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The Miller-Rabin test with randomized exponents
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Abstract. We analyze a variant of the well-known Miller-Rabin test, that may be useful in preventing
side-channel attacks to the random prime generation on smart cards: In the well-known Miller-
Rabin primality test for a positive integer n, one computes repeatedly the expression aω (mod n)
for random bases a ∈ N and exponents ω such that ω divides n − 1 and (n − 1)/ω is a power
of 2. In each round one chooses, at random, a different base a, and uses binary exponentiation to
compute aω (mod n). ‘Listening’ to many rounds, it seems at least plausible that an outside spy
could retrieve the integer n− 1.

In the variant we consider, one chooses in each round two positive random integers a and ρ
and applies the test with base a and exponents ωρ, ω as above. This increases the safety against
side-channel attacks. However at the same time, it decreases the performance of the Miller-Rabin
test. In this article we use elementary means to analyze this variant. We will not be able to obtain
results as strong as those by Damgård, Landrock and Pomerance on prime generation using the
original Miller-Rabin test. However by imposing restrictions on the random parameter ρ, we obtain
satisfactory estimates on the variant described here which justify practical implementation.

Keywords. Miller-Rabin test, secure prime generation, side channel attacks.

AMS classification. .

1 Introduction

To generate random prime numbers on smart cards, one typically uses the probabilistic
primality test of Miller-Rabin. If an integer passes many rounds of this test, it is very
likely that it is a prime number. If one chooses at random a k-bit integer n, and if
it successfully passes t rounds, then very good estimates for the probability that n is
prime, have been obtained by Damgård, Landrock and Pomerance in [3].

However if one implements the Miller-Rabin test straightforwardly on a smart card,
then using side-channel attacks it seems possible that an outside spy can retrieve the
integer n. The point is that in the Miller-Rabin test, one uses binary exponentiation,
always with the same exponents, namely the divisors ω of n − 1 such that (n − 1)/ω
is a power of 2. So if a spy can ‘listen’ to many rounds of the test, it seems probable
that the secret n is revealed. This attack was first observed in the seminal article [5] by
Kocher. To avoid this kind of attack, we analyze here a variant of the Miller-Rabin test.
We also refer to [2] for general approaches on secure prime number generation.

Let us first recall the original test for an odd integer n: One writes n − 1 = 2sw
for an odd integer w and s ∈ N. Then one chooses an integer a ∈ {1, 2, . . . , n − 1} at
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random and tests whether one of the following conditions hold

aw ≡ 1 (mod n), or
a2σw ≡ −1 (mod n), for some σ ∈ {0, 1, . . . , s− 1}.

Let α(n) denote the ratio of those integers a in {1, 2, . . . , n − 1} for which the above
test is successful, divided by the number of all integers a in this range which are prime
to n. If n is a prime, then Z∗n is cyclic of order n − 1, and the test will be successful
for all such a, so that α(n) = 1. If n is composite, then it was shown by Rabin [7]
and Monier [6] that α(n) ≤ 1/4. Hence for composite n, the ratio of those integers a
in {1, 2, . . . , n − 1} for which the above test is successful, divided by the number of
all integers a in this range, as smaller than 1/4. The advantage of working with α(n)
instead of the former ratio is that it is given by an ‘explicit’ formula.

The above test is then repeated a certain number of times, to improve the reliability
of the outcome. To improve performance one typically takes a = 2 in the first round,
and one also verifies by elementary means that n is not divisible by small primes.

Let us now describe the variant we are interested in: Again n will be a random odd
integer and one writes n − 1 = 2sw as above. We also fix a subset R ⊆ N of odd
integers to be specified later. Then one chooses integers a ∈ {1, 2, . . . , n − 1} and
ρ ∈ R at random and one computes wρ. The new test verifies whether one of the
following conditions holds

awρ ≡ 1 (mod n), or
a2σwρ ≡ −1 (mod n), for some σ ∈ {0, 1, . . . , s− 1}.

For fixed ρ, we denote the above test by MRρ. For a random choice ρ ∈ R, we
denote it by MRR, and call it the Miller-Rabin test with randomized exponent (in R).
By αρ(n) we denote the ratio of those a for which MRρ is successful, divided by #Z∗n,
and by αR(n) the average over the αρ(n) for ρ ∈ R. It is obvious from these definitions
that α(n) ≤ αρ(n), αR(n).

