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1. Why Study Galois Representations?

Here we discuss the link between analytic L-functions and L-functions attached to varieties.
Let F be a number field and X a smooth projective variety over F .
Define the partial Euler product

ζ∗X(s) =
∏

v good place of F

ζ(X mod v, q−sv ), Re s≫dimX 0.

Here Xmod v denotes the smooth projective variety over k(v) ≃ Fqv obtained by reduction of a smooth
proper model of X over the valuation ring of Fv.

Example. Let X be an elliptic curve over F . Then

ζ∗E(s) =
∏

E has good reduction at v

1− avq
−s
v + q1−2s

v

(1− q−sv )(1− q1−sv )
= ζ∗F (s)ζ∗F (s−1)L∗(E, s)−1, av = qv+1−#E(k(v)).

We would like to do the following.

(1) Fill in the “bad” factors to obtain an L-function with a good functional equation, analytic continu-
ation, etc.

(2) Relate ζ∗X to arithmetic properties of X . (E.g., Birch-Swinnerton-Dyer conjecture, etc.)

A clue for (1) comes from Artin representations:

GF = Gal(F/F )
ρ //

++WWWWWWWWWWWWWWWWWWWW
GL(W ) = f.d. v.s./C

Gal(F ′/F ) = Gal. gp. of finite Gal. extn.
% �

33ggggggggggggggggggggg

Note that F ′/F is unramified at all but finitely many places. We define theArtin L-function of ρ to be

L(s, ρ) =
∏

v

det([1− ρ(Frobv)q
−s
v ]|W Iv )

−1, W Iv = subspace of W fixed by inertia at v.

Grothendieck gave a related description of ζ∗X using continuous p-adic representations

GF → GL(Hiét,c(XF ,Qp)) =: GL(W i).

These are unramified almost everywhere, including at all good places away from p. Here the ith cohomology
groupW i above vanishes for i > 2 dimX . Grothendieck proved that if we remove the contribution of p-adic
places to ζ∗X(s) then

ζ∗X(s) =
∏

i

L∗(s,W i)(−1)i ,

where L∗(s,W i) is like the Artin L-function without the “bad” factors and the p-adic places:

L∗(s,W i) =
∏

good v∤p
det([1− Frobv q

−s
v ]|W i)−1.

Note: The expression for L∗(s,W i) requires some care, since q−sv is a complex number acting on a p-adic
vector space. What has to be proved is that the characteristic polynomial for the action of Frobv on W i

has rational coefficients (and is independent of p), so evaluation using q−sv makes sense (and the Riemann
Hypothesis ensures absolute convergence of the product in a suitable right half-plane depending only in
dimX).

We conclude from all this that it is a good idea to study L-functions of reasonable p-adic representations.
Representation theory can often be used to fill in the bad factors later.

1



2

Eternal dangerous bend: The case of v|p is tricky! The complication is that “unramifiedness” is not
the right notion corresponding to “good reduction” for p-adic representations of Galois groups of p-adic
fields.

2. Modular Galois representations and modularity lifting theorems

Definitions.

Definition. A p-adic representation of GF is a continuous linear representation ρ : GF → GL(W ), where
W is a finite dimensional vector space over a p-adic field K (i.e. a finite extensionK/Qp) and ρ is unramified
at almost all places v of F .

Example. The repsentation Vp(E) = Tp(E)⊗Zp Qp arising from the Tate module of an elliptic curveE over
F is historically the first really interesting example.

Example. Étale cohomology, with compact support: W i = Hiét,c(XF ,Qp) for any separated F -scheme X

of finite type. (Note that this is unramified at all but finitely many places, even if X is not smooth. The
proof rests on properties of constructible ℓ-adic sheaves.)

Remark. In the definition of a p-adic representation it is equivalent to take the coefficient field to be Qp,
because of the following fact: any compact subgroup of GLn(Qp) is contained in GLn(K) for a finite extension
K/Qp. The proof of this uses the Baire Category Theorem. [Warning! It is false if we consider Cp instead

of Qp!] So we could do everything over Qp, but we will find it more convenient to take the coefficient field
K to be locally compact.

Definition. A mod p representation of GF is a continuous representation ρ : GF → GL(W ), whereW is a
finite dimensional vector space over a finite extension k/Fp. Note that GL(W ) is thus a discrete topological
group, so the continuity condition entails that ρ factors through a finite Galois group Gal(F ′/F ).

Example. The p-torsion of an elliptic curve: E[p](F )⊗Fp Fpr .

Example. Étale cohomology: Hiét,c(XF ,Z/pZ).

Remark. It is “equivalent” to take the coefficient field to be Fp.

Reduction of Galois representations.

Proposition. Any p-adic representation ρ : GF → GLK(W ) has a GF -stable OK-lattice Λ ⊂ W ; i.e. ρ
induces a map ρ : GF → GLOK Λ ≈ GLn(OK) ։ GLn(k) where k = OK/m. �

(Here by a lattice we mean a finitely generated OK-submodule of W such that K ⊗OK Λ = W .) It is not
hard to see that the characteristic polynomial of ρ is independent of the choice of lattice Λ.

Theorem (Cor. of Brauer-Nesbit Theorem). Let ρss =
⊕{Jordan-Holder factors of ρ}. Then ρss has the

same characteristic polynomial as ρ, and is determined up to isomorphism by its characteristic polynomial,
and is therefore independent of the choice of Λ.

In light of the theorem, we shall henceforce call ρss “the” reduction of ρ. Here are a bunch of things to
watch out for:

(1) ρss is often denoted ρ, even though it is certainly not just the “reduction mod p” of ρ in general.
(2) ρss may be unramified at some places where ρ is ramifield. For example, if ρ(Iv) ⊂ 1+m ·MatnOK ,

then the inertia at v simply “disappears” mod v.
(3) If ρss is irreducible, then in fact the only stable lattices in W were of the form πiΛ, where π is a

uniformizer for K and i ∈ Z.
(4) Irreducibility is not the same as absolute irreducibility = irreducibility over k.
(5) ρ might be absolutely irreducible over K, yet ρss could be not only reducible, but even completely

trivial! (Hence completely reducible...)

Exercise: If ρ is reducible then any Jordan-Holder filtration of ρ induces a similar filtration for ρss. So the
last warning above is “one-directional”.
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Modular Galois representations. Let f ∈ Sk(Γ1(N), χ) be a Hecke eigenform of weight k ≥ 1. Let
Kf ⊂ C be the field generated over Q by all the Fourier coefficients aℓ(f) of f for primes ℓ ∤ N . Then Kf is
a number field containing the values of the Nebentypus χ. Let λ be a place of Kf lying over p.

Theorem (Deligne, Deligne-Serre, Ribet). There exists a unique continuous irreducible p-adic representaion

ρf,λ : GQ → GL2(Kf,λ)

unramified at all ℓ ∤ Np, such that for all such ℓ we have

sum of eigenvalues of Frobℓ = Tr(ρf,λ Frobℓ) = aℓ(f)[= T (ℓ)-eigenvalue of f ]

and
det ◦ρf,λ = χ · ǫk−1

p

where ǫp : GQ → Z×
p ⊂ O×

Kf ,λ
is the p-adic cyclotomic character.

In particular, for ℓ ∤ Np, the characteristic polynomial of ρf,λ(Frobℓ) is

t2 − aℓ(f)t+ χ(ℓ)ℓk−1 ∈ Kf [t] ⊂ Kf,λ[t],

a non-obvious integrality property. Note that this polynomial is independent of λ.

Remark. The independence of λ and the precise control on the unramified primes implies that the collection
{ρf,λ}λ is a “compatible” family of of representations, with respect to Kf -characteristic polynomials, just
like {VpE}p is a “compatible” family of representions with respect to Q-characteristic polynomials. Cf.
Serre’s book Abelian ℓ-adic representations.

Let us look at the partial Artin L-functions

L∗(s, ρf,λ) =
∏

ℓ∤Np
det

(
1− ρf,λ(Frobℓ) · ℓ−s

)−1
=

∏

ℓ∤Np

1

1− aℓ(f)ℓ−s + χ(ℓ)ℓk−1−2s
=: L∗(s, f).

Remark. Note that for a complex conjugation c, det ρf,λ(c) = χ(−1)ǫk−1
p = (−1)k(−1)k−1 = −1, so all the

representations produced by the theorem above are odd !

Now consider the (semisimplified) reduction ρf,λ : GQ → GL2(kf,λ), which is continuous and semisimple,

but might be reducible. In general, we say a mod-p representation ρ is modular if it is isomorphic over Fp
to some ρf,λ.

Just suppose ρf,λ happens to be absolutely irreducible. By the last remark, it, too, is odd. Serre’s
conjecture is concerned with when mod-p representations with such properties are in fact modular.

Note that ρf,λ does not determine k or N . There could be congruences “g ≡ f” modulo λ for some
eigenform g ∈ Sk′(Γ1(N

′), χ′) (with the congruence taken in the sense of Fourier coefficients, say, relative to
a p-adic place of Q over λ on Kf and some chosen p-adic place of Kg). This would imply that ρf,λ = ρg,λ.
This is actually abusive notation, since to obtain such a comparison, we might need to extend scalars on the
residue fields of these reductions.

Wiles’s insight. The prototype of a modularity lifting theorem is the following.

Theorem (Not really a theorem). Given any p-adic representation ρ : GQ → GL2(Qp) such that ρ is

irreducible and modular over Fp, and ρ is “nice” (at p, in the sense of p-adic Hodge theory!) then ρ is
modular.

In this seminar, we’ll focus on those ρ such that

ρ|Dp ≈
(
ψ1 ∗
0 ψ2

)

where Dp is the decomposition group at p, ψ2 is an unramified character, and ψ1 is ǫk−1
p times an unramified

character. These representations are “essentially like the ones that come from elliptic curves with good
ordinary reduction at p”.
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3. Applications of the method

• Serre’s conjecture.
• Sato-Tate.
• Gross-Zagier, Heegner points, Kolyvagin (need to provide a finite map X0(NE) → E over Q, which
is done via Faltings’ theorem and the “modularity” of Vℓ(E)).

• FLT. (Modularity of the Galois rep. attached to the Frey curve.)
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Fix embeddings Q →֒ C and Q →֒ Qp, and let k denote a finite subfield of the residue field of Qp.

1. Serre’s conjecture

Here’s the conjecture:

Let ρ : GQ → GL2(Fp) be irreducible and odd. Then there exists a newform f whose Galois representation

ρf : GQ → GL2(Qp) satisfies ρf
∼= ρ. (Here ρf always means semisimplication!) Moreover f is of level N(ρ)

and weight k(ρ) to be discussed below.

Remark. Apropos of reduction mod p: If V is a Qp-vector space and G ⊂ GL(V ) is a compact subgroup,
then there exists a G-fixed lattice in V for the following reason. Pick any latticeL ⊂ V . Then theG-stabilizer
of L is open and of finite index. So Λ =

∑
g∈G gL ⊂ V is also a lattice, and it is definitely G-stable. The

same works with coefficients in any finite extension of Qp, or even in Qp (since we saw last time that in this
latter case the image is contained in GLn(K) for some subfield K of finite degree over Qp.

The level N(ρ). Serre conjectured that N(ρ) = Artin conductor of ρ, which has the following properties.

• (p,N(ρ)) = 1.
• For ℓ 6= p, the ℓ-adic valuation ordℓN(ρ) depends only on ρ|Iℓ , and is given by

ordℓN(ρ) =
∑

j≥0

1

[G0 : Gj ]
dim(V/V Gj)

Here, we set K = Qker ρ
to be the the field cut out by ρ, and Gj to be image under ρ of the lower-

numbered ramification filtration at ℓ of Gal(K/Q). In other words, if w is a place of K over ℓ,
then

Gj = ρ{σ ∈ Iℓ | ordw(σx − x) > j,∀x ∈ OK,w}.
The filtration goes

G0 = ρ(Iℓ) ⊃ G1 ⊃ G2 ⊃ · · ·
The first step is of index prime to ℓ, while the latter groups are all ℓ-groups. If K is tamely ramified
or unramified at ℓ, then ordℓN(ρ) = dim(V/V Iℓ). The Hasse–Arf theorem ensures that the proposed
formula for the ℓ-adic ordinal above is actually an integer.

The weight k(ρ).

Theorem (Deligne). Suppose f is a newform of weight < p and level prime to p (so χf is unramified at

p). Suppose f is ordinary at p, meaning ap(f) ∈ Z×
p . Then ρf has a unique 1-dimensional unramified

quotient; i.e.

ρf |Dp ∼
(

αωk−1 ∗
0 β

)

for unramified characters α, β : Dp → F×
p and ω the mod-p cyclotomic character.

It follows that
ρf |Ip ∼

(
ωk−1 ∗

0 1

)
.

This can be seen concretely in the case of elliptic curves E with ordinary reduction: for ρf = Vℓ(E) the
“connected-étale sequence”

E[pn]0 → E[pn]→ E[pn]/E[pn]0

associated to the pn-torsion on the Néron model E has last quotient is unramified. Now take limits on generic
fibers to deduce the theorem in this case.
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Serre conjectured that

k(ρ) :=

{
1 + pa+ b “most of the time”

1 + pa+ b+ p− 1 ...

is the minimal weight at prime-to-p level. Here a ≤ b are integers to be defined below. In the ordinary, low
(< p) weight case, a = 0, b = k − 1.

We need to detour into the structure of I = Ip ⊂ GQ. By definition Iw ⊳ I ։ It, where Iw , the wild
ramification group, is the largest pro-p subgroup.

Proposition. It ∼= Hom(Q/Z,F×
p ) = lim←−r

F×
pr =

∏
ℓ 6=p Zℓ(1). �

Think: Ẑ minus the p-part. The Tate-twisting notation records how the canonical Frobenius element in
Dp/Ip acts on the abelian quotient It of Ip. The map from left to right is g 7→ g(θr)/θr where θp−1

r = p.
The action of Frobp ∈ Dp/Ip is by raising to the pth power on the right side. The composite quotient map

ψr : It ։ F×
pr

is called the level-r fundamental character, though the more canonical collection is its p-powers (thereby
being “independent of the choice of Fp”).

We can deduce that
(ρ|Ip)ss ∼=

( χ1 0
0 χ2

)
.

To see this, note that ρ is assumed irreducible. On one hand Iw is pro-p, so by a counting argument it
must fix a nontrivial subspace when acting on a vector space over a finite field of characeristic p. On the
other hand Ip/Iw is abelian, so it has no irreducible 2-dimensional representations. Hence ρIp is not itself
irreducible; i.e. it is upper triangular, so its semisimplification splits as a direct sum of characters.

Now since ρ|Ip extends to a representation of Dp, the pair {χ1, χ2} must be preserved under the Frobenius
action of Dp/Ip. In other words, we have

{
χp
1 = χ1

χp
2 = χ2

or

{
χp
1 = χ2 χp2

1 = χ1

χp
2 = χ1 χp2

2 = χ1

In the first case, each, χi factors through It → F×
p . In the second case, each χi factors through It → F×

p2 .

So in the first case we can write χ1 = ωa, χ2 = ωb for 0 ≤ a ≤ b, where ω : It → lim←−F×
pr ։ F×

p is the mod-p

cyclotomic character. In the second case we can likewise write χ1 = ψa+pb, χ2 = ψpa+b where ψ : It → F×
p2

is the level-2 fundamental character. These are the a, b in Serre’s conjecture.

The exceptional case k(ρ) = 1+ pa+ b+ p− 1. Now we address where this case comes from (but without
precisely defining it). Consider the special cases

ρ|Ip ∼
(
ω2 ∗
0 1

)

and
ρ|Ip ∼ ( ω ∗

0 1 ) .

In the first case the guess is k(ρ) = 3. In the second case the “standard” guess (a = 0, b = 1) is k(ρ) = 2.
But a naive combinatorial estimate says that the number of representations of the second type is roughly
twice as much as the number of the first type. On the other hand these are certainly fewer modular forms
of weight 2 than of weight 3. The “corrected” guess of p+1 for the second case when a = 0 and b = 1 could
provide the necessary extra modular representations.

Note: ρ|Dp “comes from” a finite flat group scheme over Zp if it arises in weight 2; this property depends
only on the restriction to inertia, and it can be characterized in purely Galois-theoretic terms. This leads to
a special case in Serre’s conjecture related to the case k(ρ) = 2.
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Emerton on Serre’s conjecture. Matt Emerton has a version of “modp local Langlands” which gives
the following picture. There is a natural action of GL2(Af ) (with Af the finite adeles) on

HomGQ(ρ, lim−→
N

H1(X(N),Fp)) ∼=
′⊗

q

πq(ρ),

where the right side is a “factorization” into local “mod p automorphic” representations. Here πq(ρ) is finite
length but not necessarily irreducible, and depends only on ρ|Dq . Supose ρ = ρf for f ∈ Snew

k (N). Then in
fact

ρ →֒ H1(X(N), Symk−2 F2

p).

Here Symk−2 F2

p is viewed as a local system on X(N) as the Tate module of the “universal elliptic curve”
(up to some subtleties at the cusps). The right side is almost the same as [need to clarify appearance of
GL2(Z/pZ)-invariants below ]

(H1(X(N(ρ)),Fp)⊗ Symk−2 F2

p)
GL2(Z/pZ) = ((

′⊗
πq(ρ))

k(Np) ⊗ Symk−2 F2

p)
GL2(Z/pZ) 6= 0

[This needs to be extended a bit more to explain the relation with “independence” of the N and the k in
Serre’s conjecture.]

2. Hecke algebras

Let V = S2(Γ0(N)) for N squarefree. Let T ⊂ End(V ) be the Z-subalgebra generated by all Hecke
operators T (p), p ∤ N and Up, p|N . (Recall that Up :

∑
anq

n 7→∑
anpq

n.)
Fact: T is finite over Z.

Proof. One approach is to show that T preserves a lattice in V , by using the arithmetic theory of modular
curves (with models over Z). An alternative which is easier to carry out rigorously and involves just topo-
logical/analytic tools is to embed V into H1(X0(N),C) and extend the T-action to this space and prove it
preserves the lattice of integral cohomology (which can also be studied in terms of group cohomology). This
will be addressed in all weights ≥ 2 in Baran’s later lecture. �

Fact: The natural map from TC := T ⊗Z C onto the subalgebra C[T (p), Up | p ∈ Z] ⊂ End(V ) is an
isomorphism; that is, TC acts faithfully on V . This will also be proved in Baran’s lecture (in any weight at
least 2).

Fact: V is a free TC module of rank 1.

Proof. It is enough to construct a cyclic vector f ; i.e., T 7→ Tf gives a surjection TC ։ V . (It is automatically
then injective since T acts faithfully on V .) By multiplicity 1, we have V =

⊕
newforms fi

Vi where Vi is the
generalized Hecke eigenspace corresponding to fi. It suffices to check the existence of a cyclic vector for
each Vi, due to the Chinese Remainder Theorem for coprime maximal ideals of TC (which corresponding to
eigenforms). The existence of a cyclic vector for each Vi can be done explicitly. �

By the last fact, H1(X0(N),C) ∼= V ⊕ V is free of rank 2 over TC. Consequently H1(X0(N),Qp) is free

of rank 2 over TQp
. The latter is TQp

-linearly isomorphic to H1
ét(X0(N)Q,Qp), which also has a GQ-action

(that is Hecke equivariant, due to an alternative way to define the Hecke action via correspondences between
modular curves over Q). So we obtain a “modular” Galois representation:

GQ //

∃? %%LLLLLL
GL2 TQp

GL2(‘integral’)
?�

OO

We’d like to produce a GQ-stable TZp
-lattice inside our rank 2 TQp

module. This approach gets involved

with delicate commutative algebra properties of integral Hecke algebras (Gorenstein condition, etc.), and in
more general settings it is simpler to bypass such subtleties at the outset. So we will use a slicker method
with wider applicability which avoids making such a Hecke lattice.
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Example. Consider level N = 33. Then dim(S2) = 3. The cusp forms in question come from two elliptic
curves. The first y2 + y = x3 ± x2 has conductor 11, giving rise to

f = q
∏

n

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + q5 ± 2q6

of level 11, hence f ′(z) := f(3z) is level 33. The second y2 + xy = x3 + x2 − 11x gives rise to g =
q + q2 + q3 − q4 − 2q5 ± 2q6 in level 33. Observe that f ≡ g mod 3, which is no accident. Indeed, the Hecke
algebra T acting on the lattice Zf ⊕ Zf ′ ⊕ Zg in S2 is generated over Z by U3, which acts by

g 7→ −g, f ′ 7→ f, f 7→ −f − 3f ′.

From this we can find
T ∼= Z[x]/(x + 1)(x2 + x+ 3).

So SpecT lying over SpecZ has two irreducible components,

SpecZ = SpecZ[x]/(x+ 1), SpecZ[x]/(x2 + x+ 3),

which happen to meet at the fiber over (3) ∈ SpecZ. (This is precisely the reason for the congruence observed
earlier, as we will see in a moment.) The fiber in question consists of a single maximal ideal m ∈ SpecT, the
kernel of

T act on Zf→ Z ։ F3.

If we consider the completed localization Tm then we claim that after a suitable conjugation,GQ → GL2(TQ3
)

factors through GL2(Tm). Once this is done, then using the two specializations Tm → Z3 corresponding to
the two elliptic curves then recovers the 3-adic Tate modules of these elliptic curves as deformations of a
common mod-3 residual representation.

But how to make the representation land in GL2(Tm)? Consider the 3-adic eigenforms associated to min-
imal primes of T below m, of which there are 2 and so actually the ones from the elliptic curves above (for
a unique prime over 3 in the quadratic field associated to the second component of T). This gives represen-
tations from GQ into GL2(Z3) which are conjugate modulo 3. One checks that these mod-3 representations
are irreducible, and hence absolutely irreducible (due to oddness). Thus, the local fiber product ring

R = Z3 ×F3 Z3 = {(a, b) ∈ Z3 × Z3 | a ≡ b mod 3}
contains S = Tm and we get a representation GQ → GL2(R) upon fixing an isomorphism of the mod-3
reductions. Note that the traces in R at Frobenius elements away from 3 and 11 all lie in S, since Tℓ ∈ T “is”
the trace (as can be checked modulo each minimal prime of the reduced TQ3 ). This is the key to descending
the representation into GL2(S), as we explain next.

3. Descent for Galois representations

Let R be a complete local ring with maximal ideal mR. Let ρ : GQ → GLn(R) be residually absolutely
irreducible and continuous. Suppose further more thatρ is odd. Let S be a complete local subring of R with
local inclusion map, so mS = mR ∩ S and we get an induced isomorphism of residue fields S/mS

∼= R/mR.
Assume that tr ρ(g) ∈ S for all g ∈ GQ.

Theorem. If n = 2 and the residue characteristic is not 2 then some GL2(R)-conjugate of ρ is valued in
GL2(S).

Proof. The argument is elementary, and apparently due to Wiles. By oddness, we can assume
(
1 0
0 −1

)
∈ im ρ.

For any
(
a b
c d

)
∈ im ρ, the trace 2a = tr(

(
a b
c d

)
+
(
a b
c d

) (
1 0
0 −1

)
) lies in S, so a ∈ S. Similarly one finds d ∈ S.

By residual irreducibility there is g ∈ GQ with ρ(g) ∼ ( ∗ u
∗ ) where u is an R-unit. Conjugate by (u 0

0 1 ), and
we find that ρ(g) ∼ ( ∗ 1

∗ ∗ ) for some g. Messing around with this and the previous idea, one can conclude that
b, c ∈ S as well. �

Note that the preceding argument did not use the completeness of S. Now we use it. [Where do we ever
use completeness of R or S below?] Taking S and R as above, and imposing no hypotheses on n or the
residue characteristic, we have:

Theorem. Assume ρ : G→ GLn(R) is residually absolutely irreducible, whereG is any group at all. Then
some GLn(R)-conjugate of ρ is valued in GLn(S).
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Proof. By Jacobson Density and the residual absolute irreducibility of ρ, there exist

x1, . . . , xn2 ∈ ρ(G) ⊂Mn(R)

such that xi span Mn(k), where k = R/mR is the residue field. It follows that the xi’s themselves freely
span Mn(R). (Relate them to a basis by a matrix; the reduction of that matrix mod mR is invertible over
k, so it must be invertible over R itself.)

Let B be the S-submodule of Mn(R) freely spanned over S by the xi. It is free of rank n2. The claim
is that B is in fact an S-algebra containing ρ(G). To see this, take y ∈ ρ(G). We can write y =

∑
aixi for

ai ∈ R. For each 1 ≤ j ≤ n2, the trace tr(yxj) is equal to
∑

i ai tr(xixj). Consider the matrix

(tr(xixj)) ∈Mn2S.

