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Abstract

Let F be a finite field of characteristic ℓ > 0, F a number field, GF the absolute
Galois group of F and let ρ̄ : GF → GLN (F) be an absolutely irreducible continuous
representation. Suppose S is a finite set of places containing all places above ℓ and
above ∞ and all those at which ρ̄ ramifies. Let O be a complete discrete valuation
ring of characteristic zero with residue field F. In such a situation one may consider
all deformations of ρ̄ to O-algebras which are unramified outside S and satisfy certain
local deformation conditions at the places in S. This was first studied by Mazur, [16],
and under rather general hypotheses, the existence of a universal deformation ring was
proven.

In [3] I studied, among other things, the number of generators needed for an ideal
I in a presentation of such a universal deformation ring as a quotient of a power series
ring over O by I. The present manuscript is an update of this part of [3]. The proofs
have been simplified, the results slightly generalized. We also treat ℓ = 2, more general
groups than GLN , and cases where not all relations are local. The results in [3] and
hence also in the present manuscript are one of the (many) tools used in the recent
attacks on Serre’s conjecture by C. Khare and others.

1 Introduction

Let us consider the following simple lemma from commutative algebra:

Lemma 1.1 Suppose a ring R has a presentation R = W (F)[[T1, . . . , Tn]]/(f1, . . . , fm). If
R/(ℓ) is finite, and if n ≥ m, then n = m, and R is a complete intersection and finite flat
over W (F).

If the ring R in the lemma was a universal deformation ring for certain deformation types
of a given residual representation, then the conclusion of the lemma would provide one with
a lift to characteristic zero of this deformation type. This observation was first made by
A.J. de Jong, [9], (3.14), in 1996. Using obstruction theory and Galois cohomology, in [3] we
investigated the existence of presentations of universal deformation rings of the type required
in the lemma. In many cases such a presentation was found. However the finiteness of the
ring R/(ℓ) seemed out of reach.
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This was changed enormously by the ground breaking work [22] of R. Taylor where a potential
version of Serre’s conjecture was proved. The results of Taylor do allow one in many cases
to prove the finiteness of R/(ℓ). I first learned about this from C. Khare soon after [22] was
available. This gives a powerful tool to construct ℓ-adic Galois representations, (potentially)
semistable or ordinary at ℓ and with prescribed ramification properties at primes away from
ℓ. Besides the deep modularity results for such representations provided by Wiles, Taylor,
Skinner et al., the results in [3] were one of the ingredients of the recent proof of Serre’s
conjecture for conductor N = 1 and arbitrary weight by Khare in [10] (cf. also [11]). This
is based on previous joint work between Khare and Wintenberger [12], and a result by
Dieulefait [7]. Dieulefait also has some partial results on Serre’s conjecture [8].

The present manuscript is an update of those parts of [3], which study the number of
generators needed for an ideal I in a presentations of a given universal deformation ring as
a quotient of a power series ring over O by I. The proofs have been simplified, the results
generalized. We also treat ℓ = 2, more general groups than GLN , and cases where not all
relations are local. A main improvement is that the use of auxiliary primes could be avoided
entirely. We hope that this will be useful for the interested reader.
Let me give a summary of the individual sections. In Section 2, we start by briefly re-
calling Mazur’s fundamental results on universal deformations with the main emphasis on
presentations of universal deformation rings. Section 3 gives a first link between the ideals
of presentations of local and of global deformation rings in the setting of Mazur adapted to
global number fields. The discrepancy is measured by W

2
S of the adjoint representation of

the given residual representation.
It is natural to put further local restrictions on the initial deformation problem studied
by Mazur. To obtain again a representable functor the local conditions need relatively
representable. In Section 4 we present a perhaps useful variant of this notion.
The core of the present article is Section 5, cf. Corollary 5.3. Here we study presentations of
(uni)versal deformation rings for deformations in the sense of Mazur that moreover satisfy a
number of local conditions that follow the axiomatics in Section 4. The obstruction module
W

2
S is replaced by a naturally occurring dual Selmer group. The main novelty of the present

paper is that unlike in [3] we do not require that this dual Selmer group vanishes. Instead
we incorporate it into the presentation of the corresponding ring.
The final three sections investigate consequences of our results. In Section 6 we make some
general comments and study the case GL2 in detail. In particular, we present the numerology
for local ordinary deformation rings over arbitrary local fields (of any characteristic). In
Section 7 we compare our results to those in [15, 23] of Mauger and Tilouine. The last
section, Section 8, is dedicated to deriving a presentation of a global universal deformation
rings as the quotient of a power series ring over the completed tensor product over all local
versal deformation rings. The main result here is essentially due to M. Kisin [13]. We show
how to derive it using the results of Section 5.

Notation: For the rest of this article, we fix the following notation: F is a finite field of
characteristic ℓ. The ring of Witt vectors of F is denoted W (F). For a local ring R its
maximal ideal is denoted by mR. By O we denote a complete discrete valuation ring of
characteristic zero with residue field F, so that in particular O is finite over W (F). The
category of complete noetherian local O-algebras R with a fixed isomorphism R/mR

∼= F

will be CO. Here and in the following F[ε]/(ε2) is an O-algebra via O → F → F[ε]/(ε2).
For a Ring R of CO its mod mO tangent space is defined as

tR := HomO(R, F[ε]/(ε2)) ∼= HomF(mR/(m2
R + mOR), F).
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For J an ideal of a ring R in CO, we define gen(J) := dimF J/(mRJ). By Nakayama’s lemma,
gen(J) is the minimal number of generators of J as an ideal in R.

By F we denote a number field and by S a finite set of places of F . We always assume that
S contains all places of F above ℓ and ∞. The maximal outside S unramified extension of F
inside a fixed algebraic closure F alg of F is denoted FS . It is a Galois extension of F whose
corresponding Galois is GF,S := Gal(FS/F ).
For each place ν of F let Fν be the completion of F at ν, let Gν be the absolute Galois group
of Fν , and Iν ⊂ Gν the inertia subgroup. Choosing for each such ν a field homomorphism
FS →֒ F alg

ν , we obtain induced group homomorphisms Gν → GF,S.

Acknowledgments: This article owes many ideas and much inspiration to the work of
Mazur, Wiles, Taylor, de Jong, and many others. Many thanks go to C. Khare for constantly
reminding me to write un ‘update’ of the article [3] and for many comments. Many thanks
also to Mark Kisin for having made available [13] and for some interesting related discussions.

2 A simple deformation problem

In this section we recall various basic notions and concepts from [16]. In terms of generality,
we follow [23], and so we fix a smooth linear algebraic group G over O. By ZG we denote
the center of G, by T we denote a smooth affine algebraic group over O that is a quotient
of G via some surjective homomorphism d : G → T of algebraic groups over O. The kernel
of d is denoted G0. The Lie algebras over O corresponding to G and G0 will be g and g0,
respectively.

Examples 2.1 (a) d := det : G :=GLN → T :=GL1. Then g = MN (F) and g0 ⊂ g is the
subset of trace zero matrices.

(b) G is the Borel subgroup of GLN formed by the set of upper triangular matrices, T :=
GLN

1 , and d : G → GLN
1 is the the quotient homomorphism of G modulo its unipotent

radical. The corresponding Lie algebras are the obvious ones.

Throughout this section let Π be a profinite group such that the pro-ℓ completion of every
open subgroup is topologically finitely generated. (This is the finiteness condition Φℓ of [16],
Def. 1.1.) Let us fix a continuous (residual) representation

ρ̄ : Π → G(F).

The adjoint representation of Π on g(F) is denoted by adρ̄, its subrepresentation
on g0(F) ⊂ g(F) by ad0

ρ̄. For M an F[Π]-module, we define its dimension as hi(Π,M) :=
dimF H i(Π,M).
Following Mazur we first consider the following simple deformation problem: A lifting of
ρ̄ to R ∈ CO is a continuous representation ρ : Π → G(R), such that ρ (mod mR) = ρ̄. A
deformation of ρ̄ to R is a strict equivalence class [ρ] of liftings ρ of ρ̄ to R, where two
liftings ρ1 and ρ2 from Π to G(R) are strictly equivalent, if there exists an element in the
kernel of G(R) → G(F) which conjugates one into the other.
We consider the functor

DefO,Π : CO → Sets : R 7→ {[ρ] | [ρ] is a deformation of ρ̄ to R}.

Theorem 2.2 ([16]) Suppose Π and ρ̄ are as above. Then
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(a) The functor DefO,Π has a versal hull, which we denote by ρρ̄,O : Π → G(Rρ̄,O).

(b) If furthermore the centralizer of Im(ρ̄) in G(F) is contained in ZG(F), then DefO,Π is
representable by the above pair (Rρ̄,O, ρρ̄,O).

(c) tRρ̄,O
∼= H1(Π, adρ̄)

(d) Rρ̄,O has a presentation Rρ̄,O
∼= O[[T1, . . . , Th]]/J for some ideal J ⊂ O[[T1, . . . , Th]],

where h = h1(Π, adρ̄) and gen(J) ≤ h2(Π, adρ̄).

Proof: The proof is essentially contained in [16] §1.2, §1.6, where a criterion of Schlessinger
is verified. For (b) Mazur originally assumed that ρ̄ was absolutely irreducible. It was later
observed by Ramakrishna, [20], that this could be weakened to the condition given.
A proof for GLN instead of a general group G in the precise form above can be found in [3],
Thm. 2.4. The adaption to general G is obvious, and so we omit details.
Since this will be of importance later, we remark that the proofs in [16] or [3] show that
there is a canonical surjective homomorphism

(1) H2(Π, adρ̄)
∗ −→→ J/mO[[T1,...,Th]]J.

of vector spaces over F

Remark 2.3 If Rρ̄,O/(ℓ) is known to have Krull dimension h1(Π, adρ̄) − h2(Π, adρ̄), then
Theorem 2.2, which is obtained entirely by the use of obstruction theory, implies that Rρ̄,O

is flat over O of relative dimension h1(Π, adρ̄)− h2(Π, adρ̄), and a complete intersection. So
in this situation Theorem 2.2 has some strong ring-theoretic consequences for Rρ̄,O.
In the generality of the present section, it can not be expected that the Krull dimension
of Rρ̄,O/(ℓ) is always equal to h1(Π, adρ̄) − h2(Π, adρ̄) + 1. Recent work [4] by Bleher and
Chinburg shows that this fails for finite groups Π and also for Galois groups Π = GF,S in
case S does not contain all the primes above ℓ.
If G = GLn and ρ̄ is absolutely irreducible, and if Π = GF,S and S contains all primes above
ℓ, or if Π = GFν (cf. Remark 6.2), all evidence suggests that Rρ̄,O is a complete intersection,
flat over O and of relative dimension h1(Π, adρ̄) − h2(Π, adρ̄). But the amount of evidence
is small. On the one hand, there is Leopoldt’s conjecture, cf. [16], 1.10. On the other, if one
is bootstrapping the content of [1] in light of the recent modularity results of Taylor et al.,
e.g. [22], there is some evidence for odd two-dimensional representations ρ̄ of GF,S where F
is a totally real field.