The reliability of t rounds of the new test MRR is investigated in Propositions 1.2
and 1.3 and in Corollary 1.4. The improved security to side channel attacks in com-
parison to t rounds of the original test lies in the fact that the number ρ is changed in
every round. Thus each round has its own exponent wρ for the test. While it is ob-
vious that one has still to mask the individual rounds, the different choices of ρ make
the generation more secure. Since ρ is chosen at random, partial knowledge of the wρ
cannot be combined to obtain further knowledge of w and thus on n. Also note that
the multiplication w · ρ can be regarded as secure: While binary exponentiation does
reveal information on the exponent, multiplication of two random integers does not.

We introduce some more notation: By πi we denote the i-th prime, so (πi) is the
sequence (2, 3, 5, . . .), and by Pi we denote the product of the first i primes.

In the sequel, the setRwill always be an arithmetic progression of the following
type: For i ∈ N, ρ0 ∈ {1, 2, . . . , Pi−1}which is supposed to be prime to Pi, and r ∈ N
we set

Ri,ρ0,r := {ρ0 + λPi : λ = 0, 1, . . . , r − 1}.
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In particular any element in Ri,ρ0,r is prime to the first i prime numbers, and the cardi-
nality of Ri,ρ0,r is r. If i = 1, then Ri,ρ0,r is simply the set of the r smallest positive
odd integers.

Proposition 1.1. If n is prime, then αR(n) = 1 for any set R (of odd integers).
If n is composite, one has the following estimates:

(a) If R = R1,1,r where (a) 18 ≤ r, (b) 8r2 ≤ n, and (c) r is divisible by 3, then

αR(n)

{
= 5

18 , if n = p(3p− 2) with p, 3p− 2 prime and p ≡ −1 (mod 4)
≤ 1

4 otherwise

(b) If R = Ri,ρ0,r for some i ≥ 2 where (a’) 2π2
i+1 ≤ r and (b’) 2r2Pi ≤ n, then

whenever αR(n) 6= α(n) one has αR(n) ≤ 1
πi+1

.

The case (a) had been previously considered by J. Gerhardt, [4], who had essen-
tially obtained the same result in that case, except for the precise determination of the
exceptional set of composite n with αR(n) > 1

4 .
The integers nwith αR(n) > 1

4 are precisely those with α(n) = 1
6 . The latter set had

first been classified in [3, Thm. 4 (ii)]. The factorization n = p(3p− 2) easily implies
that for such n the number 3n+1 is a square. Hence the density of such n of bit length
k is at most 2−k/2. This estimate is used in Proposition 1.2. Numerical experiments
suggest that the density of such n is actually bounded by k−222− k2 . This might indicate
that the density of integers p of size roughly x such that p as well as 3p− 2 is a prime
is � (log(x))−2.

We now follow the usual prime generation method described for instance in [3]: For
this we fix suitable parameters i, ρ0, r as above and setR = Ri,ρ0,r. Then a k-bit integer
n is chosen at random. If n passes the test MR{1} with a = 2 and t − 1 times the test
MRR, then it is declared to be prime and we stop. If not, we choose another integer n
at random. If it passes the test MR{1} with a = 2 and t− 1 times the test MRR, then it
is declared to be prime and we stop. This process is repeated until a (probable) prime
n is found. We denote the resulting algorithm, which only lets pass integers n that pass
tests of the form MRR at least t-times, by MRtR.

To analyze the reliability of the above algorithm, we define qk,t,R as the probability
that a composite k-Bit integer passes the test MRtR. Because α(n) is on the average
much smaller than 1

4 and because of the prime number distribution, the bounds given
in [3] for qk,t := qk,t,{1} are much better than 4−t. In Section 4 we shall prove the
following bounds for the algorithm based on MRR:

Proposition 1.2. Suppose that 18 ≤ r, that 3 divides r and that r satisfies 8r2 ≤ 2k−1.
Then

qk,t,R1,1,r ≤
(1

4

)t−1 qk,1
1− qk,1

+
( 5

18

)t−1
k21−k/2.

