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Abstract

Given an absolutely irreducible Galois representation ρ̄ : GE → GLN (k), E a number
field, k a finite field of characteristic l > 2, and a finite set of places Q of E containing
all places above l and ∞ and all where ρ̄ ramifies, there have been defined many functors
representing strict equivalence classes of deformations of such a representation, e.g. by
Mazur or Wiles in [15] or [26], with various conditions on the behaviour of the defor-
mations at the places in Q and with the condition that the deformations are unramified
outside Q. Those functors are known to be representable. For ρ̄ as above, our goal is to
present a rather general class of global deformation functors that satisfy local deforma-
tion conditions and to investigate for those, under what conditions the global deformation
functor is determined by the local deformation functors.

We will give precise conditions under which the local functors for all places in Q are
sufficient to describe the global functor, first in a coarse form, then in a refined form using
auxiliary primes as done by Taylor and Wiles in [24]. This has several consequences. The
strongest is that one can derive ring theoretic results for the universal deformation space
by Mazur if one uses results of Diamond and Wiles, c.f. [11] and [26], and if one has a
good understanding of all local situations. Furthermore it is easier to understand what
happens under increasing the ramification as done by Boston and Ramakrishna in [6]
and [20, 21]. Finally we shall reinterpret the results in the case of a tame representation
ρ̄ by directly considering presentations of certain pro-l Galois groups and revisiting the
prime-to-adjoint principle of Boston, c.f. [5].

1 Introduction

That in some sense the local deformation problems should govern the global universal
deformation was certainly an important idea in many developments involving deformations
of Galois representations, most notably in the work of Wiles, [26], and its continuation through
others, e.g. [11], [13]. Yet a precise principle seems not have been defined anywhere. Our
goal will be to show that, under suitable conditions, the universal deformation ring for a
global problem can be cut out from a power series ring W (k)[[x1, . . . , xn]] by equations that
naturally arise from local deformation problems. This principle will then be applied in several
situations to derive ring-theoretic properties of deformation rings.

In our analysis we were guided by the following two ideas. The first becomes most apparent
if one considers deformations of a tame Galois representation. There the deformation functor
is described by sets of H-equivariant homomorphisms between a given pro-l Galois group and
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a group of N by N matrices over a complete Noetherian local ring, where H is a certain finite
group of order prime to l, naturally acting on the two groups in question. The local-to-global
principle should then come from a local-to-global principle for the presentation of the pro-l
Galois group mentioned above. Such presentations are indeed known, see [14], §11, provided
a certain obstruction group vanishes. We will explain all this in greater detail in the last
section.

The problem in this approach is the possible non-vanishing of the obstruction group.
To overcome this, one can use auxiliary primes. This is now the second main point, as
introduced in [24], see for example [10], Theorem 2.49. By considering not just the primes
that can ramify, but also, in a controlled way, a few primes that do not ramify, one obtains
a complete list of relations in a presentation of the pro-l Galois group under consideration.
Then one can control the global deformation functor by controlling all the local functors.
This implies that all equations describing the universal deformation ring are local. If the
representation is not tame, it is no more possible to use this method, because there is no
description of the deformation functor as sets of equivariant homomorphisms, and because
there are purely group theoretic obstructions to the lifting of certain deformations. As we
will show, one can overcome this problem by using purely cohomological methods.

The organization is as follows. We will first revisit Mazur’s theory of versal deformation
rings, and in particular we shall reprove Proposition 2 of [15] without reducing modulo l. In
the next section, Section 3, we will introduce local deformation problems. In general, the
deformation problems are no more representable, as the image of the residual representation
can be quite small. Therefore we can only obtain versal deformation rings. In the case of
two-dimensional representations, however, we shall define rigid deformation problems as sets
of equivariant homomorphisms, possibly with extra structure, whose universal deformation
space is naturally isomorphic to the versal one of the usual deformation problem. We shall
also collect what is known about the explicit shape of local versal deformation rings.

The following section presents a definition of the global deformation problem that we
shall study. Our definition contains all the previously defined deformation problems with
local restriction, e.g. those in [11, 15, 26], and also those in [25] if we chose to work with more
general group schemes as GLN (k) (which would pose no further problems). In section 5, we
shall formulate and prove our local-to-global principle. The principle requires the existence
of auxiliary primes which is discussed in section 6. For two-dimensional representations we
shall follow the construction given in [10], Theorem 2.49, that was originally given in [24],
which gives an optimal result in the sense that the number of auxiliary primes is as small
as possible. In general we shall give criteria for the existence of such primes in terms of
the image of the residual representation and its cohomology with coefficients in the adjoint
representation, i.e. conditions of a purely group-theoretical nature.

We shall then give several applications. We generalize the raising of the level results of
Boston, [6], make some comments on the transition from minimal deformation problems to
slightly more ramified ones as done by Wiles in [26], and reinterpret and improve some recent
results of Ramakrishna, c.f. [20, 21] on raising the level in even cases. In particular we shall
show that all universal deformation rings that arise through his method are finite flat over
Zp in the even case.

The central idea in all our applications to the study of universal deformation rings, which
was already present in [2, 11, 24, 26], is the following. Suppose we want to show that a
certain universal deformation ring R = Zp[[x1, . . . , xk]]/(f1, . . . , fn) is a complete intersection
and flat over Zp (i.e. p-torsion free). Then one needs to find local conditions such that the
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universal ring R′, which satisfies those and the conditions of R, is finite flat over Zp, or
alternatively that R′/(p) is finite. We suppose these local conditions give rise to equations fi
such that R′ = R/(fn+1, . . . , fn+m). Obstruction theory, and this is our main tool, usually
gives bounds on n. The local conditions give bounds on m. To obtain our desired conclusion
we need k = n+m. This is the main obstacle with the approach, namely to choose appropriate
local conditions and (obviously) to prove that R′ has the desired properties. For the results
in [2], the basis are the results in [11, 24]. For our improvements of [20, 21], the basis are
results in [20], namely the fact that R′ is isomorphic to Zp (or to Zp[[T1, . . . , Tr]]).

In the last section, Section 8, we shall explain how to obtain the above principle in the
tame case, as a nice application of the prime-to-adjoint principle in [5]. We shall also be able
to give a direct meaning to certain cohomology classes that appear in sections 5 and 6.

Acknowledgments: For discussions related to this work, I would like to thank very much
N. Boston, B. Mazur and A. Mezard. Parts of this were written while benefiting from an
invitation of Professor H. Carayol at the Université Louis Pasteur at Strasbourg. The main
portion was done holding a post-doctoral position with Professor G. Frey in Essen.

2 Mazur’s versal deformation rings

Here we recall some results of Mazur from [15] on deformations of representations of profinite
groups. We shall in the sequel always assume that l > 2. In this section we shall assume
that Π is a profinite group having the property that the pro-l completion of every open
subgroup of it is topologically finitely generated. We assume that we are given a continuous
representation

ρ̄ : Π→ GLN (k)

where k is a finite field of characteristic l.
Let C be the category of complete noetherian local rings R with residue field k and

local ring homomorphisms which induce the identity on residue fields. mR shall denote the
maximal ideal of R and tR its mod l tangent space, i.e. tR = mR/(l,m

2
R). The objects of

C are naturally W (k)-algebras, where W (k) is the ring of Witt vectors of k. For O ∈ C we
define CO to be the category of O-algebras inside C, and so C = CW (k). For an O-algebra
R we define tR,O = mR/(mO,m

2
R). If O is a discrete valuation ring, we shall use λ for its

uniformizing parameter. Furthermore by k[ε] we denote the ring k[ε]/(ε2). If we consider
O-algebras, the O-algebra structure on k[ε] shall be the one coming from O → k → k[ε].

For R in C we define ΓN (R) := ker(GLN (R)→ GLN (k)). Two liftings ρ, ρ′ : Π→ GLN (R)
of ρ̄ are called strictly equivalent if there is an M ∈ ΓN (R) such that ρ = Mρ′M−1. A strict
equivalence class [ρ] of lifts of ρ̄ to R is called a deformation.

We consider the functor

DefO,Π : CO → Sets : R 7→ {deformations [ρ] of ρ̄ to R}

For O = W (k), we shall drop the index O. In [15] and [19] the following is shown.

Theorem 2.1 Given ρ̄, a versal deformation of DefO,Π exists. This means that there exists
RvO ∈ CO and a lift ρvO of ρ̄ to R such that the following holds. Given any deformation
ρ of ρ̄ to A ∈ CO, there is a morphism u : RvO → A such that [ρ] = [u ◦ ρvO]. u is not
necessarily unique and neither is [ρvO]. However u is unique for A = k[ε]. The latter is a
minimality condition on RvO and implies in particular that one can identify the tangent space
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tDefO,Π := DefO,Π(k[ε]) with the mod mO tangent space tRvO,O of RvO. The ring RvO is unique
up to non-canonical isomorphism. (RvO, ρ

v
O) is called a hull.

If the centralizer of Im(ρ̄) is the set of homotheties, then the above pair (RvO, ρ
v
O) is uni-

versal, i.e. the morphism u above is always unique, Rv is unique up to canonical isomorphism
and [ρvO] is unique.

The proof in [15] procedes by verifying the axioms (H1), (H2), (H3) and for the second half
also (H4) of the criterion of Schlessinger in Theorem 2.11 of [23].

Remark 2.2 We note that [23] is generally concerned with the representability of functors
F : CO → Sets. As shown in [19], any subfunctor G of a functor F has a hull if it satisfies
property (H1) of [23], if G(k) is a one-point set, and if F has a hull. If moreover F is
representable, then so is G.

Condition (H1) for F says that whenever one has artinian rings Ai, i = 0, 1, 2 in C, and
maps fi : Ai → A0, i = 1, 2 in C such that ker(f1) is generated by one element t such that
mA1t = 0, then

F (A1 ×A0 A2)→ F (A1)×F (A0) F (A2)

is surjective. A map like f1 is called a small surjection.

For a pair consisting of a functor F and a subfunctor G, both from CO to (Sets), the
following condition, we call it (∗), will be important in the sequel:
G(k) 6= ∅ and for all small surjections f1 : A1 → A0 and maps f2 : A2 → A0 of artinian rings
Ai, i = 0, 1, 2 in CO, the following diagram is a pullback diagram:

(1)

G(A1 ×A0 A2) //

��

G(A1)×G(A0) G(A2)

��
F (A1 ×A0 A2) // F (A1)×F (A0) F (A2)

The importance of property (∗) is explained by the following lemma, whose proof is a
simple diagram chase. This property will be crucial for constructing well-behaved global
deformation functors satisfying certain local properties.

Lemma 2.3 Suppose we have functors Fi, Gi, F : CO → Sets fitting in a diagram

G //___

���
�
�

∏
Gi

��
F //

∏
Fi

such that the Gi are subfunctors of the Fi, F and the Fi have a hull, and G is the pullback
of the diagram. Suppose that all pairs Gi ⊂ Fi satisfy the property (∗) above – in particular
this condition implies that the functors Gi satisfy (H1) and thus have a hull. Then G has a
hull. If furthermore F is representable, then so is G.

In Lemma 3.3, we shall give a list of pairs of functors and subfunctors satisfying property (∗)
in situations relevant to us.

We now present a slight generalization of Proposition 2 in [15] that is shown by exactly
the same deformation-theoretic methods as the original proof. By adρ̄ we shall denote the
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representation of Π onMN (k) obtained by composing ρ̄ with the conjugation action of GLN (k)
on MN (k). By ad0

ρ̄ we denote the subrepresentation on trace zero matrices inside MN (k).
We note that for a versal deformation Rv as above, one has an isomorphism as in [15],
H1(Π, adρ̄)

∗ ∼= tRv .

Theorem 2.4 Given ρ̄ : Π→ GLN (k) as above and O ∈ C. Then there is a presentation

0→ J → R̂ = O[[x1, . . . , xn]]→ RvO → 0

where n = dimkH
1(Π, adρ̄) and J is minimally generated by at most m = dimkH

2(Π, adρ̄)
elements.

Proof: As we know that tRv is isomorphic to the dual of H1(Π, adρ̄), we certainly can con-
struct a presentation as above, where however a priori we have no bound on the number of
generators of I. We will now derive this bound following the proof in [15]. Consider

0→ J ′ = J/(JmR̂)→ R′ = R̂/(JmR̂)→ RvO → 0

As R̂ is Noetherian, J is finitely generated, and hence J ′ is a finite dimensional vector space
over k ∼= R̂/mR̂ whose dimension is the number of generators of J . We consider the following
diagram, where ρvO is a versal representation Π→ GLN (RvO) as given in Theorem 2.1.

