] to u
İ(i,j)
n . Hence the induced map π̄αi,j factors

via D̄q → Vr as desired, and is therefore a group homomorphism. The explicit shape of

Vr → v(i, j) is easily established.
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To prove the assertion we take mν = ανei,i′ for suitable αν to be determined below.

By the sublemma, the expressions [τ̄ (g),mν ] are in u
I(i,j′)
n . From the definitions of the qµ

and the results of Lemma 2.8 it follows that modulo u
İ(i,j)
n one has

p1 . . . pµ−1qµpµ+1 . . . pm ≡ α2µ[x
−1
2µ , ei,i′ ] + α2µ−1[x2µ−1, ei,i′ ]

for µ = 1, . . . ,m, where we recall that the xν are the images under τ̄ of the generators tν
of Dq. In the case q = 2 and µ = 1, the term F (., .) intervenes, and one has to add the

expression α1[x
−1
2 , ei,i′ ] to the right hand side for the above formula to be true. To avoid

this further complication, below we assume that q > 2. However, the interested reader can

easily adjust the formulas below to see that the proof with minor modifications also works

for q = 2.

Hence modulo u
İ(i,j)
n we have

σ :=

m
∑

µ=1

α2µ[x
−1
2µ , ei,i′ ] + α2µ−1[x2µ−1, ei,i′ ] ≡

m
∑

µ=1

p1 . . . pµ−1qµpµ+1 . . . pm ∈ v(i, j′). (4)

It may now be clear what we meant by the ‘leading term’ of the expressions for pµ, qµ when

introducing them.

Let x̄2µ denote the image of x−12µ in Vr and x̄2µ−1 that of x2µ−1, considered as a row

vector in Vr , and define x̃ν by truncating the vector x̄ν after column j. Then the explicit

description of π̄αi,j and of the induced map Vr → v(i, j) yields σ = −
∑

αν x̃ν as a row

vector in v(i, j).

The tν generate Dq. Hence by Lemma 2.9 the x̄ν span Vr as a vector space over κ.

Therefore the x̃ν generate v(i, j) as a vector space over κ, and so we can find suitable αν
such that σ = (0, 0, . . . , 0, 1). This proves the assertion made in (ii).

Finally for x ∈ uI
(2)

, essentially the same inductive proof as above will work, where

however we have to convince ourselves that we can now choose all mν in uI(κ). In the

proof above, we needed for each row index ir of a corner all the elements ei,ir with i ≤ ir
in order to obtain the elements at the spot (i, j) between columns jr and jr+1 on rows up

to number ir. However by its definition I(2) contains only elements (i0, j) such that there

exists an (i1, i0) ∈ I. In the inductive step for (i0, j), we need the subspace over κ spanned

by ei1,i0 , and this lies in uI(κ), as asserted.

Remark 2.14 The proof of Proposition 2.2 is almost word by word the same as the one we

gave for Proposition 2.1. However there are some notational differences, which is the main

reason why we did not try to write a uniform proof, the matter already being technical

enough.

If one successfully adapted the above proof, one difference that one will encounter is

that the expression for σ given in Equation (4) in the proof of Lemma 2.12 takes a slightly

different form. Depending on i = 1, 2, 3 one obtains the following expressions for Di,f
2 (m),
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independently of f :

σ = α1[x1, ei,i′ ] +

m
∑

µ=1

α2µ+1[x
−1
2µ+1, ei,i′ ] + α2µ[x2µ, ei,i′ ]

σ = α2[x1, ei,i′ ] +

m
∑

µ=1

α2µ[x
−1
2µ , ei,i′ ] + α2µ−1[x2µ−1, ei,i′ ]

σ = α2[x1, ei,i′ ] +

m
∑

µ=1

α2µ[x
−1
2µ , ei,i′ ] + α2µ−1[x2µ−1, ei,i′ ]

The reader who went through the proof of Lemma 2.12, will now easily verify that it is

again possible for suitable choices of the αν ∈ κ to obtain σ = (0, 0, . . . , 0, 1). Therefore

the proof of the analogue of Lemma 2.12 for the Di,f
2 (m) will pose no further problems.