Proposition 1.3. Suppose that 2 ≤ i, 2π2
i+1 ≤ r and 2r2Pi ≤ 2k−1. Then

qk,t,Ri,ρ0,r
≤ qk,t +

qk,1
1− qk,1

π1−t
i+1 .
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By specializing Proposition 1.3 and using the known values from [3, p. 194]1 for
qk,1, it is straightforward to derive the following practical consequences.

Corollary 1.4. Let k = 512 and R = R6,1,217 . Then qk,t,R ≤ 2−57−4(t−1).
Let k = 1024 and R = R11,1,227 . Then qk,t,R ≤ 2−150−2(t−1)3−2(t−1).

The set R in the corollary consists of 32- and 64-bit integers, respectively.

It seems likely to the present author that in fact one can prove estimates similar to
those in [3] without restrictions on the set of random exponents. However a straight-
forward adaption of the method of [3] seems not possible. The only information used
in the proof in op.cit. are a bound on the number of n such that α(n) is above a certain
size. However the randomized αρ(n) may be much larger than α(n) for a positive den-
sity of ρ. To adapt [3] one would therefore also need to analyze the number and size of
prime factors in the prime decomposition of p− 1 for the prime divisors p of n.

At the same time, it seems very likely that, by analyzing a small number of excep-
tional cases, one can improve the base 1

πi+1
in Proposition 1.3 by 1

2πi+1
, or even further.

This would yield better bounds in Corollary 1.4.

Acknowledgments: I would like to express many thanks to the technical support
group of cryptovision who brought the above problem to my attention, and gave me
access to the unpublished work [4] of J. Gerhardt who had first analyzed the above
randomization algorithm for i = 1 systematically. Also thanks to S. Wentzig for a
very careful reading of a preliminary version and many suggestions to improve the
readability of the manuscript. Finally I also want to thank the referee whose many
comments further improved the readability of the present article.

2 A probabilistic lemma

Fix r, d ∈ N and b ∈ N relatively prime to d such that 1 ≤ b < d. Let R ⊆ N be the
arithmetic progression {b+ ds : 0 ≤ s ≤ r − 1} of r elements.

For an integer m, we define prob(m div. ρ|ρ ∈ R) := |{ρ ∈ R : m divides ρ}|/|R|,
i.e. the probability that a random integer of R is divisible by m.

Lemma 2.1. (a) If m ≥ dr, then prob(m div. ρ|ρ ∈ R) = 0.

(b) If prob(m div. ρ|ρ ∈ R) > 0, then prob(m div. ρ|ρ ∈ R) < 1
m + 1

r .

(c) If prob(m div. ρ|ρ ∈ R) > 0 and if m|r, then prob(m div. ρ|ρ ∈ R) = 1
m .

Proof. Since (a) is obvious, we now turn to (b) and (c). If prob(m div. ρ|ρ ∈ R) > 0
then m is relatively prime to d, since if a prime p divides b+ ds and d at the same time,
it will also divide b and d at the same time which is impossible since gcd(b, d) = 1.

Because m is prime to d, the residue classes ds (mod m), s = 0, . . . ,m − 1, are
a complete list of the elements of Z/(m). Since R is an arithmetic progression, with
steps of length d, it follows that the progression modulo m is m-periodic, and not

1The values q512,1 ≈ 2−57 and q1024,1 ≈ 2−150 are obtained by extrapolation from the table in [3]
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periodic for any number smaller than m. In particular if r is a multiple of m, then any
residue class occurs exactly r/m many times. This shows (c).

For general r, the residue class zero modulo m occurs most often if it occurs for
s = 0,m, 2m, . . . If λ denotes the number of occurrences of zero, then we must have
m(λ− 1) ≤ r − 1, i.e., λ ≤ (r − 1)/m+ 1. Dividing by r, we find prob(m div. ρ|ρ ∈
R) = λ/r < 1

m + 1
r , as asserted. 2

The main problem in obtaining the estimates for Proposition 1.1 will be that the set
R is typically relatively small compared to n. Thus if q is a prime divisor of n−1 or of
p− 1 for p a prime dividing n− 1, then prob(q div. ρ|ρ ∈ R) may differ by up to 1/|R|
from the expected number 1

q that is obtained for |R| → ∞. The quantity aR(n) will
by a weighted average over the probabilities prob(q div. ρ|ρ ∈ R), with possibly many
summands. Therefore the ‘error terms’ 1/|R| may sum up to a significant error term in
the sum, if one is not careful. The following simple probabilistic lemma will be used
to show that indeed the error terms do not add up.