One often considers the following subfunctor of DefΠ,O: Let η : Π → T (O) be a fixed lift
of the residual representation d ◦ ρ̄ : Π → T (F). Then one defines the subfunctor DefηΠ,O

of DefΠ,O as the functor which to R ∈ CO assigns the set of all deformations [ρ] of ρ̄ to R
for which the composite d ◦ ρ : Π → T (R) and the composite τ ◦ η of η with the canonical
homomorphism τ : T (O) → T (R) only differ by conjugation inside T (R). One obtains the
following analog of Theorem 2.2:

Theorem 2.4 ([16]) Suppose Π and ρ̄ are as above. Then:

(a) The functor Defη
Π,O has a versal hull, which we denote by ρη

ρ̄,O : Π → G(Rη
ρ̄,O).
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(b) If furthermore the centralizer of Im(ρ̄) in G(F) is contained in ZG(F), then DefηO,Π is

representable by the above pair (Rη
ρ̄,O, ρρ̄,O).

(c) tRη
ρ̄,O

∼= H1(Π, adρ̄)
η := Im(H1(Π, ad0

ρ̄) → H1(Π, adρ̄)).

(d) Rη
ρ̄,O has a presentation Rη

ρ̄,O
∼= O[[T1, . . . , Thη ]]/Jη for some ideal Jη⊂O[[T1, . . . , Thη ]],

where hη = dimF H1(Π, ad0
ρ̄)

η and gen(Jη) ≤ dimF H2(Π, ad0
ρ̄).

Remark 2.5 From the long exact cohomology sequence for

0 −→ g0 −→ g −→ g/g0 −→ 0

it follows that H1(Π, adρ̄)
η ∼= H1(Π, ad0

ρ̄) is an isomorphism if and only if

H0(Π, adρ̄) −→→ H0(Π, adρ̄/ad
0
ρ̄)

is surjective. To measure the discrepancy between hη and h1(Π, ad0
ρ̄), we define δ(Π, adρ̄) = 0

and

(2) δ(Π, adρ̄)
η := dimF Coker(H0(Π, adρ̄) −→ H0(Π, adρ̄/ad

0
ρ̄)) = h1(Π, ad0

ρ̄) − hη.

As an example consider the case d = det: G = GLN → T = GL1. If ℓ does not divide N , then
adρ̄ = ad0

ρ̄ ⊕ F, where here F denotes the trivial representation of Π, and so δ(Π, adρ̄)
η = 0.

However for ℓ|N and absolutely irreducible ρ̄, one finds δ(Π, adρ̄)
η = 1.

If η = 1, one can in fact consider two deformation functors: (i) the functor that arises from
considering deformations into G0 instead of G, and (ii) the functor Defη

O,Π considered above.
If δ(Π, adρ̄)

η = 0, the two agree. Otherwise, the functor for G0 is less rigid, and in fact its
mod mO tangent space has a larger dimension (the difference being given by δ(Π, adρ̄)

η).

Note also that the bound for gen(Jη) in part (d) is solely described in terms of ad0
ρ̄.

3 A first local to global principle

For the remainder of this article we fix a residual representation

ρ̄ : GF,S → G(F).

Whenever it makes sense, we fix a lift η : GF,S → T (O) of d◦ ρ̄. (If T (F) is of order prime to
ℓ, such a lift always exists.) As in the previous section, the adjoint representation of GF,S

on g(F) is denoted by adρ̄, its subrepresentation on g0(F) ⊂ g(F) by ad0
ρ̄.

To ρ̄ we can attach the following canonical deformation functors: First, we define

DefS,O := DefGF,S ,O, and Defη
S,O := DefηGF,S ,O .

The first functor parameterizes all deformations of ρ̄ which are unramified outside S, the
second (sub)functor moreover fixes the chosen determinant η.
Let ν be any place of F . The restriction of ρ to Gν defines a residual representation Gν →
G(F), the restriction of η to Gν a lift Gν → T (O) of d ◦ ρ̄ restricted to Gν . Thus we may
define local deformation functors by

Defν,O := DefGν ,O, and Defη
ν,O := Defη

Gν ,O .
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Notational convention: In the sequel we often write ?(η) in formulas. This expresses two
assertions at once: First, the formula is true if the round brackets are missing throughout.
Second, the formula is also true if (η) is entirely omitted throughout the formula. Corre-

sponding to the above cases the usage of ad
(0)
ρ̄ has to be interpreted as follows: If brackets

around (η) are omitted, then they are to be omitted around (0) in ad
(0)
ρ̄ , too; if (η) is omitted,

then (0) in ad
(0)
ρ̄ is to be omitted, as well.

By global, respectively local class field theory, the groups GF,S and Gν satisfy the conditions
imposed on the abstract profinite group Π in Section 2. Therefore Theorems 2.2 and 2.4
are applicable to ρ̄ and its restriction to the groups Gν . The resulting (uni)versal global

deformations are denoted by ρ
(η)
S,O : GF,S → R

(η)
S,O, and the local ones by ρ

(η)
ν,O : Gν → R

(η)
ν,O.

We also set

h := h1(GF,S , adρ̄), h
η := h1(GF,S, adρ̄)

η, hν := h1(Gν , adρ̄), h
η
ν := h1(Gν , adρ̄)

η .

With the above notation, Theorem 2.2 shows that there exist presentations

(3) 0 −→ J (η)
ν −→ O[[Tν,1, . . . , Tν,h

(η)
ν

]] −→ R
(η)
ν,O −→ 0.

(4) 0 −→ J (η) −→ O[[T1, . . . , Th(η) ]] −→ R
(η)
S,O −→ 0,

The restriction Gν → GF,S applied to deformations, induces a natural transformation of
functors

DefS,O →
∏

ν∈S

Defν,O .

This yields a ring homomorphism

⊗̂
ν∈S

R(η)
ν −→ R

(η)
S ,

where by ⊗̂, we denote the completed tensor product over the ring O. Using the smoothness
of O[[T1, . . . , Th(η) ]], and the above presentations, we obtain a commutative diagram with
inserted dashed arrows, where α is a product of local maps αν : O[[Tν,1, . . . , Tν,h

(η)
ν

]] →

O[[T1, . . . , Th(η) ]] and where 〈J
(η)
ν 〉 denotes the ideal generated by the J

(η)
ν in

(5)

0 // 〈J
(η)
ν : ν ∈ S〉

��
�

�

�

// O[[Tν,1, . . . , Tν,h
(η)
ν

| ν ∈ S]] //

α=
Q

αν

��
�

�

�

⊗̂ν∈SR
(η)
ν

//

��

0

0 // J (η) // O[[T1, . . . , Th(η) ]] // R
(η)
S,O

// 0

For any F[GF,S] module M , define W
2
S(M) = Ker(H2(GF,S ,M) −→ ⊕ν∈SH2(Gν ,M)). Our

first result on a local to global relation is the following simple consequence of Theorems 2.2
and 2.4:

Theorem 3.1 The ideal J (η) is generated by the images of the ideals J
(η)
ν , ν ∈ S, together

with at most dimF W
2
S(ad

(0)
ρ̄ ) further elements.

In particular, if the corresponding W
2
S(. . .) vanishes, then all relations in J (η) are local.
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Proof: By (1), there is a surjection

H2(GF,S , ad
(0)
ρ̄ )∗ −→→ J (η)/mO[[T1,...,T

h(η) ]]J
(η),

and similarly for the local terms. Comparing local and global terms yields the commutative
diagram

⊕
ν∈S H2(Gν , ad

(0)
ρ̄ )∗ //

��
��

H2(GF,S , ad
(0)
ρ̄ )∗ //

��
��

W
2
S(ad

(0)
ρ̄ )∗ // 0

⊕
ν∈S J

(η)
ν /mO[[T1,...,T

h
(η)
ν

]]J
(η)
ν // J (η)/mO[[T1,...,T

h(η) ]]J
(η),

where the lower horizontal homomorphism is induced from the ring homomorphism α of the
previous diagram, and where the vertical homomorphisms are surjective.
By Nakayama’s Lemma, any subset of J (η) whose image generates J (η)/mO[[T1,...,T

h(η) ]]J
(η)

forms a generating system for J (η). Therefore the assertion of the theorem follows immedi-
ately from the above diagram.

Remark 3.2 An obvious consequence of Theorem 3.1 is the inequality

gen(J (η)) ≤ dimF W
2
S(ad

(0)
ρ̄ ) +

∑

ν∈S

gen(J (η)
ν ).

In general, this inequality is not best possible, since one has the exact sequence

0 −→ W
2
S(ad

(0)
ρ̄ ) −→ H2(GF,S , ad

(0)
ρ̄ ) −→ ⊕ν∈SH2(Gν , ad

(0)
ρ̄ ) −→ H0(GF,S, (ad

(0)
ρ̄ )∨)∗ −→ 0.

4 Local conditions

For the applications to modularity questions, the functors considered in the previous section
are too general. At places ν above the prime ℓ modular Galois representations are potentially
semistable; at places ν away from ℓ, one often wants to prescribe a certain behavior of the

local Galois representations in question. This leads one to consider subfunctors D̃ef
(η)

ν,O of

the functors Def
(η)
ν,O that describe a certain type of local deformation.

An important requirement on these subfunctors is that the resulting global deformation
problems should have a versal hull. There are various approaches to achieve this. We find
it most convenient to work with the notion of relative representability, which is basically
described in [17], § 19.

Let us recall from [3], § 2, the relevant notion of relative representability: Following Sch-
lessinger a homomorphism π : A → C of Artin rings in CO is called a small extension if π
is surjective and if the kernel of π is isomorphic to the A-module F.
In [17], p. 277, in the definition of small, the requirement of surjectivity is left out. Therefore
the statement of Schlessinger’s Theorem as given there is weaker than that given in [21].
The statement in [17], p. 277, is also true if small morphisms are assumed to be surjective.
A covariant functor F : CO → Sets is called continuous, if for any directed inverse system
(Ai)i∈I of Artin rings in CO with limit A := lim

←−
Ai in CO, one has

F (A) = lim
←−

F (Ai).
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Definition 4.1 Given two covariant continuous functors F,G : CO → Sets such that G is
a subfunctor of F , we say that G is relatively representable if

(a) G(k) 6= ∅, and

(b) for all small surjections f1 : A1 → A0 and maps f2 : A2 → A0 of artinian rings CO,
the following is a pullback diagram:

G(A1 ×A0 A2) //

��

G(A1) ×G(A0) G(A2)

��

F (A1 ×A0 A2) // F (A1) ×F (A0) F (A2)

Remark 4.2 The definition of relative representability given in [17] seems at the outset
more restrictive. However, by a reduction procedure similar to that of Schlessinger in [21],
our definition might be equivalent to the the one given in [17].