Remark 2.15 There is another case worth mentioning in which one can use the above

proof in an inductive argument to construct lifts to characteristic zero. Namely suppose

we know that τ̄(t2) − 1 has rank n − 1. In particular, we have I = J . In each inductive

step, we choose lifts of the Xi such that Yi ∈ Un(Wl(κ)) for i > 1 and Y1 ∈ Bn(Wl(κ))

with diagonal (1, (1 + q)−1, . . . , (1 + q)1−n). With these choices, I − P1 . . . Pm will be in

UI(Wl(κ)). As in the proof of the above proposition, the induction now uses the sharpened

version of Lemma 2.12.

3 Local lifts to characteristic zero

Fix a prime-power l with p 6 | l and define

Ẑ := lim
←−
n

Z/(n) and Z′ := lim
←−

n,(n,l)=1

Z/(n).

Note that Ẑ is isomorphic to the infinite product over all Zr, where r runs through all prime

numbers, and Ẑ′ is isomorphic to the product over the same groups over all r not dividing

l. Finally define Gtl := Ẑ′⋊Ẑ, where x ∈ Ẑ acts on y ∈ Ẑ′ by y 7→ lxy. The expression lx is

well-defined as an element in Ẑ′, since for any x̃, x̃′ ∈ Z with x̃ ≡ x̃′ (mod φ(n)), one has

lx̃ ≡ lx̃
′

(mod n), where φ(n) is the usual φ-function on positive integers. By Itl we denote

the normal subgroup Ẑ′ of Gtl .

The main result of this section is the following:

Proposition 3.1 Any representation τ̄ : Gtl → GLn(κ) with τ̄ (Itl ) a p-group has a lift

to W (κ).

We first give an application:

Proof of Theorem 1.3: Let K be a local field whose (finite) residue field is of order l′

not divisible by p and let ρ̄ : GK → GLn(κ) be such that ρ̄(IK) is a p-group. Let R be any

complete noetherian local ring with residue field κ and ρ : GK → GLn(R) be any lift of ρ̄.

Since the kernel of GLn(R) → GLn(κ) is a pro-p group, the kernel of ρ(IK) → ρ̄(IK) is a
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pro-p group as well, and therefore ρ(IK) is of order prime to l′. In particular ρ factors via

the tame quotient of GK . This quotient is well-known to be isomorphic to Gtl′ , and in such

a way that IK maps onto the normal subgroup Itl of Gtl , cf. [Se1], Ex. IV §2.2. The result

now follows from Proposition 3.1.

To prove the above proposition, denote by s, t the image of 1 ∈ Z in Ẑ and Ẑ′, respec-

tively, so that s, t topologically generate Gtl subject to the only relation sts−1 = tl, written

mulitplicatively. Now any morphism of Gtl into some profinite group G is determined by

the images of s, t, and conversely, given any two elements S, T ∈ G, with STS−1 = T l

and T of profinite order prime to l, there exists a unique homomorphism with s 7→ T and

t 7→ T .

We let a, b ∈ GLn(κ) denote the images of the generators s, t under ρ̄, so that they

satisfy the relation ab = bla. Since ρ̄(t) is of p-power order, all its eigenvalues are equal to

1. By chosing an appropriate basis for κn, we may therefore assume that b ∈ Un(κ) is given

in Jordan canonical form. By B ∈ Un(W (κ)) we denote that matrix in Jordan canonical

form which reduces to b modulo p, and so in particular the only entries of B are 0 and 1.

To prove the above proposition it suffices to construct a lift A ∈ GLn(W (κ)) of a such that

AB = BlA. Define N = B − I and N̄ = b − I. By rewriting the given relation for A,B,

one sees that Proposition 3.1 is a consequence of the following, which we prove below

Proposition 3.2 There exists a matrix A ∈ GLn(W (κ)) reducing to a modulo p such that

AN =

( l
∑

i=1

(

l

i

)

N i

)

A. (5)

Proposition 3.2 is an assertion on linear equations. We will need the following lemma

on the behavior of solutions to linear equations under ‘small’ distortions.

Lemma 3.3 Let R be any commutative ring and f ∈ R[x]/(xm) a polynomial such that

f(0) = 0 and f ′(0) is a unit in R. Suppose we are given matrices C,D,E ∈ Mm(R) such

that i) C commutes with D and E, ii) C is nilpotent (hence Cm = 0) , and iii) D,E satisfy

the relations DEiDi = Ei−1Di for all i ≥ 1. Then there exists an R-linear automorphism

TR of Rm which induces an R-linear isomorphism between the R-modules

V1(R) := {v ∈ Rm : Dv = Cv} ⊂ Rm and

V2(R) := {v ∈ Rm : Dv = f(C)v} ⊂ Rm.