Let us introduce some notation. Let S := {1, 2, . . . , h} be a subset of consecutive
integers. Let µ be a probability measure on the power set {0, 1}S of S, i.e., we regard
the subsets of S as points of some space and attach to each such a point mass. Fix some
function g : S → R>0 : j 7→ gj and abbreviate gJ :=

∏
j∈J gj for any J ⊆ S (note

that whenever a product is formed over the empty set as an index set, the value of the
product is supposed to be one). We define the g-weighted average over µ as

α(g, µ) :=
∑
J⊆S

µ(J)gSrJ .

Lemma 2.2. With the notation as above one has

α(g, µ) =
∑
J⊆S

gSrJ

( ∑
K⊇J

µ(K)
)(∑

L⊆J

(−1)|L|gL
)
.

Lemma 2.2 may be regarded as a multi-dimensional version of Abel summation, cf.
(AS) on page 9.

Proof. The proof is given by rewriting and simplifying the right hand side:∑
J⊆S

∑
K⊇J

∑
L⊆J

gSrJ µ(K) (−1)|L|gL

=
∑
K⊆S

µ(K)
∑

L⊆J⊆K

gSrJ (−1)|L|gL

=
∑
K⊆S

µ(K)gSrK
∑

L⊆J⊆K

(−1)|L|g(KrJ)∪L

M=(KrJ)∪L
=

∑
K⊆S

µ(K)gSrK
∑
M⊆K

gM
∑
L⊆M

(−1)|L|

=
∑
K⊆S

µ(K)gSrK
∑
M=∅

gM
∑
L⊆M

(−1)|L| =
∑
K⊆S

µ(K)gSrK ,
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where in the last line we use
∑
L⊆M (−1)|L| = 0 for M 6= ∅. 2

The above lemma will be applied in the following situation:
We will consider h distinct prime numbers q1, . . . , qh. For each there is an exponent
fj ∈ N, and we will set gj := q

−fj
j . Moreover we will consider the following three

probability measures:

µ0(J) := prob
((∏

j∈J
qj div. ρ

)
and

(∏
j /∈J

qj is prime to ρ
) ∣∣∣ ρ ∈ R). (2.1)

µ1(J) :=
∏
j∈J

q−1
j

∏
j /∈J

(1− q−1
j ). (2.2)

µ2(J) :=

{
0, if J 6= S

1, if J = S.
(2.3)

The measure µ1 is so to speak the limit of µ0 as r →∞ (for a random set R). Note that
for fixed J ⊆ S we have the following expressions for

∑
K⊇J µi(K):

∑
K⊇J

µi(K) =


prob(

∏
j∈J qj div. ρ | ρ ∈ R)

2.1(b)
≤

∏
j∈J q

−1
j + 1

r for i = 0;∏
j∈J q

−1
j for i = 1;

1 for i = 2.
(2.4)

3 A single round of the Miller-Rabin variant

This section is mainly concerned with the proof of Proposition 1.1. Throughout this
section we fix an odd integer n ≥ 3 and write n = pe1

1 · · · p
e`
` for its factorization into

distinct prime powers. We define odd integers w and wi and integers s and si such that
2sw = n− 1 and 2siwi = pi − 1. For x ∈ N we set

γ(x) :=
∏̀
i=1

gcd(wipei−1
i , x)

wip
ei−1
i

. (3.1)

We also set s := min{si : i = 1, . . . , `}, and define

β(n) := 2−
P
i si
(

1 +
2ls − 1
2` − 1

)
.

Recall that by αρ(n) we denote the ratio of the number of those a ∈ {1, . . . , n} for
which the variant MRρ of the Miller-Rabin test is successful, divided by #Z∗n.