GLN (R′)

��
Π

ρvO //

ρ̄ $$HHHHHHHHHH GLN (RvO)

��
GLN (k)

The obstruction for ρvO to have a lift to GLN (R′) is given by a class θ in H2(Π, adρvO ⊗ J
′).

The class θ depends only on the deformation class of ρvO and not on the chosen representation
ρvO, even if RvO is not universal.

In the above situation adρvO⊗J
′ ∼= adρ̄⊗J ′, as mR′J

′ = 0, and hence the obstruction class
is in H2(Π, adρ̄)⊗J ′. For every one-dimensional quotient J ′′ of J ′, one has the corresponding
obstruction class in H2(Π, adρ̄)⊗J ′′ ∼= H2(Π, adρ̄). Such a quotient corresponds to an element
in (Homk(J

′, k)− {0})/k∗. We obtain a map

Homk(J
′, k)→ H2(Π, adρ̄) : f → (1⊗ f)θ.

We claim that this map is injective. From this the theorem follows readily.
We assume otherwise and let f ∈ Homk(J

′, k) be an element that maps to zero. Taking
J ′′ to be J modulo the kernel of f , this implies that the obstruction class in H2(Π, adρ̄)⊗J ′′ ∼=
H2(Π, adρ̄) is zero. Hence there is a lift ρ′′ of ρvO to R′′ = R′/ ker(f). This is a lift of ρ̄, and
so by the versality of RvO, there is a map s : RvO → R′′.

By construction the map π : R′′ → RvO is surjective and an isomorphism on mod mO
tangent spaces. By the property that RvO is universal for deformations to k[ε]/(ε2) and the
construction of s, it follows that s : RvO → R′′ induces an isomorphism on mod mO tangent
spaces. By Lemma 1.1 in [23] this implies that s is surjective. Thus sπ and πs are surjective
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ring endomorphisms of Noetherian local rings, and hence isomorphisms1. But this implies
that π is an isomorphism, clearly contradicting J ′′ = ker(π) 6= 0.

3 Local deformation problems

We now specialize the above to the situation where Π is the absolute Galois group GK of a
local field K of characteristic zero and residue characteristic p. p can be equal or different
from l. Let τ̄ : GK → GLN (k) be a given Galois representation. We fix O in C. Let XK be
a condition on Galois representations GK → GLN (R) for R ∈ CO that holds for τ̄ and that
satisfies the following properties:

(i) XK is invariant under strict equivalence.

(ii) XK is preserved under composition with morphisms f : R→ S in CO.

(iii) The condition (H1) of Schlessinger, see Remark 2.2, is satisfied, i.e. given three Artinian
rings Ai, fi as in 2.2 and a pair of representations τi : GK → GLN (Ai) (i = 1, 2) that
map to the same representation τ0 under the respective fi, such that τ0, τ1, τ2 satisfy
XK , then there is a representation τ3 : GK → GLN (A1×A0 A2) which satisfies XK and
specializes, up to strict equivalence, under the canonical maps to the other two.

We define DefO,XK to be the subfunctor of DefO,GK of those deformations that satisfy the
property XK . We shall omit O in the notation if O = W (k). In the special case that XK

is vacuous, we shall write Xo
K . We define LXK ⊂ H1(GK , adτ̄ ) to be the k sub vector space

that corresponds to DefO,XK (k[ε]). Its dimension is denoted by h1
XK

, or simply h1.
By Theorem 2.1, and the remark thereafter, we obtain the following proposition which is

due to [15] and [19] except for the presentation we give for RO,Xo
K

.

Proposition 3.1 DefO,XK has a hull, and it is representable if CGLN (k)(Im(ρ̄)) = k∗. If

we denote by (RO,XK , ρO,XK ) a hull representing DefO,XK , then RO,XK is a quotient of
O[[x1, . . . , xh1 ]]. In the special case Xo

K , i.e. DefO,XK = DefO,GK , one has a presentation

0→ J → O[[x1, . . . , xh1 ]]→ RO,Xo
K
→ 0

where J is generated by at most dimkH
2(GK , adτ̄ ) elements.

Remark 3.2 It would be very desirable to have a better theory of obstruction classes H2,
i.e. a theory that can also be applied to subfunctors of Def. If such a theory was available
one could hope to have a better understanding of the number of equations necessary to
describe RXK . In particular this should make it easier to recognize conditions XK that are
unobstructed, i.e. for which J = 0. In the deformation theory over local fields, there are
several natural situations where this happens, e.g. [19] or [9], where semi-stable deformations
and generalizations thereof are considered. One of the few cases where the above is possible
is the case where one looks at deformations with fixed determinant. Here the obstructions
are directly described by H2(GK , ad0

τ̄ ).

1If f : R → R is a surjective ring homomorphism of local rings with maximal ideal mR, it is easy to see
that mnR ⊂ f−1(mnR) for all n. By comparing the lengths of the Artinian rings R/(mnR) and R/(f−1(mnR)) one
finds that the inclusion must be an equality. Hence the kernel of f must be zero.
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Examples of properties XK satisfying properties (i) to (iii) above, are quotient properties,
as defined by Mazur [15], §2.1, or the property of having a fixed determinant, or the properties
as defined by Ramakrishna [19], i.e. properties of finite R[GK ]-modules which are closed under
direct sums, subobjects and quotients, where R ∈ CO.

In fact we shall mainly be interested in properties XK satisfying property (∗) described
above Lemma 2.3 for the inclusion XK ⊂ Xo

K . We have the following examples for this.

Lemma 3.3 The inclusion DefO,XK ⊂ DefO,Xo
K

satisfies the property (∗) in the following
cases.

(i) Xo
K is representable and XK satisfies (i) to (iii) above.

(ii) XK is a quotient property of Xo
K , in the sense of Mazur [15], §2.1.

(iii) N = 2 and XK is the condition of ordinariness, where we do not necessarily assume
that Xo

K is representable.

(iv) In the notation of [25], XK is the local condition Pν , nearly ordinariness at ν, and we
assume it satisfies the condition (Reg) [25], §6.1.

Proof: Part (i) is covered by Lemma 2.3. Part (iv) follows from the results quoted from
Tilouine. The other cases we leave as an easy exercise.

In Proposition 3.6, we shall give another condition for the case N = 2.
For the remainder of this section, we shall assume N = 2. First we shall reinterpret RXo

K

as a universal ring representing a functor that is a minimal smooth hull of DefXo
K

. See [23]
for this terminology.

Let L be the splitting field of τ̄ , i.e. the fixed field inside K̄ under the kernel of τ̄ . As
K is local, H := Gal(L/K) is solvable. We consider H as a subgroup of GL2(k) via τ̄ .
Let U denote the l-Sylow subgroup of H, and let H ′ denote the quotient H/U , considered
as a subgroup of H by the Lemma of Schur-Zassenhaus. Let gi denote elements in GK
generating U as a group. U is always an elementary abelian l-group and for p 6= l it is
trivial or one-generated. If U is non-trivial, we assume without loss of generality that U is

upper-triangular, i.e. necessarily inside the set of matrices of the form
(

1 x
0 1

)
. We choose

a lift of H ′ to GL2(W (k)). Without loss of generality we assume that this lift is inside the

upper-triangular and that τ̄(g1) =
(

1 1
0 1

)
whenever U is non-trivial. By F we denote the

fixed field corresponding to τ̄−1(U), and by GF (l) we denote the pro-l completion of GF . By
the lemma of Schur-Zassenhaus, one can define an action of H ′ on GF (l), unique up to inner
automorphisms.

Now we can define a local deformation functor from C to Sets. If H ′ is not inside the set
of homotheties, we define

EquivXo
K

(R) := {ξ ∈ HomH′(GF (l),Γ2(R)) : ξ (mod m) = τ̄

and ξ(g1) has (1, 2)-entry equal to 1}

Remark 3.4 If U is trivial, we assume that the condition on g1 is vacuous.
If H ′ acts trivially on U , but U is non-trivial, we impose the stronger condition that ξ(g1)

is of the form
(

1 1
∗ ∗

)
. There are other possibilities to make the second situation more rigid.
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One could require ξ(g1) =
(
∗ 1
∗ ∗

)
and for some gi with ξ̄(gi) 6= I, one could require its image

to be
(

1 ∗
∗ ∗

)
,
(
a ∗
∗ a

)
or
(
∗ ∗
∗ 1

)
.

One has the following proposition, stated in [1], whose proof can be found essentially in
[5], §§6,9.

Proposition 3.5 EquivXo
K

is always representable. The obvious morphism from EquivXo
K

to DefXo
K

is smooth, i.e. for any surjection S → R in C, the morphism

EquivXo
K

(S)→ EquivXo
K

(R)×DefXo
K

(R) DefXo
K

(S)

is surjective. It is an isomorphism if the centralizer of the image of H in GL2(k) is the set
of scalar matrices. The induced map on tangent spaces is always an isomorphism, and in
particular this implies that the universal ring representing EquivXo

K
is isomorphic to RXo

K
.

We can use this interpretation whenever it seems convenient. Also we note that a similar
description is available for the case of fixed determinant. One simply has to require that the
determinant of the homomorphisms ξ is equal to the fixed one.

For a general condition XK , we can consider the subfunctor EquivO,XK of EquivO,Xo
K

of
such morphisms that satisfy XK . Here it may be useful to choose a different normalization in
the case where U is non-trivial, but H acts trivially on it. For example if X is the condition

‘co-ordinary’ in the sense of [16], and Im(τ̄) = {
(

1 x
0 1

)
: x ∈ k}, it would be more appropriate

for calculations to assume g1 7→
(
∗ 1
∗ 1

)
, than our standard normalization as in Remark 3.4.

One can show the following for EquivO,XK .

Proposition 3.6 The functor EquivO,XK satisfies Schlessinger’s condition (H1) if and only
if the inclusion DefO,XK ⊂ DefO,Xo

K
satisfies property (∗). If this holds, then the previous

proposition remains valid for EquivO,XK and DefO,XK . The universal pair for EquivO,XK
will be denoted by (RO,XK , ξO,XK ).

There is the following application of the above formalism.

Proposition 3.7 Assume we are given a representation τ : GK → GL2(O) for some O ∈ C
where O is Artinian. Let τ̄ = τ(mod mO). If adGKτ is a free O-module, and hence of rank
dimk adGKτ̄ , then one has

HomO(p/p2,O) ∼= H1
O,XK (GK , adτ )

where p is the kernel of the map RO,XK → O corresponding to τ , and H1
O,XK (GK , adτ ) is the

subspace DefO,XK (O[ε])∗ inside H1(GK , adτ ).

Proof: One has an isomorphism

HomO(p/p2,O) ∼= HomO(RO,XK ,O[ε])

where the O structure on O[ε] is the one where one considers the second ring as a free
module over the first with basis 1, ε. As RO,XK represents the functor EquivO,XK , we have
the isomorphism

HomO(RO,XK ,O[ε]) ∼= EquivO,XK (O[ε]).
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Our condition on adGKτ implies that in fact one has

EquivO,XK (O[ε]) ∼= DefO,XK (O[ε])

This finishes the proof. We note that in general one only has a surjection in the last step,
not an isomorphism.

If one has a deformation τ : GK → GL2(O), satisfying XK , such that O is finite flat
over W (k) and adGKτ is free over O, one can apply the previous proposition to all the rings
O/(λn), form a direct limit and obtain

HomO(p/p2,K/O) ∼= lim
→
H1
O,XK (GK , adτ (mod λn)) ⊂ H1(GK , adτ ⊗K/O)

where K is the fraction field of O.
We now describe what is known for XK = Xo

K in the case N = 2.

Theorem 3.8 Let N = 2, then for all K and τ̄ , the hull RXo
K

is flat over W (k) of relative

dimension dimkH
1(GK , adτ̄ )−dimkH

2(GK , adτ̄ ), and a complete intersection. In particular
the ideal J in Proposition 3.1 is generated by precisely dimkH

2(GK , adτ̄ ) many analytically
independent elements of W (k)[[x1, . . . , xh1 ]]. The analogous statement holds over any base
ring O, by flatness of RXo

K
over W (k).

Remark 3.9 Apart from the results above, for N = 2 the following universal deformation
spaces are known to be flat over Zp and complete intersections by [2, 9, 19].

• For K = Qp the universal deformation ring of semistable or potentially semistable
deformations (that become semistable in an extension of ramification degree at most p
and satisfy some further conditions) - if furthermore the determinant is fixed, the ring
is isomorphic to W (k)[[T ]].

• For any K the universal deformation space of ordinary deformations.