Due to non-degeneracy of the trace pairing for matrix algebras over a field, a matrix of traces of products
of basis elements for a matrix algebra over a field is invertible. So the reduction of this matrix mod mR (the
same as its reduction mod mS) is invertible. Hence it is invertible itself, so the ai are in S and hence y ∈ B.
Thus, ρ(G) ⊂ B. In particular 1 ∈ B. It’s not hard to check B is closed under multiplication, so it’s a finite
S-algebra that is free of rank n2 and containsMn(S).

If k′ denotes the residue field of S, then since the map Mn(S) → Mn(R) induces the injective map
Mn(k

′) → Mn(k) modulo maximal ideals we conclude that the inclusion Mn(S) → B induces an injective
map Mn(k

′) → B ⊗S k
′. But B ⊗S k

′ has rank n2, so Mn(S) → B is a map between finite free S-modules
of rank n2 and induces an isomorphism modulo mS . Thus, it is an equality. �

4. Universal deformation ring

As before let k be a finite field and ρ : G→ GLn(k) an absolutely irreducible representation of a profinite
group G. A lifting of ρ over a complete local Noetherian ring A with residue field k is a representations
ρ : G → GLn(A) equipped with an isomorphism ρ ⊗A k ∼= ρ. We will be especially interested in the case
when G = GQ,S , the Galois group of the largest extension of Q unramified outside of a fixed finite set of
places S, or when G is the Galois group of a local (especially p-adic) field. These groups satisfy a certain
finiteness property Φp: their open subgroups have only finitely many index-p open subgroups.

Claim. Assume that G satisfies Φp. There exists a complete local noetherian ring Rρ and a deformation
ρuniv : GQ,S → GLn(Rρ) such that for any deformation (ρA, A) there exists a unique ring map Rρ → A such
that ρA factors through ρuniv , up to residually trivial conjugation. (Here the map GLn(Rρ) → GLn)(A) is
induced by the map Rρ → A.)

The proof of this will be explained next time by Mok.

Example. Let G be a finite group of order not divisible by p and consider G
ρ→ GLn(k) where the charac-

teristic of k is p. Then Rρ = W (k), the ring of Witt vectors for k. This will follow from the vanishing of
p-torsion group cohomology forG and the computation of the “reduced” cotangent space to the deformation
ring as in Mok’s talk next time.

Example. Suppose ρ : GQ,S → GL2(k) is odd, and H2(GQ,Ad
0(ρ)) = 0. Then Rρ =W (k)[[X1, X2, X3]]. So

generically, one expects the universal deformation ring to be 3-dimensional over W (k).

5. Hecke algebras again

Let ρ : GQ,S → GL2(k) be absolutely irreducible. Pick a level N . Let f1, . . . , fm be all the newforms of

weight 2 and level dividing N , such that ρf ∼ ρ⊗k Fp; we assume this set of fi’s is non-empty! Let fi have
coefficients contained in Ki, a number field with maximal order Oi, and let Oi,λ be the completion of Oi in

Qp.
Let T be the W (k)-subalgebra of

∏
Oi spanned by the images of all the T (ℓ) with (ℓ, Np) = 1.

We have a map T→ Oi,λ → Fp sending T (ℓ) to tr ρ(Frobℓ), independent of i. Call the kernel m ⊂ T, and
let Tm be the completed localization. Thus, the representation

∏
ρfi : GQ,S → GL2(

∏
Oi,λ)

admits a conjugate valued in GL2(Tm), by using the same kind of argument carried out earlier with the
elliptic curves of levels 11 and 33. Note that the residue field of Tm is equal to k.
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By universality of Rρ we obtain a local W (k)-algebra map Rρ ։ Tm satisfying trρFrobℓ 7→ T (ℓ), so
this map is surjective. An R = T theorem says that this map identifies Tm with a certain quotient of Rρ

determined by local data. (In practice one needs some more flexibility, such as to include a Hecke operator
at p, or to impose determinant conditions, to invert p before claiming to have an isomorphism, etc.)



Lecture 3: Galois deformation rings

Mok
October 16, 2009

Notes by Sam Lichtenstein

LetG be a profinite group andρ : G→ GLn(k) a representation defined over a finite field k of characteristic
p. Let Λ be a complete discrete valuation ring with residue field k, e.g. Λ = W (k). Let CΛ be the category

of artinian local Λ-algebras with residue field k, and local morphisms. Let ĈΛ be the category of complete
Noetherian local Λ-algebras with residue field k, i.e. the pro-category of CΛ.

1. Deformation functors

Define Def(ρ) : ĈΛ → Sets by
Def(ρ)(A) = {(ρ,M, ι)}/ ∼

where M is a free A-module of rank n, ρ : G → GLA(M) is a continuous representation, ι : ρ ⊗A k ∼= ρ is
an isomorphism, and two such triples are equivalent when the representations are isomorphic in a manner

which respects the ι’s. Define the framed deformation functor Def�(ρ) by

Def�(ρ)(A) = {(ρ,M, ι, β)/ ∼
where β is a basis for M lifting the standard basis for kn under ι. Morally, Def� is the set of liftings of ρ
into GLn(A).

There is a forgetful functor Def� → Def.
Equivalent definitions are

Def�(ρ)(A) = {ρ : G→ GLn A | ρ mod mA = ρ},
Def(ρ)(A) = Def�(ρ)(A)/(conjugation by Γn(A) := ker(GLn(A)→ GLn(k))).

Note: it is easy to see that Def�(ρ)(A) = lim←−i
Def�(ρ)(A/mi

A). It is also true (but requires an argument)

that Def(ρ)(A) = lim←−i
Def(ρ)(A/mi

A). In other words “we can compute these functors on the level of artinian

quotients”, so we just need to consider them on the category CΛ.

2. p-finiteness

We cannot hope to represent Def(ρ) or Def�(ρ) in ĈΛ (which only contains Noetherian rings) unlessG is
“not too big”.

Definition. We say G satisfies the p-finiteness condition if for every open subgroup H ⊂ G of finite
index, there are only finitely many continuous group homomorphisms H → Z/pZ (i.e., only finitely many
open subgroups of index p). (This holds if and only if for any suchH , the maximal pro-p quotient of H is
topologically finitely generated.)

We are interested in two cases.

(1) G = GK for a local field K finite over Qℓ (allowing ℓ = p!).
(2) G = GK,S for a number field K and S a finite set of ramified primes.

In case (1), H = GK′ for a finite extension K ′/K, and the p-finiteness condition follows from the fact
that the local field K ′ of characteristic 0 has only finitely many extensions of any given degree (such as
degree p). For (2), H corresponds to some finite extension K ′/K unramified outside of S, so the index-p
open subgroups of H correspond to certain degree-p extensions of K ′ unramified away from the places of
K ′ over S. Thus, the p-finiteness follows from the Hermite-Minkowski theorem, which says that only
finitely many extensions of K of bounded degree unramified outside S.

Returning to the general situation, assume G satisfies p-finiteness. By Schlessinger’s criterion, we will

eventually see that Def�(ρ) is always representable in ĈΛ, so there exists a universal framed deformation ring

R�
ρ ∈ ĈΛ and a universal framed deformation ρ�ρ satisfying the natural universality property. We will also

see that Def(ρ) is itself representable by a universal deformation ring (Rρ, ρuniv), at least when EndG(ρ) = k.
This will be the case if ρ is absolutely irreducible, and also if n = 2 and ρ is a non-split extension of distinct
characters.

1
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3. Zariski tangent space to the deformation functors

Let k[ǫ] denote the ring of dual numbers of k. The tangent space to a functor F : ĈΛ → Sets is
F (k[ǫ]) =: tF . Initially this is just a set; the hypotheses of Schlessinger’s criterion give it a natural structure
of k-vector space (compatibly with natural transformations in F ).

Let V ∈ Def(ρ)(k[ǫ]) = tDef(ρ). Then by definition there is given a specified isomorphism V/ǫV ∼= ρ, so
we obtain an exact sequence

0→ ǫV → V → ρ→ 0.

But it is easy to see that ǫV is naturally k[G]-isomorphic to ρ as well. Hence we see

tDef(ρ) = Ext1k[G](ρ, ρ) = H1(G,Ad(ρ));

this respects the k-linear structure on both sides.

More explicitly, given ρ ∈ Def�(ρ)(k[ǫ]) we can write ρ(g) = ρ(g) + ǫΦ(g)ρ(g) for Φ(g) ∈ Ad(ρ). One can
compute that the condition that ρ is a group homomorphism is the 1-cocycle condition on Φ. So tDef�(ρ) =

Z1(G,Ad(ρ)). Similarly one checks that two framed deformations are conjugate under Γ0(k[ǫ]) = In+ǫMn(k)
if and only if their associated cocycles differ by a 1-coboundary. We conclude that tDef(ρ) = H1(G,Ad(ρ)),
and

dimk B
1(G,Ad(ρ)) = dimAd(ρ)− dimH0(G,Ad(ρ))

is the number of framed variables. The p-finiteness hypothesis says precisely that dimZ1, dimH1 <∞.
If moreover EndG(ρ) = k then h0(G,Ad(ρ)) = 1, and we are in the representable situation. The forgetful

functor Def�(ρ) → Def(ρ) induces a map Rρ → R�
ρ , which turns out to be formally smooth, and thus

realizes R�
ρ as a ring of formal power series (in some number d of variables) over Rρ. The number d is

precisely the number of framed variables, which in this case is n2 − 1.
Concretely, what is going on is that if ρ has only scalar endomorphism (so likewise for any lifting of ρ)

and we consider the universal deformation Rρ then to “universally” specify a basis which residually lifts
the identity is precisely to applying conjugation by a residually trivial matrix which is unique up to a unit
scaling factor. And we can eliminate the unit scaling ambiguity by demanding (as we always may in a unique
way) that the upper left matrix entry is not merely a unit but is equal to 1. Thus, the framing amounts
to specifying a “point” of the formal Rρ-group of PGLn at the identity, which thereby proves the asserted
description of the universal framed deformation ring in these cases as a formal power series ring over Rρ in
n2 − 1 variables. To be explicit, over

R�(ρ) = R(ρ)[[Yi,j ]]1≤i,j≤n,(i,j) 6=(1,1)

the universal framed deformation is the lifting ρuniv equipped with the basis obtained from the standard one
by applying the invertible matrix 1n + (Yi,j) where Y1,1 := 0.

It must be stressed that we will later need to work with cases in which ρ is trivial (of dimension 2), so Rρ

does not generally exist. This is why the framed deformation ring is useful.

4. References

• Mazur’s articles in “Galois groups over Q” and “Modular Forms and Fermat’s Last Theorem”.
• Kisin’s notes from CMI summer school in Hawaii.

5. More on Zariski tangent spaces to deformation functors

From now on fix G to be either GK for local K or GK,S for a number field K. Fix ρ : G→ GLn(k) and

suppose the characteristic of the finite field k is p. If F is a deformation functor represented by R ∈ ĈΛ,
recall that

F (A) = HomΛ-alg(R,A), tF = F (k[ǫ]) = HomΛ-alg(R, k[ǫ]) = HomΛ-alg(R/(m2
R +mΛR), k[ǫ]).

The last equality is because the Λ-algebra maps are local morphisms, so in particular they send mR to ǫk[ǫ],
and hence m2

R to zero. But by general nonsense we have

R/(m2
R +mΛR) = k ⊕ mR

m2
R +mΛR

,
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where the second summand is square zero. Thus we see

tF = Homk(
mR

m2
R +mΛR

, k) = t∗R,

where for A ∈ ĈΛ we define the reduced Zariski cotangent space of A to be

t∗A =
mA

m2
A +mΛR

.

Exercise. Fix a map A
f→ B in ĈΛ. Then f is surjective if and only if t∗f : t∗A → t∗B is surjective. [Use

completeness... it’s a Nakayamal’s lemma sort of thing.]
A corollary of the Exercise is that if d = dimk tF = dimk t

∗
R then we can pick a k-basis x1, . . . , xd of t∗R, lift

it to a collection x̃i ∈ mR ⊂ R, and then the map Λ[[X1, . . . , Xd]]→ R sending Xi to x̃i will be surjective. A
priori bounds for the number of generators in the kernel (and hence on the dimension of R) can be obtained
by estimating certain H2s in the cohomology of G, which will be discussed later. These dimension bounds
are sometimes useful, but usually not strong enough to give good control on R.

6. Examples

A local case. Let K/Qℓ be local with ℓ 6= p and G = GK . Let ρ be the trivial representation of dimension
n. Then in particular EndG ρ ) k, so only the framed deformation functor is representable. In this case
we can actually construct R�(ρ) by hand. If ρ : G → GLn A is a deformation of the trivial representation
ρ, then G lands in the kernel ΓnA ⊂ GLn A. Now ΓnA = In +Mn(mA), explicitly, which is a pro-p group
isomorphism to the additive group Mn(A). In particular ρ factors throug h the maximal pro-p quotient of
G.

In particular ρ|IK factors through the p-part of the tame quotient Itame
K = IK/Iwild

K of the inertia IK of
K. The picture to keep in mind is the tower of field extensions

K →֒ Kunr →֒ Ktame →֒ K.

Now from the structure of local fields we know that the p-part of Itame
K is

I
tame,(p)
K = Zp(1).

Here the twist means that if σ ∈ I
tame,(p)
K then FrobK σ Frob−1

K = σq where q = ℓr = #(OK/mK). Fix a lift

f ∈ G of FrobK and τ a topological generator of I
tame,(p)
K . What we can conclude is that a lift ρ to any A is

specified by the images of f and τ , subject to the relation

ρ(f)ρ(τ) = ρ(τ)qρ(f).

So we can take
R�(ρ) = Λ[[{fij, τij}1≤i,j≤n]]/I

where the ideal of relations I is generated by the ones given by the matrix equations

[In + (fij)][In + (τij)] = [In + (τij)]
q[In + (fij)].

A global case. For a global case we’ll consider characters of G = GK,S . Note that we have a wonderful
fact in this case. The Teichmüller lift [·] : k →W (k) is a multiplicative section of W (k)→ k. This allows us
to twist any character ρ by the Teichmüller lift [ρ−1] of its reciprocal. to conclude that R(ρ) = R(1) where
1 : G→ k× is the trivial character. In other words, the universal deformation of a character ρ is just a twist
of the universal deformation of the trivial character (using the same coefficient ring).

Arguing just like in the local case, it follows that any lift ρ to A of the trivial mod p character ρ, must

factor through the maximal pro-p quotient G
ab,(p)
K,S of the abelianization of GK,S .

Let us specialize now to the case K = Q [the case of a general number field is similar, but requires class
field theory]. Assume p ∈ S, since otherwise stuff is boring. By the Kronecker-Weber theorem we know that
Gab

Q,S =
∏

ℓ∈S Z×
ℓ , which implies that the maximal pro-p quotient is

G
ab,(p)
Q,S =

∏

ℓ∈S,ℓ≡1(p)

(F×
ℓ )

(p) × (1 + pZp).
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So we can, in this case, simply take R = Λ[[G
ab,(p)
Q,S ]] to be the formal group algebra over Λ. From the

description of G
ab,(p)
Q,S we can be very explicit:

R =
Λ[[{Xℓ}ℓ∈S,ℓ≡1(p), T ]]

({((Xℓ + 1)p
ordp(ℓ−1) − 1)}ℓ∈S,ℓ≡1(p))

In particular if S = {p,∞} then R ∼= Λ[[T ]].

For a general number fieldK this relates to the Leopoldt conjecture which says that rkZp(G
ab,(p)
K,S ) = 1+r2,

where r2 is the number of conjugate pairs of complex embeddings of K.

7. Local and Global

We can relate the two examples from the last subsection in the following manner, which will be extremely
important later in one of Kisin’s key improvements of Wiles’ method. Let G = GK,S , ρ : GK,S → GLn(k) a
fixed residual representations, and Σ a finite set of primes. For each v ∈ Σ we have

ρ|Gv : GKv = Gv →֒ GK ։ GK,S
ρ→ GLn(k).

We have local framed deformation ringsR�
v := R�(ρ|Gv). Define a variation of the global framed deformation

functor by

Def�,Σ(ρ)(A) = {(ρA, {βv}v∈Σ)}/ ∼;
here, ρA is a deformation of ρ and βv is a basis for ρA|Gv which reduces to the standard basis for ρ. Then

in fact Def�,Σ(ρ) is also representable, by a ring R�,Σ
K,S . For each v ∈ Σ we have a forgetful map

Def�,Σ(ρ)→ Def(ρ|Gv )

and hence on the revel of representing objects, an algebra

R�
v → R�,Σ

K,S .

In concrete terms, this is saying that if we form the universal deformation of ρ equipped with a framing
along Σ and then forget the framing away from v and restrict to Gv, the resulting framed deformation of

ρ|Gv with coefficients in R�,Σ
K,S is uniquely obtained by specializing the universal framed deformation of ρ|Gv

along a unique local Λ-algebra homomorphism R�
v → R�,Σ

K,S .

Hence, by the universal property of completed tensor products (to be discussed in Samit’s talk rather
generally) we get an important map ⊗̂

Λ
R�

v → R�,Σ
K,S

in ĈΛ. (Note that we have to take the completion of the algebraic tensor product, which is not itself a complete
ring. For example, Λ[[x]]⊗Λ Λ[[y]] is a gigantic non-noetherian ring, but the corresponding completed tensor
product is Λ[[x, y]].) This is a rather interesting extra algebra structure on the global framed deformation
ring, much richer than its mere Λ-algebra structure; of course, this all has perfectly good analogues without
the framings, assuming that ρ and its local restrictions at each v ∈ Σ have only scalar endomorphisms.

This idea of viewing a global deformation ring as an algebra over a (completed) tensor product of local
deformation rings is the key to Kisin’s method for “patching” deformation rings in settings going far beyond
the original Taylor-Wiles method (where only the Λ-algebra structure was used).



Lecture 4: Generic fibers of deformation rings

Brian
October 23, 2009

Notes by Sam Lichtenstein

1. Some observations

Fix ρ : GQ,S → GL2(k) absolutely irreducible, and let ρ : GQ,S → GL2(R) be the universal deformation.
We’re interested in the map R → Tm for some Hecke algebra defined in terms of ρ. Note that the Hecke
algebra is 1-dimensional, and even finite free over Zp. The universal deformation ring R, however, often has
dimension > 1 and nonzero p-torsion. In other words, the surjection R ։ Tm is not even close to being an
isomorphism in general.

Example. Consider X0(49) which is an elliptic curve. [Cf. Nigel Boston’s papers on explicit deformation
rings for the details of this example.] Let ρ the representation from the 3-torsion of E, and let S = {3, 7,∞}.
Boston computed the universal deformation as

ρ : GQ,S → GL2

(
Z3[[x1, x2, x3]]

(1 + x1)3 − 1

)
.

Just by looking at the ring on the right side, it’s clear that its dimension is at least 2. (This example doesn’t
illustrate the phenomenon of p-torsion, but oh well...)

Morally, the reason for the higher dimension of R is that we are not imposing any local conditions at all
for the places in S.

A key observation is that even when we succeed in proving a modularity lifting theorem, we don’t know
until we’re done that R is Zp-finite and flat. In other words, even when in fact R turns out to be nice, we
have very little grasp of why it is nice without proving anR = T theorem.

However, this is really not so bad. For example, if we could show that R[1/p] ∼= Tm[1/p], that’s totally
fine. After all, we’re trying to study deformations of ρ over p-adic integer rings, which are p-torsion free and
reduced, so we rig the Hecke algebra to have the same properties. In other words, we only care about
the “p-adic points” of R so we can just as well study the structure of R[1/p]/nilpotents. And via Kisin’s
methods, it turns out that a thorough understanding of the “structure” of this ring is attainable in interesting
cases and is exactly what is needed for modularity lifting theorems. Things we would like to know:

• Characterize in some moduli-theoretic manner the connected components of its spectrum (e.g., so
we can detect when two p-adic points lie on the same component).

• Dimension.
• Singularities, i.e. the extent to which an appropriately defined notion of smoothness fails to hold.

For the last point, it is just as good in practice to pass to a formally smooth R-algebra (such as a power
series ring over R). So we can consider the framed deformation ring.

Remark. A key point is that R[1/p] is very far from being a local ring. For example, sayR = Zp[[x]] (which
is a rough prototype of the sort of ring that arises). Then

R[1/p] = Zp[[x]][1/p] = {f ∈ Qp[[x]] | denominators are bounded powers of p} ( Qp[[x]].

This ring has lots of Qp-algebra maps Zp[[x]][1/p] ։ OK [1/p] for finite extensions K/Qp, sending x into mK .
Hence it has lots of maximal ideals.

2. Digression on Jacobson rings

Definition. A Jacobson ring is a Noetherian ring A such that any p ∈ SpecA is the intersection of the
maximal ideals containing p.

Clearly a quotient of a Jacobson ring is Jacobson. Less evident, but in the exercises of Atiyah-MacDonald,
is that a finitely generated algebra over a Jacobson ring is Jacobson. Note that any field is Jacobson, as is any
Dedekind domain with infinitely many primes (but not a dvr, nor a local ring which is not 0-dimensional!).
In particular, a general localization of a Jacobson ring is certainly not Jacobson, though localization at a
single element is (since it is a finitely generated algebra).

1
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A consequence of the definition is that if X0 = MaxSpec(A)
j→֒ SpecA = X , then j is a dense quasihome-

omorphism, which means that U0 = X0 ∩ U ↔ U is a bijection between the collections of open sets in X0

and X . Jacobson rings abstract the nice properties enjoyed by algebras of finite type over a field.

Claim. If R is a quotient of a formal power series ring over a complete dvr A with uniforizer π then R[1/π]
is Jacobson, and for all maximal ideals m ⊂ R[1/π], the quotient R[1/π]/m is finite over the fraction field
K = A[1/π] of A. Moreover, every K-algebra map from R[1/π] to a finite extension K ′ of K carries R into
the valuation ring A′ of K ′, with the map R → A′ actually a local map.

Note it is elementary that every K-algebra map from R[1/π] to a finite extension K ′ of K has kernel that
is maximal: the kernel P is at least a prime ideal, and R[1/π]/P is an intermediate ring between the field
K and the field K ′ of finite degree over K, so it is a domain of finite dimension over a field (namelyK) and
hence is itself a field. Hence, P is maximal.

Also, everything in the Claim can be deduced from facts in rigid geometry concerningK-affinoid algebras,
by using the approach in deJong’s IHES paperCrystalline Dieudonné theory via formal and rigid geometry.
For convenience, we give a direct proof using commutative algebra, avoiding rigid geometry (but inspired by
it for some of the arguments).

The proof of the Claim is somewhat long (and was omitted in the lecture).

Proof. To prove the claim, first note that if the claim holds forR then it holds for any quotient ofR. Hence,
it suffices to treat the case when R = A[[x1, . . . , xn]] is a formal power series ring over A. We first check the
more concrete second part of the Claim: for finite K ′/K, any K-algebra map R[1/π] → K ′ carries R into
the valuation ring A′ of K ′ with R → A′ moreover a local map. In other words, we are studying A-algebra
maps R → K ′. This can be uniquely “promoted” to an A′-algebra map

A′ ⊗A R → K ′,

and we can pass the tensor product through the “formal power series” formation since A′ is a finite free
A-module. In other words, we can rename A′ as A to reduce to the case K ′ = K. So we claim that any
A-algebra map R → K must be “evaluation” at an n-tuple in the maximal ideal of A. If we can show it
carries each xi to some ai in the maximal ideal of A then the map kills xi − ai for all i. By completeness
of R it would be legal to make a “change of variables” renaming xi − ai as xi to reduce to the case when
the map kills all xi’s. Since the quotient of R by the ideal generated by the xi’s is identified with A, after
inverting π we get K (as a K-algebra!), so we’d have proved what we want.