Lemma 3.1. One has αρ(n) = β(n)γ(ρ(n− 1)) and β(n) ≤ 21−`.
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Proof. We consider the sets G0 := {a ∈ Z∗n : awρ = 1}, and

Gj := {a ∈ Z∗n : a2j−1wρ = −1}

for j = 1, . . . , s. By the Chinese remainder we have

Z∗n ∼= Z∗
p
e1
1
× . . .× Z∗

p
e`
`
.

Since the pi are all odd, the factors on the right are all cyclic. The elements ±1 in
Zn have component ±1 in each of the rings Zpeii , and the sets Gj are products of
corresponding sets for each i = 1, . . . , `.

Because wρ is odd and Z∗
p
ei
i

is cyclic of order 2siwipei−1
i , it is easy to see that for

each i, j

∣∣∣{a ∈ Z∗
p
ei
i

: a2j−1wρ = −1
}∣∣∣ = {

2j−1 gcd(wρ,wipei−1
i ) for j ≤ si

0 otherwise,

and moreover
∣∣∣{a ∈ Z∗

p
ei
i

: awρ = 1
}∣∣∣ = gcd(wρ,wipei−1

i ). Combining these results
for fixed j and all the i, we find

|Gj | =

{
2`max{0,j−1}∏`

i=1 gcd(wρ,wipei−1
i ) for j ≤ s

0 otherwise.

Thus, summing over all j we have

s∑
j=0

|Gj | =
(

1 +
s−1∑
j=0

2`j
)∏̀
i=1

gcd(wρ,wipei−1
i ).

Dividing by the order of Z∗n, i.e., by
∏`
i=1 2siwipei−1

i yields the desired result.
Finally, by looking at the 2-adic expansion of 1 +

∑s−1
j=0 2`j one finds that this sum

is at most 2`(s−1)+1. Because s ≤ si for all i, the asserted bound on β(n) follows. 2

We fix a set R which as usual is an arithmetic progression. From its definition, it is
clear that γ(n− 1)−1 is an odd integer. Therefore we can write

γ(n− 1)−1 = q0

∏
j=1,...,h

q
fj
j (3.2)

such that q0 is an odd integer relatively prime to
∏
ρ∈R ρ, such that q1, . . . , qh are those

(distinct) prime divisors of γ(n− 1)−1 which divide
∏
ρ∈R ρ, and where fj ∈ N is the

order of qj as a divisor of γ(n− 1)−1. Define S := {1, 2, . . . , h}. To apply the lemma
of the previous section in the proof of Proposition 1.1, we first rewrite αR(n) in terms
of the measure µ0 from defining equation (2.1):
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Lemma 3.2.
αR(n) ≤ β(n)

1
q0
·
∑
J⊆S

µ0(J)
∏
j /∈J

q
−fj
j .

Proof. For J ⊆ S, we define RJ := {ρ ∈ R : qj |ρ⇔ j ∈ J}. Then

αR(n)
β(n)

by def.
=

1
|R|

∑
ρ∈R

αρ(n)
β(n)

Lem. 3.1=
1
|R|

∑
ρ∈R

γ(ρ(n− 1)) =
∑
J⊆S

1
|R|

∑
ρ∈RJ

γ(ρ(n− 1)).

From the defining equation (3.1) for γ(x) and the above product representing γ(n −
1)−1, we have for any ρ ∈ RJ the inequality

γ(ρ(n− 1)) ≤ q−1
0

∏
j /∈J

q
−fj
j . (3.3)

Substituting this and µ0(J) = |RJ |/|R| in the above expression for αR(n), we find

αR(n)
β(n)

≤
∑
J⊆S

µ0(J) q−1
0

∏
j /∈J

q
−fj
j . 2

Remark 3.3. (a) If S is empty, then γ(n−1) = q−1
0 = γ(ρ(n−1)) for all ρ ∈ R, and

so αR(n) = α(n).
(b) If for a given R the product

∏
ρ∈R ρ is prime to γ(n− 1)−1, then S is empty.

(c) If S = {q1} consists of a single element, f1 = 1 and q1|r, then, arguing as in the
previous proof, one obtains αR(n) = β(n) 1

q0q1

(
1− 1

q1

)
.