Proof of Theorem 3.8: The case l = p is completely treated in [2]. So from now on we may
assume that l 6= p. Furthermore as explained in [3], one can decompose RK,τ̄ into the complete
tensor product of the universal ring that arises from deformations of det(τ̄) and the hull that
arises from considering deformations with a fixed determinant. Note that locally one can
always find lifts to W (k). The case of deforming the determinant has been considered in
[15], so we only need to consider the case of fixed determinant, i.e. where the cohomological
obstruction is given by H2(GK , ad0

τ̄ ). Throughout this proof only, we shall use h2 for the
k-dimension of this vector space. By Tate local duality h2 = dimkH

0(GK , ad0
τ̄
∗
(1)).

If h2 = 3, then K must contain l-th roots of unity and τ̄ must have image in the homo-
theties. By the above proposition we are reduced to analyzing the functor assigning to R ∈ C
the set of homomorphisms from GK(l) to GL2(R) with no equivariance condition, because of
the shape of τ̄ . GK(l), the maximal pro-l quotient of GK , is isomorphic to ZloZl where the
action on a generator t of the first component by a generator s of the second is s−1ts = tq,
where q is the number of elements of the residue field of K. The calculations to obtain the
result are as in [2], §8. In fact, in all cases discussed below we will have to consider maps from
a group GK(l) ∼= Zl o Zl to GL2(R) that are however usually equivariant for a non-trivial
operation of H ′.
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The case h2 = 2 occurs precisely when F contains l-th roots of unity, and H ′ modulo
homotheties is a group of order two acting non-trivially on the l-th roots of unity in F . This
case was described in [6], Theorem 1, and in [1], Theorem 4.7. The explicit equations given
there form a regular sequence and show that RXo

K
is flat over W (k).

We now discuss the cases where U is trivial and h2 = 1. The other cases are listed in the
lemma below and are obtained by the methods in [2]. Thus after discussing the cases here,
we will have shown the theorem.

The cases where L0, the splitting field of ad0
τ̄ , is unramified over K, and where h2 = 1,

were discussed either in [6], or in [1], Theorem 4.7. So we only need to discuss the cases
where L0 is ramified over K and h2 = 1.

Then we can pick a non-trivial element in the ramification subgroup of Gal(L0/K). This
element, considered inside GL2(W (k)), must act trivially on the image of GL(l) ∼= Zl oZl =
〈s, t|s−1tst−q〉. As the centralizer in GL2(k) of τ̄(GK) is abelian, we may assume, after
possibly enlarging k to a quadratic extension, that ξXo

K
(s), and ξXo

K
(t) are matrices of the

form
(

1+a 0
0 (1+a)−1

)
with different a = S, T , respectively. - We assumed that the determinant

be one. - Hence RXo
K

= W (k)[[S, T ]]/((1 +T )q−1−1), at least after replacing k by its unique
quadratic extension, which doesn’t change the properties in question.

Lemma 3.10 Let τ̄ be as above. Let H̄ be the image of H inside PGL2(k) and note that U
can be considered as a subgroup of PGL2(k). We assume that U is non-trivial, and p 6= l.
Let K ′ be the extension of K corresponding to H̄/U , and let ln be the l-part of the order
of the set of roots of unity in K ′. Then there are the following cases for the universal pair
for EquivXo

K
, where we assume the determinant to be fixed, equal to one, for the equivariant

homomorphism. (Throughout, we use the condition g1 7→
(
a 1
c a

)
.)

(i) H̄/U has order greater than two. Then h2 = 0, RK,τ̄ = W (k) and the unique universal
morphism ξK,τ̄ is given by

s 7→
(
q1/2 0

0 q−1/2

)
t 7→

(
1 1
0 1

)
(ii) H̄/U has order equal to two. Then h2 = 1, RK,τ̄ = W (k)[[T ]]/(Tgln(T )) and the unique

universal morphism ξK,τ̄ is given by

s 7→
( √

1+d 0

0
√

1+d
−1

)
t 7→

( √
1+T 1
T

√
1+T

)
where d = gq(T ) − 1 and the polynomials fn, gn are defined as in in [2], Remark 5.4.
They are the polynomials gn, hn of [6], Theorem 1. Further gln(T ) ≡ T (ln−1)/2(mod l).

(iii) H̄ = U and the extension is ramified. Then h2 = 1,

RK,τ̄ = W (k)[[S, T ]]/(Tgln(T ))

and the unique universal morphism ξK,τ̄ is given by

s 7→
(

1+a b+S
c 1+d

)
t 7→

( √
1+T 1
T

√
1+T

)
where c = ST , d, a = ±gq−1(T )/2 +

√
1− TS2 + g2

q−1(T )/4, and b is the Teichmüller

lift (or zero) of the (1, 2) entry of τ̄(s).
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(iv) H̄ = U and the extension is unramified. Then h2 = 1,

RK,τ̄ = W (k)[[S, T ]]/(Th(S, T )gln(T 2h(S, T )))

and the unique universal morphism ξK,τ̄ is given by

s 7→
(

1+S 1
2S+S2 1+S

)
t 7→

(
a T

T

(
h(S,T )−(q−1)

(1+S)2

(1+q)2
gq−1(T 2h(S,T )

)
a

)

where a =

√
1 + T 2

(
h(S, T )− (q − 1) (1+S)2

(1+q)2 gq−1(T 2h(S, T ))
)

. The function h(S, T ) is

constructed by iteratively replacing c by itself in the following expression of formal power
series

c = 2S + S2 − (q − 1)
(1 + S)2

(1 + q)2
gq−1(T 2c)

The polynomial in the limit, expressing c in terms of S, T , will be denoted by h(S, T ).

One can show that h(S, T ) =
(
S + 1−

√
1 + (q−1)2

4q

)
· unit.

Proof: We shall only comment on part (iv). Starting with general images

s 7→
(

1+U 1
U+X+UX 1+X

)
t 7→

( √
1+TW T
W

√
1+TW

)
of determinant one, where we took the normalization s 7→

(
∗ 1
∗ ∗

)
and t 7→

(
a ∗
∗ a

)
, one can

derive three equations from the relation s−1ts = tq, namely

W = T (U +X + UX) W (U −X) = 0 T (U −X − (1 +X)gq−1(TW )) = 0.

Using the above images for s, t, we could derive equations among the variables. However
the images we took are not acceptable for a description of EquivXo

K
as the case T = W = 0

is not rigid. To correct this, we conjugate the matrices representing the images of s, t by(
1 0

(U−X)/2 1

)
and introduces new variables S = (U + X)/2, Y = (U − X)/2. After some

further calculations one obtains for W the recursion

W = T (2S + S2 − Y 2) = T
(

2S + S2 − (q − 1)
(1 + S)2

(1 + q)2
gq−1(TW )

)
.

This explains the definition of h(S, T ). Its well-definedness has to be checked. Once this is
done, it is easy to finish the proof of part (iv).

Remark 3.11 We shall use these explicit descriptions in Section 7, when comparing min-
imal universal deformations to slightly larger ones, and when discussing recent results of
Ramakrishna.

In cases (ii) and (iii), we note that substituting T = 0 implies that any lift to characteristic
zero must have infinite ramification, while substituting any solution of gln(T ) = 0 provides
a finite image of the ramification group for lifts to characteristic zero. The local condition
T = 0 is the one used in [26] to define minimal deformation. Moreover, cases (iii) and (iv)
are the cases used in [20, 21].
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4 Global deformation functors

Let E be any number field. We assume that we are given a representation ρ̄ : GE → GLN (k),
such that the centralizer of H = Im(ρ̄) is the set of homotheties. M will denote the splitting
field of ρ̄. By H̄ we denote the image of ρ̄ inside PGLN (k), by E0 the corresponding Galois
extension of E. There will be no confusion with the notation of the previous section, as from
now on if we talk about the local situation at a prime p of E, we will use the subscript p.

We now consider the following deformation problem. We fix a ring O in C and let Q be
a finite set of places containing all places above l and ∞. For each place p, we are given a
property XEp , in short Xp, of Galois representations ρ : Gp → GLN (R), R ∈ CO, where Gp is
a fixed decomposition group inside GE . We have an isomorphism Gp

∼= GEp , that corresponds
to an embedding Ē → Ēp. We shall assume that all the inclusions DefO,Xp ⊂ DefO,Xo

Ep
satisfy

the property (∗). (For conditions under which this holds, see Lemma 3.3.) If O = W (k), we
shall omit it in the notation.

By Ip we shall denote the inertia group of Gp. For all places p /∈ Q, the property Xp will be
that the representation is unramified at p. This implies that we consider only representations
of Π = GE,Q, the maximal outside Q unramified extension of E. This extension satisfies the
condition stated for Π at the beginning of Section 2. Let X be the set of all local deformation
conditions Xp. XQ shall denote the set of conditions defined by Xp = ∅ for p ∈ Q, and
Xp = Xo

Ep
for p /∈ Q.

These assumptions at all places p together with the observations in Remark 2.2 and The-
orem 2.1 provide us with the following theorem, essentially due to Mazur and Ramakrishna,
on the functor DefO,X from CO to Sets

DefO,X(R) = {deformations [ρ] of [ρ̄] to R satisfying Xp for each place p}

Theorem 4.1 DefO,X is representable. The corresponding universal object is denoted by
(RO,X , ρO,X). Furthermore, if X = XQ, and hi := dimkH

i(GK , adρ̄) for i = 1, 2, then RXQ
has a presentation

0→ J →W (k)[[x1, . . . , xh1 ]]→ RXQ → 0

where J is generated by at most h2 elements.

All of our conditions so far are local. However we want to include one global condition,
namely the condition of a fixed determinant. Suppose we are given a condition X as above and
a deformation [ρO] ∈ DefO,X(O). Let η = det(ρO). Then we define Xη to be the deformation
problem as above with the additional condition that det(ρ) = η for all deformations [ρ]. One
obtains the analogue of Theorem 4.1 for Xη with the only modification that adρ̄ has to be
replaced by ad0

ρ̄.
One of the advantages of working with fixed determinant problems is that Leopoldt’s

conjecture for E at the prime l does not necessarily intervene when calculating dimensions
of deformation rings, while it has clearly an effect on the dimension of universal deformation
spaces of one-dimensional representations, c.f. [15], p. 405. Also for XQ, for example, it is
rather easy to write RX as a complete tensor product of RXη and the deformation space
describing deformations of the one-dimensional representation det(ρ̄), provided l 6 |N .

We shall now follow [10], which in turn follows [26], and make the following definition.

Definition 4.2 A collection of infinitesimal conditions L, or LX , associated to a set X of
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deformation conditions is defined as the collection of the subspaces

Lp = t∗RO,Xp ,O ⊂ H
1(Gp, adρ̄),

the duals of the mod mO tangent spaces of the rings RO,Xp , in agreement with the definition
at the beginning of Section 3.

In particular this implies that for all p /∈ Q we have

Lp ∼= H1(Gp/Ip, (adρ̄)
Ip)

Furthermore using Tate local duality, as in [10], §2, one can define L⊥ by defining L⊥p to be
the dual of Lp under the prefect pairing

H1(Gp, adρ̄)×H1(Gp, ad∗ρ̄(1))→ Q/Z

The same definitions can be made for deformation problems Xη for fixed determinant defor-
mations where one has to replace throughout the module adρ̄ by ad0

ρ̄.
Following [10] or [26], we define H1

LX (GE , adρ̄) by

0→ H1
LX (GE , adρ̄)→ H1(GE,Q, adρ̄)→

∐
p∈Q

H1(Gp, adρ̄)/LXp ,

and similarly for ad0
ρ̄. We note that for X = XQ, one has X1

Q(E, adρ̄) = H1
LXQ

(GE , adρ̄),

and by Poitou-Tate duality, in the same situation X2
Q(E, adρ̄) = H1

L⊥XQ
(GE , ad∗ρ̄(1))∗. This

implies in particular for general X, that X2
Q(E, adρ̄) = 0 whenever H1

L⊥X
(GE , ad∗ρ̄(1)) = 0.

The essential point of having a deformation problem described by an inifinitesimal set of
conditions is that one can then appeal as in [26] to the cohomological methods developed by
Poitou and Tate.

5 Local-to-global principles

In the previous two sections we defined local and global deformation problems. Given a
representation ρ̄ : GE → GLN (k), a set X of deformation conditions and a set Q of primes,
as in the previous sections, there are obvious maps

DefO,X → DefO,Xp

for all primes p of E. Hence there are maps between the respective versal or universal
deformation spaces RO,Xp → RO,X . Those maps are unique precisely when the restriction of
ρ̄ to Gp has a universal deformation. In the case N = 2 one can use the description in Section
3 of the equivariant mapping functors as smooth minimal covers of the local deformation
functors, to obtain unique maps between the global and versal local deformation spaces.