The property from [17] is the one that is satisfied for essentially all subfunctors D̃ef
(η)

ν,O ⊂

Def
(η)
ν,O that have been considered in deformation problems for Galois representations. Hence

in all this cases, the local deformation problems are relatively representable in the above
sense.

Proposition 4.3 Suppose F,Fi, Gi : CO → Sets, i ∈ I, I a finite set, are covariant contin-
uous functors. Suppose for each i ∈ I that Gi is a relatively representable subfunctor of Fi.
Then the following holds:

(a) If Fi has a hull, i.e., Fi satisfies conditions (H1), (H2) and (H3) of Schlessinger, [21],
Thm. 2.11, or [17], § 18, then so does Gi. If Fi is representable, then so is Gi.

(b) The product
∏

i∈I Gi is a continuous subfunctor of
∏

i Fi which is relatively repre-
sentable.

(c) Suppose the Fi have a versal hull. Let α : F →
∏

i Fi be a natural transformation, and
let G be defined as the pullback of

G //___

��
�

�

�

∏
Gi

��

F //
∏

Fi.

Then, if F has a versal hull, then so does G, and if F is representable, then so is G.

The proof exploits the representability criterion of Schlessinger. It is a simple exercise in
diagram chasing, and left to the reader.

After the above detour on general representability criteria, let us come back to the defor-

mation functors we introduced in the previous section. The functors Def
(η)
S,O and Def

(η)
ν,O

are continuous. To work with finer local conditions, for each place ν in S we fix relatively
representable subfunctors

D̃ef
(η)

ν,O ⊂ Def
(η)
ν,O .
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We also define D̃ef
(η)

S,O as the pullback of functors in the diagram

D̃ef
(η)

S,O
//___

��
�

�

�

∏
ν∈S D̃ef

(η)

ν,O

��

Def
(η)
S,O

//
∏

Def
(η)
ν,O .

By Proposition 4.3, we obtain:

Proposition 4.4 The functors D̃ef
(η)

ν,O have a versal hull ρ̃
(η)
ν,O : Gν → G(R̃

(η)
ν,O). The functor

D̃ef
(η)

S,O is representable, say by, ρ̃
(η)
S,O : Gν → G(R̃

(η)
S,O). The induced ring homomorphisms

R
(η)
ν,O → R̃

(η)
ν,O and R

(η)
S,O → R̃

(η)
S,O are surjective.

5 A refined local to global principle

We keep the hypotheses of the previous sections that the subfunctors D̃ef
(η)

ν,O ⊂ Def
(η)
ν,O are

relatively representable. In this section, we want to derive an analog of Theorem 3.1, i.e.,

some kind of local to global principle for the refined deformation problem D̃ef
(η)

S,O. The needed
substitute for W

2
S(adρ̄) is a certain dual Selmer group. In our exposition of generalized

Selmer groups, we follow Wiles, cf. also [18], (8.6.19) and (8.6.20).

Let us consider a place ν of S. Since R
(η)
ν,O → R̃

(η)
ν,O is an epimorphism, there is an inclusion

of mod ℓ tangent spaces t
eR
(η)
ν,O

→֒ t
R

(η)
ν,O

. Via the isomorphism H1(Gν , adρ̄)
(η) ∼= t

R
(η)
ν,O

this

yields a subspace L
(η)
ν ⊂ H1(Gν , adρ̄)

(η) canonically attached to D̃ef
(η)

ν,O. Its dimension will

be denoted h̃
(η)
ν . From the interpretation of L

(η)
ν as a mod mO tangent space, we deduce the

existence of a presentation

(6) 0 −→ J̃ (η)
ν −→ O[[Tν,1, . . . , Tν,eh

(η)
ν

]] −→ R̃
(η)
ν,O −→ 0.

The collection (L
(η)
ν )ν∈S is often abbreviated by L(η). Let us also denote by L0

ν ⊂ H1(Gν , ad0
ρ̄)

the inverse image of Lη
ν ⊂ H1(Gν , adρ̄)

η under the surjection H1(Gν , ad0
ρ̄) −→→ H1(Gν , adρ̄)

η .

Convention on notation: For the refined deformation problems, the universal ring and the
ideals in a presentation, and the dimensions of the mod mO tangent spaces are given a tilde.
For the corresponding subspaces of H1(. . .)(η) we stick to the commonly used notation L?

ν .

We denote by χ̄cyc the mod ℓ cyclotomic character. For any finite F[GF,S]-module M , we
define M(i) := M ⊗ χ̄i

cyc and denote by M∨ the Cartier dual of M as an F[GF,S ]-module,
i.e., M∨ = HomF (M, F)(1).

Example 5.1 Any simple Lie algebra is self-dual via the Killing form. This often proves

ad
(0)
ρ̄

∼= (ad
(0)
ρ̄ )∨. For instance consider d = det: G = GLN → GL1. If ℓ 6 |N , then g0 is simple,

and so (ad0
ρ̄)
∨ ∼= ad0

ρ̄. This self-duality can be realized quite explicitly by the perfect trace
pairing (A,B) 7→ Tr(AB) on MN (F) (which also shows that adρ̄ is self-dual for G = GLN ).
If ℓ 6 |N this pairing restricts to a non-degenerate pairing on g0(F). For ℓ|N , the pairing
pairing is degenerate on the traceless matrices M0

N (F), but induces a non-degenerate pairing
on M0

N (F) modulo the subrepresentation of scalar matrices.
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The obvious pairing M × M∨ → F(1) yields the perfect Tate duality pairing

H2−i(Gν ,M) × H i(Gν ,M∨) → H2(Gν , F(1)) ∼= F,

i ∈ {0, 1, 2}. Applied to M = adρ̄, one defines L⊥ν ⊂ H1(Gν , ad∨ρ̄ ) as the annihilator of Lν ⊂

H1(Gν , adρ̄) under this pairing for M = adρ̄, and one sets L⊥ := (L⊥ν )ν∈S . For M = ad0
ρ̄,

one defines Lη,⊥
ν as the annihilator of L0

ν under this pairing, and one sets Lη,⊥ := (Lη,⊥
ν )ν∈S .

It is now standard to define the Selmer group H1
L(GF,S, adρ̄) as the pullback of the diagram

H1
L(GF,S , adρ̄) //_____

� _

��
�

�

�

⊕
ν∈S Lν

� _

��

H1(GF,S, adρ̄)
res

//
⊕

ν∈S H1(Gν , adρ̄),

where the lower horizontal map is the restriction on cohomology. The analogous diagram
with ad∨ρ̄ in place of adρ̄ and L⊥ν in place of Lν defines the dual Selmer group H1

L⊥(GF,S , ad∨ρ̄ ).
By analogy, we define H1

L(GF,S , adρ̄)
η as the pullback of the diagram

H1
L(GF,S, adρ̄)

η //_____

� _

��
�

�

�

⊕
ν∈S Lη

ν
� _

��

H1(GF,S, adρ̄)
η res

//
⊕

ν∈S H1(Gν , adρ̄)
η .

The space H1
L(GF,S , adρ̄)

(η) is readily identified with the tangent space of R̃
(η)
S,O. For its

dimension we write h̃
(η)

. Thus we have presentations:

(7) 0 −→ J̃ (η) −→ O[[T1, . . . , T
eh

(η) ]] −→ R̃
(η)
S,O −→ 0.

Note that Im(H0(GF,S , adρ̄/ad
0
ρ̄) → H1(GF,S , ad0

ρ̄)) injects under the canonical restriction

homomorphism into each of the H1(Gν , ad0
ρ̄). From this and our definition of the L0

ν , one
deduces that there is a short exact sequence

(8) 0→ Im(H0(GF,S, adρ̄/ad
0
ρ̄)→H1(GF,S, ad0

ρ̄))→H1
L0(GF,S , ad0

ρ̄)→H1
L(GF,S , adρ̄)

η →0.

For the proof of Theorem 5.2 below, we recall the following consequence of Poitou-Tate
global duality, [18], (8.6.20): For M ∈ {adρ̄, ad

0
ρ̄} and L the usual L or L0, respectively,

there is a five term exact sequence

0 −→ H1
L(GF,S ,M) −→ H1(GF,S ,M) −→

⊕

ν∈S

H1(Gν ,M)/Lν

−→ H1
L⊥(GF,S ,M∨)∗ −→ W

2
S(M) −→ 0.

By our definition of L0
ν , we have H1(Gν , ad0

ρ̄)/L
0
ν

∼= H1(Gν , adρ̄)
η/Lη

ν . From the exact
sequence (8) and the above 5-term sequence we thus obtain the 5-term sequence

(9)

0 −→ H1
L(GF,S , adρ̄)

(η) −→ H1(GF,S , adρ̄)
(η) −→

⊕

ν∈S

H1(Gν , adρ̄)
(η)/L(η)

ν

−→ H1
L(η),⊥(GF,S , (ad

(0)
ρ̄ )∨)∗ −→ W

2
S(ad

(0)
ρ̄ ) −→ 0.
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As in Section 3, one can compare local and global presentations of deformation rings also
for the more restricted deformation problems.

0 // 〈J̃
(η)
ν : ν ∈ S〉

��

// O[[Tν,1, . . . , Tν,eh
(η)
ν

| ν ∈ S]] //

��

⊗̂ν∈SR̃
(η)
ν,O

//

��

0

0 // J̃ (η) // O[[T1, . . . , T
eh

(η) ]] // R̃
(η)
S,O

// 0

Theorem 5.2 As an ideal, J̃ (η) is generated by the images of the ideals J̃
(η)
ν , ν ∈ S together

with at most dimF H1
L(η),⊥(GF,S , ad

(0)
ρ̄ ) other elements. In particular

gen(J̃ (η)) ≤
∑

ν∈S

gen(J̃ (η)
ν ) + dimF H1

L(η),⊥(GF,S , ad
(0)
ρ̄ ).

Proof: Let us first consider the local situation. The following diagram compares the local

presentations (3) and (6) for the functors Def
(η)
ν,O and D̃ef

(η)

ν,O, respectively:

0 // J
(η)
ν

//
� _

��

O[[Tν,1, . . . , Tν,h
(η)
ν

]] // R
(η)
ν,O

//

��
��

0

0 // J̃
(η)
ν

//

��
��

O[[Tν,1, . . . , Tν,h
(η)
ν

]] //

πν

��
��

R̃
(η)
ν,O

// 0

0 // J̃
(η)
ν

// O[[Tν,1, . . . , Tν,eh
(η)
ν

]] // R̃
(η)
ν,O

// 0.