Let’s now show that indeed each xi is carried to some ai in the maximal ideal of A. By composing the
given A-algebra map R → K with the natural inclusion A[[xi]] → R we are reduced to the case n = 1. That
is, we wish to prove that any A-algebra map A[[x]] → K must carry x to an element a in the maximal ideal
of A. This map must kill some nonzero f ∈ A[[x]], as A[[x]][1/π] has infinite K-dimension as a vector space,
and we can write f = πef0 for some e ≥ 0 and some f0 not divisible by π. Thus, f0 also dies in K, so by
renaming it as f we arrange that f has some coefficient not divisible by π. This coefficient must occur in
positive degree, as otherwise f would be a unit, which is absurd (as it is in the kernel of a map to a field).
Now by the formal Weierstrass Preparation Theorem (in one variable –see Lang’s Algebra), if d > 0 is the
least degree of a coefficient of f not divisible by π then f is a unit multiple of a “distinguished” polynomial:
a monic polynomial in x of degree d over A with all lower-degree coefficients divisible by π. Scaling away the
unit, we can assume that f is a monic polynomial of degree d > 0 with all lower-degree coefficients divisible
by π. Hence, A[[x]]/(f) = A[x]/(f) by long-division of formal power series (thanks to completeness of A!).
Our map of interest therefore “is” an A-algebra map

A[x]/(f) → K

and so it carries x to an element a of K that is a root of f . Since f is monic over A, we see a ∈ A. Since f has
all lower-degree coefficients in the maximal ideal, necessarily a is in the maximal ideal too. That completes
the proof of the second part of the Claim.

Now it remains to show the first part of the Claim: R is Jacobson, and if M is a maximal ideal of
R[1/π] then R[1/π]/M is of finite degree over A[1/π] = K. We argue by induction on the number n of
variables (motivated by the method of proof of the analytic Weierstrass Preparation theorem over C or
non-archimedean fields), the case n = 0 being trivial. Also, it is harmless (even for the Jacobson property)
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to make a finite extension on K if we wish. We will use this later, to deal with a technical problem when
the residue field k is finite (which is of course the case of most interest to us).

Assume n > 0, and consider a nonzero f ∈ R = A[[x1, . . . , xn]] contained in some chosen nonzero prime
or maximal ideal; clearly f can be scaled by π-powers so it is not divisible by π. We want to get to the
situation in which f involves a monomial term that is just a power of a single variable. Pick a monomial
of least total degree appearing in f with coefficient in A×. (Such a term exists, since f is not divisible by
π.) This least total degree d must be positive (as otherwise f(0) ∈ A×, so f ∈ R×, a contradiction). By
relabeling, we may suppose x1 appears in this monomial. If n = 1, this term is an A×-multiple of a power of
x1, so we’re happy. Now assume n > 1 and consider the homogeneous change of variables which replaces xi

with xi + cix1 for all i > 1 (and leaves x1 alone), with ci ∈ A to be determined in a moment. Each degree-d
monomial

aIx
i1
1 · · ·xin

n

in f (before the change of variable) with total degree d contributes

aIc
i2
2 · · · cinn xd

1

to the xd
1 term after the change of variable (with i1 = d − (i2 + · · · + in)). All other monomials can only

contribute to xd
1 with coefficient in maximal ideal of A. Thus, these other terms can be ignored for the

purpose of seeing if we get xd
1 to appear with an A×-coefficient after the change of variables.

To summarize (when n > 1), whatever ci’s we choose in A, we get after change of variable that xd
1 appears

with coefficient h(c) for some polynomial h in n− 1 variables over A that has some coefficient in A× (since
i1 is determined by i2, . . . , in). Thus, h has nonzero reduction as a polynomial over the residue field k of A,
so as long as this reduction is nonzero at some point in kn−1 we can choose the c’s to lift that into An−1

to get the coefficient of xd
1 to be in A×. If k is infinite, no problem. If k is finite (case of most interest!),

for some finite extension k′ of k we can find the required point in k′n−1, so go back and replace A with
the corresponding unramified extension (and the chosen prime with each of the ones over it after scalar
extension) to do the job.

The upshot is that after a suitable change of variables (and possible replacement of A with a finite
extension in case k is finite), we can assume that f contains some xd

1 with an A×-coefficient. Thus, if we
view f in

R = (A[[x2, . . . , xn]])[[x1]]

then it satisfies the hypotheses of the general Weierstrass Preparation (with complete coefficient ring) as
in Lang’s Algebra. This implies that f is a unit multiple of a monic polynomial in x1 whose lower-degree
coefficients are in the maximal ideal of R′ = A[[x2, . . . , xn]] (which means A if n = 1). We can therefore scale
away the unit so that f is such a “distinguished” polynomial, and then do long division in R′[[x1]] due to
completeness of R′ to infer that

R/(f) = R′[[x1]]/(f) = R′[x1]/(f).

This is a finite free R′-module!
We may now draw two consequences. First, if P is a prime ideal of R[1/π] containing f then R[1/π]/P is

module-finite over the ringR′[1/π] which is Jacobson by induction, soR[1/π]/P is Jacobson. Hence, P is the
intersection of all maximals over it, whence we have proved that R[1/π] is Jacobson. Second, for a maximal
ideal M of R[1/π] containing f , the ring map R′[1/π] → R[1/π]/M is module-finite so its prime ideal kernel
is actually maximal. That is, we get a maximal ideal M ′ of R′[1/π] such that R′[1/π]/M ′ → R[1/π]/M is of
finite degree. By induction, R′[1/π]/M ′ is of finite degree over K, so we are done. �

3. Visualizing R[1/p]

Let R = A[[x1, . . . , xn]]/(f1, . . . , fm) and K be in the last subsection. Observe that Homloc.A−alg(R,A′) =
HomFrac(A)−alg(R[1/π], A′[1/π] = Frac(A′)) for any finite dvr extension A′ of A. This suggests the following
geometric perspective on the ring R[1/π]: it corresponds to the locus of geometric points (xi) with coordinates

in Frac(A) lying in the open polydisk {|x1|, . . . , |xn| < 1} at which the convergent power series f1, . . . , fm all
vanish. To make this viewpoint precise, one must regard the spaces in question as rigid analytic spaces.
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4. Final thought

We’ll see that for Galois deformation ringsR, the completions of R[1/p] at maximal ideals are deformation
rings for characteristic zero representations corresponding to the maximal ideals in question. This is very
interesting, since R itself was entirely about deforming modp things!

5. Back to examples of explicit universal deformation rings

Caveat: These sorts of examples are kind of “useless”. The reference for N. Boston’s examples is Inv.
Math. 103 (1991).

Example 1 [loc. cit., Prop. 8.1.] Let E : y2 = x(x2−8x+8), an elliptic curve with complex multiplication
by Q(

√
−2). Let ρ be the representation on the 3-torsion:

GQ,{2?,3,5,∞} → GL2(F3).

In general we know that there is some surjection Z3[[T1, . . . , Td]] ։ R(ρ) where we know the smallest d is
(by NAK) d = dimmR/(m

2
R, 3), and mR/(m

2
R, 3) = H1(GQ,{2?,3,5,∞},Ad(ρ)). Here the adjoint module is

Ad(ρ) = EndF3(ρ) with GQ,{2?,3,5,∞} acting by conjugation via ρ. In this particular case one can compute
that d = 5, so

R(ρ) = Z3[[T1, . . . , T5]]/I

where the ideal of relations has the form
I = δ · (f, g)

for
f = 8u4 − 8u2 + 1, g = 8e3 − 4u, u = (1 + T4T5)

1/2

and δ (which may involve all the Tis) is obtained by choosing a certain presentation of a pro-3 group (coming

from a wild inertia group, perhaps for the splitting field of ρ?), and setting δ = det(ρ
univ

(y)− 1) where y is
a particular generator in said presentation. Consequently one can write down some “explicit” deformations
of ρ by looking for solutions to the relations above in a Z3-algebra...

Example 2 [Boston-Ullom]. Let E = X0(49) and ρ = ρE,3 the representation on the 3-torsion:

GQ,{3,7,∞} → GL2(F3).

In this case the universal deformation ring is particularly simple:

R ∼= Z3[[T1, . . . , T4]]/((1 + T4)
3 − 1).

We have (1+T4)
3−1 = T4(T

2
4 +3T4+3). The quadratic factor is irreducible overQ3, but not overQ3(

√
−3).

So, loosely speaking, SpecR has two irreducible components but three “geometric” irreducible components:
T4 = 0 and T4 equal to either of the conjugate roots of the quadratic factor. For example, to recover the
3-adic Tate module of E one considers the map R → Z3 given by mapping all Tis to 0. This is a sort of
“canonical” Z3-point of SpecR. Since the quadratic factor of the relation isQ3-irreducible, so that quadratic
field cannot be Q3-embedded into Q3, every Z3-point lies in the T4 = 0 component.

The lesson to take from this seems to be that it can be hard to detect components, or more generally
aspects of the geometry, of SpecR, when only looking at p-adic points over a small field like Qp; we have to
expect to work with points in many finite extensions in order to effectively probe the geometry. All this is
by way of motivation for our interest in characteristic zero points of deformation rings, and (for example)
our willingness to throw out all possible nastiness at p by studying R[1/p] instead of R itself.

6. Back to Characteristic 0

Now let Λ be a p-adic dvr with fraction field K and residue field k. Let R = Λ[[Xn, . . . , Xn]]/I be the
universal deformation ring of a residual representation ρ : Γ → GLN (k), for a profinite group Γ satisfying
the requisite p-finiteness conditions (e.g. GK for local K or GK,S for a number field K).
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Remark. We have seen above that for any maximal ideal m ⊂ R[1/p], the residue field R[1/p]/m is of finite
degree over k. The intuition for this fact is that these closed points of SpecR[1/p] correspond to Galois
orbits over K of K-solutions to I = 0 in the open unit n-polydisk. (The case n = 1 is a consequence of
the Weierstrass Preparation Lemma. One can relate the geometry of SpecR[1/p] to the geometry of the
aforementioned “rigid analytic space” I = 0. For example, if R[1/p] is connected (no nontrivial idempotents)
then I = 0 is connected in the sense of rigid geometry. One can also match up the dimensions of the
components. The input for this equivalence is the (self-contained!) §7 of de Jong’s IHES paper Crystalline
Dieudonné theory . . . , but we won’t use it.

We also saw above that any K-algebra map R[1/p] → K ′ for a finite extension K ′/K is actually given by
sending all the Xis to elements xi ∈ mK′ ⊂ OK′ ⊂ K ′. In other words, R ⊂ R[1/p] actually lands in OK′ !

Now fix a K-algebra map x : R[1/p] ։ K ′ into a finite extension of K. (“Contemplate a p-adic point of
SpecR”.) Let

ρx : Γ
ρ
univ

→ GLN (R) → GLN (R[1/p]) → GLN (K ′)

be the specialized representation. (In the Boston-Ullom example above, when we take x : R[1/3] → Q3 to
be the map sending all the Tis to zero, then ρx is the 3-adic Tate module of X0(49).)

Goal: Understand the dimension dimR[1/p]mx = dimR[1/p]∧mx
. (Here (·)∧ denotes completion.)

For instance, is this complete local ring regular? Perhaps even a power series ring over K ′? If so, then its
dimension is dimmx/m

2
x.

Theorem. Let ρ
univ

x : Γ → GLN (R[1/p]∧mx
) be induced from ρ

univ

by the natural map R → R[1/p]∧mx
. Then

the diagram

Γ
ρ
univ

x //

cont

ρx

%%LLLLLLLLLLLL GLN (R[1/p]∧mx
)

��
GLN (K ′)

commutes, and in fact ρ
univ

x is the universal for continuous deformations of ρx.

More precisely, if one considers the category Ĉ of complete local noetherian K ′-algebras with residue field

K ′, and the functor on the category C of artinian quotients of objects in Ĉ which picks out those deformations
of ρx which are continuous for the p-adic topology on such artinian quotients, regarded as finite-dimensional
K ′-vector spaces, then R[1/p]∧mx

is the representing object.

Remark. If A is a complete local Noetherian F -algebra and the characteristic of F is zero, and A/m = F ′

is a finite extension of F , then there exists a unique F -algebra lift F ′ →֒ A. Why? By completeness we have
Hensel’s lemma and by characteristic zero we have F ′/F separable. So we can find solutions in A to the
defining polynomial of F ′ over F .

Why do we care about the theorem?

(1) The deformation ring R[1/p]∧mx
is isomorphic to K ′[[T1, . . . , Tn]] if and only ifR[1/p]∧mx

is regular (by
the Cohen structure theorem), and the power series description is precisely the condition that the
corresponding deformation functor for ρx is formally smooth (i.e., no obstruction to lifting artinian
points in characteristic 0). This holds precisely when H2(Γ,Ad(ρx)) = 0. So that is interesting: a
computation in Galois cohomology in characteristic 0 can tell us information about the structure of
R[1/p] at closed points.

(2) (mx/m
2
x)

∨ ∼= H1
cont(Γ,Ad(ρx)), by the continuity condition we imposed on the deformations in the

theorem.

Combining (1) and (2), we can check regularity of R[1/p] at a closed point and in such cases then even
compute dimx R[1/p] by doing computations in (continuous) Galois cohomology with p-adic coefficients!

7. Proof of theorem

Step 1: Reduce to the case K ′ = K. Here is the trick. Set Λ′ = OK′ . Note that Λ′⊗ΛR is local because
(Λ′ ⊗Λ R)/mR = Λ′ ⊗Λ k = k′ is a field. The Λ′-algebra Λ′ ⊗Λ R is the universal deformation ring of ρ⊗k k

′
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(where k′ is the residue field of K ′) when using Λ′-coefficients; this behavior of deformation ring with respect
to finite extension of the coefficients will be proved in Samit’s talk. Consider the diagram

K ′ ⊗K R[1/p]
x′

// K ′

(Λ′ ⊗Λ R)[1/p]

Λ′ ⊗Λ R

OO

// Λ′

OO

Exercise: (Λ′ ⊗Λ R)[1/p]∧mx′
∼= R[1/p]∧mx

as K ′-algebras.
So we can rename Λ′ as Λ, completing the reduction.

Step 2: Observe that since ρ is absolutely irreducible, so is ρx. Consequently any deformation of ρx has
only scalar endomorphisms.

Step 3: Consider any deformation

Γ
θ //

ρx ##GGGGGGGGG GLN (A)

��
GLN (K)

where A is a finite local K-algebra with residue field K. We would like to show that there exists a unique

K-map R[1/p]∧mx
→ A which takes ρ

univ

x to θ, up to conjugation. Why is this sufficient? Because if so, then

there would be lifts of ρx to GLN (A), one coming from ρ
univ

x and the other being θ, which are GLN(A)-
conjugate to one another by some matrix M . Upon reduction to GLN (K), the matrix M would centralize
ρx. So by Step 2, M must be a scalar endomorphism c ∈ K×. Consequently we can replace M by c−1M
to conclude that the two lifts are conjugate to one another by a matrix which is residually trivial. The

latter is precisely what we need to prove that ρ
univ

x is universal. (Note that if we used framed deformations
throughout then this little step wouldn’t be needed. It is important because in later applications we will
certainly want to apply the Theorem to cases for which ρ is not absolutely irreducible. The reader can check
that the proof of the Theorem works in the framed setting once the preceding little step is bypassed.)

The map we need is the same as making a local K-algebra map

R[1/p]mx → A

with the same property with respect to θ, since A is a complete K-algebra. (Note that this “uncompletion”
step is only possible since we already did Step 1! We originally completed R[1/p]mx, which is a K-algebra
and generally not aK ′-algebra.) The latter is the same as a K-algebra map R[1/p] → A such that R[1/p] →
A → K is the original point x, which takes ρ

univ

to θ. (“It’s all a game in trying to get back to R”.) In other
words, we wanted a dotted map in the diagram

R //

∃!ex
��

R[1/p]

x
""FFFFFFFF

∃!? //___ A

��
Λ // K

(The existence of x̃ is by one of the propositions from §6.) But R[1/p] is just a localization of R and A is
a Λ[1/p]-algebra (it is a K-algebra!), so in fact the existence of a unique dotted map above is equivalent to
the existence of a unique dotted map α in the diagram

R

ex

��

α

∃!? //___ A

��
Λ // K
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such that α takes ρ
univ

to θ. Now unfortunately A is not in the category ĈΛ [typically it is something like
K[t]/(t7)], so θ is not quite a deformation of ρ, so we cannot appeal directly to the universal property of

(R, ρ
univ

). Instead we need to mess around a bit.
Here’s the point. A = K ⊕mA and mA is a finite-dimensional K-vector space which is nilpotent.

Claim. mA = lim−→ I where the limit is taken over Λ-finite multiplicatively stable Λ-modules I.

(Idea of the proof: take products and products and more products. By nilpotence and finite-dimensionality
ofmA overK, you don’t have to keep going forever. Then take the Λ-span of finite collections of such products
to get the desired I’s.)

Write ΛI for Λ⊕ I.
Lemma/Exercise: Any Λ-algebra map R → A lands in some ΛI . (Hint: choose I containing the images

of all the X ’s.)
So it’s enough to show two things.

(1) For some I we have a map R → ΛI giving a deformation θI of the “integral lattice” version ρex of

ρx. The image of Γ under ρ
univ

is topologically finitely generated (since GLN (R) is essentially pro-p
and Γ satisfies the p-finiteness condition), so then there exists some I0 such that θ factors through
GLN (ΛI0), giving a map θI0 : Γ → GLN (ΛI0).

(2) The map from (1) is unique.

Indeed, by then comparing any two I and I ′ with a common one, we’d get the desired existence and
uniqueness at the level of coefficients in A.

To prove (1), note that ΛI ∈ ĈΛ and θI deforms ρex, and hence ρ. Here is the picture:

ρ
univ ∃ //_______

!!

θI

��
ρex

��
ρ

The induced map R → ΛI respects the map to Λ coming from the fact that ρex deforms ρ, because if not,
then we would have another map R → ΛI → Λ, which contradicts the universal property of R.

To prove (2) just use the uniqueness from the universal property of (R, ρ
univ

) for deforms on ĈΛ.



Lecture 5: Schlessinger’s criterion and deformation conditions

Brandon Levin

October 30, 2009

1. What does it take to be representable?

We have been discussing for several weeks deformation problems, and we have said that we would like

our deformation functors to be representable so we can study their ring-theoretic properties. We have stated

that the framed deformation functor is always representable and that the unrestricted deformation functor

is under certain hypotheses, but we have yet to prove either assertion.

There is a general theory of functors on CΛ the category of Artin local Λ-algebras. My goal in this section

is to, in as concrete terms as possible, describe what it takes for such a functor to be representable and how

we might verify these properties. I then verify these properties for Dρ̄ with Endk(ρ̄) = k.

Along the way, I will point out some subleties of the relationship between CΛ and ĈΛ.

Let k be a finite field. Recall that CΛ is the category of local Artin Λ-algebras with residue field k, where

Λ is any complete noetherian ring with residue field k. One can just think of Λ =W (k) in which case every

local Artin ring with residue field k admits a unique Λ-algebra structure. Denote by ĈΛ the category of

complete local Noetherian rings with residue field k.

We are interested in functors F : CΛ → Set. We say F is representable if there exists R ∈ ĈΛ such that F

is naturally isomorphic to HomΛ(R, ·). (Technically you might call this pro-representable but it won’t cause

any confusion to just say ”representable”).

Elementary Properties of Representable Functors On CΛ

I If F is representable, F (k) = HomΛ(R, k) = single point. We assume from now on that F (k) is the

one point set.

II If F is representable, F (k[ǫ]) = Homk(mR/m
2
R +mΛ, k) = tF is a finite dimensional vector space

over k.

III If F is representable, then F commutes with fiber products, i.e. if A→ C and B → C are two maps

in CΛ then the natural map

(1) F (A×C B) → F (A) ×F (C) F (B)

is a bijection.

Exercise 1.1. If you have not seen it before, you should verify that fiber products exist in CΛ induced by

set-theoretic fiber products. This is not true in ĈΛ (See Conrad’s example in Mazur’s article ??).

Exercise 1.2. Show that there is a natural multiplicative map k → EndΛ(k[ǫ]) given by a 7→ αa where

αa(x+ yǫ) = x+ ayǫ.

1
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Remark 1.3 (Tangent Space). Without knowing F is representable, its worth noting what is required for

the tangent space to make sense. Let tF := F (k[ǫ]). The natural map k → EndΛ(k[ǫ]) induces scalar

multiplication on tF . We also know k[ǫ] is a group object in CΛ compatible with scaling. Functoriality gives

a map

F (k[ǫ]×k k[ǫ]) → tF .

If we can identify the LHS with tF ×tF , then we are set. The LHS does admit a natural map to F (k[ǫ])×F (k)

F (k[ǫ]) = tF × tF . If this map is bijective (a special case of (III)), then tF has a vector space structure.

Exercise: Check for F representable that the vector space structure on tF given functorially as above is

the same as the natural vector space structure on Homk(mR/m
2
R +mΛ, k).

It turns out that property (III) along with the dimk tF < ∞ is necessary and sufficient for F to be

representable. However, I will not prove this because it is far too general to be useful. It could be quite

difficult to check (III) for every possible pair of morphisms. Luckily, we don’t have to! And this leads us to

Schlessinger’s criterion after a brief definition.

Definition 1.4. A map A→ B in CΛ is small if its surjective and its kernel is principal and annihilated by

mA.

Theorem 1.5 (Schlessinger’s Criterion). Let F be a functor from CΛ to Sets such that F (k) is a single

point. For any two morphism A→ C and B → C consider the morphism (1).

Then if F has the following properties:

H1 (1) is a surjection whenever B → C is small.

H2 (1) is a bijection when C = k and B = k[ǫ].

H3 tF is finite dimensional

H4 (1) is a bijection whenever A→ C and B → C are equal and small.

then F is representable.

I will return to the proof at the end given sufficient time, but one essentially makes clever use of the

structure of Artin local rings working at each nilpotent level to build the representing ring as an inverse limit

(see Schlessinger [?]. We denote the criterion by (SC).

Schlessinger’s criterion is just one of many ways to show the deformation functor is representable. It has

the advantage that it is concrete and allows one to really exploit the fact that we are working over Artin

rings.

Proposition 1.6. Assume that EndG(ρ̄) = k and G satisfies the p-finiteness condition. Then the deforma-

tion functor Dρ̄ is representable.

Proof. I leave it to the reader to verify the following useful fact Gln(A ×C B) ∼= Gln(A) ×Gln(C) Gln(B) as

groups. This says that given any two lifts ρA and ρB which agree when pushed-forward to C come from a
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lift to the fiber product. The only difficulty then in verifyingH1 through H4 will be the ambiguity coming

from conjugation.

In what follows ρA and ρB will always lifts of ρ̄. We assume we have maps A→ C and B → C satisfying

the hypotheses in (SC). Further, we denote by ρ̃A and ρ̃B the respective push-forwards of ρA and ρB under

the given maps.

(H1) We are given ρA and ρB such that ρ̃A =Mρ̃BM
−1 for someM ∈ Gln(C). Since B → C is surjective,

we can lift M to Gln(B). Replacing ρB by MρBM
−1 in the same deformation class yields compatible lifts

which can then be lifted to A×C B.

(H2) Here we start with ρ and ρ′ over the fiber product such that ρA and ρB are conjugate to ρ′A and ρ′B

respectively. Choose conjugators MA and MB. Note that if M̃A and M̃B were equal, we could lift them to

Gln(A×C B) and we would be done. This is true in general with no hypotheses on A,B, and C.

We are free to multiply MB on the right by any matrix N such NρBN
−1 = ρB. Let Stab(ρB) be the set

of such N . Further note that M̃−1
B ∗ M̃A is in Stab(ρ̃B). If we can lift this to Stab(ρB) then we are done.

Hence a sufficient condition for the desired map to be injective is that:

(2) Stab(ρB) → Stab(ρ̃B)

is surjective.

This is clear since for C = k, Stab(ρ̃B) = k∗. I leave it as a exercise to show that for B = k[ǫ] and C = k,

the equation (2) holds without any hypotheses on ρ̄.

(H3) Follows from p-finiteness of Galois groups, given that (H2) implies the existence of the tangent space.

(H4) I leave it to the reader to verify that surjectivity of (2) follows from the following lemma:

If EndG(ρ̄) = k and ρA is any lift of ρ̄, then

EndG(ρA) = A.

Set L = EndG(ρA) and note that L is an A-submodule of End(ρA) which contains the scalar matrices

A ∗ I. Further, we have that L×A A/mA = EndG(ρ̄). By Nakayama, L is generated over k by any lift of I.

Thus, L = A. �

If ρ̄ is absolutely irreducible then it will satisfy the above hypothesis by Schur’s lemma. However, there

is important other case where ρ̄ is not irreducible but still satisfies EndG(ρ̄) = k.

Proposition 1.7. Let k be any field, and let V be any representation of G with a G-stable filtration V1 ⊂
V2 ⊂ . . . ⊂ Vn = V such that:

I Vi+1/Vi is one-dimensional with G acting by χi.

II The χi are distinct.