Our goal will be a local-to-global principle. We shall give two versions. The first applies
only to the special situation X = XQ. But it shall be used to derive the second very general
one. For the Poitou-Tate formalism and Tate local duality we refer the reader to [17].
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Lemma 5.1 Suppose we are given R1, R2 ∈ CO and a map f : R1 → R2 in CO. Let Si,
i = 1, 2, be power series rings over O such that the mod mO tangent spaces tSi,O and tRi,O
are isomorphic as k vector spaces. Then for any diagram D

0 // J1
// S1

f1 // R1
//

f
��

0

0 // J2
// S2

f2 // R2
// 0

and any lift f̂ : S1 → S2 of f in CO that makes the diagram commutative, the k-dimension
dimk J2/(m2J2, f̂(J1)) is independent of these data. In particular the property of J1 mapping
onto J2 under such lifts is independent of the chosen lift.

Proof: To show independence of f1, f2, we first consider the special case that f = Id. Let
fi : Si → Ri be surjections with dimk tSi,O = dimk tRi,O. Given D as above and any

f̂ : S1 → S2 such that

S1

f̂
��

f1 // R1

Id
��

S2
f2 // R2

commutes. By considering mod mO tangent spaces, it follows that f̂ must be isomorphisms,
and so the lemma is obvious. Thus from now on, we may fix f1, f2 in D and only vary the
lift f̂ .

Let f̂ , f̂ ′ be any two lifts of f that make D commutative. It follows that δ := f̂ ′ − f̂ ∈
DerO(S1, J2/(m2J2)) if the lifts are considered as maps to S2/(m2J2). Clearly δ(m2

1) = 0 as
J2/(m2J2) is a k vector space. As J1 ⊂ m2

1 + mOS1, we have δ(J1) = 0, and hence the lifts
modulo m2J2 agree on J1/(m1J1). This shows the invariance of the dimension in question.

We now present the set-up for our local-to-global principles. Suppose we are given a set
of conditions X and a corresponding set of place Q. Let Q′ be a finite set containing Q whose
relevance shall be clarified below. We assume that DefO,X is a functor defined on CO. X ′ shall
denote the set of conditions such that X ′p = Xp for the primes outside Q′ −Q, and it is the
empty condition at the primes of Q′−Q. Let n′p = dimk tRO,X′p ,O

, and let n′ = dimk tRO,X′ ,O.

Consider the following diagram DX′,Q′

0 // ⊗̂J ′p

��

// ⊗̂S′p := ⊗̂O[[x1, . . . , xn′p ]] //

α

��

⊗̂RO,X′p //

α̃

��

0

0 // JX′ // SX′ := O[[x1, . . . , xn′ ]] // RO,X′ // 0

where the horizontal maps are minimal presentations of the respective rings on the right, and
the tensor products are formed over the ring O, and with the primes of Q′ as the index set.

The map α̃ is any map from the local deformation spaces to the global one as described
above Lemma 5.1, the map α is any lift that exist by O-smoothness of SX′ , and the left
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vertical map is the restriction of α to the kernel. One can think of α̃ and α as the tensor
product of maps α̃p and αp for the individual places p. ⊗̂J ′p is defined to be the kernel of the
top horizontal sequence. It is not meant to be the completed tensor product of the J ′p. We
use this notation to remind us that this kernel is generated by the J ′p.

For the places p ∈ Q′ − Q we define the ideals Jp inside S′p = O[[x1, . . . , xn′p ]] so that
(RO,X′p , ρO,X′p) mod Jp is isomorphic to the versal deformation for unramified deformations
of ρ̄|Gp

.

Theorem 5.2 If X = XQ and X2
Q′(E, adρ̄) = 0, and so in particular X ′ = XQ′, and one

has the explicit expressions n′ = dimkH
1(GE,Q′ , adρ̄) and n′p = dimkH

1(Gp, adρ̄) for p in
Q′, then the ideal JX′ is the span of αp(J

′
p) : p ∈ Q′.

If J denotes the ideal of O[[x1, . . . , xn′ ]], whose quotient is RO,X , then J is the span of

{αp(Jp) : p ∈ Q′}

If a lift to O of determinant η is fixed, the result holds for Xη
Q, too, with the only modifi-

cation that one has to replace throughout adρ̄ by ad0
ρ̄.

Proof: The proof is similar to the proof of Theorem 2.4. We assume that the composite of
the J ′p does not generate all of JX′ . Thus the quotient

JX′/(mSX′JX′ , α(J ′p) : p ∈ Q′)

is a non-trivial vector space over k. Let J ′′ be a one-dimensional quotient by a submodule
J0 of JX′ , and consider

0→ J ′′ → R′′ := SX′/J0 → RO,X → 0.

As in the proof of Theorem 2.4, the ideal J ′′ produces a non-zero class in H2(GE , adρ̄)⊗ J ′′
By our construction this class becomes zero in all the local Galois groups H2(Gp, adρ̄)⊗ J ′′,
because we have an explicit lift from ⊗̂RO,Xp to R′′, as ⊗̂J ′p maps to zero in J ′′. Thus this
class must be in the kernel of

H2(GE,Q′ , adρ̄)⊗ J ′′ →
∐

H2(Gp, adρ̄)⊗ J ′′

which is X2
Q′(E, adρ̄)⊗J ′′ = 0. This contradicts our assumption and completes the proof for

RO,X′ .
For the statement about RO,X , one observes that there is clearly a surjection R :=

RO,X′/(α(Jp) : p ∈ Q′ − Q) → RO,X . One can directly verify that the dimensions of the
tangent spaces (modulo mO) are equal, and one has a section as R satisfies the conditions X.
As in the proof of Theorem 2.4, it follows that R→ RO,X is an isomorphism.

Remarks 5.3 (i) Conditions under which one can enlarge Q to a finite set Q′ such that
X2

Q′(E, adρ̄) = 0 shall be considered in the following section.
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(ii) By inspecting the above proof, it is clear that JX′ is generated by any set

{α(J ′p) : p ∈ Q̃},

where Q̃ ⊂ Q′, such that the map

H2(GE , adρ̄)→
∐
p∈Q̃

H2(Gp, adρ̄)

is injective. (In case of fixed determinant one has to replace adρ̄ by ad0
ρ̄.)

This can be relevant for example in the case N = 2 when one considers ρ̄ of Borel type,
see [4]. In loc. cit., natural conditions are given under which X2

Q̃
(E, adρ̄) = 0. This

allows the explicit calculation of some interesting deformation spaces.

Lemma 5.4 Suppose we are given S1 ← S0 → S2 in CO where the Si are power series rings
over O. Let S̄i = Si/(m

2
Si
,mO), and suppose we know that in the following pushout diagram,

the horizontal maps are surjections with isomorphic kernels

S̄0
//

��

S̄1

��
S̄2

// S̄1 ⊗S̄0
S̄2

Then S3 = S1 ⊗S0 S2 is a power series ring over O on n3 = n1 + n2 − n0 variables where
ni := dimk tSi,O, the number of variables of the ring Si.

Proof: The diagram for the Si implies that the kernel of S2 → S3 is generated by at most
n1 − n0 elements, the diagram for the S̄i that, at the same time, the difference of the mod
mO tangent spaces for S2 and S3 is exactly this number. Hence S3 must be an O-smooth
quotient of S2.

From [10], Theorems 2.13, 2.14, we quote the following lemma which holds for general N ,
not just N = 2.

Lemma 5.5 Let X be a set of deformation conditions and L = LX the corresponding
collection of infinitesimal conditions.

(i) If p is a prime above some rational prime p, then for any finite Gp-module M one has
|H1(Gp/Ip,M

Ip)| = |H0(Gp,M)| and

|H1(Gp,M)| = |H0(Gp,M)||H0(Gp,M
∗(1))||M ⊗OEp |.

(ii) The Selmer group H1
L(GE , adρ̄) is finite and

|H1
L(GE , adρ̄)|

|H1
L⊥(GE , ad∗ρ̄(1))|

=
|H0(GE , adρ̄)|
|H0(GE , ad∗ρ̄(1))|S

∏
p∈Q

|LX,p|
|H0(Gp, adρ̄)|

(2)

In particular this gives a formula to calculate the number of topological generators of
RO,X , i.e. dimk tRO,X ,O, from local data and H1

L⊥X
(GE , ad∗ρ̄(1)), or entirely from local

data, provided H1
L⊥X

(GE , ad∗ρ̄(1)) = 0, and similarly for RO,Xη if one replaces adρ̄ by

ad0
ρ̄.
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Theorem 5.6 We use the notation introduced before Theorem 5.2. Let X be arbitrary,
and so nX = dimkH

1
LX (GE ,M) and np = dimk LXp. n′X and n′p are similarly defined. If

H1
L⊥
X′

(GE , ad∗ρ̄(1)) = 0, then

JX′ = 〈αp(J
′
p) : p ∈ Q′〉,

and the ideal JX for a presentation of RO,X as a quotient of S′X is spanned by the sets

αp(Jp) , p ∈ Q′.

The theorem holds for problems Xη of fixed determinant, too, if one uses ad0
ρ̄ instead of adρ̄,

throughout.

Proof: By Lemma 5.1, our statements are independent of the respective presentations we
use. We fix a diagram DXQ′ ,Q′ . (In general, XQ′ is not the same as X ′. It only agrees with
it in the situation of Theorem 5.2.) We shall refer to it as the top diagram. We shall think
of the local row being the back and the global one being the front. By the previous theorem,
this diagram satisfies the local-to-global principle we try to establish as X2

Q′(E, adρ̄) = 0

whenever H1
L⊥
X′

(GE , adρ̄) vanishes. The goal will be to obtain a bottom diagram as in the

statement of Theorem 5.6. We start by putting in the back of it, i.e. the first row of the
diagram DX′,Q′ . To do this, we choose any first row of it, we pick a versal morphism from
⊗̂RO,Xo

p
to ⊗̂RO,X′p , where the tensor products are over all places in Q′. Then we choose

lifts on the middle terms using O-smoothness, and complete the back of the diagram so that
everything commutes. We observe that RO,X′ is the pushout of the three rings on the right,
i.e. of

RO,X ← ⊗̂RO,Xo
p
→ ⊗̂RO,X′p ,

as the corresponding diagram of local and global functors is a pullback.
Now we use Lemma 5.5 (ii). It says precisely that the differences of the mod mO tangent

space dimensions on the global side, i.e. between RO,X and RO,X′ , and on the local side,
i.e. between ⊗̂RO,Xo

p
and ⊗̂RO,X′p are the same. Lemma 5.4 shows that the pushout of the

three middle rings, which are power series rings over O, must be a power series ring over O
whose number of variables is equal to n′X . By the pushout property it is clear that we can
now complete the diagram to a diagram DXQ′ ,Q

′ on the top and D′X′,Q′ at the bottom with
arrows between them that make all squares commutative. We note that we put a prime at
D′X′,Q′ to indicate that it is not necessarily the diagram we constructed above Theorem 5.2.

We are now essentially done. Let κp be the kernel of

SXo
p
→ SX′p

where, as above, S? denotes the power series ring that appears in the minimal presentation
for R?. Clearly κp is generated by h1

Xo
p
− h1

X′p
elements, and any minimal set of generators of

κp forms a part of a basis of tSXop ,O
. We define J ′′p to be the kernel of the composite

SXo
p
→ SX′p → RO,X′p .

Then J ′p
∼= J ′′p /κp, and

RO,X′ ∼= SXQ′/(J
′′
p : p ∈ Q′) ∼= (SXQ′/(κp : p ∈ Q′))/(α(J ′p) : p ∈ Q′).
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The isomorphism on the left follows by arguments similar to those at the end of the proof
of Theorem 2.4. One uses that SXQ′/(J

′′
p : p ∈ Q′) surjects onto RO,X′ , that this surjection

induces an isomorphism of tangent spaces and that SXQ′/(J
′′
p : p ∈ Q′) satisfies X ′. By what

we remarked before, SXQ′/(κp) is the pushout of the three middle rings, and hence a power
series ring isomorphic to SX′ . So we have the local-to-global principle for X ′. The description
for X follows as in the proof of the previous theorem.

It remains to see under what conditions one can construct auxiliary primes, where we call
a finite set of primes Qaux auxiliary for a given set of data Q,X, if Q′ = Q ∪ Qaux satisfies
the condition in Theorem 5.6.