The transformation TR is given by an explicit expression in terms of f, C,E, which is given

in the proof.

Furthermore let φ : R → R′ be a ring homomorphism and define V1(R
′), V2(R

′) in the

obvious way. Define TR′ by substituting φ(f), φ(C), φ(E) for f, C,E, in the expression for

TR. Then TR′ is an automorphism of R′m which induces an R′-linear bijection between

V1(R
′) and V2(R

′).

Proof: Since f(0) = 0 and f ′(0) is a unit, one can show by induction on m that there

exists a unique h(x) ∈ R[x]/(xm) such that f(h(x)) = x and h(f(x)) = x. Using h, it is

easy to find g ∈ R[x]/(xm) such that x = f(x)g(f(x)).
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For suitable, yet to be defined αj,k, we define TR, or simply T , by

T :=

(

I +

∞
∑

j=1

(m−1)j
∑

k=j

αj,kE
jCk

)

.

If we succeeded in constructing T so that (D− f(C))T = D−C, then the proof would be

completed, as T is clearly unipotent (E and C commute and C is nilpotent!), and T maps

V2 to V1, and T
−1 the space V1 to V2. The lemma would follow. This however is too much to

hope for, and it is not quite needed. Vaguely speaking, ‘we only need (D−f(C))T = D−C

to hold on elements of V1’.

We define elements fi ∈ R by f(x) = f1x+ f2x+ . . . fm−1x
m−1 and fi = 0 for i not in

the range 1, . . . ,m− 1, and set recursively α1,k = fk − δ1,k and

αj,k =

(m−1)(j−1)
∑

l=j−1

fk−lαj−1,l for j > 1.

Furthermore define L := (D − f(C))T − (D −C). Based on the above recursive definition

of the αj,k, one can check that

L =

∞
∑

j=1

(m−1)j
∑

k=j

αj,k(DE − I)Ej−1Ck.

Now we are ready to prove the lemma. Let v′ be a solution in V1. Then (D −C)v = 0

and hence Ckv = Dkv, as C and D commute. By (ii) we have (DE − I)Ej−1Dk = 0 for

all k ≥ j, so that Lv = 0. Therefore

0 = Lv = ((D − f(C))T − (D − C))v = (D − f(C))Tv,

and so Tv is in V2. Conversely, say v is a solution in V2. Then (D−f(C))v = 0. We multiply

this on the left by g(f(C)). Because C and D commute, the equation x = f(x)g(f(x))

implies (Dg(f(C)) − C)v = 0, and therefore we find

Ckv = Dkg(f(C))kv ∀k ≥ 0.

We claim that LT−1v = 0. As T is unipotent, we can express its inverse as the series
∑∞
i=0(I − T )i. Distributing all the terms in the expression for LT−1v, we find that, up to

a constant, every term can be written as

(I −DE)Ej0−1Ck0Ej1Ck1 . . . Ejl−1Cklv

where 1 ≤ ji ≤ ki. As C,E commute, abbreviating k =
∑

ki and j =
∑

ji, we can rewrite

the above expression as

(I −DE)Ej−1Ckv = (I −DE)Ej−1Dkg(f(C))kv

with j ≤ k. By (ii) the latter term is zero, and we find

0 = LT−1v = (D − f(C))v − (D − C)T−1v = (D − C)T−1v

and thus T−1v ∈ V1. So T is an R-linear isomorphism between V2 and V1 with inverse T−1.

The statement about the relation of TR′ and TR under the map φ : R → R′ is obvious from

the construction of TR.
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Remark 3.4 If D is invertible, then our relations among D,E are equivalent to E = D−1.

But even if D is singular, as we will see below, there are often situations where one can

find E, given the matrix D.

Proof of Proposition 3.2: We think of (5) as a linear equation in m = n2 indeterminates,

the matrix entries of A. We define R = Z[1/(l)], and take for C the R-linear transformation

given by right multiplication with N , and for D,E the R-linear transformations given by

left multiplication by N and N t, respectively. f(x) will be the polynomial
∑l

i=1

(

l
i

)

xi. One

easily verifies all the conditions of Lemma 3.3. Thus over any R-algebra S we have an

isomorphism of the solution spaces V1(S) = {A ∈ Mn(S) : NA = AN} and V2(S) = {A ∈

Mn(S) : NA = Af(N)}, given by an explicit transformation defined over R.

