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Abstract

The following conjecture on finiteness of mod p Galois representations was for-
mulated by C. Khare in a recent article: Let F denote the algebraic closure of a
finite field. Then for each number field K, each integer n, and each ideal n of the
ring of integers of K there are only finitely many isomorphism classes of continuous
semisimple n-dimensional representations of the absolute Galois group GK of K
over F̄p whose prime to-p conductor is bounded by n. We show, as was conjectured
by Khare, that the above is implied by the seemingly weaker conjecture where the
prime-to-p conductor is assumed to be trivial, provided one considers all number
fields simultaneously.

1 Introduction

We fix some notation: Let p be a prime and F the algebraic closure of the field of p
elements equipped with the discrete topology. For a number field K, let S0 be the set of
places of K above p together with all infinite places, and S any finite set of places of K
containing S0. By GK,S we denote the Galois group of the maximal algebraic extension
of K which is unramified outside S and we regard GK,S as a topological group with
respect to its profinite topology. For any field F , we denote by GF its absolute Galois
group. For a place v of K, let Kv be the completion of K at v. Via an extension of v
to the algebraic closure K̄ of K, we fix an embedding from K̄ to K̄v, and thus obtain a
decomposition group at v as the image of the corresponding map GKv → GK → GK,S .

In [2], Conj. 2.2, essentially the following conjecture is stated (cf. loc. cit., Rem. 2
after Prop. 2.5):

Conjecture 1 There are only finitely many isomorphism classes of continuous semisim-
ple representations ρ : GK,S → GLn(F), such that the prime-to-p Artin conductor of ρ
is bounded.
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In Remark 2 following [2], Conj. 2.2, the following weaker conjecture is formulated
and the question is raised whether, in a suitable sense, it is indeed equivalent to the
above conjecture:

Conjecture 2 There are only finitely many isomorphism classes of continuous semisim-
ple irreducible representations ρ : GK,S0 → GLn(F).

Here we will prove the following result, which answers the above question in the
affirmative.

Theorem 3 Fix a positive integer n0. If Conjecture 2 holds for all number fields and
all positive n ≤ n0, then Conjecture 1 holds for all number fields and all positive n ≤ n0.

The idea of the proof is to use the bound on the Artin conductor for a finite place
v ∈ S − S0 to show that there exists a finite extension Lv of Kv inside K̄v, which only
depends on the conductor at v and on n0 but not on ρ, such that the restriction of ρ to
GLv is unramified. This will be carried out in Section 2. Once this is known, we can
construct a finite extension E of K, independently of ρ, such that ρ restricted to GE is
unramified outside S0. As will be shown in Section 3, the theorem will follows rapidly.

Remark 4 The above theorem should be thought of as a theoretical result. In practise,
in order to establish cases of Conjecture 1, it seems easier to work over smaller fields. For
example, assuming Serre’s conjecture, in the case n = 2, K = Q and ρ odd, Conjecture 1
was shown to hold in [2]. If one follows the proof of Theorem 3, then one could also
prove this by proving Conjecture 2 for n = 2 over arbitrary number fields, which seems
to us a much more ambitious project.

2 Local analysis

Throughout this section, we fix a local field F of residue characteristic different from p
and a continuous Galois representation ρ : GF → GLn(F). Note that F may have positive
characteristic! By I = IF the inertia subgroup of GF is denoted and by Iw = IwF the
wild inertia subgroup of I. We use π to denote a uniformizer of F and p as its maximal
ideal.

Let pf = pf(ρ,F ) denote the conductor of ρ (as a representation of GF ). Recall that
the f was defined as follows: Let F ′ denote the splitting field of ρ, which is finite because
F is discrete, GF compact and ρ continuous. Let V denote the representation module
underlying ρ. Define G := Gal(F ′/F ) and denote by Gi the i-th higher ramification
group. Then

f =
∑
i≥0

1

[G0 : Gi]
codim(V Gi).

Proposition 5 Fix positive integers f0 and n0. Then there exists a finite field extension
L of F such that for any ρ : GF → GLn(F) as above with conductor pf ⊃ pf0 and n ≤ n0,
the restriction of ρ to GL is unramified.
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We will prove this in various stages.

Lemma 6 Under the hypothesis of the above proposition, there exists a finite Galois
extension F1 of F depending only on n0 such that for all ρ as in the proposition, the
order of ρ(GF1) is prime to p.