6 Existence of auxiliary primes

First we consider the case N = 2, and adapt the construction in [24] to obtain a criterion
for the existence of auxiliary primes. A generalization of this construction already appeared
in [13]. We shall follow closely [10], §2.6, 2.7, 2.8. After this, we shall give a criterion for
the existence of auxiliary primes for general N . We shall obtain a purely group-theoretical
condition for the existence of such sets, that only depends on Im(ρ̄) and its cohomology with
adρ̄ coefficient. We keep the notation from the previous section. In particular, ρ̄, X and
L = LX will have the same meaning.

For the case N = 2 we need the following classification of subgroups of PGL2(k), see [12],
§§255, 260.

Theorem 6.1 Let H be a subgroup of PGL2(k), k a finite field. Then either H is cyclic,
dihedral, isomorphic to A4, S4, A5, or it lies inside a Borel subgroup, or it is isomorphic to
PGL2(k′) or PSL2(k′) for some subfield k′ of k.

In the N = 2 case, we call ρ̄ dihedral, if H̄, the image of GL2(k) → PGL2(k) composed
with ρ̄, is dihedral, we call it of A4 type if H̄ is isomorphic to A4, etc. We also note that one
always has an isomorphism ad∗ρ̄

∼= adρ̄, as adρ̄ ∼= ρ̄∗ ⊗k ρ̄. One also has such an isomorphism

for ad0
ρ̄.

Now we sketch the proof of the following lemma that is analogous to [10], Theorem 2.39.

Lemma 6.2 Let ρ̄ : GE → GL2(k) be an absolutely irreducible Galois representation, where
k is a finite field of characteristic l, and E is a number field. Let [ψ] ∈ H1

L⊥(GE , ad0
ρ̄(1)) be

a non-zero cohomology class. Assume that:

(i) If ρ̄ is dihedral, then ρ̄ restricted to E(ζl) stays absolutely irreducible.

(ii) If l = 5 and E0 ⊃ Q(ζl), then Gal(E0/E(ζl)) is not isomorphic to PSL2(F5).

Then given any n ∈ N, there exists a set of primes p of E of positive density satisfying

(i) Np ≡ 1(mod ln)

(ii) ρ̄ is unramified at p

(iii) Frobp has distinct eigenvalues for its action on ad0
ρ̄
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(iv) The class resp[ψ] under the restriction homomorphism Gp → GE in

ker(H1(Gp, ad0
ρ̄(1))→ H1(Ip, ad0

ρ̄(1))) ∼= H1(Gp/Ip, ad0
ρ̄(1))

is non-zero.

Proof: As in [10], using the Cebotarev density theorem it suffices to find an element σ ∈ GE
such that

(i) σ|E(ζln ) = 1,

(ii) ad0
ρ̄(σ) has an eigenvalue unequal to one,

(iii) ψ(σ) /∈ (σ − 1)ad0
ρ̄(1).

We let En be the fixed field of ad0
ρ̄|E(ζln ). As in the proof of [10], one first shows that

H1(Gal(En/E), ad0
ρ̄(1)) = 0 by considering the inflation-restriction sequence

0→ H1(Gal(E0/E), (ad0
ρ̄(1))GE0 )

→ H1(Gal(En/E), ad0
ρ̄(1))→ H1(Gal(En/E0), ad0

ρ̄(1))GE

The hypothesis (ii) guarantees that the term on the left is zero. The term on the right can
shown to be isomorphic to

Hom(Gal(En/E1), (ad0
ρ̄(1))GE )

If Im(ρ̄) is not of dihedral type, the latter set is clearly zero. If it is of dihedral type, it is
zero precisely when condition (i) is satisfied.

The next step in the argument of loc. cit. is to analyze the Gal(En/E) submodule 0 6=
ψ(GEn) ⊂ ad0

ρ̄(1) after noticing, using the inflation-restriction sequence, that

[ψ] ∈ H1(GEn , ad0
ρ̄(1))Gal(En/E) ∼= HomGal(En/E)(GEn , ad0

ρ̄(1))

By considering the A4 and dihedral cases separately, one can find an element g of order not
dividing l in Gal(En/E(ζln)), that fixes a non-zero element of ψ(GEn). To find g one needs
again hypothesis (i).

This g one lifts arbitrarily to σ0 ∈ GE . By a case by case analysis, one finds that
ψ(GEn) 6⊂ (g−1)ad0

ρ̄(1). Here one needs that the order of g is prime to l and one regards ad0
ρ̄

as a 〈g〉-module, 〈g〉 ⊂ Gal(En/E). This allows one to replace σ0 by σ = τσ0 where τ ∈ GEn
is chosen so that ψ(τσ0) = ψ(τ) + ψ(σ0) /∈ (σ0 − 1)ad0

ρ̄(1). The so obtained σ satisfies the
requirements of the lemma.

Remark 6.3 The condition that ρ̄|GE(ζl)
be absolutely irreducible if ρ̄ is dihedral, excludes

the case that Gal(E(ζl)/E) is cyclic of order two and that E(ζl) is the fixed field of the kernel
of map GE → C2 induced from the canonical map of the dihedral group onto C2.

The assumptions on p in the previous lemma imply that dimkH
0(Gp, ad0

ρ̄(1)) = 1, and

hence that dimkH
1(Gp/Ip, ad0

ρ̄(1)) = 1, as the respective groups are isomorphic.

As a corollary, we obtain.
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Corollary 6.4 Let ρ̄ : GE → GL2(k) be as in Lemma 6.2, let Q be a set of places containing
all places where ρ̄ is ramified, and all places above l and ∞, and let X be a set of deformation
conditions. We assume that there exists a lift ρ of ρ̄ of type X to some O ∈ C and define
η = det(ρ). Let d = dimkH

1
L⊥(GE , ad0

ρ̄(1)). We consider the deformation problem Xη of
fixed determinant η, as a problem defined over CO. Then one can find a set Qaux of d many
primes as in the previous lemma such that for Q′ = Q ∪ Qaux the assumptions of Theorem
5.6 are satisfied, and such that the number of topological generators of RO,X′η and RO,Xη , in
the notation of this theorem, agrees. Such a set Qaux is called optimal.

Without the restriction of the determinant, a set Q′ as in Theorem 5.6 always exists, but
it is not necessarily optimal.

Proof: The first half is clear by the previous lemma and Remark 6.3. That the number of
topological generators does not change if one enlarges Q by Qaux, follows from formula (2)
in Lemma 5.5, as the increment of the dimensions of the local terms is precisely cancelled
by the decrement of the dimension of dimkH

1
L⊥(GE , ad0

ρ̄(1)). It remains to remark that the
lemma works also for ktriv as a GE-module. In fact there it is rather trivial. Then one can
use the combined set of auxiliary primes for ad0

ρ̄ and ktriv, as adρ̄ = ad0
ρ̄ ⊕ ktriv

We shall now discuss the existence of auxiliary primes for arbitrary N for the situation
X = XQ in Theorem 5.2. For this we may decompose adρ̄ into a direct sum of indecomposable
submodules, and we can consider each of them separately. So let V be such a GE,Q-module.
We shall investigate under what conditions one can replace Q by a finite extension Q′ such
that X2

Q′(GE , V ) = 0.

From the definition of Xi and Poitou-Tate, it follows that

X2
Q(GE , V ) ∼= X1

Q(GE , V
∗(1))∗.

Let Ẽ be the splitting field of the restriction of V to GE(ζl). Let H = Gal(Ẽ/E), Hp a

decomposition group of H at p, and QẼ the places of Ẽ above those in Q. We consider the
following diagram, where the middle and right columns are inflation-restriction sequences.

(3)

0

��

0

��

0

��

0 // K //

��

H1(H,V ∗(1)) //

��

∐
p∈Q

H1(Hp, V
∗(1))

��

0 // X1
Q(GE , V

∗(1)) //

��

H1(GE,Q, V
∗(1)) //

��

∐
p∈Q

H1(GEp , V
∗(1))

��

0 // X1
Q(GẼ , V

∗(1))H // H1(GẼ,QẼ
, V ∗(1))H //

( ∐
P∈QẼ

H1(GẼP
, V ∗(1))

)H
One easily checks the isomorphism of the kernels of the maps

H1(H,V ∗(1))→
∐
p∈Q

H1(Hp, V
∗(1)) and X1

Q(GE , V
∗(1))→X1

Q(GẼ , V
∗(1))H
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The action on V ∗(1) in the bottom row is trivial. Hence, in the notation of [14], the first
term simply is Hom(BQẼ , V

∗)H . As explained in Satz 12.3 of loc. cit., it is easy to achieve

that BQẼ = 0, by simply adding enough primes to QẼ so that the Q′-class group of Ẽ is zero.
(A refinement of this will be discussed below, when considering general X.) Hence one is left
with a purely group theoretical problem, namely to give conditions under which K becomes
trivial under enlarging Q.

Clearly whenever H1(H,V ∗(1)) = 0, then K = 0. If an l-Sylow subgroup of H is cyclic,
then one can add a prime p ∈ Q whose local decomposition group is this local l-Sylow
subgroup P . By [8], Proposition 10.4, it follows that the map

H1(H,V ∗(1))→ H1(P, V ∗(1))

is injective, and hence K is zero after adding p to Q. This can be applied, for example, to
the exceptional case H = PSL2(F5) in Lemma 6.2, to obtain a set of auxiliary primes, which
is even optimal in the sense of Corollary 6.4 for deformations with fixed determinant.

It is not clear to us, whether one can always remove K. We are sceptical, as for general
Fl[H]-modules M and general finite groups H it is not true that the map

H1(H,M)→
∐

H1(Hi,M)

is injective, where Hi runs through all cyclic subgroups of H. One can in fact construct
a counterexample for H ∼= Z/(l) × Z/(l) and M a k[H]-module with dimkM = 5. This
dependence on H and M should not come as a surprise. If one looks back at the proof of
Lemma 6.2, one finds that the vanishing of H1(H, ad0

ρ̄) was not a result of a general method,
but of the known classification of the subgroups of GL2(k). So the group theoretical problem
has to be solved for each case under consideration. We summarize this discussion.

Proposition 6.5 The set of deformation conditions XQ admits an auxiliary set of primes if
and only if for each indecomposable summand V of adρ̄(1) there exist cyclic subgroups H ′i of
H ′ = Gal(E′/E), where E′ is the splitting field of V , such that the kernel of

H1(H ′, V )→
∐
p∈Q

H1(H ′p, V ) t
∐
i

H1(H ′i, V )

is zero. A sufficient condition for this is that all H1(H ′, adρ̄(1)) = 0, or that any maximal
l-Sylow subgroup of any H ′ is cyclic. For N ≤ l, the latter means that such a group is
isomorphic to Z/(l).

Proof: The only thing to show is that we can replace H by H ′ and similarly for the decom-
position groups. We consider

1→ Gal(Ẽ/E′)→ H → H ′ → 1.

As the order of Gal(Ẽ/E′) divides that of Gal(E(ζl)/E) and is thus prime to l, applying the
inflation-restriction sequence yields the result.
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When trying to generalize this to arbitrary X,L, the problem arises that the local con-
ditions L⊥p are not necessarily compatible with a direct sum decomposition of adρ̄ into inde-
composable summands. So the analogue of diagram (3), where the third row incorporates

the infinitesimal conditions L⊥p , only makes sense for V = adρ̄. To be precise, we define L⊥,0p

to be the contraction of L⊥p to H1(Hp, adρ̄(1)) using the right column of diagram (3), and L̃⊥p
its image inside H1(GẼP

, adρ̄(1)), where for each p ∈ Q a place P ∈ QẼ is chosen above it.

One obtains a diagram analogous to diagram (3) whose first and third rows are

0→ KL⊥ → H1(H, adρ̄(1))→
∐
p∈Q

H1(Hp, adρ̄(1))/L̃⊥,0p

0→ H1
L̃⊥(GẼ , adρ̄(1))H → H1(GẼ,QẼ

, adρ̄(1))H →
∐
p∈Q

H1(GẼP
, adρ̄(1))Hp/L̃⊥p ,

where the objects on the left are defined to be the kernels of the morphism on the right.
KL⊥ can be analyzed as above. However this analysis can be quite difficult, if the sub-

groups L̃⊥,0p are needed explicitly to see if this kernel is zero, or if it can be made so by adding
some primes to Q. We shall now show that for any given class in HomH(GẼ,QẼ

, adρ̄(1)) ∼=
H1(GẼ,QẼ

, adρ̄(1))H one can choose a prime P such that this class maps under the restriction

map to a non-zero class of H1(GẼP
, adρ̄), and so, if KL⊥ can be made zero by enlarging Q,

there always exist an auxiliary set of primes. For this we can consider the indecomposable
summands of adρ̄ separately. So let V be such a summand. We follow the argument in the
proof of Lemma 6.2.