The ideal J̃
(η)
ν is the kernel of the composite O[[Tν,1, . . . , Tν,h

(η)
ν

]] → R
(η)
ν,O → R̃

(η)
ν,O. The

epimorphism πν is chosen so that the lower right square commutes. We may rearrange the

variables in such a way that πν is concretely given by mapping Tν,i to Tν,i, for i ≤ h̃
(η)
ν , and

by mapping Tν,i to zero for i > h̃
(η)
ν . Let moreover denote by fν,1, . . . , fν,rν a minimal set of

generators of J̃
(η)
ν . Then a set of generators of J̃

(η)
ν is formed by the elements

fν,1, . . . , fν,rν , T
ν,eh

(η)
ν +1

, . . . , T
ν,h

(η)
ν

.

Now we turn to the global situation. By Theorem 3.1 the relation ideal in the presentation

(4) of R
(η)
S,O is generated by local relations together with at most r := dimF W

2
S(M) further

elements f1, . . . , fr. Let the αν and α =
∏

ν αν be homomorphisms as in diagram (5). For

the ring R̃
(η)
S,O we have the following two presentations. First, since D̃ef

(η)

S,O ⊂ Def
(η)
S,O is

defined by imposing local conditions, we may take the presentation of R
(η)
S,O and consider its

quotient by further local relations. Second, we have the presentation (7). We obtain

0 // 〈{αν(J̃
(η)
ν ); ν ∈ S} ∪ {f1, . . . , fr}〉

//

��
��

O[[T1, . . . , Th(η) ]] //

π
��
��

R̃
(η)
S,O

// 0

0 // J̃ (η) // O[[T1, . . . , T
eh

(η) ]] // R̃
(η)
S,O

// 0.
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Since h̃
(η)

= dim t
eR
(η)
S,O

, the homomorphism π is surjective. By properly choosing the coor-

dinate functions Ti, we may thus assume that π is given as Ti 7→ Ti for i = 1 . . . , h̃
(η)

and

Ti 7→ 0 for i > h̃
(η)

.
To further understand π, we interprete the F-dual of sequence (9) as an assertion on the
variables of our local and global presentations. Defining ∆ via

0 −→ W
2
S(ad

(0)
ρ̄ )∗ −→ H1

L(η),⊥(GF,S, (ad
(0)
ρ̄ )∨) −→ ∆ −→ 0,

we have

0 −→ ∆ −→
⊕

ν∈S

(H1(Gν ,M)(η)/L(η)
ν )∗ −→ (H1(GF,S ,M)(η))∗ −→ (H1

L(GF,S ,M)(η))∗ −→ 0.

For R ∈ CO we have t∗R = mR/(mO + m2
R). This gives an interpretation for the H1(. . .)∗-

terms:

• The (images of the) elements T1, . . . , T
eh

(η) form an F-basis of (H1
L(GF,S ,M)(η))∗.

• The (images of the) elements T1, . . . , Th(η) form an F-basis of (H1(GF,S ,M)(η))∗.

• The (images of the) elements T
ν,l

(η)
ν +1

, . . . , T
ν,h

(η)
ν

form an F-basis of (H1(Gν ,M)(η)/L
(η)
ν )∗.

Thus in the set V :=
⋃

ν∈S αν({Tν,eh
(η)
ν +1

, . . . , T
ν,h

(η)
ν
}) we may choose h(η) − h̃

(η)
many

elements which form a basis of the F-span of {T
eh

(η)
+1

, . . . , Th(η)}. Using the freedom we

have in choosing the variables T
eh

(η)
+1

, . . . , Th(η) , we may assume that these are precisely the

chosen ones from V . Hence under π, these chosen variables all map to zero.
We may therefore conclude the following: The ideal J̃ (η) is spanned by the images of the

relations fν,j, ν ∈ S, j = 1, . . . , l
(η)
ν , i.e., the local relations in a minimal presentation of

R̃
(η)
ν,O, together with the images of the elements fj, j = 1, . . . , r, and together with the

d :=
∑

ν∈S

(h(η)
ν − h̃(η)

ν ) − (h(η) − h̃(η))

further elements in V which may or may not map to zero under π. Since d = dimF ∆, and

d + r = dimF H1
L(η),⊥(GF,S , ad

(0)
ρ̄ ), the assertion of the theorem is shown.

Corollary 5.3 For the presentation

0 −→ J̃ (η) −→ O[[T1, . . . , T
eh

(η) ]] −→ R̃
(η)
S,O −→ 0

one has

(10)

h̃(η) − gen(J̃ (η)) ≥ h0(GF,S , ad
(0)
ρ̄ ) − h0(GF,S , (ad

(0)
ρ̄ )∨) − δ(GF,S , adρ̄)

(η)

+
∑

ν∈S

(
h̃(η)

ν + δ(Gν , adρ̄)
(η) − h0(Gν , ad

(0)
ρ̄ ) − gen(J̃ (η)

ν )
)
.
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Proof: Following Wiles, cf. [18] (8.6.20), and using (8) we have

h̃(η) + δ(GF,S , adρ̄)
(η) − dimF H1

L(η),⊥(GF,S , (ad
(0)
ρ̄ )∨)

= h0(GF,S , ad
(0)
ρ̄ ) − h0(GF,S, (ad

(0)
ρ̄ )∨) +

∑

ν∈S

(h̃(0)
ν − h0(Gν , ad

(0)
ρ̄ )).

By our definition of h̃
(0)
ν we have h̃

(0)
ν = h̃

(η)
ν + δ(Gν , adρ̄)

(η). Subtracting the bound for

gen(J (η)) from Theorem 5.2 from the quantity h̃
(η)

yields the desired estimate.

Remark 5.4 Because of Remark 3.2, we expect the above estimate to be optimal in the

case that h0(GF,S , (ad
(0)
ρ̄ )∨) = 0. If F contains ℓ-th roots of unity, the same remark shows

that for adρ̄ the above estimate will not be optimal. (For G = GL1, i.e, for class field theory,
the reader may easily verify this.) If adρ̄ = ad0

ρ̄ ⊕F this problem can be remedied since then

the universal ring R̃S,O is the completed tensor product of R̃η
S,O with the deformation ring

for one-dimensional representations. By class field theory (and Leopoldt’s conjecture) the
latter is well-understood.

6 General remarks and the case G = GL2

The aim of this section is to analyze the terms occurring in estimate 10 given in Corollary 5.3

for the number of variables minus the number of relations in a presentation of R̃
(η)
S,O. After

some initial general remarks we shall soon focus on the case G = GL2. The main result is
Theorem 6.8.

For many naturally defined subfunctors D̃ef
(η)

ν,O ⊂ Def
(η)
ν,O (for ν ∈ S) (for instance for the

examples presented below) one has the following:

(i) If ν 6 | ℓ, then h̃
(0)
ν − h0(Gν , ad

(0)
ρ̄ ) − gen(J̃

(η)
ν ) ≥ 0.

(ii) If one imposes a suitable semistability condition on deformations at places ν|ℓ, and a
suitable parity condition at places above ∞, then

∑

ν|ℓ or ν|∞

(
h̃(0)

ν − h0(Gν , ad
(0)
ρ̄ ) − gen(J̃ (η)

ν )
)
≥ 0.

The estimate in (i) is typically easy to achieve, and without any requirements on the restric-
tion of ρ̄ to Gν . This is presently not so for (ii) at places ν|ℓ: If ρ̄ satisfies some ordinariness
condition at ν, then the ring parameterizing deformations satisfying a similar ordinariness
conditions is relatively well understood. If on the other hand ρ̄ is flat at ν, then suitable
deformation rings are only well understood and well-behaved if the order of ramification of
ρ̄ at ν is relatively small.

We now turn to some examples, first for the local situation:

Example 6.1 ν 6 | ℓ,∞:
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(a) At such places one has

h1(Gν ,M) − h0(Gν ,M) − h2(Gν ,M) = 0

for the local Euler-Poincaré characteristic for any finite F[Gν ]-module M . Thus for

Def
(η)
ν,O on obtains h̃

(0)
ν − h0(Gν , ad

(0)
ρ̄ ) − gen(J

(η)
ν ) ≥ 0.

(b) For the local deformation problems defined by Ramakrishna in [19], Prop. 1, p. 122,
the ring R̃η

ν,O is smooth over O of relative dimension h0(Gν , ad0
ρ̄) = h1(Gν , ad0

ρ̄) −

h2(Gν , ad0
ρ̄) over O; cf. the remark in [19], p. 124. Here h̃0

ν −h0(Gν , ad0
ρ̄)−gen(Jη

ν ) = 0.

(c) The local deformation problem defined in [10], Prop. 2.2, is smooth of relative dimen-
sion 1 over O and again one has h̃0

ν − h0(Gν , ad0
ρ̄) − gen(Jη

ν ) = 0.

(d) The local deformation problem in [6], p. 141, in the definition of R♭ at places ν ∈ P ,
i.e., at prime number p with p ≡ −1 (mod h̃) again defines a local deformation problem
with versal representing ring smooth of relative dimension 1 over O. As in the previous
cases one has h̃0

ν − h0(Gν , ad0
ρ̄) − gen(Jη

ν ) = 0.

Remark 6.2 Let ρ̄ : GFν → GL2(F) be arbitrary. Building on previous work by Boston,
Mazur and Taylor-Wiles it is shown for ν 6 | ℓ and in [2] that the Krull dimension of Rη

ν,O is

for any choice of ρ̄ equal to h1(Gν , ad0
ρ̄) − h2(Gν , ad0

ρ̄). In [2] the same is shown for ν|ℓ for
all possible ρ̄. Thus by Remark 2.3 in these cases the rings Rη

ν,O are known to be complete
intersections of the expected dimensions. So the estimate in part (a) above is optimal for
d = det : G = GL2 → T = GL1. For parts (b), (c) and (d) the same can be shown (e.g. by
explicit calculation).

Example 6.3 ν|∞, ℓ > 2: If ν is real, then Gν is generated by a complex conjugation cν

(of order 2). For ℓ > 2 and R ∈ CO, the group ring R[Z/(2)] has idempotents for the two
R-projective irreducible representations of cν . Hence for any deformation [ρ] of ρ̄ to R, the

lift of ρ̄Gν is unique up to isomorphism. Therefore h̃
(η)
ν = 0 = gen(J

(η)
ν ), and h0(Gν , ad

(0)
ρ̄ )

depends on the action of cν on ad
(0)
ρ̄ , more precisely on the conjugacy class of ρ̄(cν). For

ℓ = 2 the problem is more subtle, cf. Example 6.4.