Proof: Denote by H the image of ρ and by H(p) a p-Sylow subgroup. Note that
Hw := ρ(Iw) is a normal subgroup of H of order prime to p, as the residue characteristic
of F is different from p. Hence Hw and H(p) have trivial intersection and therefore
H(p) ∼= H(p)Hw/Hw ⊂ H/Hw is a quotient of the pro-p Sylow subgroup of GF /I

w,
which is isomorphic to ZpoZp. Thus there exists s, t ∈ H(p), which are possibly trivial,
such that H(p) = {sitj : 0 ≤ i < pl, 0 ≤ j ≤ pm} for suitable l,m.

An element of GLn(F) of p-power order has order dividing pc where c := [logp n] + 1,
as can be seen by considering its Jordan canonical form. Applying this observation to
s, t, yields that H(p) has order at most p2c. Let π be a uniformizer of F and let F ′ be the
unique unramified extension of F of order pc. Then we may choose F1 := F ′(ζpc , π

1/pc)
for the lemma to hold.

Lemma 7 Under the hypothesis of Proposition 5, there exists a finite Galois extension
F2 of F depending only on n0 such that for all ρ as in the proposition, the group ρ(GF2)
is abelian.

Proof: With F1 from the previous lemma, it follows that the order of ρ(GF1) is prime
to p. By a profinite version of the Lemma of Schur-Zassenhaus, the restriction ρ|GF1

admits a lift to a continuous representation ρ′ : GF1 → GLn(C) for some finite extension
C of Qp such that the orders of ρ(GF1) and of ρ′(GF1) agree. Via an embedding of
C into the complex numbers, ρ(GF1) admits a complex representation of dimension at
most n0.

By Jordan’s theorem, there exists a constant r, which only depends on n0 such
that ρ(GF1) posseses a normal abelian subgroup of index at most r (cf. [1]). As is well
known, there exists a finite extension F ′2 of F1 which contains the fixed field of any open
subgroup of GF1 of index at most r. Choosing F2 to be the Galois closure of F ′2 over F ,
the lemma follows.

Proof of Proposition 5: Let ρ : GF → GLn(F) be a representation of GF of conductor
f ≤ f0 and assume that n ≤ n0. Then the restriction of ρ to GF2 , with F2 from the
previous lemma, is abelian. Let F ′ be the splitting field of F . As the i-th higher rami-
fication group of Gal(F ′/F2) is contained in that of Gal(F ′/F ), it follows immediately
that the conductor of ρ|GF2

contains Pf0 , where P is the maximal ideal of the ring of
integers of F2. By local class field theory, there exists a finite extension L of F2, which
depends only on f0 and F2, such that L/F is Galois and ρ|GL

is unramified.
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3 The proof of main result

With the technical proposition from the previous section, we can immediately proceed
to the proof of our main result.

Proof of Theorem 3: Fix a positive integer n0, bounding the dimension of ρ, and an
ideal n of the ring of integers O of K, dividing the prime-to-p conducter of ρ. Recall
that the prime-to-p conductor of ρ is defined as the product∏

v∈S−S0

p
f(Kv ,ρ|GKv

)
v ,

where pv is the prime ideal in O corresponding to the place v.

Using Proposition 5, we choose for each v ∈ S − S0 a finite extension Lv of Kv such
that ρ restricted to GLv is unramified. Note that the fields Lv only depend on n0 and
on the order of n at v. Any finite extension of Kv can be obtained via completion of
a finite Galois extension of K. Thus we can choose a finite Galois extension L of K,
depending only on n0 and n, such that the restriction of ρ to GL is unramified at all
place not above p or ∞.

Let ρ′ be the semisimplification of ρ|GL
. As we assume Conjecture 2 to hold, ρ′

belongs to a finite set of representations. Hence there exists a finite extension L′ of
L, independently of ρ, such that ρ(GL′) ⊂ GLn(F) is a p-group and such that ρ|GL′

is unramified outside the places above p and ∞. As the pro-p completion of GL′,S0 is
topologically finitely generated, and as the unipotent radical of GLn0(F) has nilpotency
degree at most [logp n0] + 1, there exists a finite extension L′′ of L′, Galois over K, such
that ρ restricted to L′′ is trivial. The choice of L′′ depends only on L′ and on n0, and
hence only on n and n0. This shows that any ρ as above is an irreducible representation
of the finite group Gal(L′′/K) of dimension at most n0. Hence the set of all such ρ is
finite.
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