Given any ψ ∈ HomH(GẼ,QẼ
, V ), let Ẽψ be the splitting field of ψ above Ẽ and Eψ the

Galois closure above E of Ẽψ. Then there is a σ̄ ∈ Gal(Ẽψ/Ẽ) such that ψ(σ̄) 6= 0. Let σ
be a lift in Gal(Eψ/Ẽ) ⊂ Gal(Eψ/E). By the Cebotarev density theorem, there is a set of
primes of positive density of E, whose decomposition group in Gal(Eψ/E) is conjugate to
the cyclic group 〈σ〉. Enlarging Q by such primes, after a finite number of steps, one obtains
H1
L̃⊥
X′

(GẼ , V )H = 0.

Furthermore, under the following hypothesis (A), it is possible for problems with fixed
determinant η and for which KL⊥(ad0

ρ̄(1)) = 0, to find an optimal set of auxiliary primes, i.e.
one such that

H1
LXη (GE , ad0

ρ̄)
∼= H1

LXη ′ (GE , ad0
ρ̄),

where Xη ′ is obtained from Xη as above Theorem 5.2. The hypothesis (A) is:

(A) Given any indecomposable submodule V of ad0
ρ̄(1), there is a non-zero element g ∈ GE

such that V is not a submodule of (g − 1)ad0
ρ̄(1) and such that dimk(ad0

ρ̄(1))〈g〉 = 1.

The latter condition is for example satisfied, if one can always choose a g ∈ GE(ζl) such that
ρ̄(g) is diagonalizable with distinct eigenvalues. We obtain.

Proposition 6.6 A general X admits an auxiliary set of primes if there exist cyclic subgroups
H ′i of H ′ = Gal(E′/E), where E′ is the splitting field of adρ̄(1), such that the kernel of

H1(H ′, adρ̄(1))→
∐
p∈Q

H1(H ′p, adρ̄(1))/L̃⊥,0p t
∐
i

H1(H ′i, adρ̄(1))

is zero. If KL⊥X
(ad0

ρ̄) = 0 and if hypothesis (A) holds, then the deformation problem Xη, that
includes a fixed choice η of the determinant, admits an optimal set of auxiliary primes.
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Example 6.7 Let N = 2, E = Q and ρ̄ =
(
φ1 ∗
0 φ2

)
be of Borel type, such that φ = φ1φ

−1
2

is non-trivial, and so that CentGL2(k)(Im(ρ̄)) ∼= k∗. Then condition (A) holds if and only if

there exists g ∈ GE , such that χ(g)2 6= 1 and φ(g)χ(g) = 1. From this one can derive precise
conditions when condition (A) is satisfied.

If one wants to imitate Lemma 6.2, one simply needs to work with a condition p ≡ a
(mod lnb) for some fixed integers a, b that are relatively prime to l and depend on ρ̄.

Finally, if no such g exists, one could try to use subfunctors of EquivX0
p
. The problem

with this approach is that it seems rather unlikely that one can find a modular interpretation
that describes such a functor.

7 Applications

Throughout we assume that ρ̄ : GE → GLN (k) is an absolutely irreducible representation
of GE . Our first application concerns the results in [6]. There the shape of local relations
for certain unramified places is calculated for N = 2, and the consequences are discussed
for the presentation of RX for a given X, if one replaces the deformation condition X by
the condition X ′ that allows ramification at additional primes. A presentation for RX′ is
obtained involving the shape of the new local relations.

Theorems 5.2 and 5.6 generalize this immediately, to arbitrary N,E, provided the local
situation is well understood. The latter seems to be only the case for N = 2 – in Section 3
we complete the knowledge of the local situations by discussing all the local situations that
had not been analyzed previously. We state the following Corollary of Theorem 5.6 which in
combination with the results of Section 3 gives a generalization of Theorems 1 and 2 in [6].

Corollary 7.1 Let X be a set of deformation conditions for ρ̄ which admits an auxiliary set
of primes Qaux. Suppose Q′ ⊃ Q is finite and disjoint from Qaux. Define X ′ corresponding
to Q′ as above Theorem 5.2. Then one has a presentation

0→ (f1, . . . , fr+s)→ O[[x1, . . . , xt+s]]→ RO,X′ → 0

such that s =
∑

p∈Q′−Q dimkH
2(Gp, adρ̄), fr+i ∈ (f1, . . . , fr, xt+1, . . . , xt+r) for i = 1, . . . , s,

and such that the above presentation modulo J = (xt+1, . . . .xt+r) gives a presentation of
RO,X , i.e.

0→ (f̄1, . . . , f̄r+s)→ O[[x1, . . . , xt]]→ RO,X → 0.

Here f̄i = f (mod J). Furthermore the functions fr+1, . . . , fr+s are the images under a map
from local to global presentations of a complete (minimal) set of relations for all the local
places in Q′ −Q.

Any one of the following conditions is sufficient so that none of the fi is redundant.

(i) N = 2, ρ̄ is tame, i.e. l 6 |#Im(ρ̄), E satisfies the Leopoldt conjecture, ζp /∈ E, and
X = XQ.

(ii) N = 2, ρ̄ is modular and absolutely irreducible, and at the places l above l either ρ̄ is
semistable, or it is ordinary and the character det(ρ̄|Il) is not the local cyclotomic char-
acter, and X = XQ or one imposes the above mentioned conditions (i.e. semistability,
ordinariness, etc.) at the places above l.
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Proof: The only part that is not obvious is that conditions (i) and (ii) are sufficient so that
none of the fi is redundant. Under condition (i), this is shown in [3], Corollary 1.2, under
condition (ii), in [2], Corollary 9.5 and Remark 9.6.

Remark 7.2 The question of redundancy of local equations in a presentation is a rather
difficult one. If ρ̄ is not tame, the only general way to approach this is to assume that ρ̄ is
modular, and to use Ribet’s results on raising the level (and generalization thereof). This
was first exploited in [6].

When studying redundancy of equations fi, the main obstacle is that in general one has
no control over the images in the global deformation ring of the variables of local deformation
rings at unramified primes. After enlarging ramification, the images of the corresponding lifts
remain mysterious, while usually the new local variables that arise from admitting more ram-
ification can be directly seen in the global presentation, as they give rise to new parameters.
In most cases, the local equations involve both types of variables. Thus there is no reason
why such an equation shouldn’t disappear completely when considered globally, unless one
has some information on the images of the above elements.

As a second application we consider the following situation, which for example appears
in [11], [13] or [26], when ascending from a minimal deformation problem to a slightly larger
one.

Corollary 7.3 Let N = 2. We assume that we have a lift ρ : GE → GL2(O) in DefO,Xη(O)
of ρ̄ where O ∈ C is a discrete valuation ring, finite flat over W (k). Let η = det(ρ), and Xη

be a deformation problem that fixes the determinant to be η. Let ∆Q be a finite set of places
p such that the following holds. Either adρ̄ is ramified at p and LXη

p
= 0, this means that Xη

is minimally ramified in the sense of Remark 3.11, or p is a place where ρ̄ is unramified, Ep

contains ζl, and the local decomposition group acts non-trivially on ad0
ρ̄. Those are exactly the

primes used in Lemma 6.2. Let X ′η be the problem obtained from Xη by allowing arbitrary
ramification at the places in ∆Q. We assume that all the RO,X′ηp are complete intersections,
flat over O. By rp we denote the minimal number of generators of the local relations Jp, and
we define d = dimkH

1
LX (GE , ad0

ρ̄) −
∑

p∈Q rp. Then RO,Xη is a complete intersection and
flat over O of dimension d if and only if RO,X′η has this property.

Proof: We shall suppress the subscript O in the proof. We choose any set of auxiliary
primes for the problem X ′η and consider the presentation for RX′η given in Theorem 5.6. A
presentation for RXη is obtained by replacing the ideals Jp for places in ∆Q by appropriate
ideals J ′p. For all primes in ∆Q, modulo mO, the local equation for J ′p is given by Tp, while
that of Jp is given by T

np
p . For ramified primes this follows from Lemma 3.10 and from the

discussion in the proof of Proposition 3.7, for the other ones from [10], Lemma 2.36.
We start by showing that the property for RXη implies that for RX′η . By our assumptions

and counting relations, the number of generators of the ideal in our presentation for RXη ,
we call it JXη , is exactly the sum of the number of generators of the ideals Jp, resp. J ′p for
all local problems. Let f1, . . . , fm be a list of the images of the generators of the local ideals
considered inside JXη . As RXη is a complete intersection of dimension d, they must form
a regular sequence. By flatness over W (k), adding λ, the uniformizing parameter of O, to
this list, we still obtain a regular sequence. As the rings we consider are local, replacing



G. Böckle, A local-to-global principle for deformations 25

any equation by a power of itself, or reordering the sequence doesn’t change the regularity
property of the sequence. So we may assume that λ is the first element of the sequence.
Then we can replace all the equations Tp by T

np
p . By the above remark on the equations for

the primes in ∆Q, this is exactly the sequence one obtains from the equations for RX′η after
adding λ and considering it as the first equation. Hence RX′η is a complete intersection, flat
over O of the same dimension as RXη . The converse follows by reversing the argument.

Remark 7.4 If ρ̄ is ramified at p, but not adρ̄, then this means that the image of Ip under
ρ̄ is inside the set of homotheties of GL2(k). Hence by twisting by a character χ that is
unramified away from p, one can remove this ramification. As χ can be viewed as a W (k)∗

valued character, this can also be done for deformations with fixed determinant. After doing
this, one can study deformations of ρ̄′ = ρ̄⊗ χ. This reduces the study of deformation rings
to situations where the primes that ramify for ρ̄ are the same as those for adρ̄. Removing
such ramification was already used in [11], Remark 2.1.

Another application of the local-to-global principle is the construction of lifts to W (k)/(l2)
under rather general conditions on the given ρ̄, where in particular N can be larger than 2.
This is the subject of current joint work with C. Khare which shall be discussed elsewhere.

In Remark 7.2, we mentioned the problem that arises from the fact that in general one has
no control over the images of the local variables corresponding to a local Frobenius element.
We shall now investigate some consequences if these images are controlled by the local-to-
global map of mod mO tangent spaces. This will then provide us with a reinterpretation of
some recent results of Ramakrishna. We do not strive for full generality, we simply want to
indicate the underlying principle of the approach.

Let ρ0 : GE,Q → SL2(O) be a representation to a discrete valuation ring O, that is finite
flat over W (k), with uniformizing parameter λ. We assume that ρ̄ = (ρ0(mod λ)) is surjective
onto SL2(k). Further we assume that we consider a setXη of deformation conditions satsifying
the following.

• η is trivial, Xη : CO → Sets, ρ0 ∈ DefO,Xη(O).

• H1
L⊥
Xη

(GE , ad0
ρ̄(1)) = 0.

• All local deformation problems corresponding to Xη satisfy Jp = (0), so in particular
R := RηO,X is smooth over O of dimension d = dimkH

1
LX (GE , ad0

ρ̄(1)).

Let ∆Q be a set of places of E such that Lp ∼= H1(Gp/Ip, (ad0
ρ̄)
Ip) and such that ρ̄(Gp) has

order l. Such places could be ramified or not. This corresponds to the conditions described
in Lemma 3.10 (iii) and (iv). We let X ′η by as usual the same as Xη for places outside ∆Q,
and no condition but trivial determinant at places of ∆Q, and R′ := RO,X′η . By Q1 we
denote the set of primes of ∆Q that ramify in ρ̄, and by Q2 its complement in ∆Q. We let
Rp = RO,Xo

Ep
. So Rp

∼= O[[Sp, Tp]]/(gp(Sp, Tp)) for an unramified place p in ∆Q, where

gp(S, T ) = Thp(S, T )gN(q)−1(T 2hp(S, T ))

and hp is the function h in the notation of Lemma 3.10 (iv), and Rp
∼= O[[Tp]]/(gp(Tp)) where

gp(T ) = TgN(q)−1(T ) in the notation of Lemma 3.10 (iii).



G. Böckle, A local-to-global principle for deformations 26

We now describe the linearity condition we want. Let S̄p and T̄p by the images of Sp, Tp
in tRp,O, and σp, τp their images in tR′ . As H1

L⊥X
(GE , ad0

ρ̄(1)) = 0, it follows that

tR′,O ∼= tR,O ⊕
⊕
p∈∆Q

kτp

Thus we can write σp = ap +
∑

p∈∆Q γpp′τp′ , ap ∈ tR,O, γpp′ ∈ k. We let A be the matrix
A = (γpp′)p,p′∈Q2 .

Theorem 7.5 We assume that we are in the above set-up.