III The extension Vi/Vi−1 → Vi+1/Vi−1 → Vi+1/Vi is non-split for all i.

Then EndG(V ) = k.
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Proof. Before you read this proof, I recommend doing the 2 by 2 case by hand which I may or may not have

gotten to in the lecture.

Let M ∈ EndG(V ) i.e. M commutes with the G-action. We want to show that M is a scalar. We first

note that V1 is the unique 1-dimensional subspace on which G acts via χ1. For if V
′
1 were another, we could

build a Jordan-Holder series V1 ⊂ V1 ∪ V ′
1 ⊂ . . . and thus χ1 would appear at least twice in Jordan-Holder

decomposition which can’t happen since χi are distinct.

It follows then that M preserves V1 and by induction the whole flag. LetM act on V1 by multiplication

by a. We claim that M = aI. Consider M − aI : V → V also in EndG(V ). Since M − aI|V1 = 0, it factors

as a morphism

T : V/V1 → V.

By induction, the induced map V/V1 → V/V1 which is G-invariant is multiplication by a scalar c. If c 6= 0,

then T |V2 would give a splitting of the extension where i = 1 and so we can assume c = 0.

Thus, T is actually a G-invariant map

V/V1 → V1.

If T = 0 we are done, else let Vi be the first subspace on which it is non-trivial. Then T : Vi/Vi−1 → V1 is

an isomorphism as G-modules, contradiction. �

Remark 1.8. Schlessinger’s criterion is a statement purely about a functor on CΛ. However, once we know

F is representable, its quite natural to talk about its points valued in complete local Noetherian rings for we

have HomΛ(R,A) = HomΛ(R, limA/mA
n) = limF (A/mA

n). In fact, that’s really what we were interested

in all along, for example, Zp-deformations, not representations on Artin local rings. So we must ask ourselves,

are the points of our universal deformation ring valued in ĈΛ what we want them to be?

Let A be a complete local Noetherian ring. Its clear the any deformation to A yields a map Runiv
ρ̄ → A

(here’s where you use that your representation is continuous). However, the other direction requires an

argument. Denote A/mn
A by An. We are given deformations ρn ∈ Dρ̄(An) such that ρn⊗An−1 is equivalent

to ρn−1. If ρn formed a compatible system of lifts, we would be fine, but we have conjugations interfering

at each level. In this case, it can be resolved quite easily. Assume we have compatibility up to ρn. Given

that M(ρn+1 ⊗An)M
−1 = ρn change ρn+1 by any lift ofM to GlN (An) and proceed by induction.

We will return to this point again later where the argument will require some extra input.

Remark 1.9. (Framed Deformations) The fact mentioned earlier that Gln(A×CB) ∼= Gln(A)×Gln(C)Gln(B)

implies that the framed deformation functorD�
ρ̄ commutes with all fiber products and thus is representable.

However, (SC) is probably way to fancy a way to prove existence for framed deformations. For the record,

I give a proof that R�
ρ̄ exists.

Proof. Since GlN (k) is finite, ρ̄ is trivial on some finite index subgroup H of G. For any lift, we have that

ρA(H) ⊂ ker(GlN (A) → Gl(k))
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which is a p-group for any A ∈ CΛ. Thus, ρA|H factors through maximal pro-p quotient of H which by

p-finiteness is topologically finitely generated. Pick generators g1, . . . , gj . Also, pick coset representatives for

gj+1, . . . , gm for G/H .

Any lift ρA is determined by where the {gi} are sent. Consider the power series ring R = Λ[[X l
i,j ]] where

1 ≤ i, j ≤ N and 1 ≤ l ≤ m. I claim that we can construct the universal framed deformation ring as a

quotient of R such that the universal framed deformation ρuniv is given by gl goes to the matrix (X l
i,j). Let

S be the set of relations in G amongst the gl. For any relation, we can consider the corresponding relation

on matrices under the map gl goes to (X l
i,j). We form the ideal I in R generated by these relations. Then

D�
ρ̄ is represented by R/I . �

Before we move on to deformation conditions, I would like to recall several different interpretation of the

tangent space which will be useful in the future. We would like to give a concrete interpretation of the

abstract tρ̄ := Dρ̄(k[ǫ]). Let (V, τ) be a deformation to k[ǫ] where τ is an isomorphism V/ǫ → ρ̄. Consider

the following exact sequence of k-vector spaces:

0 → ǫV → V → V/ǫV → 0.

Simply because G commutes with the action of k[ǫ], this is an extension of G-modules. Further one can

identify via τ the terms on both ends with ρ̄.

Hence we get a map tρ̄ → Ext(ρ̄, ρ̄). It is an exercise to show the map is bijective. By general non-

sense, one can identify this Ext-group with H1(G, ad(ρ̄)). Note that ad(ρ̄) is just End(ρ̄) where G acts via

conjugation (ad stands for adjoint).

I will give you the map Ext(ρ̄, ρ̄) to H1(G, ad(ρ̄)), but I leave it to you to check that the vector space

structures on tρ̄ and H1(G, ad(ρ̄)) agree.

Given an extension 0 → V ′ → V → V ′′ → 0 choose a splitting φ : V ′′ → V just as vector spaces. The

map g 7→ gφg−1 − φ is a co-cycle with values in ad(ρ̄).

In the next section, as we impose various deformation conditions, we will eventually want to keep track

of the effect on the tangent space.

2. Deformation Conditions

As we have mentioned already several times in this seminar, whether in the local or global situation, the

unrestricted universal deformation ring if it exists will be far too ”big” to be useful. Hence we will want

to impose some conditions on what kinds of deformations we allow. Deformation conditions can come in

different varieties. Often we have global representations on which we impose local conditions at finite set of

primes. At these local places, we might impose matrix conditions for example, fixed determinant, ordinary,

etc. We could also impose conditions coming from geometry or p-adic Hodge theory: flat, crystalline,

semi-stable. I will discuss some of these in more detail later.

In Mazur’s article [?], he defines the notion of deformation condition quite generally such that everything

we will talk about probably fits into that framework. However, for our purposes and for the purpose of
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intuition, the definitions are unilluminating. Instead, I will give two different perspective from which one

could derive all the definitions.

Functorial Perspective IfDρ̄ is the deformation functor, a deformation condition shoulddefine a subfunctor

D′
ρ̄ of Dρ̄. Further, if Dρ̄ is representable, then D′

ρ̄ should be as well. One could use the term relatively

representable as Mok did, but its not necessary.

The first statement is usually immediate for any deformation condition. The second one is not. This is

a place you might use Schlessinger’s criterion, maybe you know already that Dρ̄ satisfies Schlessinger then

you just have to show the D′
ρ̄ does too. We will see an example of this soon.

Deformation Space Perspective If Dρ̄ is represented by Rρ̄, then we can talk about Spec Rρ̄ as the space

of all deformations of ρ̄. Personally, I find this picture quite compelling.

A brief aside. Say ρ̄ is modular, then Akshay explained that we get a surjective map Rρ̄ → T , a Hecke ring.

In geometric language, Spec T is a closed subspace of the deformation space which includes the closed point

corresponding to ρ̄. Imagine this as the locus of ”modular” deformations. Given a representation coming

from an elliptic curve, etale cohomology, or somewhere else, whose reduction is ρ̄, its natural to ask does it

land in that locus. Our goal then, as I understand it, is to impose enough purely representation theoretic

condition to cut out the ”modular” locus. Then whatever representation we started with will presumably

have those properties and hence will be modular.

From this perspective then a deformation condition is just a closed condition on the space of all deforma-

tions. More concretely, there exist an ideal I such that for any f : R → A, f ◦ ρuniv satisfies the deformation

condition if and only if f factors through R/I .

Remark 2.1. We can connect the two perspectives as follows: let D′ be subfunctor of D and assume they

are both representable by R and R′, then we get a natural map R → R′. I claim this map is surjective. It

suffices to check that the map on cotangent spaces is surjective. But the map on cotangent spaces is dual to

the map on tangent spaces which is injective because D′(k[ǫ]) ⊂ D(k[ǫ]).

Remark 2.2 (Relative Perspective). There is relative perspective which doesn’t require Dρ̄ to be repre-

sentable. Given any deformation ρ to A, we can ask if the subset of maps Spec B → Spec A such that the

pullback of ρ has a given condition is represented by a closed subset of Spec A? If this holds for all A and if

the univeral deformation ring exists then we can apply it to (Rρ̄, ρ
univ). This is the perspective Kisin often

takes.

2.1. Determinant Condition. Let G be any local or global Galois group.

Definition 2.3. Let A ∈ ĈΛ, and let δ : G → Λ∗ be a character. We say a representation ρ on a free rank

n A-module has determinant δ if ∧n : G→ A∗ factors through δ.

Consider the functor of deformations with fixed determinant δ (assume that ρ̄ has determinant δ). I claim

this is a deformation condition.
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Here the second perspective is most natural. Let δuniv : G→ R∗
ρ̄ be the the determinant of the universal

deformation of ρ̄ assuming it exists. Then let I be the ideal generated by δuniv(g)−i(δ(g)) where i : Λ∗ → R∗
ρ̄

is inclusion coming from algebra structure. Then, Rρ̄/I represents deformations with determinant δ. Its

usually denoted by Rδ
ρ̄.

I haven’t worked it out, but I suspect it would quite a bit more tedious to show for example that the

determinant condition defines a subfunctor which satisfies Schlessinger’s criterion or that it is relatively

representable.

Note that even if Dρ̄ is not representable, the same proof goes through for any (A, ρ) to show relative

closedness as in Remark 2.2.

2.2. Unramified Condition. Let K be a global field and let S be a finite set of primes. We denote by

GK,S the maximal Galois group unramified outside S. Take ρ̄ to be a residual representation of GK,S which

happens also to be unramified at some ν ∈ S.

Definition 2.4. Let ρA be any deformation of ρ̄. We say that ρA is unramified at ν if ρA|GKν
is unramified

for any choice of decomposition group GKν .

In showing this is a deformation condition, I will illustrate the relative perpective. Again, let ρA be any

deformation of ρ̄. Consider any map f : A → B. The push-forward f∗(ρA) will be unramified an ν iff its

trivial on the inertia group IKν (for some choice of inertia).

Let J be the ideal in A generated by the entries of {I − ρA(g)} for all g ∈ IKν . Then, one can verify that

A/J represents the unramified at ν condition. This is the relative condition; if Rρ̄ exists, we can apply the

same argument to construct the universal deformation ring unramified at ν.

2.3. Ordinary Deformations. We will go into extensive detail in this section as the notion of ordinary will

play a prominent role in what is to come. There seem to be several definitions of ordinary floating around.

I chose one that is both concrete and sufficiently general for now.

Definition 2.5. Let G = GK be a local Galois group where the residue characteristic is p. Let ψ : G→ Z∗
p

be the p-adic cyclotomic character. An n-dimensional representation ρ of G is ordinary if

ρ|IK ∼




ψe1 ⋆ ⋆ ⋆

0 ψe2 ⋆ ⋆

0 0
. . . ⋆

0 0 0 1




where e1 > e2 > . . . > en−1 > 0. Implicitly we are including Zp → Λ so that the definition makes sense

over any Λ-algebra and hence on our category ĈΛ.

Before we continue, let me say where this condition is coming from.
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Example 2.6. If E is an elliptic curve overK a local field of residue characteristic p which has good ordinary

reduction at p, then the representation of GK on Tp(E) is ordinary. In particular, it has the form

g 7→


 ψ(g)χ1(g) ⋆

0 χ2(g)




where χ1 and χ2 are unramified characters on GK .

There is an corresponding notion of what it means for a modular form to be ordinary, but I won’t get

into it here.

Remark 2.7. Note that though ψe is non-trivial on IK for any e 6= 0 (in fact its infinitely ramified), its

possible for ψe to be residually trivial. The residually trivial case will be of interest to us later on, but for

now, we assume that all ψei are residually distinct and non-trivial. Its not hard to work out exactly when

this happens based on K, p, ei.

Next, we would like to show that if we conjugate ρ such that ρ|IK is upper triangular, then ρ will be upper

triangular. This follows from the following useful lemma.

Lemma 2.8. Let ρ : IK → GlN (A) be a representation, A ∈ CΛ landing in the upper triangular matrices with

residually distinct characters along the diagonal. If MρM−1 is also upper triangular with same characters

occurring in the same order, then M is upper triangular.

Proof. We prove it in two steps. First we show that ρ preserves a unique flag. We know this fact residually

using a Jordan-Holder component argument as in Proposition 1.7. Let M ∼= AN with G acting through ρ.

Let L1 ⊂M be the line corresponding to e1 on which ρ acts by χ1. We want to show that given anym ∈M

on which G acts via χ1, m ∈ L1. From there, it is a simple induction on N .

Consider the quotient N = M/L1. I claim N contains no non-zero v on which G acts via χ1. Assume

there existed such an v. Filter N by mn
AN , and let n0 be the smallest n such that v /∈ mn

AN . Clearly G acts

on the image of v in mn0−1
A N/mn0

A N via the character χ1. However, its not hard to see that for any n,

mn
AN/m

n+1
A N ∼= mn

A/m
n+1
A ⊗k (ρ̄ /(L1 ⊗ k))

as k[G]-modules. The RHS breaks up as the direct sum of copies of ρ̄ quotiented by the χ1 subspace and

hence χ1 doesn’t appear anywhere in semi-simplification (using residual distinctness). Hence the flag is

unique.

To say M is upper triangular is equivalent to sayingM preserves the flag which we have now shown to be

unique. Again, by induction onN , it will suffice to show the M preserves L1. Let e1 ∈ L1. Our hypotheses

imply that

MρM−1e1 = ρe1 = χ1e1.

Multiplying byM−1 and using that M−1 commutes with χ1, we get

ρ(M−1e1) = χ(M−1e1).
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By uniqueness then, M−1e1 ∈ L1 and hence M−1 preserves the flag so M does as well. �

Corollary 1. If ρ is ordinary, then it lands in a Borel subgroup, i.e. is upper-triangular with respect to

some basis.

Proof. By assumption, we can conjugate ρ|I to be upper-triangular so it suffices to show that ρ(g) is, where

g is some Frobenius element. Since ψe are invariant under conjugation by g, we see that ρ(g) satisfies the

hypotheses on M in the previous lemma and hence is upper-triangular. �

Corollary 2. The ordinary deformation functor satisfies (SC) and so is representable under the assumption

that the residual representation is non-split in the sense of Proposition 1.7.

Proof. By Proposition 1.7, the residual deformation satisifies the necessary conditions for the universal

deformation functor to exist. We denote the ordinary deformation functor byDord
ρ̄ ; it is clearly a subfunctor

of Dρ̄. As a subfunctor, injectivity of the map (1) is automatic in H1, H2, and H4. Hence it suffices to check

that (1) is surjective under the hypotheses of H1, namely when B → C is small.

We are free to choose ordinary lifts ρA and ρB

ρ̃A =Mρ̃BM
−1.

Since ρ̃A and ρ̃B are both ordinary M satisfies the hypotheses of the previous lemma and so is upper-

triangular. We can choose a lift M ′ of M to Gln(B) which is upper triangular. Changing ρB by M ′

maintains its ordinary form. Hence, we have ρA and ρB agreeing after push-forward and both have ordinary

form and so their fiber product will also be ordinary. �

Exercise 2.9. (Continuity) Let A be complete local Noetherian ring and set An = A/mn
A. Given a com-

patible system of ordinary deformations ρn, show that there exist an ordinary deformation ρA such that

ρA ⊗An ≡ ρn. Hint: See Remark 1.8.

As a final comment, it is possible to interpret ordinarity as a closed condition at least under the assump-

tions of residually distinct and nonsplit, but I did not haveto write it up. Hopefully, I will have a chance to

present it in seminar. Otherwise, feel free to ask me about it afterwards.
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Notes by Sam Lichtenstein

This lecture is about getting bounds for the dimension of deformation rings, by bounding the number of
generators and relations. The reference for this lecture is Kisin’s article in CDM, or stuff from his Hawaii
notes.

1. Local setup and statement

Let K/Qp be finite, O = OK , π a uniformizer, k = O/(π), Γ a profinite group satisfying the p-finiteness
condition “Φp”, and ρ : Γ → GLn(k) a mod π representation. We consider deformations to complete local

noetherian O-algebras with residue field k. The framed deformation ring R�
ρ always exists, so we have a

universal representation

Γ
ρ�univ→ GLn(R

�
ρ ).

Assuming EndΓ ρ = k, we also know Rρ exists, and we then get a universal deformation

Γ
ρuniv→ GLn(Rρ).

Recall that
D�
ρ (k[ǫ]) = Homk(mR�/(m2

R� , π), k) ∼= Z1(Γ, adρ)

and Dρ(k[ǫ]) = H1(Γ, ad ρ) as k-vector spaces.

Theorem. Let r = dimk Z
1(Γ, ad ρ). Then there exists an O-algebra isomorphism

O[[x1, . . . , xr ]]/(f1, . . . , fs) ∼= R�
ρ

where s = dimk H
2(Γ, adρ).

Corollary. (i) dimR�
ρ ≥ 1 + n2 − χ(Γ, adρ) = 1 + n2 − h0(ad ρ) + h1(ad ρ)− h2(ad ρ).

(ii) dimRρ ≥ 2− χ(Γ, ad ρ).
Proof of corollary. From O we get a contribution of 1. hence we get dimR�

ρ ≥ 1+dimZ1−h2. Now (i) follows

formally noting that dimZ0 = dimC0 = n2. (Use h1 = dimZ1 − dimB1 and dimB1 = dimC0 − dimZ0 =
dimC0 − h0.) Then (ii) is immediate using the fact that R�

ρ is basically a PGLn-bundle over Rρ. �

2. Proof of Theorem 1

Using completeness [exercise] we can choose a surjection

ϕ : O[[x]] := O[[x1, . . . , xr]]։ R�
ρ .

(Send the xi’s to elements which reduce to a basis for the tangent space Z1(Γ, ad ρ) of the framed deformation
ring.) The problem is to show that the minimal number of generators of the kernel J = kerϕ ⊂ O[[x]] is at
most s. Let m = mO[[x]] ⊂ O[[x]] be the maximal ideal (π, x1, . . . , xr). It would suffice to construct a linear
injection (J/mJ)∗ →֒ H2(Γ, ad ρ). There is a subtle technical problem in an attempt to construct such an
injection. We explain the problem, and then the fix to get around it.

For each γ ∈ Γ choose a set-theoretic lift ρ̃(γ) ∈ GLn(O[[x]]/mJ) of ρ�(γ) ∈ GLn(O[[x]]/J) = GLn(R
�).

We need to make this choice so that ρ̃ is a continuous function of γ. It is not clear if the map

O[[x]]/mJ։ O[[x]]/J
admits a continuous section as topological spaces, so it is not clear how to find a continuous ρ̃. To handle
this problem, we now prove:

Claim: For r > 0, let Jr = (J +mr)/mr ∈ O[[x]]/mr and let mr = m/mr. For r ≫ 0, the natural map
J/mJ→ Jr/mrJr is an isomorphism.

1
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Proof. The map is surjective, and for injectivity we have to show that J ∩ (mJ + mr) = mJ for large r.
Certainly mJ lies in the intersection for all r, so since J/mJ has finite length we see that the intersection
stabilizes at some intermediate ideal for r ≫ 0. This stabilizing ideal must then be the total intersection.
But by Artin-Rees applied to mJ as a finite O[[x]]-module, the intersection of all (mJ+mr)’s is mJ. �

By the Claim, to prove the desired result about minimal number of generators of J, we can replace O[[x]]
and R� := R�

ρ with their quotients by rth power of maximal ideal for some large r. The quotient of

R� by rth power of its maximal ideal is universal in the category of complete local noetherian O-algebras
whose maximal ideal has vanishing rth power (exercise!). So working within this full subcategory of local
O-algebras, we can still exploit universal mapping properties. But we gain the advantage that now our rings
are of finite length as O/πr-modules, so in particular they’re all discrete with their max-adic topology and
hence the Galois representations which arise have open kernel. We can therefore find the required continuous
section, working throughout with local rings whose maximal ideal has a fixed but large order of nilpotence.

So we now proceed in such a modified setting (so the definition of J changes accordingly, but the Claim
shows that this does not affect J/mJ, which is to say the minimal number of generators of J). In particular,
in the new setting we will construct a k-linear injection of J/mJ into H2(Γ, adρ), thereby finishing the proof.

For f ∈ (J/mJ)∗. let
ρf (γ, δ) = f(ρ̃(γδ)ρ̃(δ)−1ρ̃(γ)−1 − 1),

where we apply the map f “entry-wise” to the given matrix in Matn×n(J/mJ). That is, the map ϕf has the
form

Γ2 → Matn×n(J/mJ) f→ Matn×n(k).

Now we observe the following facts.

(1) ϕf ∈ Z2(Γ, ad ρ).
(2) [ϕf ] ∈ H2(Γ, ad ρ) is independent of the choice of lift ρ̃.
(3) f 7→ [ϕf ] is k-linear.
(4) f 7→ [ϕf ] is injective, but more precisely we have [ϕf ] = 0⇔ we can choose ρ̃ to be a homomorphism

“mod Jf” where Jf = ker(J→ J/mJ f→ k)⇔ f = 0⇔ Jf = J.
Note that (4) provides the desired linear injection, and hence proves the theorem; (1)-(3) are necessary to
make sense of (4).

Let us prove the facts above.

(1) This is a formal computation, which goes as follows. Note that we can identify Matn×n(J/mJ) under
addition with (1+Matn×n(J/mJ)) under multiplication, since J ⊂ m. Using this identification, we
have

dϕf (γ, δ, ǫ) = γϕf (δ, ǫ)− ϕf (γδ, ǫ) + ϕf (γ, δǫ)− ϕf (γ, δ) ∈ Matn×n(k).

If we want to prove this is zero, it’s enough to check “upstairs” in Matn×n(J/mJ), i.e. before applying
f . Thus we really want to check that

(ρ̃(γ)ρ̃(δǫ)ρ̃(ǫ)−1ρ̃(δ)−1ρ̃(γ)−1)× (ρ̃(γδ)ρ̃(ǫ)ρ̃(γδǫ)−1)

× (ρ̃(γδǫ)ρ̃(δǫ)−1ρ̃(γ)−1)× (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1)
?
= 1 .

The trick is to insert the bracketed term (which is 1) below:

ρ̃(γ)ρ̃(δǫ)ρ̃(ǫ)−1ρ̃(δ)−1ρ̃(γ)−1ρ̃(γδ)

insert︷ ︸︸ ︷
ρ̃(δ)−1ρ̃(δ) ρ̃(ǫ)ρ̃(γδǫ)−1

× ρ̃(γδǫ)ρ̃(δǫ)−1ρ̃(γ)−1 × (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1)
?
= 1 .

Now observe that the bracketed terms below reduce to 0 in Matn×n(k) and hence can be commuted
with one another (!):

ρ̃(γ)

I︷ ︸︸ ︷
ρ̃(δǫ)ρ̃(ǫ)−1ρ̃(δ)−1

II︷ ︸︸ ︷
ρ̃(γ)−1ρ̃(γδ)ρ̃(δ)−1 ρ̃(δ)ρ̃(ǫ)ρ̃(γδǫ)−1

× ρ̃(γδǫ)ρ̃(δǫ)−1ρ̃(γ)−1 × (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1)
?
= 1 .
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After swapping I and II one sees that in fact everything cancels magically. (Is there is a “conceptual”
proof of (1)?)

(2) This is similar to (1). First write ρ̃new(γ) = a(γ)ρ̃(γ) for some

a : Γ→ 1+Matn×n(J/mJ).
The idea is to show formally that a(γ) (which is of course a continuous 1-cocycle on Γ) changes ϕf
by da. This is done with a similar “insert 1 cleverly and commute stuff” trick as in (1).

(3) OK.

(4) The last equivalence in (4) is clear. For the other two equivalences, the implications “⇐” are OK.
The implication that [ϕf ] = 0 implies we can choose ρ̃ to be a homomorphism mod Jf follows from
the previous calculation [omitted] that ρ̃  a · ρ̃ changes ϕ by da. In particular, if ϕ is already a
coboundary, then by changing the choice of lift we can make ϕ = 0, which is the same as saying our
lift is a homomorphism mod Jf . So the crux of the matter is the second “⇒”.