We now claim that Mn(R)/V1(R) is flat over R. Let us assume the claim for the

moment. As TR is an R-linear isomorphism, the R-module Mn(R)/V2(R), too, is flat over

R, and hence by base change Mn(W (κ))/V2(W (κ)) is flat over W (κ). This implies that

V2(κ) ∼= V2(W (κ))⊗W (κ)κ. Thus our given solution a ∈ V2(κ) arises as the mod p reduction

of an element A ∈ V2(W (κ)), and the proof of Proposition 3.2 is completed.

To show the flatness of Mm(R)/V1(R) as an R-module, we will construct an R-basis of

V1(R) and show that it can be completed to an R-basis of Mm(R). Hence Mm(R)/V1(R)

is a free R-module, finishing the proof of the claim. We now construct the respective basis

for V1(R) and Mn(R):

Say N is given by

N =









N1 0 . . . 0

0 N2 . . . 0

. . . . . . . .

0 0 . . . Nk









,

where the Ni are simple ni × ni Jordan blocks in Uni
(R). We write an n× n matrix A as

A =









A1,1 A1,2 . . . A1,k

A2,1 A2,2 . . . A2,k

. . . . . . . . . . . . . .

Ak,1 Ak,2 . . . Ak,k









,

where the submatrix Ai,j is of size ni × nj . Then the equation NA = AN breaks up into

k2 equations NiAi,j = Ai,jNj .

Let di,j := min{ni, nj}. The solution space of NiAi,j = Ai,jNj is a free R-module of

rank di,j and a basis for it is given by the matrices

Ml :=

di,j−l
∑

i=1

ei,nj−di,j+i for l = 0, . . . , di,j − 1.

If ni < nj , a complementary basis is the set of matrices ei,j, i = 1, . . . , ni, j = 1, . . . , nj − 1

and, if ni ≥ nj , the set ei,j , i = 1, . . . , ni − 1, j = 1, . . . , nj . This finishes the proof of the

above claim.
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4 Global lifting

With Theorem 1.1 at our disposal, the proof of Theorem 1.5 will follow rapidly. We let K

be a global field and S ⊃ Sp ∪ S∞ a finite set of places outside which ρ̄ : GK → GLn(κ) is

unramified. We first formulate the analogue of Theorem 1.5 for lifts with fixed determinant:

Theorem 4.1 Let K be a global field of characteristic different from p, ρ̄ : GK → GLn(κ)

a representation and η a lift of det ρ̄ to W2(κ). Assume that ad0ρ̄ is globally unobstructed.

If p 6 |n, then ρ̄ has a lift ρ : GK → GLn(W2(κ)) with determinant η. If p|n, the same

assertion holds if one further assumes that for all p ∈ S the representation ρ̄|GKp
has a lift

to W2(κ) with determinant η|GKp
.

For any finite κ[GK,S ]-module X , define W
2
S(K,X) through the left exact sequence

0 −→ W
2
S(K,X) −→ H2(GK,S , X)

αS(X)
−→

∐

p∈S

H2(GKp
, X),

where the maps H2(GK,S , X) → H2(GKp
, X) are the restriction maps from cohomology,

and where for each place p one has chosen an embedding GKp
→ GK,S , i.e., one has singled

out a decomposition group in GK,S above p.

Recall that H = Gal(L(ζp)/K), where L is the splitting field of ρ̄, and that by Hp ⊂ H

we denote a decomposition group above a place p of K. The following result is easily

obtained by the methods in [Bö], §6, where it is only stated in the number field case. It is

based on Poitou-Tate duality and the Cebotarov density theorem, cf. [NSW], Thm. 8.6.13,

[Neu], Satz 13.4, [Ja]. We omit the proof.

Lemma 4.2 Suppose the characteristic of K is different from p and X is a finite κ[H ]-

module. Then for any sufficiently large finite S′ ⊃ S there is a left exact sequence

0 −→ W
2
S′(K,X)∗ −→ H1(H,X∗(1)) −→

∐

p∈S′

H1(Hp, X
∗(1)).

Note that for places p ∈ S′ − S the groups Hp are cyclic and that by the Cebotarov

density theorem any cyclic subgroup of H occurs infinitely often as a decomposition group.

Therefore X is globally unobstructed if and only if W2
S′(K,X) = 0 for sufficiently large

S′ ⊃ S.