If ν is complex, then Gν acts trivially, and again h̃
(η)
ν = 0 = gen(J

(η)
ν ) (this also holds for

ℓ = 2). Clearly one has h0(Gν , ad
(0)
ρ̄ ) = dimF ad

(0)
ρ̄

For cases with ν|ℓ we refer to Examples 6.5 and 7.1. For a case with ν|∞ and ℓ = 2, we
refer to Example 6.4.

For the remainder of this section, we assume that d = det: G = GL2 → T = GL1.

One calls a residual representation ρ̄ odd, if for any real place ν of F one has det ρ̄(cν) = −1.
Note that for ℓ = 2, the condition det ρ̄(cν) = −1 is vacuous.

Example 6.4 Suppose ν is real and ρ̄ is odd. If ℓ 6= 2, then h0(Gν , ad0
ρ̄) = 1, and so from

the remarks in Example 6.3 it is clear that

h̃0
ν − h0(Gν , ad0

ρ̄) − gen(Jη
ν ) = −1.

If ℓ = 2, the main interest lies in deformation which are odd, i.e., for which the image of cν

is non-trivial. The following two cases are the important ones for G = GL2, and say with η
fixed:
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Case I: ρ̄(cν) is conjugate to
(

0 1
1 0

)
. The versal hull for this problem is then given by

ρη
ν,O : Z/(2) = 〈cν〉 −→ GL2(O) : cν 7→

(
0 1
1 0

)
.

We have h̃η
ν = 0, h0(Gν , ad0

ρ̄) = 2 and gen(Jη
ν ) = 0, so that

δ(Gν , adρ̄)
η + h̃η

ν − h0(Gν , ad0
ρ̄) − gen(Jη

ν ) = 1 + 0 − 2 − 0 = −1.

Case II: ρ̄(cν) is conjugate to
(

1 0
0 1

)
. Then the versal hull of a good deformation problem

at ν (so that the deformations are odd whenever this is reasonable) is given by

ρη
ν,O : Z/(2) = 〈cν〉 −→ GL2(O[[a, b, c]]/(a2 + 2a + bc)) : cν 7→

(
1+a b

c −1−a

)
.

We have h̃η
ν = 3, h0(Gν , ad0

ρ̄) = 3, gen(Jη
ν ) = 1 and (!) δ(Gν , adρ̄)

η = 0, so that

δ(Gν , adρ̄)
η + h̃η

ν − h0(Gν , ad0
ρ̄) − gen(Jη

ν ) = 0 + 3 − 3 − 1 = −1.

Example 6.5 We now turn to the case ν|ℓ.
Case I: Fν = Qℓ, h0(Gν , ad0

ρ̄) = 0, and ρ̄GK
is flat at ν for some finite extension K of Qℓ of

ramification degree at most ℓ − 1 so that the corresponding group scheme and its Cartier
dual are both connected. Then by [5] and [20], one has R̃η

ν,O
∼= O[[T ]] for a suitable flat

deformation functor D̃ef
η

ν,O. Because ℓ 6= 2 by Remark 2.5 we have δ(Gν , adρ̄)
η = 0. Hence

δ(Gν , adρ̄)
η + h̃η

ν − h0(Gν , ad0
ρ̄) − gen(Jη

ν ) = 1 = [Fν : Qℓ].

Case II: ρ̄ is ordinary at ν. We recall the computation of the obstruction theoretic invariants
for D̃ef

η

ν,O ⊂ Defην,O (much of these computations is contained in work of Mazur and Wiles):
Suppose we are given a residual representation

(11) ρ̄ : Gν → GL2(F) : σ 7→
(

χ̄ b̄
0 χ̄−1η̄ν

)
,

where χ̄ is unramified, and where η̄ν denotes the mod mO reduction of ην = η|Gν
.

We make the following (standard) hypotheses: The image Im(ρ̄) is not contained in the set
of scalar matrices, and, if χ̄ = χ̄−1η̄ν , then (after possibly twisting by a character) we assume
that χ̄ = χ̄−1η̄ν is the trivial character. In particular this means that if b̄ = 0, then χ̄2 6= η̄ν .

By an ordinary lift of fixed determinant we mean a lift of the form

ρ : Gν → GL2(R) : σ 7→
(

χ b
0 χ−1η̄ν

)
,

where χ is unramified. Since Im(ρ̄) is not contained in the set of scalar matrices, passing to

strict equivalence classes of such lifts defines a relatively representable subfunctor D̃ef
η

ν,O ⊂
Defη

ν,O in the sense of Definition 4.1.

To compute the mod mO tangent space of the corresponding ring R̃η
ν,O, and a bound on

the number of relations in a minimal presentation we distinguish several subcases: (i) ℓ = 2
(ii) ℓ 6= 2 and χ̄2 6= η̄ν , (iii) ℓ 6= 2 and χ̄2 = η̄ν (and so by our assumptions on ρ̄, we have
χ̄ = η̄ν = 1.).
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Subcase (i), ℓ = 2: Let us denote by ρ a lift to F[ε]/(ε2), and use ρ̄ also to denote the trivial
lift. Then

(12) σ 7→ ρ(σ)ρ̄(σ)−1 =
(

χ(σ)χ̄−1(σ) η̄−1
ν (σ)(b(σ)χ̄(σ)−χ(̄σ)b(σ))

0 χ−1(σ)χ̄(σ)

)
=:

(
1+εc1(σ) εc2(σ)

0 1−εc1(σ)

)

defines a 1-cocycle into the upper triangular matrices in ad0
ρ̄. Because we assume ℓ = 2, one

may in fact verify that the matrix entries c1 and c2 are also 1-cocycles for a suitable module.
In fact they yield classes [c1] ∈ H1(Gν/Iν , F) and [c2] ∈ H1(Gν , χ̄2η̄−1

ν ). Since Gν/Iν
∼= Ẑ,

one has H1(Gν/Iν , F) ∼= F.
If ρ and ρ′ are lifts to F[ε]/(ε2) of the required form, such that ρ′ and ρ are conjugate by
1 + εa for some a ∈ ad0

ρ̄ which is upper triangular, then 1-cocycles for ρ and ρ′ give rise to
the same cohomology classes. Conversely, if to a given pair of classes, one chooses different
1-cocycles, the resulting lifts ρ′, ρ differ by conjugation by a 1 + εa for some a ∈ ad0

ρ̄ which
is upper triangular.
Regarding strict equivalence one has the following easy if tedious result: For arbitrary a ∈
ad0

ρ̄ the conjugate of any lift ρ to F[ε]/(ε2) under 1 + εa is again a lift of the required form
if and only if one of the following happens:

(a) a ∈ ad0
ρ̄ is arbitrary if χ̄2 = η̄ν and b̄(Iν) = {0}

(b) a ∈ ad0
ρ̄ is upper triangular otherwise.

Case (a) means that the image of ρ̄ is an ℓ-group and that ρ̄ is unramified. We define δℓ,unr
ν

to be 1 in case (a) and 0 in case (b). Then we have

h̃0
ν = dimF t

eRη
ν,O

= 1 + h1(Gν , χ̄2η̄−1
ν ) − δℓ,unr

ν .

Similarly, one can compute the obstruction to further lift a representation

ρ : Gν → GL2(R) : σ 7→
(

χ b
0 χ−1ην

)

to a representation ρ′ given by
(

χ′ b
0 (χ′)−1ην

)
for a small surjection R′ → R. Letting χ′ be

an unramified character which lifts χ (and always exists since Gν/Iν
∼= Ẑ is of cohomological

dimension one) and b′ a set-theoretic continuous lift, as is standard, one shows that

(s, t) 7→ ρ′(st)ρ′(t)−1ρ′(s)−1 =:
(

1 cs,t

0 1

)

defines a 2-cocycle of Gν with values in χ̄2η̄−1
ν , and so we obtain a class in H2(Gν , χ̄2η̄−1

ν ).
This gives the bound gen(J̃η

ν,O) ≤ h2(Gν , χ̄2η̄−1
ν ).

As a last ingredient, we compute h0(Gν , ad0
ρ̄). This leads to the identity

ρ̄
(

α β
γ −α

)
ρ̄−1 =

(
α+γb̄χ̄−1 −2αχ̄b̄η̄−1

ν +βχ̄2η̄−1
ν −γb̄2η̄−1

ν

γχ̄−2η̄ν −α−γb̄χ̄−1

)
!
=

(
α β
γ −α

)
,

and so gives the conditions

γb̄ = 0, γ(1 − η̄νχ̄
−2) = 0, β(1 − η̄νχ̄

−2) = 2αχ̄−1b̄ = 0.

Since under our hypotheses we cannot have b̄ = 0 and η̄ν = χ̄2 simultaneously, we obtain
γ = 0. From the last condition we see that the vanishing of β depends on η̄ν = χ̄2 or not.
So we find h0(Gν , ad0

ρ̄) = 1 + h0(Gν , χ̄2η̄−1
ν ).
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Using the formula for the local Euler-Poincaré characteristic at a place ν|ℓ one obtains∑2
i=0 hi(Gν , χ̄2η̄−1

ν ) = −[Fν : Qℓ]. Hence

h̃0
ν − h0(Gν , ad0

ρ̄) − gen(Jη
ν ) ≥ h0(Gν , χ̄2η̄−1

ν ) − h0(Gν , ad0
ρ̄) + [Fν : Qℓ] + 1 − δℓ,unr

ν

= [Fν : Qℓ] − δℓ,unr
ν

for the corresponding ring R̃η
ν,O.

From now on, we assume ℓ 6= 2. In this case δ(Gν , adρ̄)
η = 0 by Remark 2.5, and so h̃0

ν = h̃η
ν .

Now for ℓ 6= 2, the 1-cocycle defined in (12) cannot be decomposed in two independent
1-cocycles, and so one proceeds differently: Let (n ⊂)b ⊂ ad0

ρ̄ denote the subrepresentations

on (strictly) upper triangular matrices of ad0
ρ̄. Following Wiles, we see that the cocycle

defines a cohomology class in

H1
str := Ker(H1(Gν , b) −→ H1(Iν , b/n)).

One observes that H1(Gν , b) −→ H1(Iν , b/n) factors via H1(Gν , b/n), and that the action
of Gν on b/n ∼= F is trivial. Using the left exact inflation-restriction sequence one finds that
H1

str is the pullback of the diagram

H1(Gν/Iν , b/n)

��

H1(Gν , b) // H1(Gν , b/n).

Case (ii), ℓ 6= 2 and χ̄2 6= η̄ν . We claim that H1(Gν , b) → H1(Gν , b/n) is surjective: Using
the long exact sequence of cohomology it suffices to show that

H2(Gν , n) −→ H2(Gν , b) −→ H2(Gν , b/n) −→ 0

is also exact on the left. Using Tate local duality, one has h2(Gν , ad
(0)
ρ̄ ) = h0(Gν , (ad

(0)
ρ̄ )∨).