Here’s the situation. We have a diagram

Γ
ρ�univ //

eρ %%KKKKKKKKKKKK GLn(O[[x]]/J) = GLn(R
�)

))RRRRRRRRRRRRRR

GLn(O[[x]]/mJ)

33hhhhhhhhhhhhhhhhhhh

f∗
// GLn(O[[x]]/Jf )

can

OO

// GLn(k)

We’d like to prove that O[[x]]/Jf → O[[x]]/J is an isomorphism. By the universality of R� we get the
map

O[[x]]/J ∃!→ O[[x]]/Jf
can→ O[[x]]/J

and again by universality the composition is the identity. Now it would be enough to check that
J ⊂ Jf . Note that the image of xi in O[[x]]/J maps to xi + ai ∈ O[[x]]/Jf where ai is some element of
J. It will suffice to show that if g(x1, . . . , xn) ∈ J then g maps to g itself in O[[x]]/Jf .

First we claim that J ⊂ (m2, π) [recall that J = ker(O[[x]] ։ R�)]. Indeed, if g ∈ J then
g = g0 +

∑
gixi + O(m2). Moreover g0 ∈ (π) and each gi lies in (π) since the xi’s map to a basis

of m/(m2, π). Thus g ∈ (m2, π). Consequently, it’s enough to show what we want for g ∈ (m2, π).
[This will be important later on!]

But if g ∈ (m2, π) then under O[[x]]/J→ O[[x]]/Jf we still have

g = g0 +
∑

gixi +O(m2) 7→ g0 +
∑

gi(xi + ai) +O(m2),

and the observation is that when we subtract off g from this we get
∑
giai in the O(m) term, which

[by inspection] is in mJ ⊂ Jf . Similarly one sees that the higher order terms vanish mod Jf .
This concludes the proof of (4), hence the claim, hence the theorem.

3. Completed tensor products

Example. Let R be a Noetherian ring, and consider R[x] ⊗R R[y] ∼= R[x, y]. However R[[x]] ⊗R R[[y]] is
something weird, being just a part of R[[x, y]]. It’s easy to see that it does at least inject into R[[x, y]]. The
idea is that M ⊗ RI →֒ M I for any free R-module RI (here I is an arbitrary index set) but this map fails
to be an isomorphism.

To check the injectivity, note that it’s OK forM finite free, which allows one to deduce it for M finitely
presented, and then pass to a direct limit to conclude the general case. Applying this to I = Z andM = R[[x]]
gives what we want in our case. But to see that our map R[[x]] ⊗ R[[y]] →֒ R[[x, y]] is not surjective, observe
that

∑
xnyn is not in the image!

Definition. Let O be a complete Noetherian local ring and R, S complete Noetherian local O-algebras
(meaning the structure maps are local morphisms). Assume at least one of the residue field extensions
O/mO ⊂ R/mR and O/mO ⊂ S/mS is finite. Then set m ⊳ R⊗O S to be the ideal generated by

mR ⊗O S +R ⊗O mS.
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[Note: (R⊗O S)/m ∼= kR⊗kO kS is not necessarily a field, or even a local ring, but it is artinian.] Now define
the completed tensor product R⊗̂OS to be the m-adic completion of R⊗O S.

Universal property. R⊗̂OS is the coproduct in the category of complete semilocal Noetherian O-algebras
and continuous maps. It is thus the universal (i.e. initial) complete semilocal Noetherian O-algebra equipped
with continuous O-algebra maps from R and S.

Example. We have O[[x]]⊗̂OO
′[[y]] ∼= O′[[x, y]] when O′ is any complete Noetherian local O-algebra. We also

have
(O[[x1, . . . , xr]]/J)⊗̂O(O

′[[y1, . . . , ys]]/J′) ∼= O′[[x1, . . . , xr, y1, . . . , ys]]/(J, J′)
in this setup.

4. Global setup and statement

Let F be a number field, and p a prime. Let S be a finite set of places of F containing {v|p}. Fix
an algebraic closure F/F and let FS ⊂ F be the maximal extension unramified outside S. Let GF,S =
Gal(FS/F ). Let Σ ⊂ S be any subset of places [for now; later we’ll impose conditions].

For v ∈ Σ, fix algebraic closures F v/Fv and choose embeddings F →֒ F v, or, what is the same thing,
choices of decomposition group Gal(F v/Fv) = Gv ⊂ GF,S . Now let K/Qp be a finite extension, and O, π,
and k be as above. Fix a character ψ : GF,S → O×.

Let Vk be a finite dimensional continuous representation of GF,S over k such that detVk = ψmod π.

Since we’re fixing det = ψ in this subsection, we’ll be dealing (from now on in this talk) with ad0 Vk rather
than adVk. [More on this later.] A caution is in order: if p| dimVk then ad0 Vk is not a direct summand of

adVk. Usually the scalars in adVk give a splitting, but when p| dimVk the scalars actually sit inside ad0 Vk.
Hence we shall assume from now on that p ∤ dimVk.

For each v ∈ Σ fix a basis βv of Vk. We’re going to consider deformation functors (and the representing
rings) with determinant conditions. Set D�,ψ

v to be the functor of framed deformations of Vk|Gv with the
basis βv, with fixed determinant ψmodπ, and let R�,ψ

v be the ring (pro-)representing it. This always exists.

Likewise let D�,ψ
F,S be the functor of deformations VA of Vk with determinant ψmod π, equipped with an

A-basis β̃v of VA lifting βv for each v ∈ Σ. Let R�,ψ
F,S be the ring representing it. Again, this always exists.

We have analogous respective unframed counterpartsRψv and RψF,S under the usual condition that Vk has
only scalar endomorphisms as a representation space for Gv and GF,S respectively.

Now define R�,ψ
Σ =

⊗̂
v∈ΣR

�,ψ
v [completed tensor product over O]. Since each R�,ψ

v has the same residue

field, in this case the completed tensor product actually is local! Let m�
ψ be its maximal ideal. Analogously

define RψΣ and mΣ. Denote the maximal ideal of the local ring R�,ψ
F,S by m�

F,S and likewise that of RψF,S by
mF,S.

There is a natural RψΣ-algebra structure on RψF,S via the universal property of ⊗̂O. Indeed, for each v ∈ Σ,

by restricting the universal deformation of Vk valued in RψF,S to Gv ⊂ GF,S the universal property of Rψv

induces a canonical local O-algebra morphism Rψv → RψF,S . We then use the universal property of completed
tensor products.

Theorem. For i ≥ 1 let hiΣ (resp. ciΣ) denote the k-dimension of the kernel (resp. cokernel) of the map

θi : H
i(GF,S , ad

0 Vk)→
∏

v∈Σ

Hi(Gv, ad
0 Vk).

Then we have an isomorphism of RψΣ-algebras

RψF,S
∼= RψΣ[[x1, . . . , xr]]/(f1, . . . , fr+s)

where r = h1Σ and s = c1Σ + h2Σ − h1Σ.
To get the desired presentation, as in the proof of Theorem 1, first consider a surjection

B := RψΣ[[x1, . . . , xr ]]։ RψF,S
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where r = dimk coker(mΣ/(m
2
Σ, π) → mF,S/(m

2
F,S, π)); this surjectivity uses completeness. Dualizing, we

have
r = dimk ker(Homk(mF,S/(m

2
F,S, π), k)→ Homk(mΣ/(m

2
Σ, π), k)).

Using the computation from Mok’s lecture, this is

dimk ker θ1 = h1Σ.

The key point that makes these computations work is that the completed tensor product represents the
product of the functors represented by theRψv , which is most easily checked by computing on artinian points
(for which the completed tensor product collapses to an ordinary tensor product). That then brings us down
to the elementary fact that the tangent space of the product of functors is the product of the tangent spaces.

Denote by m the maximal ideal of B, and by J the kernel ker(B ։ RψF,S). Now comes a delicate

technical point. Like in the proof of Theorem 1, we can set-theoretically lift ρ : GF,S → GLn(R
ψ
F,S)

to ρ̃ : GF,S → GLn(B/mJ), not necessarily a homomorphism, and there arises the problem of finding a
continuous such ρ̃. We seek a better method than the trick as earlier with finite residue fields because we
wish to later apply the same technique to future situations involving characteristic-0 deformation theory, for
which the residue field is a p-adic field and not a finite field. The reader who prefers to ignore this problem
should skip the next section.

5. Continuity nonsense

To explain the difficulty and its solution, let us first formulate a general situation. Consider a surjective
map R′ ։ R between complete local noetherian rings with kernel J killed by mR′ , and assume that we are
in one of two cases:

Case 1: residue field k is finite of characteristic p, so R and R′ are given the usual max-adic topologies
that are profinite. These topologies are the inverse limits of the discrete topologies on artinian quotients.

Case 2 (to come up later!): residue field k is a p-adic field and R and R′ are Qp-algebras, whence uniquely
k-algebras in a compatible way (by Hensel). Their artinian quotients are then finite-dimensional as k-vector
spaces, and so are naturally topologized as such (making them topological k-algebras, with transition maps
that are quotient maps, as for any k-linear surjections between k-vector spaces of finite dimension). Give
R and R′ the inverse limit of those topologies (which induce the natural k-linear topologies back on the
finite-dimensional artinian quotients).

In both cases, let ρ : G → GLn(R) be a continuous representation. We seek to make an obstruction
class in a “continuous” H2(G, ad ρ) (over k) for measuring whether or not ρ can be lifted to a continuous
representation into GLn(R

′). The problem is to determine if ρ has a continuous set-theoretic lifting (moreover
with with a fixed determinant if we wish to study deformations with a fixed determinant, assuming that p
doesn’t divide n).

We saw earlier how to handle Case 1 when R is artinian, by a trick. That trick rested on ρ at artinian level
factoring through a finite quotient of G. Such an argument has no chance of applying when k is a p-adic field
in interesting cases, and we’re sure going to need that later when studying generic fibers of deformation rings
and proving smoothness by proving vanishing of a p-adic H2. So we need an improvement of the method
from artinian Case 1 which addresses the following two points:

(i) what to do when k is p-adic,
(ii) how to incorporate additional things like working with a fixed determinant.
Actually, (ii) will be very simple once we see how to deal with (i), as we will see below. This is important

because in practice we want to deal with more general constraints than just “fixed determinant” and so
we want a general method which works for any “reasonable property”, not just something ad hoc for the
property of fixed determinant.

To deal with (i) (and along the way, (ii)), we will use a variant on fix from artinian Case 1. That argument
allows us to reduce to deal with the case when R and R′ are artinian, but we need to show in that artinian
setting we can make a continuous set-theoretic lifting without the crutch of “factoring through finite quotient
of G” (which is available for finite k but not p-adic k).

First conjugate so the reduction ρ0 : G → GLn(k) lands in GLn(Ok). Then by using the method from
Brian’s talk on p-adic points of deformation rings, we can find a finite flat local Ok-algebra Ok-lattice A
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inside of R with residue field equal to that of Ok and containing the compact ρ(G), and then we can find a
similar such A′ in R′ mapping onto A. We’d like to lift

ρ : G→ GLn(A)

to GLn(A
′) set-theoretically in a continuous way. Note that GLn(A

′)→ GLn(A) is surjective.
The point is that GLn(A) and GLn(A

′) are respectively open in GLn(R) and GLn(R
′) with subspace

topologies that arise from the ones on A inside R and A′ inside R′ which are their natural topologies as
finite free Ok-modules. This makes them profinite, much as GLn(R) and GLn(R

′) were in the case of finite
k. So we have reduced ourselves to the following situation, in which we will use an argument suggested by
Lurie that also gives another approach for handling the case of finite k as well.

Let H ′ → H be a continuous surjective map of profinite groups, and ρ : G→ H a continuous homomor-
phism. We claim that there is a continuous set-theoretic lifting G → H ′ of ρ that also respects properties
like “fixed det” in the case of intended applications. To see this, let F ։ G be a surjection from a “free
profinite group”. The composite map

F ։ G→ H

can be lifted continuously to F → H ′ even as a homomorphism by individually lifting from H to H ′ the
images of each member of the “generating set” for the free profinite F . Those individual lifts can be rigged to
have a desired det, or whatever other “reasonable homomorphic property” can be checked pointwise through
a surjection, and so such a property is inherited by the map F → H ′. But what about G→ H ′? If we can
find a continuous set-theoretic section of F ։ G then composing that section with F → H ′ will give the
required G→ H ′. So our continuity problems will be settled once we prove the following fact.

Claim: If f : G′ → G is a continuous homomorphism between profinite groups then it has a continuous
section (as topological spaces).

Proof. For closed normal subgroups N ′ ⊳ G′ and N := f(N ′) = closed normal in G, consider continuous
sections s : G/N → G′/N ′ to the induced quotient map G′/N ′ → G/N arising from f . For example, such
an s exists if N ′ = G′ (so N = G). If (N ′, s) and (M ′, t) are two such pairs with N ′ containing M ′, say
(M ′, t) ≥ (N ′, s) if

t : G/M → G′/M ′ and s : G/N → G′/N ′

are compatible via the projections G/M ։ G/N and G′/M ′ ։ G′/N ′.
I claim that the criterion for Zorn’s Lemma is satisfied. Let {(N ′

i , si)} be a chain of such pairs, and let
N ′ =

⋂
N ′
i . Then the natural map

G′/N ′ → lim←−G
′/N ′

i

is surjective (since an inverse limit of surjectionsG′/N ′ → G′/N ′
i between compact Hausdorff spaces), yet also

injective and thus a homeomorphism. Likewise, forN :=
⋂
Ni the map G/N → lim←−G/Ni a homeomorphism,

and I claim that N = f(N ′). Indeed, if x is in N then f−1(x) meets each N ′
i in a non-empty closed set, and

these satisfy the finite intersection property since {N ′
i} is a chain ordered by inclusion, so f−1(x) contains a

point in the intersection N ′ of all N ′
i . That says x is in f(N ′) as desired. (The inclusion of f(N ′) inside of

N is clear.)
It follows that the compatible continuous sections si : Gi/Ni → G′

i/N
′
i induced upon passing to the

projective limit define a continuous section

s : G/N → G′/N ′,

so (N ′, s′) is an upper bound on the chain {(N ′
i , si)}.

Now we apply Zorn’s Lemma to get a maximal element (N ′, s). This is a continuous section s : G/N →
G′/N ′ where N = f(N ′). I claim N ′ = {1}, so we will be done. If not, then since N ′ ∩ U ′ for open normal
subgroups U ′ in G′ define a base of opens in N ′ around 1 (as N ′ gets its profinite topology as subspace
topology from G′), there must exist such U ′ so that N ′ ∩ U ′ is a proper subgroup of N ′. Replacing G′

with G′/(N ′ ∩ U ′) and G with quotient by image of N ′ ∩ U ′ in G brings us to the case where N is finite
and non-trivial yet (N ′, s) retains the maximality property (no continuous section using a proper [closed]
subgroup of N ′ normal in G′). We seek a contradiction.

Since N ′ and N are finite, the quotient maps q′ : G′ ։ G′/N ′ and q : G։ G/N are covering spaces with
finite constant degree > 0. By total disconnectedness, these covering spaces admit sections. Composing s



7

with a section to q′ gives a continuous section G/N → G′ to

G′ f→ G
q→ G/N.

Composing such a section with q gives a continuous map t : G → G′ so that f(t(g)) = gmodN , so
by profiniteness of G and finiteness of N we get an open normal subgroup U in G such that for each
representative gi of G/U there exists ni ∈ N such that f(t(giu)) = nigiu for all u ∈ U . But ni = f(n′

i),
so replacing t on giU with (n′

i)
−1t for each i gives a new t so that f(t(giu)) = giu for all u ∈ U and all i,

which is to say ft = 1G. This exhibits a continuous section t to f , contradicting that N was arranged to be
nontrivial and maximal with respect to the preceding Zorn’s Lemma construction. Hence, in fact N above
is {1} so we are done. �

6. Proof of Theorem 4

Returning to the situation of interest, we now have a continuous ρ̃ that can even be arranged to satisfy
det ρ̃ ≡ ψmodmJ. Still following the argument from the proof of Theorem 1, define for f ∈ Homk(J/mJ, k)
the continuous 2-cocycle ϕf as before, and observe that this time the determinant condition entails that

[ϕf ] ∈ H2(GF,S , ad
0 Vk). The proof of the well-definedness of [ϕf ] is as before. Also we still have the

equivalence that [ϕf ] = 0 if and only if ρ̃ can be chosen to be a homomorphism mod ker f .
Now for the restriction of ρ to each Gv, we know we can find a continuous lift, namely coming from the

universal representation ρv at v:

Gv
ρv→ GLn(R

ψ
v )→ GLn(R

ψ
Σ)→ GLn(B)

where the other maps are the obvious ones. Hence the class [ϕf ]|Gv ∈ H2(Gv, ad
0 Vk) is always trivial. In

other words, we have a k-linear map Homk(J/mJ, k) Φ→ ker θ2 satisfying f 7→ [ϕf ]; the target has dimension
h2Σ by definition. Therefore [easy exercise] it suffices to show that dimk kerΦ ≤ c1Σ. (All we need is the

inequality, because we can always throw in extra trivial “relations” fi = 0 into the denominator of RψF,S .)

Let I = ker(mΣ/(m
2
Σ, π) → mF,S/(m

2
F,S, π)). Then Homk(I, k) ∼= coker(θ1). So it is enough to construct

a linear injection kerΦ →֒ Homk(I, k).
Step 1: Observe that I = ker(m/(m2, π) → mF,S/(m

2
F,S, π)) because we chose the xi’s to map onto a

basis of coker(mΣ/(m
2
Σ, π) → mF,S/(m

2
F,S, π)). (In other words, none of the extra stuff in m dies when we

map to mF,S.)
Step 2: We next claim that J/mJ surjects onto I. To prove this, first note that the map J/mJ →

m/(m2, π) comes from tensoring
0→ J→m→ mF,S → 0

over B with B/m and then reducing mod π. We need to show that this map is surjective onto I. Fix
x ∈ I ⊂m/(m2, π). We know

J/mJ։ ker(m/m2 → mF,S/m
2
F,S).

We can lift x to x̃ ∈ m/m2. Since x maps to zero in mF,S/(m
2
F,S, π), x̃ maps to πrmodm2

F,S for some

r ∈ RψF,S . But now we can just choose some r̃ ∈ B mapping to r ∈ RψF,S (i.e. mod J). Now replace x̃ with

x̃− (πr̃ mod m2) so that x̃ has vanishing image in mF,S/m
2
F,S. That says x̃ is in the image of J/mJ in m/m2,

so x is hit by J/mJ as desired.
Step 3: By Step 2 we get Homk(I, k) →֒ Homk(J/mJ, k) ⊃ kerΦ. So we need to show that kerΦ ⊂

Homk(I, k). In other words, if [ϕf ] = 0 then we claim that f : J/mJ → k should factor through I, or
equivalently vanish on K = ker(J/mJ ։ I). Or equivalently, we need to show that K = J ∩ (m2, π) ⊂
Jf = ker f . But in fact this is really what we showed at the end of the proof of Theorem 1 when we showed
property (4) of Φ.

7. The framed case

Let
η : m�

Σ/((m
�
Σ)

2, π)→ m�
F,S/((m

�
F,S)

2, π).

Then
R�,ψ
F,S
∼= R�,ψ

Σ [[x1, . . . , xr� ]]/(f1, . . . , fr�+s�),
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where r� = dimk coker η and r� + s� = h2Σ + dimk ker η.
The proof is the same as in the unframed case, just with extra squares floating around all over the place.

But now our H’s have turned into Z’s (that is, elements of the tangent space which were cohomology classes
are now cocycles) so it’s better to phrase the result as above.

8. Formulas for r’s and s’s

Theorem. Suppose that {v|p} ⊂ Σ, that {v|∞} ⊂ S, and that S − Σ contains at least one finite prime.
Then (with notation as above)

s =
∑

v|∞,v 6∈Σ

dimk(ad
0 Vk)

Gv .

Remark. We also have r� ≥ #Σ − 1, r� ?
= r +#Σ− 1, s� = s−#Σ+ 1.

Proof. Let Y = ad0 Vk and X = Y ∨(1). (In the notation of Rebecca’s talk, X = Y ′; it is written as a
“twisted Pontrjagin dual” here because instead of being Hom into Q/Z (trivial G-module) the target is given
the action of the cyclotomic character.) Recall the end of the Poitou-Tate exact sequence (from Rebecca’s
talk)

H2(GF,S , Y )→
∏

v∈S
H2(Gv, Y )→ H0(GF,S , X)∨ → 0.

Split the product into two pieces:
∏

v∈S
H2(Gv, Y ) =

∏

v∈Σ

H2(Gv, Y )×
∏

v∈S−Σ

H2(Gv, Y ).

The claim is that as long as the second factor is nonzero (which it is by hypothesis), it surjects onto
H0(GF,S , X)∨. Indeed, trivially H0(GF,S , X) →֒ H0(Gv, X) since restricting to the decomposition group gives
more invariants. Dually, we have H0(Gv, X)∨ ։ H0(GF,S , X)∨. But by the Tate pairing, H0(Gv, X)∨ ∼=
H2(Gv, Y ). On each factor, the last map in the Tate-Poitou sequence is none other than the composition
H2(Gv, Y ) ∼= H0(Gv, X)∨ ։ H0(GF,S , X)∨. Thus the claim is true.

Now we do a little diagram chase. We have

H2(GF,S , Y )→
∏

v∈Σ

H2(Gv, Y )×
∏

v∈S−Σ

H2(Gv, Y )→ H2(GF,S , X)∨ → 0.

The claim is that H2(GF,S , Y ) ։
∏
v∈ΣH2(Gv, Y ). Indeed, given (av)Σ ∈

∏
v∈ΣH2(Gv, Y ), suppose its

image in H2(GF,S , X)∨ is γ. Since
∏
v∈S−ΣH2(Gv, Y )։ H2(GF,S , X)∨, we can find

(bv)S−Σ ∈
∏

v∈S−Σ

H2(Gv, Y )

such that the image of (bv)S−Σ in H2(GF,S , X)∨ is −γ. Then
(av)Σ × (bv)S−Σ ∈ ker(

∏

S

H2(Gv, Y )։ H2(GF,S , X)∨),

whence this tuple is in the image of H2(GF,S , Y ). Projecting onto the
∏
v∈Σ factor proves the claim. But

the surjectivity of H2(GF,S , Y )։
∏
v∈ΣH2(Gv, Y ) says precisely that c2Σ = dim coker θ2 = 0.

Consequently we have h2Σ = h2(GF,S , Y )−∑
v∈Σ h

2(Gv, Y ). So by the formulas at the end of Theorem 4,

s = −h1Σ + c1Σ + h2Σ = −h1(GF,S , Y ) +
∑

v∈Σ

h2(Gv, Y ) + h2(GF,S , Y )−
∑

v∈Σ

h2(Gv, Y ).

Now recall that we have assumed throughout that EndGF,S Vk = (adVk)
GF,S = k (since we need this

to make sure the unframed deformation ring even exists!). In particular, (ad0 Vk)
GF,S = 0. That is,

h0(GF,S , Y ) = h0(Gv, Y ) = 0. So we can add h0(GF,S , Y ) −∑
v∈Σ h

0(Gv, Y ) to s and nothing changes.
But now we recognize from the equation above that in fact s = χ(GF,S , Y )−∑

v∈Σ χ(Gv, Y ).
We now invoke the Tate global Euler characteristic formula. [Reference: Milne, Arithmetic Duality

Theorems Ch. I, Thm. 5.1.] We conclude that

χ(GF,S , Y ) =
∑

v|∞
h0(Gv, Y )− [F : Q] dimk Y.
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We also have for v < ∞, v ∤ p, that χ(Gv, Y ) = 0. For v < ∞, v|p, we have χ(Gv, Y ) = −[Fv : Qp] dimk Y .
For v|∞, we have χ(Gv, Y ) = h0(Gv, Y ). One sees that in s = χ(GF,S , Y ) −∑

v∈Σ χ(Gv, Y ), the degree
contributions all cancel out, so there are no non-archimedean terms. Of the archimedean places, all those in
Σ cancel as well, and we are left with the statement of the theorem. �



Notes on Galois Cohomology—Modularity
seminar

Rebecca Bellovin

1 Introduction

We’ve seen that the tangent space to a deformation functor is a Galois coho-
mology group H1, and we’ll see that obstructions to a deformation problem
will be in H2. So if we want to know things like the dimension of R or
whether a deformation functor is smooth, we need to be able to get our
hands on the cohomology groups. Secondarily, if we want to “deform sub-
ject to conditions”, we’ll want to express the tangent space and obstruction
space of those functors as cohomology groups, and cohomology groups we
can compute in terms of an unrestricted deformation problem.