We use this point to comment on a mistake in loc. cit., where it was erroneously asserted

that ad0ρ̄ is self dual. However this is only the case when p 6 |n. In general, the dual of ad0ρ̄
is isomorphic to adρ̄, i.e., the quotient of adρ̄ by the scalar matrices. To correct this, one

has to replace in [Bö], p. 223, each occurrence of ad0ρ̄(1) by ad0∗ρ̄ (1).

Proof of Theorem 1.5: As is well known, the obstruction to finding a lift of ρ̄ to W2(κ),

unramified outside S′ ⊃ S, is given by an element θS′ ∈ H2(GK,S′ , adρ̄). Let θp be its

image in H2(GKp
, adρ̄) under the restriction map αS′(adρ̄). This is the obstruction to

finding a lift to W2(κ) of the restriction ρ̄|GKp
. By Theorem 1.1 all θp vanish and hence

θS′ must be in the kernel W2
S′(K, ad0ρ̄) of αS′(adρ̄) for any finite S′ containing S.

Let Hi ⊂ H be cyclic subgroups that are used in showing that adρ̄ is globally unob-

structed, cf. above Theorem 1.5. By the Cebotarov density theorem there exist places pi
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not in S such the Hi agree with a decomposition group Hpi
at pi. Let S′ ⊃ S ∪ {pi : i}

be sufficiently large in the sense of the previous lemma. Then by this lemma and global

unobstructedness, we have W
2
S′(K, ad

0
ρ̄) = 0. It follows that θS′ is zero, as asserted.

The proof of Theorem 4.1 is quite analogous. The obstruction θS′ to consider lies in

H2(GK,S′ , ad0ρ̄). For its vanishing, one needs that ad0ρ̄ is globally unobstructed which in

turn shows that W2
S′(K, ad0) = 0 for any ‘sufficiently large finite S′’, and also the vanishing

of all the local obstructions θp. Details are left to the reader.

Remark 4.3 There are quite simple examples, based on Lemma 4.2 for whichW
2
S′(K, adρ̄)

vanishes for no finite S′. Here we give two examples that may be checked using the explicit

description of the cohomology of cyclic groups and the inflation-restriction sequence. The

first of these in particular shows that the Theorem 1.5 does not recover [Kha]:

Suppose κ is of degree 2 over Fp. Take n = 2 and H = U2(κ). Suppose all Hp are cyclic

and that all cyclic groups occur as Hp. Then for no finite S′, the group W
2
S′(K, adρ̄) is

zero.

Suppose κ = Fp, and H is the subgroup of U3(Fp) generated by I + e1,2 + e2,3 and

I + e1,3. Suppose each cyclic subgroup of H occurs among the Hp for some place p of S.

Then there exists no S′ containing S such that W2
S′(K, adρ̄) is zero.

The case where K has characteristic p, is rather simple as the following proof of Theo-

rem 1.7 shows.

Proof: Let ρ̄ : Π1(X) → GLn(κ). We will show that H2(Π1(X), adρ̄) = 0. The obstruc-

tion to lifting a lift ρl : Π1(X) → GLn(Wl(κ)) to ρl+1 : Π1(X) → GLn(Wl+1(κ)) is given

by an element in H2(Π1(X), adρ̄), which by the above claim is zero. Therefore one can

inductively construct the desired lift to W (κ).

Let P be a p-Sylow subgroup of Im(ρ̄) and denote by Y the étale cover of X cor-

responding to ρ̄−1(P ). As [Π1(X) : Π1(Y )] is of order prime to p, the restriction map

H2(Π1(X), adρ̄) → H2(Π1(Y ), adρ̄) is injective, and it will suffice to show that the module

H2(Π1(Y ), adρ̄) vanishes.

As Π1(Y ) acts via a p-group on adρ̄, the latter Galois module has a decomposition

series all of whose subquotients are isomorphic to κ - with necessarily trivial Galois action.

Thus by devissage it is enough to show that H2(Π1(Y ), κ) = 0. The latter now follows by

a standard application of Artin-Schreier theory, which shows that Hi
ét(Z,Fp) = 0 for all

i > 1 and all affine noetherian schemes Z over Fp, cf. [SGA4], VII.4.3 and IX.3.5.

5 A vanishing criterion for H1(H, ad)

Now we turn to the proof of Theorem 1.9. As an application, we give in Proposition 1.8 a

criterion for adρ̄ to be globally unobstructed. In the proof, we closely follow the arguments

in [CPS]. Throughout, we use the notation from Theorem 1.9.