The formulas

h2(Gν , n) =

{
1 if χ̄2 = η̄ν

0 else
h2(Gν , b/n) =

{
1 if χ̄cyc is trivial
0 else

follow readily. Representing matrices
(

α β
0 −α

)
in b by column vectors

(
α
β

)
, the represen-

tation of σ ∈ Gν on b is given by

(
α
β

)
7→

(
1 0

−2χ̄(σ)b̄(σ) η̄−1
ν (σ)χ̄2(σ)

)(
α
β

)
.

The invariants of the ∨-dual of b are the solutions (α, β) in F2 to the equations

(
1 2χ̄−1(σ)b̄(σ)η̄ν (σ)
0 η̄ν(σ)χ̄−2(σ)

)(
α
β

)
= χ̄−1

cyc(σ)
(

α
β

)
,

where σ ranges over all elements of Gν . For fixed σ, the dimension of the solution space is
2 minus the rank of the matrix

(
χ̄cyc(σ)−1 2χ̄−1(σ)χ̄cyc(σ)b̄(σ)η̄ν (σ)

0 η̄ν(σ)χ̄−2(σ)χ̄cyc(σ)−1

)
.
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If χ̄cyc(σ) is non-trivial and different from η̄−1
ν (σ)χ̄2(σ), it follows that H0(Gν , (ad0

ρ̄)
∨) = 0.

For varying σ, the maximal rank has to be non-zero, since otherwise we would have 1 =
χ̄cyc = η̄−1

ν χ̄2, contradicting our hypotheses. One concludes that if one of the identities
1 = χ̄cyc or 1 = η̄−1

ν χ̄2 holds, then the rank of H0(Gν , (ad0
ρ̄)
∨) is 1, and otherwise, it is 2. It

follows that
h2(Gν , b) − h2(Gν , n) − h2(Gν , b/n) = 0,

and so the claim is shown.

By the claim the horizontal homomorphism in the above pullback diagram is surjective. By
the inflation restriction sequence the vertical homomorphism H1(Gν/Iν , b/n) → H1(Gν , b/n)
is injective. Because H1(Gν/Iν , b/n) ∼= H1(Ẑ, F) ∼= F, we therefore deduce

dimF H1
str = h1(Gν , b) − h1(Gν , b/n) + 1.

Using the local Euler-Poincaré formula and the above results, we find

dimF H1
str = [Fν : Qℓ] + 1 + h2(Gν , b) − h2(Gν , F) + h0(Gν , b) − h0(Gν , F)

= [Fν : Qℓ] + h2(Gν , n) + h0(Gν , b).

One easily shows that h0(Gν , b) = h0(Gν , ad0
ρ̄).

To compute h̃η
ν there is as in case (i) the question about strict equivalence. The definition

of H1
str only take conjugation by upper triangular elements into account. However, from

χ2 6= η̄ν , one may easily deduce (as in case (i)) that conjugating by a matrix of the form
1+εa, a ∈ ad0

ρ̄, preserves the upper diagonal form of a lift to F[ε]/(ε2) only if a lies in b. Hence

in fact H1
str does describe the mod mO tangent space of the versal hull of D̃ef

η

ν,O ⊂ Defη
ν,O.

Thus h̃η
ν = dimF H1

str.
The computation of possible obstructions proceeds as in case (i). The analysis given there
does not depend on ℓ = 2. Again one finds gen(J̃η

ν,O) ≤ h2(Gν , n). Combining the above
results, we find

h̃η
ν − gen(J̃η

ν,O) − h0(Gν , ad0
ρ̄) ≥ [Fν : Qℓ].

Case (iii), ℓ 6= 2 and χ̄2 = η̄ν . In this case the image of ρ̄ is an elementary abelian ℓ-group.
Therefore all the lifts factor via the pro-ℓ quotient Ĝℓ

ν of Gν . This group is known to a
sufficient degree, as to yield a precise estimate for h̃η

ν − gen(J̃η
ν,O) − h0(Gν , ad0

ρ̄) by direct
computation. This could be deduced from [2]. But for completeness we chose to give a
simple direct argument.
There are two cases. Suppose first that Fν does not contain a primitive ℓ-th root of unity.
Then by [14], Thm. 10.5, the group Ĝℓ

ν is a free pro-ℓ group on (topological) generators
s, t1, . . . , tn, n = [Fν : Qℓ], such the normal closure of the ti form the inertia subgroup of Ĝℓ

ν .
By our hypothesis on ρ̄, for any lift to some ring R in CO one has

s 7→
(

1+α β
0 (1+α)−1ην(s)

)
, t1 7→

(
1 τ1
0 ην(t1)

)
, . . . , tn 7→

(
1 τn

0 ην(tn)

)
.

Obviously there are no obstructions to lifting. The element α lies in mR. The elements τi lie
in mR precisely is ρ̄(ti) is trivial. Not having taken strict equivalence into account we have
therefore n + 2 independent variables.
The analysis of the effect of strict equivalence proceeds as in case (i) and leads to the same
cases (a) and (b) as described there. Hence one finds

h̃η
ν = n + 2 − (1 + δℓ,unr

ν ) = [Fν : Qℓ] + 1 − δℓ,unr
ν .



6 GENERAL REMARKS AND THE CASE G = GL2 19

Moreover h0(ad0
ρ̄) = 1, and since there are no obstructions to lifting, we find

h̃η
ν − gen(J̃η

ν,O) − h0(Gν , ad0
ρ̄) = [Fν : Qℓ] − δℓ,unr

ν .

Let us now assume that Fν does contain a primitive ℓ-th root of unity, and let q be the
largest ℓ-power so that Fν contains a primitive q-th root of unity. Let F be the free pro-ℓ
group on (topological) generators s, t0, . . . , tn, n = [Fν : Qℓ]. For closed subgroups H,K of
F , let [H,K] denote the closed subgroup of F generated by commutators [h, k] = h−1k−1hk,
h ∈ H, k ∈ K, and denote by N the closed normal subgroup [F,F ]∩F q2

[F q, F ][F q[F,F ], F ].
Then by [14], Thm. 10.9, the group Ĝℓ

ν is the quotient of F by the closed normal subgroup
generated by the element

r := tq0
0 tq1

1 [t0, s][t1, t2] . . . [tn−1, tn]r′

for some ℓ-powers q0, q1 which are divisible by q, and for some element r′ ∈ N . The
isomorphism may be chosen, so that the closed normal subgroup generated by the ti maps
to the inertia subgroup of Ĝℓ

ν . By our hypothesis on ρ̄, for any lift to some ring R in CO one
has

s 7→
(

1+α β
0 (1+α)−1ην(s)

)
, t0 7→

(
1 τ1
0 ην(t0)

)
, . . . , tn 7→

(
1 τn

0 ην(tn)

)
.

If the variables α, β and τi are chosen arbitrarily, the image of r in GL2(R) is of the

form
(

1 x
0 1

)
for some x ∈ mR. The reason is as follows: The image of such a ρ is upper

triangular. Passing to the quotient modulo the unipotent upper triangular normal subgroup
gives a representation into R∗ × R∗, which by our hypothesis factors via Gν/Iν . Now r lies
in the inertia subgroup of Ĝℓ

ν , and so its image in R∗ × R∗ is zero.
In fact the expression x is computable in terms of α, β and the τi up to some error coming
from r′. It is useful to write each variable ξ as ξ0 + ξ̃, where ξ0 is the Teichmüller lift of
the reduction mod mR of ξ, and ξ̃ ∈ mR for R = O[[α̃, β̃, τ̃0, . . . , τ̃n]]. Working modulo
m3

R, one can evaluate x and show that it does not vanish. It may happen that x lies in

mR r (m2
R,mO). Therefore in a minimal presentation (6) of R̃η

ν,O one has gen(R̃η
ν,O) ≤ 1, and

moreover h̃η
ν − gen(R̃η

ν,O) is n + 3− 1 = n− 2 minus the number of variables that disappear
when passing from lifts to deformations, i.e., to strict equivalence classes of lifts.
The analysis of the effect of strict equivalence is as in the case where no primitive ℓ-th root
of unity lies in Fν , and so we need to subtract (1 + δℓ,unr

ν ) from n − 2. This yields

h̃η
ν − gen(R̃η

ν,O) = n − 1 − δℓ,unr
ν .

Since h0(Gν , ad0
ρ̄) = 1 in case (iii), we found, independently of a primitive ℓ-th root of unity

being in Fν or not, that

h̃η
ν − gen(J̃η

ν,O) − h0(Gν , ad0
ρ̄) = n − δℓ,unr

ν = [Fν : Qℓ] − δℓ,unr
ν .

Let us summarize our results:

Proposition 6.6 Suppose ρ̄ is ordinary at ν, i.e., of the form (11). Let D̃ef
η

ν,O ⊂ Defη
ν,O

denote the subfunctor of ordinary deformations with fixed determinant. Define δℓ,unr
ν to be 1

if at the same time ρ̄ is unramified and Im(ρ̄) is an ℓ-group, and to be zero otherwise. Then

h̃η
ν − gen(J̃η

ν,O) − h0(Gν , ad0
ρ̄) ≥ [Fν : Qℓ] − δℓ,unr

ν .
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Example 6.7 Lastly, we need to discuss the global terms in the estimate (10). Let G denote
the quotient of Im(ρ̄) modulo its intersection with the center of GL2(F), and assume that G
is non-trivial.
We first give the results for ℓ = 2. There, independently of F , by explicit computation one
finds:

h0(GF,S , adρ̄) = h0(GF,S , (adρ̄)
∨) =

{
2 if G is abelian,
1 otherwise.

h0(GF,S , ad0
ρ̄) =

{
2 if G is a 2-group (and hence abelian),
1 otherwise.

δ(GF,S , adρ̄)
η =

{
0 if G is of order prime to 2,
1 otherwise.

h0(GF,S , (ad0
ρ̄)
∨) =





2 if G is a 2-group,

1 if G is dihedral or of Borel type and not a 2-group,
0 otherwise.

For ℓ 6= 2, the result depends on F , because χ̄cyc will in general be non-trivial. If ρ̄ when
considered over Falg is reducible, let χ̄2 denote the character of GF,S on a one-dimensional
quotient and χ̄1 on the corresponding 1-dimensional subspace, and define χ̄ = χ̄1χ̄

−1
2 . One

finds:

h0(GF,S , adρ̄) − 1 = h0(GF,S , ad0
ρ̄) =

{
1 if G is abelian,
0 otherwise.

h0(GF,S , (adρ̄)
∨) = h0(GF,S , (ad0

ρ̄)
∨) + h0(GF,S , F(1)), and

h0(GF,S , (ad0
ρ̄)
∨) =





2 if G ∼= Z/(2) and χ̄cyc = χ̄,

1 if G ∼= Z/(2) and χ̄cyc = 1,

1 if G 6∼= Z/(2) is abelian and χ̄cyc ∈ {χ̄, χ̄−1, 1}.