(i) If for all subsets Q0 of Q2,
det((γpp′)p,p′∈Q0) 6= 0

and if Jp = (0) for all places p ∈ Q − ∆Q, then R′ is flat over W (k) and a complete
intersection of Krull dimension d. In particular all deformations lift to characteristic
zero.

(ii) If in addition to the assumptions in part (i), we assume that for p′ ∈ Q1 all γpp′ = 0,
and that all entries of the vector

1

λ
A−1(trace(ρ0(Frobp))− 2)p∈Q2

are units in O, then there exists a lift of ρ̄ to GL2(O) infinitely ramified at all places in
∆Q.

Remark 7.6 The conditions of the second part can be realized in the following two situa-
tions. The image of ρ0 is finite, all ρ0(Frobp) have order l for p ∈ Q2, O = W (k)[ζl+ ζ−1

l −2],
and A is a diagonal matrix. Then the conditions on the vector entries are satisfied. However
the only situations where one can hope for this are k = F3 and k = F5, see [15], §1.9. We
shall remark below on how to calculate A.

The other situation is where ρ0 is surjective. Then by the Cebotarev density theorem, one
has a set of places p of a positive density for which trace(ρ0(Frobp))− 2 has λ-adic valuation
1. For instance for representations associated to a modular form f , this condition can be
checked by looking at the coefficients of the Fourier expansion of f . Properties of A however
have to be checked differently.

The condition on the determinants in (i) means that one can freely replace any set of
parameters (αp(Tp))p∈Q2−Q0 forR′ by the elements (αp(Sp))p∈Q2−Q0 in a minimal presentation
of R′, where αp : Rp → R′ is any local-to-global map.

Proof: We shall first prove part (i). We consider R′/(λ). As topological generators we take
the images of the local Tp, which we denote by (τ̂p)p∈∆Q, together with lifts {x1, . . . , xd} of
a any set of elements of mR that forms a basis of tR,O. The equations for the primes p ∈ Q1

modulo λ are of the form T
np
p , those for the primes in Q2 of the form S

mp
p T

np
p for some

positive integers mp, np.
We shall now calculate the Krull dimension of R′/(λ). For this we may consider the

reduced ring

(R′/(λ))red =
(
k[[x1, . . . , xd, τ̂p : p ∈ ∆Q]]/(τ̂

np
p : p ∈ Q1, σ̂

mp
p τ̂

np
p : p ∈ Q2)

)
red
.
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Let Q0 be any subset of Q2. Then clearly it suffices to calculate the Krull dimension of all
rings

R̃ =
(
k[[x1, . . . , xd, τ̂p : p ∈ Q0]]/(σ̂p : p ∈ Q0)

)
red

Our assumptions on the matrix A imply that the equations for the σ̂p in terms of the τ̂p′ and
the xi are such that we can form linear combinations that say that each of the τ̂p, p ∈ Q0, can
be expressed in the variables xi and τ̂p′ by power series with no linear terms in the variables
τ̂p, p ∈ Q0. Hence these equations can be used to eliminate all the τ̂p, p ∈ Q0. It follows that
R̃ ∼= k[[x1, . . . , xd]]. This shows that all components of R′/(λ) have Krull dimension at most
d. From the explicit presentation of R′ it follows that the equations involved together with
the element λ must form a regular sequence. Hence R′ has the properties claimed.

Now we come to the proof of (ii). We assume now that the choices of the xi and τ̂p are
made in such a way that in the presentation of R′ above, specializing them to zero corresponds
to ρ0. For p ∈ Q2, let σ̂p,0 denote the image of Sp under the map to O corresponding
to ρ0. From the shape of the matrices given in Lemma 3.10 part (iv), this means that
σ̂p,0 = 1

2trace(ρ0(Frobp))− 1. This implies that

σ̂p = σ̂p,0 +
∑

p′∈∆Q

γ̂pp′ τ̂p +
∑
i

βpixi + rp

where rp ∈ (xi, τ̂p, λ)2. The γ̂pp′ are any lifts of the γpp′ to O. By our assumptions, we may
assume that γ̂pp′ = 0 for p′ ∈ Q1.

We specialize the xi to zero, the τ̂p for p ∈ Q1 to the value τ̂p,0 that corresponds locally to
infinity ramification, i.e. locally to Tp = 0, and we then form the quotient by the equations
hp(σ̂p, τ̂p) for p ∈ Q2. We obtain the ring

R′′ = O[[τ̂p : p ∈ ∆Q]]/(τ̂p − τ̂p,0 : p ∈ Q1, hp(σ̂p, τ̂p) : p ∈ Q2).

By the assumption for part (i), in particular that A is invertible, and as hp(σ̂p, τ̂p) ≡ σ̂p

(mod λ), it follows that R′′/(λ) ∼= k, and from there that O
∼=→ R′′.

It remains to show that the images τ̂p of the Tp are non-zero for p ∈ Q2. Then the image

of the generator of the local inertia group maps to a conjugate of
(

1 τ̂p
0 1

)
and is therefore of

infinite order. The (2, 1) entry must be zero by our condition that hp(σ̂p, τ̂p) = 0.
As we remarked in Lemma 3.10 (iv), the equation hp(σ̂p, τ̂p) = 0 implies that σ̂p ∈ (l)4.

Thus modulo (λ2) we have

0 ≡ σ̂p,0 +
∑

p′∈∆Q

γpp′ τ̂p,

i.e. (τ̂p)p∈Q2 ≡ −A−1(σ̂p,0)p∈Q2 (mod λ2). The claim follows from our assumption.

Remark 7.7 As shown by [1], Example 4.11, one cannot always expect the linearity condi-
tion to hold which we imposed above. In loc. cit., a situation was described where a local
variable S, considered in the global deformation ring, is a multiple of T 2, where T is the
image of the local variable describing ramification.

Also we note that if Q2 = ∅, then the theorem holds unconditionally - provided we are in
the set-up described above it.
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We explain now how to calculate the matrix A above under the assumption that LXp =
H1(Gp/Ip, (ad0

ρ̄)
Ip) for all places in ∆Q. We assume without loss of generality that Q contains

all the places of ∆Q. This doesn’t force them to be ramified for ρ̄.
The maps tRp → tR′ are dual to the map

H1(GE,Q, ad0
ρ̄)

resp→ H1(Gp, ad0
ρ̄)

A local dual basis of S̄p, T̄p is obtained by fixing a generator cp of H1(Gp/Ip, (ad0
ρ̄)
Ip) and the

lift dp of a generator of H1(Ip, ad0
ρ̄)
Gp such that (dp, Sp) = 0, where (, ) denotes the pairing

between a vector space and its dual.
We choose cycles sp ∈ H1(GE,Q, ad0

ρ̄) that are ramified at p but unramified at all places
in ∆Q − {p}. We may assume that (resp′(sp), Tp′) = δp,p′ , where δ... denotes the Kronecker
δ-function. Then the value γp,p′ can be either calculated as (resp′(sp), Tp′), or equivalently as
the coefficient of cp′ when writing resp′ in the basis cp′ , dp′ . It is by no means easy to perform
such calculations, c.f. [21].

Finally, we give an application of the above theorem to the universal deformation rings
and the deformations calculated in [20] and [21].

For this we let l = 3, E = Q, the prime called l in loc. cit. we shall denote by p0. We
shall use Roman letters for the primes, as we work over Q. For the sets Q and ∆Q we
take {3, p0, p1, . . . , pr} and {p0, p1, . . . , pr}, respectively, in the notation from loc. cit. (so p0

would be the l in that notation). In loc. cit. a representation GQ → SL2(F3) is fixed that
is unramified outside l, p0. We let X be the set of conditions such that Xl is empty, Xp is
unramified for p 6= l, and such that #ρ(Ip0) = 3 for all deformations [ρ]. In loc. cit. it is
checked that RX ∼= Zp and it is not hard to check that all the conditions we required in
the above set-up are satisfied. One has Q1 = {p0} and Q2 = {p1, . . . , pr}. We obtain the
following corollary, which is, apart from the explicit shape of the universal deformation ring,
the central result in [20].

Corollary 7.8 The universal deformation ring in [20], Theorem 3, is isomorphic to the ring
Z3[[x]]/(x(3 + 4x)), and setting x = 0 in this description gives a surjective deformation to
SL2(Z3) that is infinitely ramified at p0.

Proof: We take the case r = 0. Then all assumptions of the previous theorem are trivially
satisfied, and from its proof it is clear that the universal ring is isomorphic to Z3[[x]]/(g(x)),
where g is the local equation for the place p0. This relation can easily be calculated using
the recursion formula in [6] for the local polynomial gln(x) or from the explicit formula in [2],
Remark 5.4.

If one substitutes x = 0 in the local equation, it is clear that the image of the local

deformation at p0 is {
(

1 x
0 1

)
: x ∈ Z3}. Furthermore, ρ̄(GQ) = SL2(F3). Form those two

facts it is clear how to derive surjectivity.

The previous theorem also applies to the situation described in [21]. If ∆Q is a set of
primes satisfying the conditions of Propositions 6 in loc. cit., then from the description given
there, following the above sketch how to calculate A, one can show that A is a diagonal matrix
with non-zero entries in F3 along the diagonal. Hence both parts of the above Theorem apply.
From the second part we obtain the results of [21], Theorems 1 to 3. In loc. cit. the conditions
of Theorem 7.5 are established for explicit sets ∆Q with r = 1, 2, 3. The first part of Theorem
7.5 shows the following.
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Corollary 7.9 The universal deformation rings for deformations with determinant 1 of the
residual representation ρ̄ of [20] unramified outside Q, where Q is as in [21], Theorems 1 to
3, are finite flat over Z3.

Remark 7.10 One could also use our approach to construct infinitely ramified deformations
as in [22]. Yet the construction would be a very similar induction procedure, and so we shall
not carry it out. In this case our approach shows, that if at each step in the construction of
loc. cit. it suffices to add one further prime, then at step n the universal deformation space
Rn is isomorphic to Zp[[x1, . . . , xn]]/(xi(xi−ai) : i = 1, . . . n) where the ai converge p-adically
to zero as n → ∞. If one has to add two primes from a certain step on, we can no longer
show this as there are components that are no more controlled by linear conditions.

8 An interpretation in the tame case

Our goal here is on the one hand to improve the prime-to-adjoint principle from [5], §2, so
that it also applies to relations of presentations of pro-l groups, and not just to generators,
and then to show how this gives in the tame case an alternative proof of Theorem 5.2 in
the case of fixed determinant. Throughout this section we assume that we are given a tame
absolutely irreducible representation ρ̄ : GE → GL2(k), i.e. the order of Im(ρ̄) is prime to l.

We follow the construction in [5], §6. By the lemma of Schur-Zassenhaus one can find
a lift ρ0 : GE → GLN (W (k)) of ρ̄ such that Im(ρ0) ∼= Im(ρ̄). This is unique up to strict
equivalence and we shall call it the trivial lift. We give ourselves a set of primes Q, containing
as usual all primes above l and∞ and all primes where ρ̄ ramifies. The deformation problem
we shall consider is the problem Xη

Q, where η = det(ρ0). We simply call it X.
Let L be the splitting field of ρ̄ and H = Gal(L/E). Let PQ be the Galois group of the

maximal pro-l extension LQ(l) of L unramified outside the primes above Q. LQ(l) is Galois
over E, and we shall denote the corresponding profinite Galois group by Gρ̄(l). One has a
short exact sequence

1→ PQ → Gρ̄(l)→ H → 1

which is split by the lemma of Schur-Zassenhaus. We shall fix such a splitting. Thus we have
an action of H on PQ and one on ΓN (W (k)) and hence a canonical action on all ΓN (R),
R ∈ C, via GLN (W (k)) → GLN (R) and the conjugation action of GLN (R) on Γ0

N (R). Let
Γ0
N (R) be the subgroup of ΓN (R) consisting of matrices of determinant one. From [5] it

follows that one has a natural isomorphism

DefX(R) ∼= EquivX(R) = {H equivariant morphisms PQ → Γ0
N (R)}

From now on we fix two pro-l groups Π, P that carry the action of a finite group H that
is of order prime to l. We want to replace Π by a group Π′ in a way related to the action of
H on P such that

Hom(Π, P ) = Hom(Π′, P )

Our motivation is the prime-to-adjoint principle by Boston, that he uses to reduce the number
of generators in [5], §6. We shall fix a filtration {Pn} of P such that all the subquotients are
Fl[H]-modules. By V = {V1, . . . , Vt} we shall denote a full list of irreducible Fl[H]-modules
that occur as irreducible summands in those subquotients. It is not hard to see that this list
is independent of the filtration chosen. We also fix an H-equivariant presentation

1→ R→ F → Π→ 1
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As R is usually infinitely generated as an abstract pro-l group, we have to be careful when
applying a version of [5], Lemma 2.5. Thus we first establish the following lemma.