For i, j ∈ {1, . . . , n} we define χi,j : T → κ∗ to be the character which sends the diagonal

matrix (λ1, . . . , λn) to λi/λj . This character factors via T̄ . One calls two characters
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ψ, φ : T → κ∗ equivalent, ψ ∼ φ, if there exists σ ∈ Gal(κ/Fp) such that σψ = φ. One has

the following basic lemma, whose proof we omit.

Lemma 5.1 Assume that T̄ contains STn(κ
′) for some field κ′ of cardinality at least 7,

if n = 2, at least 5 if n = 3 or at least 4, if n > 3. Then for i 6= j and i′ 6= j′ one has

χi,j ∼ χi′,j′ only if (i = i′ and j = j′) or (i = j and i′ = j′).

The characters χi,j appear naturally in the conjugation action of T on

Ui,j :=
{

I + aei,j|a ∈ κ
}

∼= (κ,+),

because for t ∈ T and a ∈ κ, one has t(I + aei,j)t
−1 = I + χi,j(t)aei,j . For k ∈ {1, . . . , n′},

define Uk := (U ∩ Uik,jk).

For any group G̃ and any κ[G̃]-module V , we denote by B1(G̃, V ) the 1-coboundaries

of G̃ with coefficients in V and by Z1(G̃, V ) the 1-cocycles with coefficients in V . If V is a

κ[T ]-module and ψ a character of T , then Vψ denotes the ψ-isotypical component of V .

Lemma 5.2 Let L be a κ[Uk ⋊ T ]-module.

(i) If L is one-dimensional, and if ψ is the character by which T acts on the one-

dimensional module L, then

dimκ Z
1(Uk, L)

T =

{

1 if ψ ∼ χik,jk ,

0 otherwise.

(ii) For arbitrary L one has

dimκ Z
1(Uk, L)

T ≤
∑

ψ∼χik,jk

dimκ Lψ.

Proof: (i) As Uk is a p-group and must therefore act trivially on the one-dimensional

κ-module L, we have

Z1(Uk, L)
T = H1(Uk, L)

T = HomFp
(Uk, L)

T = HomFp[T ](Uk, L).

Let κ′′ denote the smallest subfield of κ containing χik,jk(T ). Then by assumptions (iii)

and (iv) the group Uk is isomorphic to κ′′ with T acting via the character χik,jk . A generator

over κ′′ is given by uk. Therefore Uk is irreducible as an Fp[T ]-module. If ψ 6∼ χik,jk we

must have HomFp[T ](Uk, L) = 0 by Schur’s lemma.

Let us now assume ψ ∼ χik,jk . Then κ
′′ is also the smallest field containing ψ(T ), and

if L′′ denotes the module κ′′ with T acting via ψ, then L is a direct sum of [κ : κ′′] copies

of L′′ as an Fp[T ]-module. Since ψ ∼ χik,jk it follows that L′′ and Uk are isomorphic as

Fp[T ]-modules. Part (i) now follows from

dimκHomFp[T ](Uk, L) = dimκ′′ HomFp[T ](Uk, L
′′) = 1.

(ii) For any left exact sequence 0 −→ V ′ −→ V −→ V ′′ of κ[Uk ⋉ T ]-modules, the

sequence 0 → Z1(Uk, V
′) → Z1(Uk, V ) → Z1(Uk, V

′′) is left exact. As taking T -invariants

is left exact as well, one obtains

0 → Z1(Uk, V
′)T → Z1(Uk, V )T → Z1(Uk, V

′′)T .
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Since the exponent of T divides the order of κ∗, every irreducible κ[T ]-module has di-

mension 1 over κ. As Uk is a normal p-group, every irreducible κ[Uk ⋊ T ]-module will

have dimension 1 as well. Hence L has a decomposition series over κ[Uk ⋊ T ] with one-

dimensional subfactors, which is a direct sum decomposition when viewed over κ[T ]. The

desired result follows from part (i) and the above left exact sequence.

Proof of Theorem 1.9: Let us first prove H1(G, ad) = 0. By the inflation-restriction

sequence combined with the fact that T has order prime to p, we find that

dimκH
1(G, ad) = dimκH

1(U, ad)T .