1 if G is non-abelian of Borel type and χ̄cyc = χ̄.

1 if G is dihedral, [F (ζℓ) : F ] = 2 and ρ̄|GF (ζℓ)
is reducible,

0 otherwise.

Combining the above results, we obtain the following general theorem in the case G = GL2:

Theorem 6.8 Suppose F is totally real and ρ̄ is odd. Suppose further that

(a) At ν 6 | ℓ,∞ the local deformation problem satisfies h̃η
ν − h0(Gν , ad0

ρ̄) − gen(Jη
ν ) ≥ 0.

(b) At ν|∞ we choose either of the versal hulls in Example 6.4 depending on whether ρ̄(cν)
is trivial or not.

(c) At ν|ℓ, either (i) Fν = Qℓ, and ρ̄ satisfies the requirements in 6.5 case I, and D̃ef
η

ν,O

is the functor of “flat deformations”, or (ii) ρ̄ is ordinary and δℓ,unr
ν = 0, and D̃ef

η

ν,O

is the functor of ordinary deformations with fixed determinant.

(d) h0(GF,S , (ad0
ρ̄)
∨) = 0. (cf. Example 6.7 for explicit conditions.)

Then R̃η
S,O has a presentation O[[T1, . . . , Tn]]/(f1, . . . , fn) for suitable fi ∈ O[[T1, . . . , Tn]].



7 COMPARISON TO THE RESULTS BY TILOUINE AND MAUGER 21

Proof: Example 6.7 and (d) imply that

h0(GF,S , ad0
ρ̄) − δ(GF,S , ad0

ρ̄)
η = 0.

Hence, if view of (a) it suffices to show that the joint contribution in (10) from the places
above ℓ and ∞ under the stated hypotheses is zero. Using Proposition 6.6 and Example 6.4
yields

∑

ν|ℓ or ν|∞

(
h̃0

ν − h0(Gν , ad0
ρ̄) − gen(Jη

ν )
)

=
∑

ν|ℓ

[Fν : Qℓ] −
∑

ν|∞

1 = [F : Q] − [F : Q] = 0.

7 Comparison to the results by Tilouine and Mauger

In this section we will apply the estimate from Corollary 5.3 to obtain another approach to
the results by Tilouine and Mauger in [23, 15] on presentations for universal deformations.
While their main interest was in representations into symplectic groups, their results are

rather general. If h0(GF,S , (ad
(0)
ρ̄ )∨) = 0, we completely recover their results with fewer

hypothesis. If not, a comparison is less clear. It seems however, that in most cases where

their results are applicable, the term h0(GF,S , (ad
(0)
ρ̄ )∨) will be zero. Our main result is

Theorem 7.6.

Example 7.1 Let d : G → T be arbitrary and let Sord ⊂ S be a set of places of F which
contains all places above ℓ and none above ∞. For each ν ∈ Sord, we fix a smooth closed
O-subgroup scheme Pν ⊂ G.
For each place ν in Sord, we consider the subfunctor Defν-n.o.

ν,O ⊂ Defν,O of deformations
[ρν : Gν → G(R)] such that there exists some gν ∈ G(R), whose reduction mod mR is the
identity, such that gνρνg

−1
ν (Gν) ⊂ Pν(R). For this subfunctor to make sense, one obviously

requires that ρ̄(Gν) ⊂ Pν(F).
Following [23], a deformation [ρ] is called P-nearly ordinary (at Sord) (where P stands for
the family (Pν)ν∈Sord

) if for each ν ∈ Sord the restriction [ρ|Gν
] satisfies the above condition.

By D̃ef
S0-n.o.

S,O ⊂ DefS,O we denote the global global deformation functor of deformations
which are P-nearly ordinary at Sord ⊂ S, and are described by some other relatively rep-
resentable functors D̃ef

η

ν,O ⊂ Defη
ν,O at places ν ∈ S r Sord. If one furthermore fixes a

lift
η : GF,S −→ T (O)

of d ◦ ρ̄ : GF,S → G(F) → T (F), the corresponding subfunctor is

D̃ef
S0-n.o.,η

S,O := D̃ef
S0-n.o.

S,O ∩DefηS,O .

For each ν ∈ Sord, let pν ⊂ g denote the Lie-subalgebra of g which corresponds to Pν ⊂ G.
It carries a natural Pν-action, so that g/pν(F) is a finite Pν-module. Again following [23],
we define the condition

(Reg) : For all ν ∈ Sord : h0(Gν , q/pν(F)) = 0.

One has the following simple result whose proof we omit:



7 COMPARISON TO THE RESULTS BY TILOUINE AND MAUGER 22

Lemma 7.2 If the condition (Reg) holds, for all ν ∈ Sord, the subfunctor Defν-n.o.
ν,O ⊂ Defν,O

is relatively representable. Hence in this case D̃ef
S0-n.o.,(η)

S,O has a versal hull

ρ
S0-n.o.,(η)
S,O : GF,S → G(R

S0-n.o.,(η)
S,O ).

Locally at ν ∈ Sord denote by Def
(η)
Pν ,O the functor of deformations for representations of Gν

into Pν (possibly with the additional condition the deformations are compatible with the
chosen η.) Let

ρ
(η)
Pν ,O : GF,S → Pν(R

(η)
Pν ,O)

denote a corresponding versal hull and define p0
ν as the Lie-Algebra of the kernel of the

composite Pν →֒ G
d

−→ T . By Theorems 2.2 and 2.4 we find:

Proposition 7.3 The mod mO tangent space of R
(η)
Pν ,O is isomorphic to

H1(Gν , pν)(η) := Im(H1(Gν , p(0)
ν ) → H1(Gν , pν)).

Let h
(η)
Pν

:= dimF H1(Gν , pν)(η). Then there exists a presentation

0 −→ J
(η)
Pν

−→ O[[T1, . . . , Th
(η)
Pν

]] −→ R
(η)
Pν ,O −→ 0

for some ideal J
(η)
Pν

⊂O[[T1, . . . , Th
(η)
Pν

]] with gen(J
(η)
Pν

) ≤ dimF H2(Gν , p
(0)
ν ).

The two functors Def
ν-n.o.,(η)
ν,O and Def

(η)
Pν ,O essentially describe the same deformation problem,

except that a priori they work with a different notion of strict equivalence.

Lemma 7.4 The obvious surjection Def
(η)
Pν ,O(F[ε]/(ε2)) −→→ Def

ν-n.o.,(η)
ν,O (F[ε]/(ε2)) is a bi-

jection provided that (Reg) holds.

Proof: Clearly every lift ρ of ρ̄ to F[ε]/(ε2) whose class lies in Def
ν-n.o.,(η)
ν,O (F[ε]/(ε2)) can

by definition be conjugated to take its image inside Pν(F[ε]/(ε2)). Moreover the notion of

strict equivalence for Def
(η)
Pν ,O is an a priori weaker one than for Def

ν-n.o.,(η)
ν,O , so that the

orbits under the second notion of strict equivalence may be larger. This shows that the map
in the lemma is well-defined and surjective. Let us now show injectivity, i.e., that the orbits
under both notions of strict equivalence agree.
Let ρ = (1+εa)ρ̄ be a lift of ρ̄ to F[ε]/(ε2) with image inside Pν(F[ε]/(ε2)), so that a : Gν →
pν is a 1-cocycle. Let g = 1 + εb be arbitrary with b ∈ g. We need to show that the set of
those b for which gρg−1 lies in Pν(F[ε]/(ε2)) (for all a as above) is exactly the set pν : One
computes explicitly

gρg−1 = (1 + ε(a + gbg−1 − b))ρ̄.

So independently of a, the element gbg−1 − g must lie in pν for all g ∈ ρ̄(Gν). Equivalently,
the image of b under the surjection g −→→ g/pν must lie in H0(Gν , g/pν). By (Reg) the
latter set is zero, and so b lies indeed in pν = Ker(g −→→ g/pν).
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Recall that 0 ≤ δ(Gν , pν)η = h1(Gν , p0
ν) − dimH1(Gν , p)η . The formula for the local Euler-

Poincaré characteristic yields:

Proposition 7.5 For ν ∈ S0 and the functor Def
(η)
ν,O = Def

ν-n.o.,(η)
ν,O one has

h̃(η)
ν + δ(Gν , pν)(η) − h0(Gν , ad

(0)
ρ̄ ) − gen(J (η)

ν ) =

{
0, if ν6 | ℓ,

[Fν : Qℓ] dimF pν , if ν | ℓ.

In [23, 15] there is never chosen a lift of d ◦ ρ̄. Hence the term δ(Gν , pν)(η) is not present in
their formulas.

Combining the above with Corollary 5.3 shows:

Theorem 7.6 Fix P = (Pν)ν∈S0 as above, and assume that:

(a) ρ̄ ∈ D̃ef
S0-n.o.,(η)

S,O (F).

(b) At ν ∈ S r (Sord ∪ {ν : ν|∞}) we have h̃
(0)
ν − h0(Gν , ad

(0)
ρ̄ ) − gen(J

(η)
ν ) ≥ 0.

(c) The condition (Reg) is satisfied.

Then for the presentation

0 −→ J̃ (η) −→ O[[T1, . . . , T
eh

(η) ]] −→ R̃
S0-n.o.,(η)
S,O −→ 0

one has

(13)

h̃(η) − gen(J (η)) ≥ h0(GF,S , ad
(0)
ρ̄ ) − h0(GF,S , (ad

(0)
ρ̄ )∨) − δ(GF,S , adρ̄)

(η)

+
∑

ν|ℓ

[Fν : Qℓ] dimF p(0)
ν +

∑

ν|∞

(
h̃(η)

ν + δ(Gν , adρ̄)
(η) − h0(Gν , ad

(0)
ρ̄ ) − gen(J̃ (η)

ν )
)
.

If ℓ 6= 2, or if no constraints are imposed for the deformation at the infinite places, then

their contribution in the above formula simplifies to −
∑

ν|∞ h0(Gν , ad
(0)
ρ̄ ).

Remark 7.7 Since in [23] or [15] no homomorphism η is fixed, and there are no conditions
at ∞, the above is (philosophically) the same formula as that in [23], Prop. 7.3 or [15],

Prop. 3.9, except for the term −h0(GF,S , (ad
(0)
ρ̄ )∨). As noted in Remark 5.4, we expect that

usually this term is not present in the formula – but that technically we are not able to
remove it.
By ‘philosophically’ we mean that their formula was used primarily to bound the Krull
dimension of some deformation ring. Our formula can obviously serve the same purpose.