Lemma 8.1 Let A0 be an irreducible submodule of the Fl[H]-module R/[R,F ]Rp. Then
there exists a finitely generated, H-invariant, free pro-l subgroup R0 of R whose Frattini
quotient maps isomorphically onto A0 under the map induced from R0 → R/[R,F ]Rp.

Proof: Let r̄ 6= 0 be in A0. Take any lift r to R. Let R1 be the topologically closed subgroup
of R that is generated by the set Hr. This is clearly a free pro-l group, as any closed subgroup
of a free pro-l group is a free pro-l group.

By construction, the Frattini quotient of R1, we call it A1, is generated as an Fl[H]-
module by the image of r, and so it is finite. Under the map A1 → R/[R,F ]Rp induced
from R1 → R/[R,F ]Rp, A1 maps onto A0. Let B be the kernel of this map. By the proof of
[5], Lemma 2.3, we can find pro-l subgroups R0 and R2 of R1 with Frattini quotients A0, B,
respectively, such that R1 is isomorphic to the free pro-l product of R0 and R2, compatibly
with the H action. The submodule R0 we constructed, satisfies the claim of the lemma.

We can immediately derive some consequences about possible replacements of Π by other
groups Π′. For this we shall make the following definitions. Given a finite Fl[H]-module M ,
by MV we shall denote the direct sum of all V -isotypical components of M for all V ∈ V.
We say that M is prime to V, if MV = 0.

Proposition 8.2 We fix P , V and a presentation of Π as above. Suppose we are given a
chain of maps

Π = Π0 ← Π1 → Π2 ← Π3 → . . .← Π2k−1 → Π2k = Π′

such that at each step the Fl[H]-module

(4) (H1(ker(Πi → Πj),Fl)
Πj )∗ is prime to V,

where j = i+ 1 or i− 1 so that Πi surjects onto Πj. (∗ denotes the Pontryagin dual of finite
groups.) By the inflation-restriction sequence for the surjection Πi → Πj, condition (4) above
is equivalent to the condition that the modules

ker(H1(Πi,Fl)
∗ → H1(Πj ,Fl)

∗) and Coker(H2(Πi,Fl)
∗ → H2(Πj ,Fl)

∗)

are prime to V. Then HomH(Π, P ) ∼= HomH(Π′, P ) where the isomorphism is induced from
the given chain of homomorphisms between Π and Π′.

A group Π′ constructed as above will be called a V-modification of Π. It only depends on
V and not directly on P .

Proof: We first make the following observation. Let W be an irreducible Fl[H]-module. We
assume that W is not isomorphic to any of the Vi. Let G be a closed, finitely generated,
H-invariant subgroup of F whose Frattini quotient is W . Then by [5], Lemma 2.5, for any
H-equivariant homomorphism ξ from F to P , the restriction of ξ to G is trivial.
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We shall give the proof for the situation where Π surjects onto Π′ and where (H1(ker(Π→
Π′),Fl)

Π′)∗ is prime to V. We consider the diagram

(5)

R � � //
� _

��

F
∼=

��

// // Π

����
R′ �

� //

����

F

����

// // Π′

∼=
��

R̃
� � // F ′ // // Π′

where the first line in (5) is our given presentation of Π, R′ is the kernel from F to Π′, and
the third line of the diagram denotes a minimal (H-equivariant) presentation of Π′. We shall
further consider the following diagram

(6)

R/[F ,R]Rp
f

((QQQQQQQQQQQQ

��
N // R′/[F ,R′]R′p

g // R̃/[F ′, R̃]R̃p

By the inflation-restriction sequence applied to the middle and lower three term sequence in
(5), one can identify the kernel N of the bottom row of (6) with the kernel of H1(Π,Fl)

∗ →
H1(Π′,Fl)

∗. Our assumption means precisely that this kernel, and the cokernel of f are both
prime to V.

We now choose irreducible Fl[H]-submodules Wi, i = 1, . . . , n of W = R′/[F ,R′]R′p

and corresponding subgroups Ri according to Lemma 8.1, such that W is the direct sum of
the Wi, the modules W1, . . . ,Wk generate the kernel N of g, g(Wk+1), . . . , g(Wm) generate
the cokernel of f , and g(Wm+1), . . . , g(Wn) generate the image of f . In particular, using
Lemma 8.1, we shall assume that the subgroups Rm+1, . . . ,Rn are inside R. So now, if ξ is
in HomH(Π, P ) let ξ̂ be the corresponding element in HomH(F , P ). As explained above, the
restriction of ξ̂ to the Ri for i = 1, . . . ,m is trivial. As it is induced from a homomorphism
from Π to P , it is trivial on the remaining Ri, too, and thus on R′ which is, as a closed
normal subgroup, generated by the Ri.

Remark 8.3 Typical conditions under which Π′ is a modification of Π ∼= F/R are the
following.

(i) There are finitely generated subgroups Fi of F that are H-stable and such that the
Frattini quotients F̄i are prime to V. Let R′ be the closed normal subgroup generated
by the Fi and R, and define Π′ = F/R′.

(ii) R0 is a closed finitely generated subgroup of R such that its Frattini quotient R̄0

surjects onto (R/Rp[R,F ])V . Let R′ be the closed, normal, H-invariant hull of R0,
and let Π′ = F/R′.

Corollary 8.4 There is a modification Π′ of Π such that H i(Π′,Fl)
∗ ∼= (H i(Π,Fl)

∗)V for
i = 1, 2.
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We shall now explain how one can generalize the prime-to-adjoint principle, that is for-
mulated in [5], §2, completely. We shall consider the following situation

(7)

1 // Π // Πv // Π̃

ξ̃
��

// 1

1 // P // P v // P̃ // 1

where Π̃ and P̃ are finite, Πv and P v are profinite and Π and P are pro-l groups. By
Def(Πv, P v) we shall denote the set of homomorphisms ξ : Πv → P v that are lifts of the
residual homomorphism ξ̃ : Π̃→ P̃ , modulo the conjugation operation by elements of P .

For any subgroup H of Π̃ that is of order prime to l, by the Lemma of Schur-Zassenhaus,
there is an action of H on P . Hence one can define the set VH of P with respect to the H-
action as above. A filtration {Pn} as above always exists. In fact one can take the Zassenhaus
filtration, independently of H.

If one also fixes a lift of H to Aut(Π), then it is clear that one has an inclusion

Def(Πv, P v) ⊂ HomH(Π, P )

One can now formulate Proposition 8.2 in this context.

Proposition 8.5 Suppose there is a chain of maps

Πv = Πv
0

��

Πv
1

oo

��

// Πv
2

��

. . .oo // Πv
2k = (Πv)′

��
Π̃ = Π̃0 Π̃1

∼=oo
∼= // Π̃2

. . .
∼=oo

∼= // Π̃2k = Π̃′

such that for each step Πv
i → Πv

j , where j = i − 1 or i + 1 depending on i, this map is a

surjection, and there exists a subgroup H of Π̃i
∼= Π̃ of order prime to l such that

(H1(ker(Πi → Πj),Fl)
Πj )∗ is prime to VH .

Then the maps between the various pairs Πv
i and Πv

j , j ∈ {i−1, i+1} induce an isomorphism
Def(Πv, P v) → Def(Π′v, P v). As in Proposition 8.2, the construction of (Πv)′ depends only
on the sets VH and not on P v.

The following is a supplement to Proposition 8.2 needed in the discussion below. Its proof
is obvious.

Lemma 8.6 We take the assumptions from Proposition 8.2. We assume R is generated as
a closed normal subgroup by elements r1, . . . , rn. Assume that r1, . . . , rm are of the form
[si, ti]t

ni
i for some si, ti ∈ F such that there exist subgroups Hi of H that act trivially on si, ti,

and where the Hi satisfy the condition that PHi is abelian. If one replaces ri by r′i = tnii for
i = 1, . . . ,m, we call the corresponding groups R′ and Π′, then one has the isomorphism

HomH(Π, P ) ∼= HomH(Π′, P )
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We shall now specialize to the situation described at the beginning of this section, i.e.
Π = PQ, Ω = H, P = Γ0

N (R). We also fix N = 2 (else we would need explicit results on
auxiliary primes for N > 2). We note that the filtration of Γ0

2(R), induced by powers of the
maximal ideal, produces subquotients that are all isomorphic to a direct sum of copies of
ad0

ρ̄ - as k[H]-modules. We define V to be the set of the distinct irreducible summands of

ad0
ρ̄ considered as an Fl[H]-module. If Im(ρ̄) is not of dihedral type, ad0

ρ̄ is irreducible as a
k[H]-module, if it is of D2 type, it is the direct sum of three one-dimensional k[H]-modules
- all defined over Fl -, and else the sum of two irreducible ones - the one-dimensional one
defined over Fl. The set V, too, contains one, three or two elements, corresponding to the
above cases.

By [14], §11, and [18] one has the following description of PQ, or more precisely of the
groups H i(PQ,Z/(l)).

(8) 0→ H1(P∅,Z/(l))→ H1(PQ,Z/(l))→
∐

P|p∈Q

H1(ILP
,Z/(l))GLP → B∅ → BQ → 0

and

(9) 0→ BQ → H2(PQ,Z/(l))→
∐

P|p∈Q

H2(GLP
,Z/(l))→ µl(L)→ 0

Here BQ is as in Section 6. An explicit definition may be found in [14], §11.
Let L be the set of local conditions corresponding to our problem X. From Section 6, we

have

(10) H1
L⊥(E, ad0

ρ̄(1)) ∼= X2
Q(E, ad0

ρ̄)
∼= HomH(B∗Q, ad0

ρ̄)

Using Lemma 6.2, we pick a set of auxiliary primes Qaux for X, and denote the problem
for Q′ = Q ∪ Qaux (with determinant equal to det(ρ0)) by X ′. But we can also give a
simple direct argument. We decompose the Q-class group of L, which is a Fp[H]-module,
into irreducible summands. In each summand that, after tensoring with k, contains a copy of
ad0

ρ̄(1), we choose a prime ideal. The contraction of those primes to E will form a set Qaux,
if we make sure that all primes contract to different primes. With a bit more effort, one can
find an optimal set of auxiliary primes.

For the Hi in Lemma 8.6, we take a choice of a local decomposition group for the places
p ∈ Qaux. By Proposition 8.2 or the corollary thereafter, we can eliminate many relations
and generators in a presentation of PQ′ if we are interested in morphisms to groups Γ0

2(R)
only, and we can control this by keeping only those local relations that are not prime to V
with respect to the subgroup Hp. For the newly chosen places in Qaux, we can simplify the
local relations by Lemma 8.6. If we start with a presentation of PQ′ as in [14], Seite 110,
Bemerkung, we obtain.

Corollary 8.7 If one considers H-equivariant maps from PQ′ to some pro-l group P carrying
an action of H, where V is the set of irreducible Fl[H]-submodules of ad0

ρ̄, and such that the
centralizers in P of the Hi, defined above, are abelian, then one can find a modification P ′Q′

of PQ′ whose Frattini quotient is isomorphic to P̄VQ′, and one has maps

1 // RP

��

// FP

��

// PP

��

// 1

1 // R // F // P ′Q′ // 1



G. Böckle, A local-to-global principle for deformations 34

where the rows are minimal presentations of the groups on the right, and PP is a modification
of the local Galois group at P, such that the number of generators and relations to describe
PP is given by dimFl(H

i(GLp ,Fl)
∗)VHp , i = 1, 2, and for the primes P above primes in

p ∈ Qaux, the relation is given by t
nP
p where nP is the l-part of the order of (OL/P)∗. Then

R is generated in the following way. For each p in Q′ we choose a P0 above it and a set of
relations RP0. Then R is the smallest closed normal H-invariant subgroup of F generated
by the images of all RP0. In particular, if one is given a homomorphism F → P that is
H-equivariant, it descends to P ′Q′, and hence to P ′Q, if all the relations in all the sets RP0

hold for it.
Furthermore a modification of PQ is obtained by replacing the relations t

nP0
P0

for p ∈ Qaux
by the relations tP0.

This is now the analogue of Theorem 5.2, in the tame case, as it reduces the calculations
for a presentation of RX to local calculations, and so the relations describing the universal
deformation space can be calculated by local relations, to the same extend as in Theorem
5.2. Hence for N = 2 and ρ̄ tame, Theorem 5.2 is implied by Corollary 8.7.
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