Since T is of order prime to p, taking T -invariants is an exact functor for κ[T ]-modules,

and hence we have

dimκH
1(U, ad)T = dimκ Z

1(U, ad)T − dimκB
1(U, ad)T .

To estimate the first term, one observes that

Z1(U, ad)T →
∐

k

Z1(Uk, ad)
T

is injective, as 1-cocycles c are given by the defining property c(gh) = c(g)h+ c(h) and as

U is generated by the Uk. By the previous lemma we obtain

dimκ Z
1(U, ad)T ≤

n′

∑

k=1

∑

χi,j∼χik,jk

dimκ adχi,j
.

By Lemma 5.1 and condition (ii) of our assumptions, the relation χi,j ∼ χik,jk implies

(i, j) = (ik, jk) because ik < jk, and so the term on the right equals n′.

For the second term, one considers the map ad → B1(U, ad) that sends an element

v ∈ ad to the 1-coboundary u 7→ v − vu. The kernel equals (ad)U and the image is

isomorphic to ad/ad
U
. All maps are maps of κ[T ]-modules. Taking T -invariants, which is

(left) exact, one obtains the exact sequence

0 −→ ad
G
−→ ad

T
−→ B1(U, ad)T .

As T̄ contains STn(κ
′), none of the characters χi,j , i 6= j is trivial, and thus the set

ad
T
consists precisely of the set of diagonal matrices in ad. For a diagonal matrix d, the

condition ukd = duk implies that the entries at the ik-th and jk-th spot must agree, and

this is still true modulo the set of scalar matrices. Therefore condition (iv) implies that

dimκ ad
G
= (n− 1)− n′. Hence

dimκB
1(U, ad)T ≥ dimκ ad

T
− dimκ ad

G
= (n− 1)− (n− n′ − 1) = n′.

Combining the two estimates, we find that dimκH
1(G, ad) ≤ 0.

To prove H1(G, ad) = 0, we note first that by the above lemma Z1(G, κ) = 0, where

we regard κ as a trivial κ[G]-module. Now the assertion follows easily from the long exact
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sequence of cohomologies for G which arises from to the short exact sequence 0 −→ κ −→

ad −→ ad −→ 0.

For the last part of the theorem, consider G := SLn∩Bn(κ). Under the given conditions

on κ, this group clearly satisfies all our hypothesis, and so H1(G, ad) = 0. Since G contains

a p-Sylow subgroup of SLn(κ) and since ad is p-primary, the restriction map

H1(SLn(κ), ad) → H1(G, ad)

is injective, and the proof of Theorem 1.9 is completed.

Proof of Proposition 1.8: For (i) and (ii), we consider the following diagram of fields

L(ζp)

��
��

��
�

??
??

??
?

L

<<
<<

<<
<

K(ζp)

��
��

��
�

E := K(ζp) ∩ L

K.

As L and K(ζp) are Galois over E and linearly disjoint, it follows that

Gal(L(ζp)/E) ∼= Gal(L(ζp)/L)×Gal(L(ζp)/K(ζp))

and Gal(L(ζp)/K(ζp)) ∼= Gal(L/E). As Gal(E/K) is of order prime to p, we find that

H1(Gal(L(ζp)/K), adρ̄(1)) →֒ H1(Gal(L(ζp)/E), adρ̄(1))

∼= H1(Gal(L(ζp)/K(ζp)), adρ̄)(1)
Gal(K(ζp)/E).

In case (ii), our assumption says that H1(Gal(L(ζp)/K(ζp)), adρ̄) = 0. In case (i), the

group Gal(K(ζp)/E) acts trivially on H1(Gal(L(ζp)/K(ζp)), adρ̄), and since it acts non-

trivially on Fp(1), the module of invariants H1(Gal(L(ζp)/K(ζp)), adρ̄)(1)
Gal(K(ζp)/E) is

zero. In either case we find H1(Gal(L(ζp)/K), adρ̄(1)) = 0.

Part (iii) is immediate from (ii) and Theorem 1.9. Finally, assume that H contains

SLn(κ) and that ζp ∈ L. Our conditions on n, κ ensure among other things that SLn(κ)

is simple. The above diagram shows that H ∼= Gal(L/K) contains H ′ ∼= Gal(L/K(ζp)) as

a normal subgroup with abelian quotient. As SLn(κ) ⊂ H is simple it must therefore be

contained in H ′. We conclude using Theorem 1.9 and parts (i) and (ii).
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