Our hypotheses and those in [23, 15] are however different. If h0(GF,S, (ad
(0)
ρ̄ )∨) = 0 our

result holds under much weaker hypotheses, namely without the hypothesis (Reg′) in [15],
Prop. 3.9. The latter seems to be rather hard to verify in practice.

If h0(GF,S , (ad
(0)
ρ̄ )∨) is non-zero the comparison is less clear. The non-vanishing either means

that we are in the case adρ̄ and F contains a primitive ℓ-th root of unity, or that ad0
ρ̄ surjects

onto a one-dimensional quotient representation on which GF,S acts by the inverse of the mod
ℓ-cyclotomic character. In the former case we’d expect that the pν typically also contain a

trivial subrepresentation, and then the terms h0(Gν , (p
(0)
ν )∨) = h2(Gν , p

(0)
ν ) would be non-

zero, so that the hypothesis (Reg′) in [15], Prop. 3.9, would not be satisfied. In the latter
case it is not clear to us whether this one-dimensional quotient will typically also occur as a

quotient of one of the p
(0)
ν . In any case, if ρ̄ is ‘highly irreducible’ which is the generic case,

the second case is unlikely to occur.
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8 Relative presentations

In this last section we deduce some results on presentations of global deformation rings as
quotients of power series rings over the completed tensor product of the corresponding local
versal deformation rings from the results in Section 5. This is inspired by M. Kisin’s theory
of framed deformations. The results below are due to Kisin [13], who has given a different
more direct approach.
This section makes no reference to Sections 6 and 7. We let the notation be as in Section 5.

Lemma 8.1 There exists a presentation

0 −→ J̃ −→
(⊗̂

ν∈S
R̃

(η)
ν,O

)
[[T1, . . . , Ts]] −→ R̃

(η)
S,O −→ 0

with gen(J̃) being bounded by

s + δ(GF,S , adρ̄)
(η) − h0(GF,S, ad

(0)
ρ̄ ) + h0(GF,S , (ad

(0)
ρ̄ )∨) +

∑

ν∈S

h0(Gν , ad
(0)
ρ̄ )− δ(Gν , adρ̄)

(η).

Proof: The proof of Theorem 5.2 yields the following commutative diagram

0 // J̃loc := 〈{J̃
(η)
ν : ν ∈ S}〉 //

��

O[[Tν,j : ν ∈ S, j = 1, . . . , h̃
(η)
ν ]] //

π

��

Rloc :=
(⊗̂

ν∈SR̃
(η)
ν,O

)
//

��

0

0 // 〈{π(J̃loc) ∪ {g1, . . . , gr}〉
// O[[T1, . . . , T

eh
(η) ]] // R̃

(η)
S,O

// 0

for r = dimF H1
L(η),⊥(GF,S, (ad

(0)
ρ̄ )∨) and suitable functions gj ∈ O[[T1, . . . , T

eh
(η) ]]. The

failure of the surjectivity of Rloc → R̃
(η)
S,O can be measured by considering the induced

homomorphism on mod mO tangent spaces. Let s denote the dimension of the cokernel of

tRloc
→ t

eR
(η)
S,O

. (It is not difficult to show that s = dimW
1(ad

(0)
ρ̄ )), but we do not need

this.) Then there is a surjective homomorphism Rloc[[U1, . . . , Us]] → R̃
(η)
S,O for variables Ui.

Abbreviating Sloc := O[[Tν,j : ν ∈ S, j = 1, . . . , h̃
(η)
ν ]], there is a commutative diagram

0 // 〈J̃loc〉
//

��

Sloc[[U1, . . . , Us]] //

π̃
��
��

Rloc[[U1, . . . , Us]] //

��
��

0

0 // 〈{π̃(J̃loc) ∪ {g1, . . . , gr}〉
// O[[T1, . . . , T

eh
(η) ]] // R̃

(η)
S,O

// 0

with surjective middle and right vertical homomorphisms. Since Sloc is a power series ring
over O, the kernel of π̃ is generated by

u := s +
∑

ν∈S

h̃(η)
ν − h̃(η)

elements H1, . . . ,Hu. Because π̃ is smooth, we may choose elements G1, . . . , Gr in the

ring Sloc[[U1, . . . , Us]] whose images in O[[T1, . . . , T
eh

(η) ]] agree with g1, . . . , gr. Thus R̃
(η)
S,O
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is the quotient of Rloc[[U1, . . . , Us]] by the ideal J̃ generated by the images of the elements
G1, . . . , Gr,H1, . . . ,Hu. Using the first formula in the proof of Corollary 5.3, we have

gen(J̃) − s =
∑

ν∈S

h̃(η)
ν − h̃(η) + dimF H1

L(η),⊥(GF,S , (ad
(0)
ρ̄ )∨)

= δ(GF,S , adρ̄)
(η)−h0(GF,S , ad

(0)
ρ̄ )+h0(GF,S , (ad

(0)
ρ̄ )∨)+

∑

ν∈S

h0(Gν , ad
(0)
ρ̄ )−δ(Gν , adρ̄)

(η).

If R is flat over O, its relative Krull dimension over O is denoted dimKrull/O R.

Corollary 8.2 Suppose that

(a) R̃
(η)
S,O/(ℓ) is finite.

(b) The rings R̃
(η)
ν,O, ν ∈ S are flat over O.

(c) dimKrull/O R̃
(η)
ν,O ≥ h0(Gν , ad

(0)
ρ̄ ) − δ(Gν , adρ̄)

(η) for ν 6 | ℓ,∞.

(d) One has
∑

ν|ℓ or ν|∞ dimKrull/O R̃
(η)
ν,O ≥

∑
ν|ℓ or ν|∞(h0(Gν , ad

(0)
ρ̄ ) − δ(Gν , adρ̄)

(η)).

(e) δ(GF,S , adρ̄)
(η) − h0(GF,S , ad

(0)
ρ̄ ) + h0(GF,S , (ad

(0)
ρ̄ )∨) = 0.

Then the ℓ-torsion of R̃
(η)
S,O is finite, and R̃

(η)
S,O modulo its ℓ-torsion is non-zero over O.

Hence this quotient is non-zero and finite flat over O.

Proof: Since R̃
(η)
S,O is noetherian the ℓ-torsion submodule of R̃

(η)
S,O is finitely generated.

Therefore there exists some m ≥ 0 such that the ℓ-torsion submodule injects into R̃
(η)
S,O/(ℓm).

By condition (a) (and noetherianess of R̃
(η)
S,O) the latter is finite. To complete the proof of

the corollary, it suffices to show that the Krull dimension of R̃
(η)
S,O is at least one.

We first compute the relative Krull dimension of the middle term in the presentation of
Lemma 8.1:

dimKrull/O

(⊗̂
ν∈S

R̃
(η)
ν,O

)
(b)
=

∑

ν∈S

dimKrull/O R̃
(η)
ν,O

(c),(d)

≥
∑

ν∈S

(h0(Gν , ad
(0)
ρ̄ ) − δ(Gν , adρ̄)

(η)).

Using (e), the relative Krull dimension of
⊗̂

ν∈SR̃
(η)
ν,O[[U1, . . . , Us]] over O is therefore at least

s + δ(GF,S , adρ̄)
(η) − h0(GF,S, ad

(0)
ρ̄ ) + h0(GF,S , (ad

(0)
ρ̄ )∨) +

∑

ν∈S

h0(Gν , ad
(0)
ρ̄ )− δ(Gν , adρ̄)

(η).

This is also the bound on gen(J̃) in the presentation of Lemma 8.1. Now the quotient of
a local ring by a number of relations decreases the Krull dimension of the ring by at most
this number (unless the quotient is zero). Since the Krull dimension is one more than the
relative Krull dimension over O, it follows that the Krull dimension of

R̃
(η)
S,O

∼=
(⊗̂

ν∈S
R̃

(η)
ν,O

)
[[U1, . . . , Us]]/J̃

is at least one, as was to be shown.
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Remark 8.3 The following is a ring theoretic example which shows that without any further

hypotheses, one cannot rule out the possibility of ℓ-torsion in the ring R̃
(η)
S,O:

Suppose F = Q, S = {ℓ,∞}, R̃
(η)
ℓ,O

∼= Zℓ[[S, T ]]/((ℓ + S)T, T 2), that (d) and (e) of the

corollary are satisfied, and that R̃
(η)
S,O is the quotient of R̃

(η)
ℓ,O by the ideal (S). Then R̃

(η)
ℓ,O

∼=

Zℓ[[T ]]/(ℓT, T 2) has ℓ-torsion, although the remaining assertions (a) and (b) of the corollary
hold ((c) holds trivially).

However, if in addtion to (a)–(e) one imposes the further condition that
⊗̂

ν∈SR̃
(η)
ν,O is Cohen-

Macaulay, then from standard results in commutative algebra one may indeed deduce that

R̃
(η)
S,O is flat over O. This was pointed out by M. Kisin.

We now apply the previous corollary to the situation of Theorem 6.8, where however we
relax the condition at the places above ℓ:

Theorem 8.4 Suppose d = det : G = GL2 → T = GL1, F is totally real and ρ̄ is odd.
Suppose further that

(a) R̃η
S,O/(ℓ) is finite.

(b) The rings R̃η
ν,O, ν ∈ S are flat over O.

(c) At ν 6 | ℓ,∞ the local deformation problem satisfies h̃0
ν − h0(Gν , ad0

ρ̄) − gen(Jη
ν ) ≥ 0.

(d) At ν|∞ we choose either of the versal hulls in Example 6.4 depending on whether ρ̄(cν)
is trivial or not.

(e) At ν|ℓ, one has dimKrull/O R̃η
ν,O = [Fν : Qℓ] + h0(Gν , ad0

ρ̄) − δ(Gν , adρ̄)
η.

(f) h0(GF,S , (ad0
ρ̄)
∨) = 0. (cf. Example 6.7 for explicit conditions.)

Then R̃η
S,O has finite ℓ-torsion, and its quotient modulo ℓ-torsion is non-zero and finite flat

over O.

Proof: It suffices to verify the hypothesis of Corollary 8.2. Conditions (a), (b), (c) and (f)
imply conditions (a), (e), (b) and (d) of Corollary 8.2, respectively. At the infinite places ν,

condition (d) implies dimKrull/O R̃
(η)
ν,O = h0(Gν , ad0

ρ̄)−δ(Gν , adρ̄)
η−1. Because of the identity∑

ν|ℓ[Fν : Qℓ] = [F : Q] =
∑

ν|∞ 1, the latter observation combined with condition (e) implies
condition (c) of Corollary 8.2.
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