Lemma 3.4. One has

αR(n)q0

β(n)
≤ 1
r

+
∏
j∈S

q−1
j

∑
J⊆S

∏
j /∈J

(q1−fj
j − q−fjj ) ≤ 1

r
+
∏
j∈S

2
qj
.

Proof. The inequality on the right follows readily from the first, since all the expres-
sions q1−fj

j −q−fjj are smaller than 1, and since
∑
J⊆S 1 = 2|S|. We prove the inequal-

ity on the left:

αR(n)q0

β(n)
Lem. 3.2
≤

∑
J⊆S

µ0(J)
∏
j /∈J

q
−fj
j

Lem. 2.2=
∑
J⊆S

(∏
j /∈J

q
−fj
j

) ∑
K⊇J

µ0(K)
(∑
L⊆J

(−1)|L|
∏
j∈L

q
fj
j

)
.

Applying all three parts of formula (2.4) we find∑
K⊇J

µ0(K) ≤ 1
r

+
∏
j∈J

q−1
j =

1
r

( ∑
K⊇J

µ2(K)
)

+
∑
K⊇J

µ1(K).
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Thus

αR(n)q0

β(n)
≤ 1

r

∑
J⊆S

(∏
j /∈J

q
−fj
j

) ∑
K⊇J

µ2(K)
(∑
L⊆J

(−1)|L|
∏
j∈L

q
fj
j

)
+

∑
J⊆S

(∏
j /∈J

q
−fj
j

) ∑
K⊇J

µ1(K)
(∑
L⊆J

(−1)|L|
∏
j∈L

q
fj
j

)
Lem. 2.2=

1
r

∑
J⊆S

µ2(J)
∏
j /∈J

q
−fj
j +

∑
J⊆S

µ1(J)
∏
j /∈J

q
−fj
j .

Since µ2(J) = 0 for J 6= S, the first sum adds up to one. In the second sum, we
substitute the definition of µ1(J), and obtain:

αR(n)q0

β(n)
≤ 1

r
+
∑
J⊆S

∏
j∈J

q−1
j

∏
j /∈J

(1− q−1
j )

∏
j /∈J

q
−fj
j .

Pulling out the factor
∏
j∈S q

−1
j from the sum, yields the desired estimate. 2

For arbitrary n (and S 6= ∅), the estimates in inequality (3.3) and in Lemma 3.4 can
not be improved. However, if ei ≥ 2 for some factor peii of n, then better bounds can
be obtained. The proof of Proposition 1.1 will need such an improved estimate in one
particular case, which we now derive:

Lemma 3.5. As before, let d be the width of the arithmetic progression R of length r.
Suppose that n = pe is a prime power and that n > dr. If p ≥ dr, then αR(n) = α(n),
else

αR(n) ≤ 1 + (e− 1)(1− p−1)
pe−1 +

1− p1−e

r
. (3.4)

Proof. In the situation at hand we have β(n) = 1 and γ(n − 1) = p1−e, and therefore
α(n) = p1−e as well. Note that for n = p one has α(n) = αR(n) = 1 and the right
hand side of equation (3.4) is 1 as well. Thus from now on, we assume e ≥ 2.

We first consider the case where p is not a divisor of
∏
ρ∈R ρ. Then γ(n − 1)−1 is

prime to
∏
ρ∈R ρ, and so αR(n) = α(n) = p1−e by Remark 3.3. If p ≥ dr, i.e., if p is

larger than the largest element of the arithmetic expression R, then αR(n) = α(n), as
asserted. If p < dr (and still p does not divide any of the ρ ∈ R), then equation (3.4)
holds because the right hand side of equation (3.4) is larger than p1−e, as e ≥ 2.

From now on, we assume that p divides one of the ρ ∈ R. In formula (3.2) we have
q0 = 1, h = 1, q1 = p and f1 = e − 1. Clearly now p < dr, and so we need to prove
equation (3.4).

