
Seminar Sommersemester 2008

Canonical compactifications of
moduli spaces for abelian varieties
For a long time, it was not clear how to define a moduli theoretic compactification of
the moduli space of abelian varieties with only ‘minor’ singularities along the boundary.
A major break through in this direction is the work [Alex] of Alexeev. Its review by J.
Kollár contains a concise but very readable historical overview, and points out the main
new ideas.
A first conceptual step of Alexeev is to consider no longer moduli Ag,d of abelian varieties
A of fixed dimension g with a polarization of degree d, but moduli APg,d of pairs (A,Θ)
where A ∈ Ag,d and Θ is an ample divisor defining the polarization. In the principally
polarized case d = 1 the two agree. But in general Alexeev’s moduli form a covering of the
previously considered moduli with the fibers being the choices of possible polarizations.
The key new insight of Alexeev is how to describe the boundary of his moduli, as a moduli
space APg,d. It parametrizes so called semi-abelic ‘pairs’ which are triples (G y P, θ)
where G is a semiabelian variety of dimension g, P is a projective variety with an ample
divisor θ of degree d, G acts on P with finitely many orbits, and P has a few further nice
properties. (The ‘pair’ is (P, θ).)
Alexeev’s construction has two drawbacks. The first is that in the non-principal polarized
case it might be nice to remove the choice of ample divisor at the end of the day. The
second is that the moduli constructed by Alexeev have several components, and only one
of them contains the open substack of abelian varieties (with a choice of ample divisor).
So a natural compactification is obtained by singling out this one ‘main’ component.
Solutions to both problems are presented by M. Olsson in [Ols2]. Adding log-structures
into Aleexev’s moduli, he is able to directly single out the main component in the second
problem. He does give a solution to the first problem as well – however it is not clear to
the writer of this program to what extend Olsson’s approach is based on Alexeev’s moduli
APg,d. The program will focus on the principally polarized case.

We mainly follow in our seminar §3 of the book [Ols2] of Martin C. Olsson with the same
title. The easier accessible §2 which serves as an introduction to §3 has to be consulted
at various places to understand the notations.

lecture 1: Ag the moduli space of abelian varieties
10.04.08, Gebhard Böckle
We review Mumford’s construction of moduli given in [Mum1], §1–6.

lecture 2: Ag Mumford’s compactification of Ag

17.04.08, Eckart Viehweg
Here the compactification Ag constructed by Mumford and its properties are explained.

lecture 3: logarithmic algebraic geometry
24.04.08, Franziska Heinloth
The aim of this talk is to present the material of sections 1–3 of Kato’s article [Kato].
(We are only interested in fine log structures)
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- define (pre) log structures
- construction of the associated log structure of a pre-log structure
- morphisms of (pre) log structures
- f∗ and f ∗

- Examples 1.5
- log differentials, explain why (0, 1⊗ a) = d log(a).
- definition of charts and their existence (étale locally)
- definition of log-smooth/étale, and the basic examples 3.7.1 and 3.7.2
- characterisation of log-smoothness/étaleness (Theorem 3.5)
- connection of log-smoothness and ω1

X/Y .

(The numbers refer to Kato’s article.) The main emphasis should be on the examples
and definitions, because the time is limited to 90 minutes.

lecture 4: Artin stacks
8.05.08, Georg Hein
We recall the definition of Artin stacks and explain why they naturally appear in the
theory of moduli spaces.

lecture 5: 3.1 (part one) from [Ols2]
15.05.08, Alex Küronya
Give the definitions and results from the first half of 3.1 in [Ols2] (3.1.1 –3.1.11). Here the
focus should be in understanding the definitions and constructions for the examples X =
Z, for the paving obtained by the quadratic function a(n) = n2, and for X = Z2 for the
pavings obtained by the quadratic functions at(n,m) = n2 + tmn+m2 for t ∈ {−1, 0, 1}.
To show the finite generatedness and sharpness of HS in these examples (or at least one
of them) will probably help more than to present the proofs of these statements.
Try to explain the construction 3.1.10 for the example X = Z and give some hints
(speculations) about the geometry in the other examples. End with Lemma 3.1.11.
Note: In 3.1.1 there appears twice a Q which should be replaced by XR.

lecture 6: 3.1 (part two) and 3.6 from [Ols2]
29.05.08, Manuel Blickle
As in the previous talk we think, that it would help in understanding the presentation
in [Ols2], if we understood this construction for the easiest examples. That is, even
to explain the most basic example B = Spec(K), and X = Z would be a valuable
contribution.
Maybe you start with the definition of the moduli problem from 3.6 in [Ols2] and show
how the standard families constructed in 3.1.22 fit into the given moduli problem.
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under this line there is work to be done for the organizers

lecture 5: Semiabelic pairs and linearization of torus actions
15.05.08, Alex Küronya
This talk is based on [Alex]. Start by giving the precise definition of seminormal variety
and of semiabelic pair (also in the relative situation) from [Alex], §1.1. Explain briefly
why in the case that the toric part is trivial, a semiabelic pair of degree 1 is simply an
abelian variety. (cf. [Alex], Cor 3.0.9.)
The main part should explain Ch.4 of Alexeev’s work. The key result is Thm. 4.3.1. It
says that if one has torus action on a pair (P,L) with P a ‘nice’ proper scheme and L
ample on P , there is a cover (P̃ , L̃) with an action by the character group X of T and
quotient (P,L) and such that now T acts on P̃ and on L̃. (this goes back to some ad
hoc constructions of Mumford from [Mum2]).
Along the way there appears a version of the theorem of the square for semiabelian
varieties (4.1.6, 4.1.7m 4.1.18) which probably needs to be stated without proof, and its
consequence 4.1.22 which is needed in proving the desired correspondence.