For the most part, we will assume the contents of Serre’s Local Fields and
Galois Cohomology. These cover the cases when G is finite (and discrete)
and M is discrete, and G is profinite and M is discrete, respectively.

References:
Serre’s Galois Cohomology
Neukirch’s Cohomology of Number Fields
Appendix B of Rubin’s Euler Systems
Washington’s article in CSS
Darmon, Diamond, and Taylor (preprint on Darmon’s website)

2 Generalities

Let G be a group, and let M be a module with an action by G. Both G
and M have topologies; often both will be discrete (and G will be finite),

1



or G will be profinite with M discrete; or both will be profinite. We always
require the action of G on M to be continuous.

Let’s review group cohomology, using inhomogenous cocycles.

For a topological group G and a topological G-module M , the ith group of
continuous cochains Ci(G,M) is the group of continuous maps Gi → M .
There is a differential d : Ci(G,M)→ Ci+1(G,M) given by

(df)(g1, . . . , gi+1) = g1 ·f(g2, . . . , gi+1)

+

n∑

j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1f(g1, . . . , gi)

It is easy to check that d2 is zero, so we have a complex C•(G,M). Then we
define H i(G,M) := ker d/ im d.

If G is finite andM is discrete, this is just ordinary group cohomology, see for
example [3]. But forG orM profinite, taking the algebraic group cohomology
gives the “wrong” answer. For example, ifL/K is a finite Galois extension of
fields and M is a module equipped with a trivial action of G := Gal(L/K),
then the algebraic cohomology group H1(G,M) = Hom(G,M) classifies
subextensions K ⊂ K ′ ⊂ L with Gal(K ′/K) isomorphic to a subgroup of
M . It would be nice if we could relax the finiteness hypothesis on the exten-
sion L/K and still have H1 meaningfully classify subextensions. But infinite
Galois theory tells us that only closed subgroups of Gal(L/K) correspond
to subextensions K ⊂ K ′ ⊂ L, so our definition of H1 will have to take
topological information into account somehow.

For an explicit example where algebraic and continuous group cohomology
differ, see Brian’s notes from Hawaii, exercise 2.5.2.

2.1 Functorial properties

As we have defined it, Galois cohomology is functorial in the coefficients,
that is, given a morphism M → M ′ of G-modules, there is are morphisms
H i(G,M) → H i(G,M ′). Suppose 0 → M ′ → M → M ′′ → 0 is an exact
sequence of topological modules, and there is continuous sectionM ′′ →M (as
sets, not modules!). Then 0→ Ci(G,M ′)→ Ci(G,M)→ Ci(G,M ′′)→ 0 is

2



exact for every i, and by homological algebra nonsense, we get a long exact
sequence

· · · → H i(G,M ′)→ H i(G,M)→ H i(G,M ′′)→ H i+1(G,M ′)→ · · ·

In all the cases we will care about, this hypothesis will be satisfied, because
surjective maps of discrete topological spaces have continuous sections, and
proposition 1, chapter 1 of Galois Cohomology tells us that continuous sur-
jections of profinite groups have continuous sections. In particular, if M is a
finitely-generated Zp-module or a finite-dimensional Qp-vector space, we will
have a long exact sequence.

For finite groups G and discrete G-modules M , recall that for all subgroups
H ⊂ G, we have a restriction map

res : H i(G,M)→ H i(H,M)

and a corestriction map

cor : H i(H,M)→ H i(G,M)

If H is normal in G, we also have an inflation map

inf : H i(G/H,MH)→ H i(G,M)

For G profinite and M discrete, we still have a restriction map

res : H i(G,M)→ H i(H,M)

If H is a closed, normal subgroup of G (so that the quotient G/H makes
sense), we also still have an inflation map

inf : H i(G/H,MH)→ H i(G,M)

However, to define a corestriction map, we need to assume H is open in G
with finite index. In that case, we define it “at finite level” (as discussed in
section 2.2) using the definition from finite group cohomology, and take the
limit.

When G is a finite group, or G is profinite and M is discrete, for any
normal subgroup H there is a spectral sequence Hp(G/H,Hq(H,M)) →
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Hp+q(G,M). This is because cohomology groups Hq(G,M) are the derived
functors (taken in the category of allG modules if G is finite, but taken in the
category of discreteG-modules if G is profinite) of the functorM 7→ MG, and

M 7→ MG is the composition ofM 7→ MH andMG 7→ (MH)
G/H

. In particu-
lar, the low-degree terms of the spectral sequence give us the Hochschild-Serre
exact sequence

0→ H1(G/H,MH)
inf→ H1(G,M)

res→ H1(H,M)G/H → H2(G/H,MH)
inf→ H2(G,M)

The first four terms are the usual inflation-restriction exact sequence.

Recall also that in finite group cohomology, there is a cup-product pairing

Hp(G,M)×Hq(G,N)
∪→ Hp+q(G,M ⊗N) given on the level of cochains by

(ϕ ∪ ψ)(g1, . . . , gp, gp+1, . . . , gp+q) = ϕ(g1, . . . , gp)⊗ g1 · · · gpψ(gp+1, . . . , gp+q).
The same applies for profinite groups G and discrete G-modules. However,
if we want to allow more interesting topologies on the coefficient modules,
we may not be able to define the tensor product of modules. Instead, we
use the same formula to say that whenever there are (continuous) maps of

G-modulesM → P,N → P , there is a cup-product Hp(G,M)×H1(G,N)
∪→

Hp+q(G,P ).

2.2 Reducing to the Finite/Discrete Case

Now let’s allow G to be profinite (still assuming M to be discrete).

Theorem 2.1. Let (Gi) be a projective system of profinite groups, and let
(Mi) be an inductive system of discrete Gi-modules (the maps are all com-
patible). If G = lim←−Gi and M = lim−→Mi, then H

q(G,M) = lim−→Hq(Gi,Mi).

In particular,

Corollary 2.2. For profinite G, Hq(G,M) = lim−→Hq(G/U,MU) for q ≥ 0,
where the limit is taken over all open normal subgroups of G.

This corollary lets us reduce many statements to the equivalent statements
at finite level. For example, classical group cohomology tells us that for a
finite group G, Hq(G,M) is torsion for q ≥ 1, so for profinite G, Hq(G,M)
is the colimit of torsion groups, so is itself torsion.
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It also lets us make definitions at finite level, and then take a direct limit. For
example, in order to define corestriction for profinite groups, we recall the
definition of the corestriction map cor :Hq(H/(H ∩ U),M)→ Hq(G/U,M)
for open normal subgroups U ⊂ G of finite index. By applying the above
corollary, we obtain a homomorphism cor :Hq(H,M)→ Hq(G,M).

Now let’s relax the assumption thatM is discrete. Then we have the following
results due to Tate (see [4] or Appendix B of [1]):

Proposition 2.3. For T = lim←−Tn, Tn finite, if i > 0 and H i−1(G, Tn) is

finite for every n, then H i(G, T ) = lim←−H
i(G, Tn).

Proposition 2.4. If T is a finitely generated Zp-module and i ≥ 0, then
H i(G, T ) has no divisible elements, and H i(G, T )⊗Qp→̃H i(G, T ⊗Qp).

If we wanted, we could have first defined group cohomology for discrete G-
modules, and then defined H i(G, T ) by lim←−H

i(G, Tn) and H
i(G, T ⊗Qp) by

H i(G, T )⊗Qp, instead of via continuous cochains. Then these propositions
show we would end up with the same theory (at least for the coefficient
modules we care about).

These propositions also give us generalizations of the inflation-restriction
exact sequence and the five-term exact sequence associated to the Hochschild-
Serre spectral sequence.

Proposition 2.5. Suppose H is a closed normal subgroup of G.

1. There is an inflation-restriction exact sequence

0→ H1(G/H, TH)→ H1(G, T )→ H1(H, T )

2. Suppose that p is a prime and for every G-module (resp. H-module)
N of finite p-power order, H1(G,N) and H2(G,N) (resp. H1(H,N))
is finite. If M is discrete or a finitely generated Zp-module or a finite-
dimensional Qp-vector space, then there is a Hochschild-Serre exact
sequence

0→ H1(G/H,MH)→ H1(G,M)→ H1(H,M)G/H → H2(G/H,MH)→ H2(G, T )
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2.3 New Phenomena

However, there are some genuinely new phenomena when our groups are
profinite, even if our coefficients are still discrete. For example, there is the
notion of cohomological dimension:

Definition 2.6. Let p be a prime and G a profinite group. If for every
discrete torsion G-module M and for every q > n, the p-primary component
of Hq(G,M) is zero, and n is the smallest integer with these properties, we
say that n is the p-cohomological dimension of G and denote it by cdp(G).

Removing the requirement that the coefficients be torsion, we make the fol-
lowing definition:

Definition 2.7. Let p be a prime and G a profinite group. If for every
discrete G-module M and for every q > n, the p-primary component of
Hq(G,M) is zero, and n is the smallest integer with this property, we say
that n is the strict p-cohomological dimension of G and denote it by scdp(G).

Of course, we could have infinite cohomological dimension or strict cohomo-
logical dimension.

Note that these are not interesting concepts whenG is assumed finite! Recall
that for any finite cyclic group G, H0

T (G,Z) = Z/#GZ and Hr
T (G,Z) ∼=

Hr+2
T (G,Z) for all r ∈ Z.

Examples:

• Let G = Ẑ. Then for every p, cdp(G) = 1 (see [3, Ch. XIII, Prop. 2]).
But H2(G,Z) ∼= H1(G,Q/Z) = Q/Z, so scdp(G) = 2.

• Let Gℓ be the absolute Galois group of Qℓ. Then for all p, cdp(Gℓ) =
scdp(Gℓ) = 2. This is a manifestation of the general fact that if k is the
residue field of K, then cdp(GK) ≤ 1 + cdp(Gk), with equality when
cdp(Gk) <∞ and p is different than the characteristic.

3 Local Duality

Now let’s try to say something about group cohomology we care about as
number theorists. Let K be a p-adic field, i.e., a finite extension of Qp and
let µn be the group of nth roots of unity in K.
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From now on, we will be considering Galois cohomology, that is, group co-
homology where the groups in question are Galois groups. IfK is a field, we
will write H i(K,M) to mean H i(GK ,M), and if K ′/K is a Galois extension
of fields, we will write H i(K ′/K,M) to mean H i(Gal(K ′/K),M).

Proposition 3.1. • H0(K,µn) = µn ∩K
• H1(K,µn) = K×/(K×)n

• H2(K,µn) = Z/nZ

• H i(K,µn) = 0 for i ≥ 3

Proof. The first assertion follows by definition. For the cases i = 1 and i = 2,
use the exact sequence 0→ µn → Gm → Gm → 0 and look at the long exact
sequence in cohomology:

0 → H0(K,µn)→ H0(K,Gm)
n→ H0(K,Gm)→

→ H1(K,µn)→ H1(K,Gm)
n→ H1(K,Gm)→

→ H2(K,µn)→ H2(K,Gm)
n→ H2(K,Gm)

By Hilbert’s Satz 90, H1(K,Gm) = 0, which implies that H1(K,µn) =
K×/(K×)n. In addition, H2(K,Gm) = Q/Z, with the isomorphism given
by the inv map, by the theory of Brauer groups. This implies H2(K,µn) =
Z/nZ. For i ≥ 3, the assertion is a theorem of Tate, and is proved in ([2,
§4.3, Prop. 12]).

In particular, this has the striking corollary

Corollary 3.2. For M a finite GK-module, H i(K,M) is finite as well.

Proof. Over a finite extension K ′/K, M becomes a GK ′-module isomorphic
to a direct sum of µn’s. We have a spectral sequenceH i(Gal(K ′/K), Hj(K ′,M))⇒
H i+j(K,M), so by the proposition, H i+j(K,M) is finite.

Now we can state Tate’s local duality theorem:

Theorem 3.3. Let M be a finite GK-module and set M ′ = Hom(M,µ) =
Hom(M,Gm). Then for 0 ≤ i ≤ 2, the cup-product

H i(K,M)×H2−i(K,M ′)→ H2(K,µ) = Q/Z

is a perfect pairing.
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One of the consequences is the Euler-Poincaré characteristic. For a finite
GK-module M , we define the Euler-Poincaré characteristic to be

χ(M) :=
#H0(K,M)#H2(K,M)

#H1(K,M)

Then one can show that χ(M) = p−vp(#M)·N = 1/(O : #MO), where N =
[K : Qp] and O is the ring of integers of K. In particular, if the order of A
is relatively prime to p, then χ(A) = 1.

We can extend the concept to the case where M is a finite free Zℓ-module or
a finite-dimensional Qℓ-vector space by making the more familiar definition

χ(M) := h0(M)− h1(M) + h2(M)

where hi(M) := rkH i(K,M). If M is a free Zℓ-module of rank k, take
Mn =M/ℓnM , so that χ(M) = lim←−

1
n
logℓ χ(Mn) = −kNvp(ℓ). In particular,

if ℓ 6= p, then χ(M) = 0.

Here are some interesting special cases:

• Take M = Z/nZ and i = 1. Then this theorem says we have a perfect
pairing H1(K,Z/nZ) × H1(K,µn) → Q/Z, which in particular says
that Hom(GK ,Z/nZ) is dual to K×/(K×)n. This is the duality given
by local class field theory, and ifK contains the nth roots of unity, Tate
duality becomes the Hilbert symbol K×/(K×)n ×K×/(K×)n → Q/Z.

• If E is an elliptic curve (or A is an abelian variety) over K, there is an
action of GK on the torsion E(K)[m], so we have the perfect pairing

H1(K,E(K)[m])×H1(K,E(K)[m]′)→ Q/Z

But the Weil pairing tells us that E(K)[m] is dual to Ê(K)[m], which
for elliptic curves implies we have a pairing

H1(K,E(K)[m])×H1(K,E(K)[m])→ Q/Z

3.1 Unramified Cohomology

We’re going to be interested in a subgroup of H1 called the unramified co-
homology. We define

H i
nr(K,M) := H i(Knr/K,MI)
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to be the cohomology classes vanishing on inertia. For example,

• H0
nr(K,M) = H0(K,M)

• H1
nr(K,M) = ker(H1(K,M) → H1(Knr,M))—this is by inflation-

restriction. If M is finite, the order of H1
nr(K,M) is the same as the

order of H0(K,M), because there is an exact sequence

0→MGK →M I Frob− id→ M I/(Frob− id)M I → 0

The lefthand term is H0(K,M) and the righthand term is H1
nr(K,M).

• H i
nr(K,M) = 0 for i ≥ 2 because Gal(Knr/K) = Ẑ has cohomological

dimension 1.

Why do we care? For one thing, suppose ρ is an unramified representation
and c ∈ H1

nr(K,M), and consider the corresponding deformation ρ′. Then ρ′

restricted to I is the trivial deformation, so ρ′ is still unramified.

Going back to elliptic curves, let’s briefly make K a global field with E an
elliptic curve (or abelian variety) defined over it. Define the finite set of
places S to be the union of the archimedean places, the places where E has
bad reduction, and the places v where v(m) 6= 0, and define KS to the be the
maximal extension ofK unramified outside of S. Then E[m] is a GK-module,
so we have the exact sequence

0→ E(K)[m]→ E(K)
m→ E(K)→ 0

The long exact sequence in cohomology gives us

0→ E(K)[m]→ E(K)
m→ E(K)→ H1(GK , E(K)[m])

so
0→ E(K)/mE(K)→ H1(GK , E(K)[m])

We are interested in E(K)/mE(K) because of its role in the proof of the
Mordell-Weil theorem. In fact, its image in H1(KS, E(K)[m]) is exactly the
subgroup of cohomology classes unramified outside S.

Going back to the general theory, let’s look at what happens in the Tate
pairing. I claim that if #M is relatively prime to p, then H1

nr(K,M) and

9



H1
nr(K,M

′) exactly annhilate each other. To see this, note that the inclusion
H1

nr(K,M) →֒ H1(K,M) is compatible with cup-product, so the cup-product
map

H1
nr(K,M)×H1

nr(K,M
′)→ H2(K,K

×
)

factors throughH2
ur(K,K

×
), which is zero. So we only need to check that the

orders ofH1
nr(K,M) andH1

nr(K,M
′) match up, i.e., that #H1(K,M)/#H1

nr(K,M) =
#H1

nr(K,M
′). By the argument above, H1

nr(K,M) has the same number of
elements as H0(K,M), and H1

nr(K,M
′) has the same number of elements as

H0(K,M ′), which is identified with H2(K,M) by Tate duality. Since #M
is relatively prime to p, the Euler characteristic of M is 1, which implies the
desired equality.

4 Global Euler Characteristic and Poitou-Tate

Long Exact Sequence

4.1 Local Conditions

We are going to care about deformation problems more restricted than “all
deformations to A”, and we’ll want to identify tangent spaces of restricted
problems with cohomology groups, ideally subgroups of the cohomological
tangent spaces we already know about. For example, if we ask for de-
formations preserving the determinant, we find that the tangent space is
H1(G, ad0 ρ): let C : G → adρ be the cocycle representing an infinites-
imal deformation, i.e., the deformation is ρ′(g) = (I + εC(g))ρ(g). Then
det(ρ′) = (1+εTr(C)) det ρ, so keeping the determinant unchanged is equiv-
alent to Tr(C) = 0, that is, C is actually a cocycle valued in ad0 ρ.

Since we’re interested in deformations of global Galois groups, we’re also go-
ing to be interested in deformations satisfying local conditions. That is, if
v is a place of F , there is a homomorphism Gv →֒ G, so by contravariance,
we have a restriction map H i(G,M) → H i(Gv,M). This lets us try to un-
derstand global cohomology classes in terms of their restrictions to the local
Galois groups. For example, we could look at the subgroup of everywhere
uramified cohomology classes:

{c ∈ H i(G,M) | resv(c) is unramified}
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We make the following definition:

Definition 4.1. Let L = (Lv) be a collection of subgroups Lv ⊂ H1(Gv,M)
such that for almost all places v, Lv = H1

nr(Gv,M) (this is called a family of
local conditions). The generalized Selmer group is

H1
L(GF ,M) := {c ∈ H1(GF ,M) | resv(c) ∈ Lv∀v}

We also let LD (the dual) denote the family of local conditions (LD
v ), where

LD
v is the annhilator of Lv under the Tate local duality pairing.

Here’s an example of a family of local conditions: Fix a finite set S ⊃ S∞ of
places of a global field F , and let ρ : GF → GLn(R) be a representation of
the absolute Galois group of F . Then we set

• Lℓ = H1
nr(Gℓ, ad

0 ρ) if ℓ /∈ S, ℓ 6= p

• Lℓ = H1(Gℓ, ad
0 ρ) if ℓ ∈ S

• Lp the conditions for ordinary deformations

4.2 Global Euler-Poincaré characteristic and Poitou-

Tate

The Poitou-Tate nine-term exact sequence is the following: Let F be a num-
ber field, and let S be any set of places containing the archimedean places
and the places v with v(#M) 6= 0,

0 → H0(FS,M)→ P 0(FS,M)→ H2(FS, A
′)∨

→ H1(FS,M)→ P 1(FS,M)→ H1(FS, A
′)∨

→ H2(FS,M)→ P 2(FS,M)→ H0(FS, A
′)∨

This bears some explanation, since we haven’t defined the groups P i, or the
maps in the sequence. Let A be a finite GF -module. We define

P i(FS,M) :=

′∏

v∈S
H i(Fv,M)
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Here the restricted product is taken with respect to the unramified cohomol-
ogy classes, that is,

P i(FS,M) = {(cv)v∈S ∈
∏

v∈S
H i(Fv,M) | cv ∈ H i

nr(Fv,M) for almost all v ∈ S}

Moreover, for archimedean places v ∈ S, we replace H0 by the modified Tate
cohomology group Ĥ0. In particular,

P 0(FS,M) =
∏

v∈SrS∞

H0(Fv,M)×
∏

v∈S∞

Ĥ0(Fv,M)

P 1(FS,M) =

′∏

v∈S
H1(Fv,M)

P 2(FS,M) =
⊕

v∈S
H2(Fv,M)

(by passing to a finite extension where A is unramified).

These groups have topologies: in order, excluding the zero terms, they are fi-
nite discrete, compact, compact, discrete, locally compact, compact, discrete,
discrete, finite.

Now we want to say what the maps are. The maps H i → P i are evident.
For the maps P i → H2−i, note that local duality gives an isomorphism
P i→̃(P 2−i)

∨
for 0 ≤ i ≤ 2; composing with the (Pontryagin) dual of the

homomorphism H2−i → P 2−i gives the desired map. That leaves the maps
(H2)

∨ → H1 and (H1)
∨ → H2. Denoting the maps H i → P i by αi, there is

a non-degenerate pairing kerα1 × kerα2 → Q/Z, which defines the desired
maps.

A theorem due to Poitou and Tate (independently) states that this sequence
is exact, and all of the maps are continuous.

Now we would like an analogue of the local Euler-Poincaré characteristic,
for global Galois cohomology. We need to assume that S is a finite set,
containing S∞ and the places v with v(#M) 6= 0. First of all, we show that
if M is a finite GS-module, then H1(FS,M) is finite. It is also true that
H i(FS, A) is finite for i 6= 1, but this is harder (this is Theorem 8.3.19 in
Neukirch)

Proof. We can pass to a finite Galois extension F ′/F such that GF ′,S acts
trivially onM . ThenH1(GF ′,S ,M) is finite, because it’s equal to Hom(F ′

S,M),
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which classifies Galois extensions of F ′ unramified outside S with Galois
group a subgroup of M , and there are finitely many of these (Hermite-
Minkowski). Then use the spectral sequence or inflation-restriction to say
that H1(FS,M) itself is finite.

Now we define the global Euler-Poincaré characteristic to be

χ(FS,M) :=
#H0(FS,M)#H2(FS,M)

#H1(FS,M)

We have the formula

χ(FS,M) =
∏

v∈S∞

#H0(Fv,M)

‖#M‖ =
∏

v∈S∞

#Ĥ0(Fv,M)

#H0(Fv,M ′)
(4.1)

Note that this formula is in terms of the cardinality of the cohomology groups.
In this seminar, we will be interested in the case where the cohomology
coefficients are vector spaces (either over finite fields or over p-adic fields), so
we would like a formula in terms of the dimensions of cohomology groups as
vector spaces.

So suppose that M is a finite dimensional vector space over a finite field
k = Fq. Then the cohomology groups H i(GS,M) are vector spaces over k,
so we may take the base q logarithm of 4.1 to get

logq χ(FS,M) =
∑

v∈S∞

(
h0(Fv,M)− logq‖#M‖

)
=

∑

v∈S∞

(
ĥ0(Fv,M)− h0(Fv,M

′)
)

5 Product formula

The formula we want to prove is due to Wiles: LetM be a finite GF -module
and let L be a collection of local conditions. Then

#H1
L(F,M)

H1
LD(F,M ′)

=
#H0(F,M)

#H0(F,M ′)
·
∏

v

#Lv

#H0(Fv,M)

where the product runs over all places of F .

We choose a finite set S of places of F as follows: S contains all archimedean
places of F , all non-archimedean places whose residue characteristic divides
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#M , all places whereM is ramified, and all places p where Lp 6= #H1(Gp/Ip,M
Ip ).

Let FS be the maximal extension of F unramified outside S, and let GS be
Gal(FS/F ).

For any finite discrete GF -module M , we have an exact sequence

0→ H1
L(F,M)→ H1(GS,M)→ ⊕v∈SH

1(Gv,M)/Lv

Taking this exact sequence forM∗ and hitting it with Hom(−,Q/Z), we get
∏

v∈S
Lv → H1(GS,M

∗)∨ → H1
LD(F,M

∗)∨ → 0

Here the ∨ refers to Pontryagin dual. The identity (H1(Gv,M
∗)/LD

v )
∨ =

Lv follows from local duality: Hom(H1(Gv,M
∗)/LD

v ,Q/Z) is the subset of
H1(Gv,M) killing LD

v under the Tate pairing, which is to say that it is Lv

again.