The key point in the following chain of inequalities is Abel summation

(AS) :
g∑
i=0

(ai − ai+1)bi = a0b0 +
g∑
i=1

ai(bi − bi−1)− ag+1bg :
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and the observation that in the case at hand the defining formula (3.1) simplifies to
γ(ρ(n− 1)) = gcd(pe−1,ρ)

pe−1 :

αR(n) =
1
r

∑
ρ∈R

αρ(n) Lem. 3.1=
1
r

∑
ρ∈R

γ(ρ(n− 1))

(3.1)
=

e−1∑
t=0

(prob(pt div. ρ|ρ ∈ R)− prob(pt+1 div. ρ|ρ ∈ R))p1−e+t

(AS)
= p1−e +

e−1∑
t=1

prob(pt div. ρ|ρ ∈ R)(p1−e+t − p−e+t)− prob(pe div. ρ|ρ ∈ R)

To obtain an upper bound we may drop the last term and estimate the remaining sum-
mands using Lemma 2.1. This implies

αR(n) ≤ p1−e +
e−1∑
t=1

(
p−t +

1
r

)
(p1−e+t − p−e+t).

The terms involving 1
r form a telescoping sum, the other ones a sum over constants.

Evaluation of the expressions now yields the estimate (3.4). 2

Proof of Proposition 1.1. From now on, we takeR := Ri,ρ0,r, so thatR is an arithmetic
progression of length r and width Pi. We first consider the case where n is a power pe
of some prime p but not a prime number. In this case α(n) and αR(n) are typically very
small, provided in case (b) that the elements in R are small compared to n: Note first
that by Remark 3.3 for p ≥ Pir we have α(n) = αR(n), so that we may assume p <
Pir. Since Pi ≥ 2, we have ln(Pir) ≥ ln(2r), and hence also 2 ln(Pir) ≥ ln(2Pir2).
Because n ≥ 2Pir2 and x 7→ x

ln(x) is strictly increasing for x > exp(1), this shows

n

ln(n)
≥ 2Pir2

ln(2Pir2)
≥ Pir

ln(Pir)
r.

Since Pir > p ≥ 3, the previous inequality yields

n ≥ ln(n)
ln(p)

pr,

which is equivalent to n ≥ epr, or to pe−1

e ≥ r. Hence our hypotheses yield

αR(n)
Lem. 3.5
≤ 1 + (e− 1)(1− p−1)

pe−1 +
1− p−e

r
≤ e

pe−1 +
1
r
≤ 2
r
≤ 1

2πi+1
,

where for the last inequality we use r ≥ 2π2
i+1.
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Next we consider the case where n has at least three prime factors, or where n has
two prime factors and s1 6= s2. In either case β(n) ≤ 1

4 . If S = ∅, then αR(n) = α(n)
and there is nothing to prove. If |S| = 2, then Lemma 3.4 yields

αR(n) ≤ 1
4

(1
r

+
4

πi+1πi+2

)
≤ 1

2πi+1
,

because ρ has no prime divisor smaller than πi+1 and r ≥ 2π2
i+1. If |S| = 1, then again

from Lemma 3.4 we obtain

αR(n) ≤ 1
4

(1
r

+
1

πi+1
(2− 1

πi+1
)
)
≤ 1

2πi+1
,

using the same hypothesis r ≥ 2π2
i+1.

Finally, we assume that n = pe1
1 p

e2
2 has exactly two prime factors and that s1 = s2.

Then for s1 = 1 one has β(n) = 1
2 and for s1 ≥ 2 one has β(n) ≤ 3

8 . As in the previous
paragraph S = ∅ leads to α(n) = αR(n) and |S| ≥ 2 leads to

αR(n) ≤ 1
2

(1
r

+
4

πi+1πi+2

)
.

In the case (a) of Proposition 1.1 one finds the estimate αR(n) ≤ 29
180 <

1
4 , in case (b)

the estimate αR(n) ≤ 1
2πi+1

, and in either case the proposition is proved.
It remains to consider the case |S| = 1. In case (b) the estimate

αR(n) ≤ 1
2

(1
r

+
1

πi+1
(2− 1

πi+1
)
)

yields, by the same arguments as above, that αR(n) ≤ 1
πi+1

.
In case (a) a direct application of Lemma 3.2 provides the estimate

αR(n) ≤ β(n)
q0

(
q−f1

1 + prob(q1 div. ρ | ρ ∈ R)(1− q−f1
1 )

)
.