lecture 6:
29.05.08, Manuel Blickle
The main aim of the present lecture is to reveal the usefulness of the content of the
previous one. Again the source is [Alex]. Abelic pairs (G y P,L) with a linear torus
action possess a useful combinatorial description – in spirit similar to that of toric
varieties. In this talk, the semiabelian variety G and a polarization of its abelian quotient
A are fixed. Moreover one should stick to principal polarized A.
The talk starts with §5.2 of Alexeev. It seems very useful to describe the entire section
in some detail. Many things are based on it. The second half of the talk should cover
§5.3 where the non-linearized case is described using the results from the previous talk.
It culminates in Thm. 5.3.8. Unfortunately the precise combinatorial description is kind
of a mess. It requires definitions from 1.1.16 to 1.1.29, §2.1 and §2.2 and §5.1. For
simplicity, it should be assumed that ρ : |∆̃| → XR is injective. – Alexeev’s description of
the (co-)homology of cell complexes with values in local systems seems ‘heavy-handed’ –
for injective ρ, hopefully, the situation should simply considerably. It is enough to give
the audience an idea of the combinatorics without laying it all out in front of us.
At the very end, the extensions Thm 5.4.1 and 5.4.3 to the case of semiabelic pairs,
(G y P, θ), could be mentioned.

lectures 7 and 8: Degenerating abelian varieties over complete rings
5.06.08 and 12.06.08, N.N.
These two talks should explain the content of [Mum2]. At the end it would be good to
come back to Alexeev’s work and integrate (in some way) [Alex], §5.6.

lecture 9: APg,d is a moduli stack
19.06.08, N.N.
The main assertion is Thm. 5.10.1. We suggest to give a detailed proof of properness,
which is Theorem 5.7.1. This should be the main part of the talk. In the remaining
time. the speaker could go over (without going into many details) the further results
are needed. A brief review of Artin’s axioms might help. Whatever time is left could
be spend on saying somthing about §5.9 in which nice families covering the stack are
constructed. The construction ‘is as in’ [Mum2], but perhaps not much beyond that idea
can be explained.
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lecture 10: Olsson’s standard family
26.06.08, N.N.
Cover 3.1 from [Ols2]. As in talk 6, the combinatorics are not light to digest. Perhaps
this is intrinsic to the rather difficult subject. The new feature is the appearance of a log
structure.
Olsson’s works with different objects than Alexeev. Olsson’s central combinatorial object
is the monoid HS. To give some insight into HS, some examples seem more useful than
proving properties. We recommend X = Z, for the paving obtained by the quadratic
function a(n) = n2, and X = Z2 for the pavings obtained by the quadratic functions
at(n,m) = n2 + tmn + m2 for t ∈ {−1, 0, 1}. It is not recommended to give proofs for
3.1.4–3.1.9 but the point them out int the example.
Once HS is ‘understood’, the family in 3.1.10 is easy to describe. Perhaps it is useful to
prove 3.1.11 and 3.1.13. The content of 3.1.14-3.1.21 was essentially covered in talks 5
and 6. So one should be able to move rapidly from 3.1.13 to 3.1.22, i.e., to stating the
standard family. It would be nice if the talk ends by stating Olsson’s moduli problem
described in §3.6 and explaining how the the standard families constructed in 3.1.22 fit.
(they describe the strata of certain degeneration types).
Note: In 3.1.1 there appears twice a Q which should be replaced by XR.

lecture 11: Deformations and automorphisms
3.07.08, N.N. It would be good if the talk was given by someone with a good conceptual
understanding of deformation theory.
This is an outrageous task. Namely to cover 3.2–3.4 from [Ols2]. The recommendation
is to simply give precise statement of the results on automorphisms as given in §3.2 and
§3.4, i.e. of Prop. 3.2.2 and Prop 3.4.2, and then the spend the majority of the time
explaining the deformation theory of §3.3. The key result is Prop. 3.3.3. It would be
good to briefly recall something about deformation theory and a theory of obstructions
and then to explain parts of the proof.

lecture 12: Versal families and Alexeev’s main component
10.07.08, N.N.
Cover 3.5 in [Ols2]. Describe Olsson’s versal family over W3 and the action of the group
G. Olsson stops short of redoing §5.9 from [Alex] which in turn is based on [Mum2]
who algebraizes a formal construction. After explaining the objects, the main emphasis
should be on relating W3 (at least its infinitesimal versions) to the normalization Q̃ of
Alexeev’s main component Q: 3.5.15-3.5.20. Since the families constructed here cover
Olsson’s space Kg this indicates that one might expect a morphism Kg → Q̃.

lecture 13: A morphism Q̃ → Kg and its isomorphy
17.07.08, N.N.
Again, the source is [Ols2]. A morphism Q̃ → Kg is defined and discussed in 3.7.4 and
3.7.5. After explaining this, it is up to the speaker to either explain §3.8 on approximation,
or to explain the proof of the main theorem of Ch.3 by Olsson, namely of Thm. 3.6.2
assume the results from §3.8.

under this line you find the organizers
Gebhard Böckle (boeckle@iem.uni-due.de) Georg Hein (georg.hein@uni-due.de)
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The material can be found at: http://www.uni-essen.de/∼mat903/sem/ss08/
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