Next we want to merge this exact sequence into the Poitou-Tate exact se-
quence:

0 → H0(GS,M)→ P 0(GS,M)→ H2(GS, A
′)∨ →

→ H1
L(F,M)→

∏

v∈S
Lv → H1(GS,M

∗)∨ → H1
LD(F,M

∗)∨ → 0

If this sequence is exact, we have

#H1
L(F,M)

#H1
LD(F,M ′)

=
#H0(GS,M)#H2(GS,M

′)

#H1(GS,M ′)#P 0(GS,M)
·
∏

v∈S
#Lv

because H2(GS,M
′)∨ has the same number of elements as H2(GS,M

′). The

formula for χ(GS,M
′) is χ(GS,M

′) =
∏

v∈S∞
ĥ0(Fv,M ′)
h0(Fv,M)

, which yields

#H1
L(F,M)

#H1
LD(F,M ′)

=
#H0(GS,M)

#H0(GS,M ′)
· 1

#P 0(GS,M)
·
∏

v∈S∞

#Ĥ0(Fv,M
′)

#H0(Fv,M)

∏

v∈S
#Lv

=
#H0(GS,M)

#H0(GS,M ′)

∏

v∈S

#Lv

#H0(Fv,M)
by the definition of P 0

=
#H0(GS,M)

#H0(GS,M ′)

∏

v

#Lv

#H0(Fv,M)

The last line follows because outside of S, Lv = H1
nr(Fv,M) andM is unram-

ified, so we can apply the argument that #H1
nr = #H0 to say the quotient

is 1.
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Lecture 8: Hecke algebras and Galois representations

Burcu Baran
February, 2010

1. Z-Finiteness of Hecke Algebras

Let Sk denote the complex vector space Sk(Γ1(N)) of cusp forms of weight k ≥ 2 on
Γ1(N). Let T be the Z-subalgebra of EndC(Sk) generated by Hecke operators Tp for every
prime p and diamond operators 〈d〉 for every d ∈ (Z/NZ)×. In this section our aim is to
prove that T is a finite free Z-module. As it is clear that T is torsion-free, it is enough to
show that T is a finitely generated Z-module. We show this in Theorem 1.6.

We begin with some general constructions for any congruence subgroup Γ of SL2(Z). Let
{e, e′} be a C-basis for C2. The group Γ acts on C2 via the embedding SL2(Z) →֒ SL2(C)
with respect to the basis {e, e′}: for γ =

(
a b
c d

)
∈ Γ and c1e+ c2e

′ ∈ C2,

γ · (c1e+ c2e
′) = (ac1 + bc2)e+ (cc1 + dc2)e

′.

This action induces an action on Vk := Symk−2(C2).
Fix any z0 in the upper half-plane h. Let f be any element of the C-vector space Mk(Γ)

of modular forms of weight k on Γ. We define the function If : Γ −→ Vk by

(1.1) If (γ) =

∫ γz0

z0

(ze+ e′)k−2f(z)dz

for every γ ∈ Γ.

Proposition 1.1. The function If in (1.1) is a 1-cocycle and its class in H1(Γ, Vk) is
independent of z0.

Proof. First, we show that If is in Z1(Γ, Vk). Let γ1 =

(
a b
c d

)
and γ2 be elements of Γ.

Since f |kγ1 = f , we have

γ1 · If (γ2) =

∫ γ2z0

z0

((az + b)e+ (cz + d)e′)k−2f(z)dz,

=

∫ γ2z0

z0

(γ1(z)e+ e′)k−2f(γ1z)
dz

(cz + d)2
,(1.2)

=

∫ γ2z0

z0

(γ1(z)e+ e′)k−2f(γ1z)d(γ1z),

=

∫ γ1γ2z0

γ1z0

(ze+ e′)k−2f(z)dz.

It follows that

γ1 · If (γ2) + If (γ1) =

∫ γ1γ2z0

γ1z0

(ze+ e′)k−2f(z)dz +

∫ γ1z0

z0

(ze+ e′)k−2f(z)dz = If (γ1γ2),

as desired.
Now we show that If modulo B1(Γ, Vk) is independent of z0. Choose z1 ∈ h. For any

γ ∈ Γ the difference
∫ γz0
z0

(ze+ e′)k−2f(z)dz −
∫ γz1
z1

(ze+ e′)k−2f(z)dz is equal to

∫ γz0

γz1

(ze+ e′)k−2f(z)dz −
∫ z0

z1

(ze+ e′)k−2f(z)dz.

The calculations in (1.2) with γz0 replaced by z1 show that
∫ γz0
γz1

(ze + e′)k−2f(z)dz =

γ ·
∫ z0
z1

(ze+ e′)k−2f(z)dz. Hence, we see that the difference is a 1-coboundary.
�

1
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By Proposition 1.1 we can define the C-linear map

(1.3) j : Mk(Γ) −→ H1(Γ, Vk)

by j(f) = If , where If is given in (1.1).

Proposition 1.2. Choose z0 ∈ h. The restriction

j : Sk(Γ) −→ H1(Γ, Vk)

f 7→
(
γ 7→

∫ γz0

z0

(ze+ e′)k−2fdz
)
,

of (1.3) is injective.

Proof. For any h ∈ Sk(Γ) consider the holomorphic map

(ze+ e′)k−2h(z) : h −→ Vk.

Since h is simply connected, we can choose a holomorphic function Gh : h −→ Vk so that

dGh = (ze+ e′)k−2h(z)dz. For any σ =

(
a b
c d

)
∈ SL2(Z) we see that

d(Ghσ) = G′
h(σ(z))dσ(z) ,

=
((az + b

cz + d

)
e+ e′

)k−2
h(σ(z))

dz

(cz + d)2
,

= ((az + b)e+ (cz + d)e′)k−2(h|kσ)(z)dz ,

where (h|kσ)(z) = (cz + d)−kh(σ(z)). Therefore, for every σ ∈ SL2(Z) we have

(1.4) Ghσ = σ ·Gh|kσ + vσ

for our fixed choice of antiderivativeGh|kσ of (ze+ e′)k−2(h|kσ) and some vσ ∈ Vk.
Let SL2(Z) act on the holomorphic maps G : h −→ Vk as follows:

(σ ∗G)(z) = σ · (Gσ−1(z)).

For each member h̃ of SL2(Z)-orbit of h (under σ 7→ h|kσ) we choose an antiderivative Gh̃

as above, so by (1.4) for every σ ∈ SL2(Z) we have

(1.5) σ ∗Gh = Gh|kσ−1 + cσ

for some cσ ∈ Vk.
Consider f ∈ Sk(Γ) in the kernel of j; that is, the 1-cocycle

γ 7→
∫ γz0

z0

(ze+ e′)k−2f(z)dz = Gf (γz0)−Gf (z0)

is a 1-coboundary. Then, for every γ ∈ Γ we have

(1.6) Gf (γz0)−Gf (z0) = γ · v − v

for some v ∈ Vk. Our aim is to show that f = 0.
For γ ∈ Γ the equation (1.5) becomes

(1.7) γ ∗Gf = Gf + cγ

for some cγ ∈ Vk. We evaluate this equation at γz0 and obtain that cγ = (γ ∗ Gf )(z0) −
Gf (γz0). By using equation (1.6) we see that cγ = γ · (Gf (γ

−1z0)− v)− (Gf (z0)− v). We
may replace Gf with Gf − (Gf (z0)− vγ), so (1.7) becomes

(1.8) γ ∗Gf = Gf

for all γ ∈ Γ.
Recall that for the upper half-plane h, we topologize h∗ = h ∪ P1(Q) using SL2(Z)-

translates of bounded vertical strips

{z ∈ h| Im(z) > c, a < Re(z) < b}
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for a, b ∈ R and c > 0. Now we prove the following claim.

Claim 1: As we approach any fixed cusp in h∗, the function Gf remains bounded in Vk.

Proof of Claim 1: Let s ∈ h∗ be any cusp and choose σ ∈ SL2(Z) such that σ(s) = ∞.
To prove the claim, it is enough to prove that σ ∗ Gf is bounded as we approach ∞ in
h. By (1.5), this is just an antiderivative of f |kσ−1. Thus, it suffices to prove that each
coefficient function of (ze+ e′)k−2(f |kσ−1)(z) has bounded antiderivative as Im(z) → ∞ in
any bounded vertical strip {z ∈ h| |Re(z)| < a} where a ∈ R+. Since f ∈ Sk(Γ), we have

(f |kσ−1)(z) ∈ Sk(σΓσ
−1). Let f̃(z) := (f |kσ−1)(z). Since f̃ is a cusp form for σΓσ−1, for

any a > 0 there exists c ∈ R+ such that

|f̄(z)| ≪ e−cIm(z) as Im(z) → ∞
uniformly for |Re(z)| < a. Thus, for any x ∈ [−a, a] and y0 ≥ M > 0 the coefficients of

Gf̃ (x+ iY )−Gf̃ (x+ iy0) are linear combinations of terms
∫ Y

y0
yrf̃(x+ iy)dy with uniformly

bounded coefficients. This integral is bounded above by |Pr(Y )|e−cY + |Pr(y0)|e−cy0 , where
Pr is a fixed polynomial of degree r, and as Y → ∞ this tends to |Pr(y0)|e−cy0 uniformly

in |x| ≤ a. This shows that each coefficient function of (ze + e′)k−2(f̃(z)) has bounded
antiderivative as Im(z) → ∞ in the mentioned vertical strips. Hence, Claim 1 follows.

Using the SL2(Z)-invariant bilinear pairing B : C2 ×C2 −→ C defined by the determi-
nant, we obtain the induced bilinear pairing

Bk : Vk × Vk −→ C,

which is also SL2(Z)-invariant. For ωf = (ze+ e′)k−2fdz, consider the 2-form

Bk(ωf , ω̄f ) = (k − 2)! |f |2 det(ze+ e′, z̄e+ e′)k−2 dz ∧ dz̄,(1.9)

= (k − 2)! (2i)k−1 yk |f |2 dxdy
y2

,

where z = x+ iy. Since f is a cusp form, Bk(ωf , ω̄f) has finite integral over a fundamental
domain F of Γ. Before computing this integral, we compute Bk(ωf , ω̄f ) in another way.

Since ωf = dGf = gdz for g = (ze+ e′)k−2f ,

Bk(ωf , ω̄f) = Bk(g, ḡ) dz ∧ dz̄.
But g is holomorphic, so ∂g

∂z̄ = 0 and hence

Bk(g, ḡ) =
∂Bk(Gf , ḡ)

∂z
.

Thus, we see that

Bk(ωf , ω̄f) =
∂Bk(Gf , ḡ)

∂z
dz ∧ dz̄ = d(Bk(Gf , ḡ)dz̄).

By using this equality and Stoke’s Theorem we obtain

(1.10)

∫

F

Bk(ωf , ω̄f) =

∫

∂F

Bk(Gf , dGf ).

Now, we want to compute
∫
∂F
Bk(Gf , dGf ). To do this, for each cusp c we choose

γ ∈ SL2(Z) such that γ(c) = ∞. We define the “loop” Rc,h around c in F to be γ−1(L)
where L is the horizontal segment joining the two edges at a common “height” h emanating
from ∞ in γ(F ). Define the “closed disc” Dc,h = γ−1(UL) where UL is the closed vertical
strip above L including ∞. Then, this integral is equal to

(1.11) lim
h→∞

( ∫

∂(F−∪cDc,h)

Bk(Gf , dGf ) +
∑

c∈{cusps of F}

∫

Rc,h

Bk(Gf , dGf )
)
.

To calculate the first integral in (1.11) we prove the following claim.

Claim 2: For any γ ∈ Γ, the pullback γ∗(Bk(Gf , dGf )) is equal to Bk(Gf , dGf ).
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Proof of Claim 2: Let γ ∈ Γ. Since Bk is SL2(Z)-invariant, we have

γ∗(Bk(Gf , dGf )) = Bk(Gfγ, d(Gfγ)).

Since γ ∈ Γ, by (1.8) we see that Gf = γ−1 ∗Gf . With this equality we obtain Gfγ =
γ−1 ·Gf . Thus, the above equality gives us

γ∗(Bk(Gf , dGf )) = Bk(γ
−1 ·Gf , d(γ

−1 ·Gf )),

= Bk(γ
−1 ·Gf , γ

−1 · d(Gf )),

= Bk(Gf , dGf ).

The last equality holds because Bk is SL2(Z)-invariant. Hence, Claim 2 follows.

By Claim 2, the integrals on edges L1 and L2 of F such that L1 = γL2 for some γ ∈ Γ
cancel. That gives us

(1.12)

∫

∂(F−∪cDc,h)

Bk(Gf , dGf ) = 0

for any h. Now, consider any cusp c of F and the loop Rc,h around it. We want to compute

limh→∞
∫
Rc,h

Bk(Gf , dGf ). Choose σ ∈ SL2(Z) such that σ(∞) = c. We have

∫

Rc,h

Bk(Gf , dGf ) =

∫

σ−1(Rc,h)

σ∗(Bk(Gf , dGf )),

=

∫

σ−1(Rc,h)

Bk(Gfσ, dGfσ);(1.13)

the last equality holds because Bk is SL2(Z)-invariant. The loop σ−1(Rc,h) is a loop R∞,h

around∞ at height h. By equation (1.4), the function Gfσ is just σ ·Gf |kσ up to translation
by a constant in Vk. Thus, as Bk is SL2(Z)-invariant, instead of computing the limit
with integral (1.13), we may compute it with

∫
R∞,h

Bk(Gf |kσ, dGf |kσ) with any choice of

antiderivative Gf |kσ. We do this by calculating the integrals of the {e, e′}-coefficients of the
integrand.

By Claim 1, any antiderivative Gf |kσ is bounded in Vk as we approach ∞ in a bounded

vertical strip, and dGf |kσ has an explicit formula in terms of the cusp form f̄ |kσ. Thus, for
any a > 0 there exists b > 0 such that

|f̄ |k(z)| ≪ e−bIm(z) as Im(z) → ∞
uniformly for |Re(z)| < a, so limh→∞

∫
R∞,h

Bk(Gf , dGf ) = 0. As a result, for each cusp c

of F and the loop Rc,h around it limh→∞
∫
Rc,h

Bk(Gf , dGf ) = 0. Hence,

(1.14) lim
h→∞

∑

c∈{cusps of F}

∫

Rc,h

Bk(Gf , dGf ) = 0.

By (1.12) and (1.14), we see that the integral (1.10) becomes
∫

F

Bk(ωf , ω̄f ) = 0.

In (1.9), we computed Bk(ωf , ω̄f ) explicitly. Thus, this gives us

(k − 2)! (2i)k−1

∫

F

yk |f |2 dxdy
y2

= 0.

The function inside the integral is nonnegative, so f = 0, as promised. �

From now on, we assume that Γ = Γ1(N). By Proposition 1.2, we have injective C-linear
map

(1.15) j : Sk →֒ H1(Γ, Vk).
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Now, we want to construct operators acting on H1(Γ, Vk) compatible via j with the Hecke
operators acting on Sk and preserving the Z-structure on H1(Γ, Vk). To do this we view
Hecke operators acting on Sk as double cosets ΓαΓ where α is an element of

(1.16) ∆ = {β ∈ M2(Z) | det(β) > 0, β ≡
(
1 ∗
0 ∗

)
modN}.

It suffices to construct some Tα acting on H1(Γ, Vk) for every α ∈ ∆ such that

(i) the map j in (1.15) carries [ΓαΓ]-action on the left to Tα-action on the right,
(ii) Tα preserves the Z-structure on H1(Γ, Vk) coming from the one on Vk.

The following three lemmas give such Tα.

Lemma 1.3. Choose α ∈ ∆ and coset representatives {αi} for the left multiplication action
of Γ in ΓαΓ, so that ΓαΓ =

∐n
i=1 Γαi. For every i and γ ∈ Γ, define j[i] uniquely via

αiγ = γiαj[i]. There is a well-defined operator

Tα : H1(Γ, Vk) −→ H1(Γ, Vk).

c 7−→ (γ 7→
n∑

i=1

(detα)k−1α−1
i · c(γi)),

which does not depend on the coset representatives.
Let Γα := α−1Γα ∩ Γ. Using the natural finite-index inclusion ι1 : Γα →֒ Γ and the

finite-index inclusion ι2 : Γα →֒ Γ defined by ι2(β) = αβα−1, the resulting composite map
of the restriction and corestriction maps

H1(Γ, Vk)
Res−−−−−→

along ι2
H1(Γα, Vk)

Cor−−−−−→
along ι1

H1(Γ, Vk)

is the operation Tα.

Proof. We first show that if we use another choice of coset representatives {α′
i} for Γ in

ΓαΓ, then the operator Tα on 1-cocycles (valued in 1-cochains) changes by 1-coboundaries.
Consider

α′
i = γ̃iαi

where γ̃i ∈ Γ for every i. Since we have αiγ = γiαj[i] for every i and γ ∈ Γ, with the new

choice of coset representatives we obtain γ̃−1
i α′

iγ = γiγ̃
−1
j[i]α

′
j[i]. Writing γ′i := γ̃iγiγ̃

−1
j[i], we

get

α′
iγ = γ′iα

′
j[i]

for every i and γ ∈ Γ. With the new choice of coset representatives {α′
i}, for c ∈ Z1(Γ, Vk)

and γ ∈ Γ we have the equalities
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n∑

i=1

(detα)k−1α′−1
i · c(γ′i) =

n∑

i=1

(detα)k−1αi
−1γ̃−1

i · c(γ̃iγiγ̃−1
j[i]),

=

n∑

i=1

(detα)k−1α−1
i γ̃−1

i · c(γ̃i) +
n∑

i=1

(detα)k−1α−1
i · c(γiγ̃−1

j[i]),

=

n∑

i=1

(detα)k−1α−1
i γ̃−1

i · c(γ̃i) +
n∑

i=1

(detα)k−1α−1
i γi · c(γ̃−1

j[i])

+

n∑

i=1

(detα)k−1α−1
i · c(γi),

= −
n∑

i=1

(detα)k−1α−1
i · c(γ̃−1

i ) +
n∑

i=1

(detα)k−1γ α−1
j[i] · c(γ̃−1

j[i])

+

n∑

i=1

(detα)k−1α−1
i · c(γi),

=
n∑

i=1

(detα)k−1α−1
i · c(γi) + (γ · v0 − v0),

where v0 =
∑n

i=1(detα)
k−1α−1

i · c(γ̃−1
i ). Hence, we have shown that the operator Tα on

1-cocycles does not depend on the chosen coset representatives if we view its values modulo
B1(Γ, Vk). Now, we want to show that it is a well-defined operator.

We choose coset representatives {αi} for Γ\ΓαΓ so that Γ =
∐

Γα(α
−1αi). We can do

this by [1, Lemma 5.1.2]. Since we haveαiγ = γiαj[i] for every γ ∈ Γ, we see that (α−1αi)γ =

(α−1γiα)α
−1αj[i]. Since α−1αi ∈ Γ for every i, we have (α−1αi)γ(α

−1αj[i])
−1 ∈ Γ. Thus,

it follows from [2, p. 45] that

Cor : H1(Γ, Vk) −→ H1(Γα, Vk),

c 7→
(
γ 7→

n∑

i=1

(α−1αi)
−1 · c((α−1αi)γ(α

−1αj[i])
−1

=

n∑

i=1

α−1
i α · c(α−1γiα)

)

where αiγ = γiαj[i]. To compute the restriction map along ι2, observe that the isomorphism

Vk −→ Vk

v 7→ α · v
is equivariant for the Γα-action on the left-side and Γ-action on the right-side via the em-
bedding ι2. Thus, the restriction map is computed as follows

Res : H1(Γα, Vk) −→ H1(Γ, Vk)

c 7→
(
γ 7→ α−1 · c(αγ α−1)

)
.

As a result, we see that the composite map Cor ◦ Res is the desired map. Hence, Tα is a
well-defined action H1(Γ, Vk).

�

Lemma 1.4. The Tα-action on H1(Γ, Vk) is induced by scalar extension of the analogous

operation on H1(Γ, Symk−2(Z2)).

Proof. Since k ≥ 2, we have (detα)k−1α−1
i = (detα)k−2((detα)α−1

i ), with (detα)α−1
i a

matrix having Z entries. The result then follows from the cocycle formula for Γα.
�
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Lemma 1.5. Consider the action of Tα on H1(Γ, Vk) that we defined in Lemma 1.3. The
injective map j in (1.15) carries the [ΓαΓ]-action on Sk over to the Tα-action on H1(Γ, Vk)
for every α in ∆ as in (1.16).

Proof. Choose α ∈ ∆ and coset representatives {αi} for Γ\ΓαΓ, so ΓαΓ =
∐n

i=1 Γαi. For
f ∈ Sk we have f |k[ΓαΓ] =

∑n
i=1 f |kαi. Now for each i and γ ∈ Γ, we compute If |kαi

(γ)
via (1.1):

If |kαi
(γ) =

∫ γz0

z0

(ze+ e′)k−2(f |kαi)dz,

= α−1
i ·

∫ γz0

z0

αi · (ze+ e′)k−2(f |kαi)dz,

= α−1
i · (detαi)

k−1

∫ αiγz0

αiz0

(ze+ e′)k−2f dz.

The last equality follows by the calculations that are similar to the ones that we did in (1.2).
Since for γ ∈ Γ right multiplication by γ permutes Γαi, for every i and γ ∈ Γ there exists a
unique j[i] and γi ∈ Γ such that αiγ = γiαj[i]. By using this equality we compute

If |k[ΓαΓ](γ) = (detα)k−1
n∑

i=1

αi
−1 ·

∫ γiαj[i]z0

αiz0

(ze+ e′)k−2f dz,

= (detα)k−1
n∑

i=1

αi
−1 ·

( ∫ γiαj[i]z0

z0

(ze+ e′)f dz −
∫ αiz0

z0

(ze+ e′)k−2f dz
)
,

= (detα)k−1
n∑

i=1

αi
−1 ·

( ∫ γiαj[i]z0

γiz0

(ze+ e′)f dz +
∫ γiz0

z0

(ze+ e′)f dz

−
∫ αiz0

z0

(ze+ e′)f dz
)
,

= (detα)k−1
n∑

i=1

αi
−1 · (γi ·

∫ αj[i]z0

z0

(ze+ e′)f dz +
∫ γiz0

z0

(ze+ e′)f dz

−
∫ αiz0

z0

(ze+ e′)f dz ) by similar calculations done in (1.2),

= (detα)k−1
( n∑

i=1

γ α−1
j[i] ·

∫ αj[i]z0

z0

(ze+ e′)f dz +
n∑

i=1

α−1
i ·

∫ γiz0

z0

(ze+ e′)f dz

−
n∑

i=1

α−1
i ·

∫ αiz0

z0

(ze+ e′)f dz
)

since α−1
i γi = γ α−1

j[i],

= (detα)k−1
( n∑

i=1

α−1
i ·

∫ γiz0

z0

(ze+ e′)f dz + (γ · v1 − v1)
)
,

where v1 =
∑n

i=1 α
−1
i ·

∫ αiz0
z0

(ze+e′)f dz. Therefore, we see that for every α ∈ ∆ and f ∈ Sk
we have the quality j(f |k[ΓαΓ]) = Tα(j(f)) in H1(Γ, Vk). Hence, the lemma follows.

�
Theorem 1.6. Let T be the Z-subalgebra of EndC(Sk) generated by Hecke operators Tp

for every prime p and diamond operators 〈d〉 for every d ∈ (Z/NZ)×. Then T is finitely
generated as a Z-module.

Proof. By Proposition 1.2, we have C-linear injection

j : Sk −→ H1(Γ, Vk)

for Γ = Γ1(N). By Lemma 1.3, for every α ∈ ∆ (see (1.16)) we have a well-defined action
Tα on H1(Γ, Vk). By Lemma 1.5, the action Tα on H1(Γ, Vk) is compatible with the action
of [ΓαΓ] on Sk.
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Let T′ be the Z-subalgebra of EndC(H
1(Γ, Vk)) generated by the Tα for every α ∈ ∆.

Then, by Lemma 1.4, the Z-algebraT′ is in the image of theZ-subalgebra of EndZ(H
1(Γ, Symk−2(Z2))).

Since H1(Γ, Symk−2(Z2)) is a finitely generated Z-module, T′ is also a finitely generated
Z-module. By construction, the T′-action on H1(Γ, Vk) preserves Sk, so we get a restriction
map

ν : T′ −→ EndC(Sk)

defined by ν(T ) = T |Sk
for every T ∈ T′. The image of ν in EndC(Sk) is T. Therefore,

since T′ is finitely generated Z-module, T is finitely generated Z-module.
�

2. Some Commutative Algebra

In this section we again assume that Γ = Γ1(N). Remember that we denote the C-vector
space Sk(Γ1(N)) of cusp forms of weight k on Γ by Sk. Let Sk(Γ,Q) be the space of cusp
forms with in Sk with Fourier coefficients in Q. By [4, Thm. 3.52], we know that Sk has a
C basis that comes from Sk(Γ,Q) and so we have a surjection

Sk(Γ,Q)⊗Q C −→ Sk.