Using the bound on β(n), the fact that q0 is an odd natural number and that q1 is an
odd prime, and that prob(q1 div. ρ | ρ ∈ R) ≤ 1

r + 1
q1

, a short calculation proves the
following: Unless q1 = 3, q0 = 1 and β(n) = 1

2 , the quantity αR(n) is bounded above
by 1

4 . In the remaining case, one computes αR(n) = 5
18 using Remark 3.3(c) which

applies due to our hypothesis that 3 divides r.
To complete the proof, we need to characterize those n for which αR(n) = 5

18 can
occur: We must have s1 = s2 = 1 and γ(n − 1)−1 = 3. The case e1 · e2 > 1 is easily
refuted, since here γ(n − 1) = 1

3 only leaves n = 45 as a possibility contradicting the
hypothesis n ≥ 8 · 182. It follows that n = pq for primes p 6= q such that p− 1 divides
n−1 and (q−1)/3 divides n−1. From n−1 = (p−1)(q−1)+(p−1)+(q−1) one
deduces q − 1 = 3(p− 1), and hence n = (3p− 2)p for some prime p. Moreover s1 =
s2 = 1 implies that p ≡ −1 (mod 4). This completes the proof of the proposition. 2
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4 Prime generation using the Miller-Rabin variant

We now prove Proposition 1.3. The method is taken from [1], and is also present in
[4]; but might go back at least to [3].

Proof of Proposition 1.3. Let
∑′ denote the sum over all composite integers in a given

range and let Mk denote the set of all k-bit integers. Then

qk,t,R =
the probability that a composite k-Bit integer passes MRtR

the probability that a k-Bit integer passes MRtR

=
∑′
n∈Mk

α(n)αR(n)t−1∑
n∈Mk

α(n)αR(n)t−1

αR(n)≤α(n)
≤

∑′
n∈Mk,α(n)=αR(n) α(n)t +

∑′
n∈Mk,α(n)6=αR(n) α(n)αR(n)t−1∑

n∈Mk
α(n)t

Prop. 1.1(b)
≤ qk,t + π1−t

i+1

∑′
n∈Mk,α(n)6=αR(n) α(n)∑

n∈Mk,n prime 1

≤ qk,t + π1−t
i+1

∑′
n∈Mk

α(n)∑
n∈Mk

α(n)−
∑′
n∈Mk

α(n)

= qk,t + π1−t
i+1

qk,1
1− qk,1

. 2

In a similar way, however using directly the density of squares and of primes of bit
length k, one may derive Proposition 1.2. We omit the details.

Acknowledgments. I would like to express many thanks to the technical support group
of cryptovision who brought the above problem to my attention, and gave me access to
the unpublished work [4] of J. Gerhardt who had first analyzed the above randomiza-
tion algorithm for i = 1 systematically. Also thanks to S. Wentzig for a very careful
reading of a preliminary version and many suggestions to improve the readability of
the manuscript. Finally I also want to thank the referee whose many comments further
improved the readability of the present article.

References
[1] R. J. Burthe, Further Investigations with the Strong Probable Prime Test, Math. Comp. 65

(1996), 373–381.

[2] H. Chabanne, E. Dotton, L. Ramsamy, Masked Prime Number Generation, First Benelux
Workshop on Information and System Security (2006).

[3] I. Damgård, P. Landrock, C. Pomerance, Average Case Error Estimates for the Strong Prob-
able Prime Test, Math. Comp. 61 (1993), 177–194.

[4] J. Gerhard, Randomizing the Exponent in the Miller-Rabin Test, preprint, Dec. 10, 2002.



The Miller-Rabin test with randomized exponents 13

[5] P. C. Kocher, Attacks on Implementations of Diffie-Hellmann, RSA, DSS and Other Systems,
LNCS 1109 (1996), 104–113.

[6] L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algo-
rithms, Theoret. Comp. Sci. 12 (1980), 97–108.

[7] M. O. Rabin, Probabilistic Algorithms for Testing Primality, J. Number Theory 12 (1980),
128–138.

Received xxx; revised xxx

Author information

Gebhard Böckle, Fakultät für Mathematik, Universität Duisburg-Essen, Campus Essen, 45117 Es-
sen, Germany.
Email: gebhard.boeckle@uni-due.de