Actually, this basis also spans the Q-vector space Sk(Γ,Q) and so this surjection is in fact
an isomorphism. This “justifies” the following two definitions.

Definition 2.1. For any field F with characteristic 0,

Sk(Γ, F ) := Sk(Γ,Q)⊗Q F.

Remember that T is the Z-subalgebra of EndC(Sk) generated by Hecke operators Tp for
every prime p and diamond operators 〈d〉 for every d ∈ (Z/NZ)×.

Definition 2.2. For any domain R with characteristic 0, we define

TR := T⊗Z R

acting on Sk(Γ,Frac(R)).

Remark 2.3. By Theorem 1.6 we know that TR is a finite free R-module.

Let ℓ be a prime number. Fix an embedding Q ⊂ Qℓ. Let K be a finite extension of
Qℓ in Qℓ. Let O be its ring of integers and λ be its maximal ideal. Consider the finite flat
O-algebra TO.

Proposition 2.4. The minimal prime ideals of TO are those lying over the prime ideal (0)
of O.

Proof. Let P be a minimal prime ideal of TO. Since TO is a flat O-algebra, the going down
theorem holds between TO and O (see [3, Thm. 9.5]). Therefore, P ∩O = (0). Now, suppose
that P ′ is a prime ideal of TO such that P ′ ⊂ P and P ′ ∩ O = (0). As TO is an integral
extension of O, there are no strict inclusions between prime ideals lying over (0). Thus,
P ′ = P . Hence, the proposition follows. �

The K-algebra TK is Artinian. Hence, it has only a finite number of prime ideals, all of
which are maximal. By Proposition 2.4, the natural map

TO →֒ TO ⊗O K ∼= TK

induces a bijection

(2.1) {minimal prime ideals of TO} ↔ {prime ideals of TK}.
Moreover, since O is complete, TO is λ-adically complete and by [3, Thm. 8.15] there is an
isomorphism

TO ∼=
∏

m

Tm.

The product is taken over the finite set of maximal ideals m of TO and Tm denotes the
localization of TO at m. Each Tm is a complete local O-algebra which is finite free as an
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O-module. With this isomorphism we see that every prime ideal of TO is contained in the
unique maximal ideal of TO. Hence, we have a surjection

(2.2) {minimal prime ideals of TO} ։ {maximal ideals of TO}.
Let GK be the absolute Galois group of K. Suppose f =

∑
anq

n is a normalized
eigenform in Sk(Γ,K). Then T 7→ (T−eigenvalue of f) defines a ring map T −→ K and so
induces a K-algebra homomorphism Θf : TK −→ K. The image is the finite extension of
K generated by the an and the kernel is a maximal ideal of TK which depends only on the
GK-conjugacy class of f . Thus, we have the map

(2.3) ϕ :

{
normalized eigenforms in

Sk(Γ,K) modulo GK−conjugacy

}
−→ {maximal ideals of TK}

defined by ϕ(f) = Ker(Θf ).

Proposition 2.5. The map ϕ in (2.3) is a bijection.

Proof. For any maximal ideal m of TK , all K-algebra embeddings TK/m →֒ K are obtained
from a single one by composing with an element ofGK . Thus, we can make the identification

{maximal ideals of TK} = HomK−alg(TK ,K)
/
(GK−action).

Thus, to prove the proposition it is enough to show that the GK-equivariant map

ψ : {normalized eigenforms in Sk(Γ,K)} −→ HomK−alg.(TK ,K)

defined by ψ(f)(T ) = (T−eigenvalue of f) is bijective. To do this, consider the K-linear
map

δ : Sk(Γ,K) −→ HomK−vsp(TK ,K)(2.4)

f 7→
(
αf : T 7→ a1(Tf )

)
.

If we can show that δ is an isomorphism of K-vector spaces, then we claim we are done.
Because in (2.4) we claim that f ∈ Sk(Γ,K) is a normalized eigenform if and only if αf

is a ring homomorphism. To see this, suppose f ∈ Sk(Γ,K) is a normalized eigenform, so
there exists a K-algebra homomorphism Θf : TK → K defined by Tf = Θf (T )f for every
T ∈ TK . Clearly δ(f) = αf where

αf (T ) = a1(Tf ) = a1(Θf(T )f) = Θf(T )a1(f) = Θf(T )

for every T ∈ TK . Thus, αf is a K-algebra homomorphism. Conversely, consider any

K-algebra homomorphism α : TK −→ K, so α(T ) = a1(Tf ) for some unique f ∈ Sk(Γ,K).
Let λn = α(Tn) for every Tn ∈ TK . Then we have

a1(T Tnf) = α(T Tn) = α(T )α(Tn) = λn a1(Tf ) = a1(T λnf)

for every T ∈ TK and n ≥ 1. Taking T = Tm for every m ≥ 1 gives Tnf = λnf for every
n ≥ 1, proving that f is an eigenform. Moreover, as α is aK-algebramap, 1 = α(id) = a1(f).
Hence, f is a normalized eigenform in Sk(Γ,K).

Now, we will show that δ is an isomorphism of K-vector spaces. For injectivity, suppose
δ(f) = αf is the zero map, so a1(Tf ) = 0 for every T ∈ TK . In particular, an(f) =
a1(Tnf) = 0 for every n ≥ 1, which implies that f = 0. To prove surjectivity of δ, it is
enough to show that

(2.5) dimKHomK−vsp(TK ,K) ≤ dimKSk(Γ,K).

Since HomK−vsp(TK ,K) ∼= HomK(TK−vsp,K), we can work with HomK(TK−vsp,K). Ac-

tually, with this identification, studying the map δ is the same as studying the K-bilinear
mapping

Sk(Γ,K)×TK −→ K

(f , T ) 7→ a1(Tf )
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between finite-dimensional K-vector spaces. Thus, to prove (2.5), it is enough to show that
the map

ǫ : TK −→ HomK(Sk(Γ,K),K)

T 7→ (f → a1(Tf ))

is injective. Suppose ǫ(T ) vanishes for some T . Thus, for every f ∈ Sk(Γ,K) and for
every integer n ≥ 1 we have a1(TnTf ) = a1(TTnf) = 0. Therefore, Tf = 0 for every
f ∈ Sk(Γ,K). Since TK acts faithfully on Sk(Γ,K), we get T = 0, proving that the map ǫ
is injective. Hence, the proposition follows.

�

Combining the bijections (2.1) and (2.3) and the surjection (2.2), we have the following
diagram.

{minimal prime ideals of TO} ։ {maximal ideals of TO}
l

{prime ideals of TK}(2.6)

l

E =

{
normalized eigenforms in

Sk(Γ,K) modulo GK−conjugacy

}

Let m be any maximal ideal of TO, so m is the kernel of a map Φ : TO −→ Fℓ. We want
to attach a residual representation ρ̄m over Fℓ to m using the diagram (2.6). Let {f1, ..., fr}
be a set of representatives of all normalized eigenforms in E such that in the diagram (2.6)
their corresponding minimal prime ideals ℘fi in TO are inside the maximal ideal m. For
each i, let ℘′

fi
be the corresponding prime ideal in TK , so ℘′

fi
∩TO = ℘fi . Thus, for each

i, we have a map

Θfi : TO −→ O
Tn 7→ an(fi)

with kernel ℘fi . Since each ℘fi ⊂ m, the map Φ : TO −→ Fℓ factors through ImΘfi for
each i as follows,

ImΘf1

ր
... ց

TO −→ Fℓ.

ց
... ր

ImΘfr

For each i, the quotient TK/℘
′
fi

is a finite extension Kfi of K. Let Ofi be its ring of

integers and kfi be its residue field. Each map ImΘfi −→ Fℓ lifts to Ofi , lifting the embed-

ding of the residue field of ImΘfi to an embedding of kfi into Fℓ. The above commutative
diagram tells us that for every integer n ≥ 1, we have

an(f1) = . . . = an(fr)

in Fℓ. Consider the semisimplified residual representation ρ̄fi associated to each fi; it is
defined over kfi . For every prime p such that p 6 |Nℓ we have

tr(ρ̄f1(Frobp)) = . . . = tr(ρ̄fr (Frobp))
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over Fℓ. We obtain a similar result for the determinants of ρ̄fi(Frobp)’s when we compare
the characters χ̄fi associated to fi’s. Therefore, we obtain

ρ̄f1
∼= . . . ∼= ρ̄fr

over Fℓ. We let ρ̄m denote this common residual representation.

3. The Main Theorem

In this section we prove the following theorem.

Theorem 3.1. Let K be a finite extension of Qℓ such that its ring of integers O is big
enough to contain all Hecke eigenvalues at level N . Let λ be its maximal ideal, k its residue
field and m a maximal ideal of TO. Consider the associated residual representation

ρ̄m : GQ −→ GL2(k)

over k. Assume ρ̄m is absolutely irreducible. Then there exists a unique deformation

ρm : GQ −→ GL2((Tm)red)

such that

(1) ρm is unramified at every prime p such that p 6 |Nℓ,
(2) For every prime p such that p 6 |Nℓ, the characteristic polynomial of ρm(Frobp) is

x2 −Tpx+ pk−1〈p〉.
Before proving this theorem, consider the following theorem which was proved by Akshay

in his talk. The corollary of this theorem will be the main ingredient while proving Theorem
3.1.

Theorem 3.2. Let R be a complete local Noetherian ring and let ρ : GQ −→ GL2(R) be a
residually absolutely irreducible representation. If S is a complete local Noetherian subring
of R which contains all the traces of ρ, then the Galois representation ρ is conjugate to a
representation GQ −→ GL2(S).

Corollary 3.3. Let O be the ring of integers of a finite extension ofQℓ, with maximal ideal λ
and residue field k. Let Σ be a finite set of places of Q containing ℓ. Let ρ : GQ −→ GL2(R)
be the universal deformation unramified outsideΣ for an absolutely irreducible representation
ρ̄ : GQ −→ GL2(k) unramified outside Σ, taken on the category of complete local Noetherian
O-algebras with residue field k. The traces tr(ρ(Frobp)) for all but finitely many primes
p /∈ Σ generate a dense O-subalgebra of R.

Proof. LetMR be the maximal ideal of R. By succesive approximation, it is enough to show
that such tr(ρ(Frobp)) generate R/(λ,M

2
R) as k-algebras. Let R1 := R/(λ,M2

R). The ring
R1 is the universal deformation ring for ρ̄ for k-algebras with residue field k such that the
square of the maximal ideal is zero. Let S be a k-subalgebra of R1 generated by tr(ρ(Frobp))
for almost all primes p /∈ Σ. Being a subring of R1, the square of the maximal ideal of S is
also zero. If we can show that R1 = S, then we’re done.

By Theorem 3.2 we have the following commutative diagram (up to conjugation) which
lifts ρ̄

GQ

ρ1 $$HHHHHH
HHH

// GL2(S)

��
GL2(R1)

Also, since R1 is the universal deformation ring of ρ̄ we have the following commutative
diagram (up to conjugation) which lifts ρ̄

GQ

$$HHHHHH
HHH ρ1

// GL2(R1)

��
GL2(S)



12

As a result we have the following composition of maps

R1 −→ S →֒ R1

which carries ρ1 to itself and hence is the identity map. Thus, S = R1. �

Proof of Theorem 3.1. Let f be a normalized eigenform in Sk(Γ,K) such that the corre-
sponding minimal prime ideal pf in TO is contained in m (see diagram (2.6)). By Deligne,
we have a Galois representation ρf over O associated to f whose residual reduction is ρ̄m:

GQ

ρ̄m ##HH
HH

HH
HH

H
ρf // GL2(O)

��
GL2(k)

Let (R, ρ : G −→ GL2(R)) be the universal deformation of ρ̄m unramified outside Nℓ. Then
ρf corresponds to an O-algebra map R −→ O, so the diagram

GQ

ρf ##HH
HH

HH
HH

H
ρ // GL2(R)

��
GL2(O)

commutes up to conjugation by 1+M2(λ) in GL2(O). By Corollary 3.3, we see that the set
of tr(ρ(Frobq)) for every prime q ∤ Nℓ generates a dense O-subalgebra in R.

Consider the map

η : R −→
∏

pf⊂m

O

tr(ρ(Frobq)) 7→
∏

pf

aq(f)

where the product is taken over minimal primes pf contained in m, with f the corresponding

normalized eigenform in Sk(Γ,K). Consider the embedding

(Tm)red →֒
∏

pf⊂m

TO/pf

Tq 7→
∏

pf

Tq (mod pf).

With the identification ∏

pf⊂m

O =
∏

pf⊂m

TO/pf

∏

pf

aq(f) 7→
∏

Tq (mod pf),

we see that all tr(ρ(Frobq)) for q ∤ Nℓ land in the closed subalgebra (Tm)red. Since they
generate dense algebra in R, the ring R also lands in there under η, say inducing h : R −→
(Tm)red. Thus, we get

ρm : GQ
ρ−→ GL2(R)

h−→ GL2((Tm)red).

This gives existence and also uniqueness since any other ρ′m would give another map h′ :
R −→ (Tm)red and compatibility with traces of representations then forces tr(ρ(Frobq)) 7→
Tq. Thus, h and h′ coincide on a dense set, hence h = h′. By checking in each TO/pf = O,
we see that ρm(Frobq) has the expected characteristic polynomial for every q ∤ Nℓ.
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4. Reduced Hecke Algebras

In this section, let K be a finite extension of Qℓ and O its ring of integers. For any

ring A, let T̃A be the A-subalgebra of TA generated by the Hecke operators Tp for p ∤ Nℓ
and diamond operators 〈d〉 for every d ∈ (Z/NZ)×. Fix a maximal ideal m of T̃O. We

have a map T̃O −→ Fℓ with kernel m. Since TO is an integral extension of T̃O and Fℓ is
algebraically closed, this map can be extended to TO. Let m′ be the kernel of this extended
map, so it is a maximal ideal of TO. Consider common (up to isomorphism) residual
representation ρ̄f for all normalized eigenforms f whose corresponding minimal primes pf
(see (2.6)) are contained in m′. Call it ρ̄m. In this section we prove the following theorem.

Theorem 4.1. If the Serre conductor N (ρ̄m) is equal to N then the O-algebra (T̃O)m is
reduced.

Proof. Since the Serre conductor N (ρ̄m) is equal to N , the minimal possible level of a
normalized eigenform f such that ρ̄f ≃ ρ̄m over Fℓ is N . Thus, such f are newforms. To

prove the theorem, we will show that (T̃O)m ⊗O K, which contains (T̃O)m, is reduced. We
have the equality

(T̃O)m ⊗O K =
∏

pK

(T̃K)pK

where the product is taken over all prime ideals pK of the Artinian ring T̃K such that

pK ∩ T̃O ⊂ m and (T̃K)pK denotes the localization of T̃K at pK . Thus, each pK in the
product corresponds to a newform. To prove the theorem it is therefore enough to show

that (T̃K)p is a field when p corresponds to a newform.

Assume the prime ideal p of T̃K corresponds to a newform f ∈ Sk(Γ, K) of level N . We
can increase K to a finite extension. Thus, without loss of generality we can assume that K
is big enough to contain the Hecke eigenvalues of all normalized eigenforms at level N . Since

Sk(Γ, K) is faithful T̃K -module, the localization (Sk(Γ, K))p at p is faithful (T̃K)p-module.
If we can prove that (Sk(Γ, K))p is one dimensional as a vector space over K then we are

done, because this would force (T̃K)p to be equal to K.
We have

Sk(Γ, K) = K f ⊕
(⊕

g

Sg(Γ, K)
)

where the direct sum is taken over all newforms g of level Ng and Sg(Γ, K) is spanned by
g(vz) for the divisors v of N/Ng. By multiplicity one, for every g which is different from f ,
there exists a prime q ∤ Nℓ such that

aq(g(vz)) = aq(g(z)) 6= aq(f(z))

for every v|(N/Ng). We know that (Tq − aq(f)) ∈ p and it acts on g(vz) as

(Tq − aq(f))g(vz) = Tq(g(vz))− aq(f)g(vz)

= (aq(g)− aq(f))g(vz).

By the above argument, (aq(g) − aq(f)) ∈ K×. But (TK)p is Artin local, so its maximal
ideal is nilpotent. This forces (

⊕
g 6=f Sg(Γ, K))p = 0. As a result, (Sk(Γ, K))p = Kf and

the theorem follows. �
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Abstract

These are lecture notes, for a “modularity seminar”, and
I make no claim to originality. I have attempted to give refer-
ences, but these references do not necessarily reflect the his-
tory (I might reference one source for a proof of a theorem,
when the theorem was first proven by another). Please send
corrections to Marty Weissman at weissman.marty@gmail.com.

1 Notation

k will always denote a nonarchimedean local field. It will not hurt
to assume that k = Qp.

The valuation on k will be normalized in such a way that
val(k×) = Z.
O will always denote the valuation ring of k.
The letter ̟ will always denote a uniformizing element of k, i.e.,

val(̟) = 1.
We write Fq for the residue field of k: Fq = O/̟O. Here q = p f

for some positive integer f and some prime number p.
We use boldface letters, like X to denote varieties over k. We use

ordinary letters, like X, to denote the k-points of such varieties
(with their natural topology).

We often use the language of categories, functors, and natu-
ral transformations. In these notes, we typically define functors
only half-way: we describe a functor on objects, and leave it to
the reader to determine the functor on morphisms when we say
something like “For every object X, F(X) is... F extends to a func-
tor from...”’

2 ℓ-spaces and groups

Definition 2.1 (Bernstein) An ℓ-space1 is a locally compact Haus- 1 J. Bernstein. Represenations of p-adic groups.
Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.

1
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dorff topological space, in which every point has a basis of open compact
neighborhoods. Let Spℓ be the category of ℓ-spaces and continuous maps.

Of course, there is nothing special about C

here – its topology is not being used. Every-
thing we discuss will go through, as long as C

denotes an uncountable, algebraically closed
field of characteristic zero.

When X is an ℓ-space, the space of “smooth” functions on X is
defined to be:

C∞(X) = { f : X → C : f is locally constant}.

The subspace C∞
c (X) consists of compactly supported smooth func-

tions.

Proposition 2.2 Let X be an ℓ-space, and U an open subset of X with
complement Z = X − U. Then the linear maps “extension by zero” and
“restriction to Z” yield a short exact sequence of complex vector spaces:

0 → C∞
c (U) → C∞

c (X) → C∞
c (Z) → 0.

Example 2.3 Let X = k, where k is a nonarchimedean local field. Let
U = k× be the open subset of nonzero elements. Then “extension by
zero” and “evaluation at zero” yield a short exact sequence of complex
vector spaces:

0 → C∞
c (k×) → C∞

c (k) → C → 0.

Compare and contrast this with the archimedean case – there one should
work with Schwarz functions, where one finds that “extension by zero”
and “Taylor expansion at 0” yield a short exact sequence of complex
vector spaces:2 2 Émile Borel. Sur quelques points de la théorie

des fonctions. Paris., 1894. Original from
Columbia University.0 → S(R×) → S(R) → C[[T]] → 0.

The following fact is discussed properly in Chapter 3.1 of
Platonov and Rapinchuk3: 3 Vladimir Platonov and Andrei Rapinchuk.

Algebraic groups and number theory, volume 139
of Pure and Applied Mathematics. Academic
Press Inc., Boston, MA, 1994. Translated from
the 1991 Russian original by Rachel Rowen.

Fact 2.4 Let X be an algebraic variety over a nonarchimedean local field
k. There is a “natural” topology on X = X(k) for which X is an ℓ-space.
In other words, there is a functor from the category of varieties over k
(and regular maps) to the category of ℓ-spaces (and continuous maps),
which equals the functor of k-points after forgetting the topology.

In particular, GLn(k) is an ℓ-space, P1(k) is an ℓ-space, etc..
In fact, this functor can be uniquely characterized by just a few

properties; in unpublished notes4, Brian Conrad proves: 4 Brian Conrad. Weil and Grothendieck
approaches to adelic points. Unpublished
notes, available online.Theorem 2.5 Let R be a topological ring. There is a unique functor

X 7→ X(R) from the category of affine finite-type R-schemes to the
category of topological spaces, such that

1. Forgetting the topology yields the functor of R-points.

2. The functor is compatible with the formation of fibre products.
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3. The functor carries closed immersions to topological embeddings.

4. The functor applied to X = Spec(R[T]) yields the given topology
on X(R) = R.

Furthermore, when R is Hausdorff, closed immersions of schemes yield
closed embeddings of topological spaces and when R is locally compact,
X(R) is locally compact for all X.

It should be noted that Conrad extends this further, removing
the affine hypothesis under the hypothesis that R× is open in R,
and inversion is continuous on R× – these conditions are satisfied
when R is a local field.5 5 The situation is more subtle when R is the

ring of adeles for a global field; such a ring is
locally compact and Hausdorff, but R× is no
longer open in R.Definition 2.6 An ℓ-group is a group in the category of ℓ-spaces. In

other words, an ℓ-group is a group G, endowed with a topology for which
G is an ℓ-space and the unit, inverse, and composition maps:

pt → G, G → G, G × G → G

are continuous.

Proposition 2.7 Let G be a topological group. Then G is an ℓ-group6 if 6 This is given by some authors as the
definition of an ℓ-group. I find it more
natural to think about groups in a category
and prove the equivalence.

and only if the identity element has a basis of neighborhoods consisting of
open compact subgroups of G.

Proof: If G has a neighborhood basis around the identity consist-
ing of open compact subgroups, then translation of these open
compact subgroups gives a neighborhood basis around any point
in G. It follows quickly that G is an ℓ-space.

Conversely, if G is an ℓ-space and a topological group, then
there is a neighborhood basis of the identity consisting of open
compact subsets of G. Let V be such a compact open subset con-
taining the identity of G. Define

KV = {x ∈ G : xV ⊂ V and x−1V ⊂ V}.

Then KV is a subgroup of G, and a subset of V. It is the intersec-
tion of compact sets, hence compact. The proof that KV is open is
a bit tricky, and we refer to the notes of Paul Garrett 7. 7 P. Garrett. Smooth representations of totally

disconnected groups. Introductory notes,
available online. Updated July 8, 2005.Q.E.D

Corollary 2.8 If G is an algebraic group over a nonarchimedean local
field k, then G = G(k) is naturally a ℓ-group.

Here are a few examples of ℓ-groups arising as G(k), and open
compact neighborhoods of the identity.
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Example 2.9 Let Ga denote the additive group over k. Thus Ga =
(k,+) is the additive group of the field k. Let val : k× → Z denote the
valuation on k, normalized to be surjective. For m ∈ Z, define a compact
open subgroup of Ga:

Km = {x ∈ k : val(x) ≥ m}.

Then
Ga =

⋃

m∈Z

Km, {0} =
⋂

m∈Z

Km.

Note above that the additive group Ga is the union of its compact
open subgroups. This is not typical, for ℓ-groups. But it does hold
for groups G = G(k), whenever G is a unipotent group over a p-
adic field k. This plays a very important role for harmonic analysis
on unipotent p-adic groups.

Example 2.10 Let Gm denote the multiplicative group over k. Thus
Gm = k× is the multiplicative group of the field k. A choice of uni-
formizing element ̟ ∈ k× determines a decomposition of topological
groups:

k× ∼= O× × Z.

The compact open subgroups

Um = {x ∈ k× : val(x − 1) ≥ m},

for m ≥ 1, form a neighborhood basis at the identity in k×.

Of course, Gm = GL1, and the above example generalizes to
GLn without much difficulty.

Example 2.11 Let GLn be the algebraic group of n by n invertible
matrices. Let ̟ be a uniformizing element of k. A neighborhood basis of
the identity in GLn = GLn(k), consisting of compact open subgroups, is
given by:

Km = {g ∈ GLn(Ok) : g ≡ 1, modulo ̟nOk}.

3 Representations

Smooth representations

Let G be an ℓ-group. Nothing will really be lost if one takes G =
GLn(Qp) in what follows.

Definition 3.1 A representation of G is a pair (π, V), where V is
a complex vector space (often infinite-dimensional!) and π : G →
AutC(V) is an action of G on V by C-linear automorphisms. Let RepG
be the category of representations of G and G-intertwining C-linear
maps.
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Let Op(G) be the set of open subgroups of G – recall that
Op(G) is a basis of neighborhoods of the identity in G. For any
subgroup H ⊂ G, and any representation (π, V) of G, we write
VH for the H-invariant subspace of V. We write VH for the H
co-invariant quotient8 of V, i.e., 8 Let W be a vector space upon which H acts

trivially. Then every H-intertwining map
from W to V factors uniquely through VH .
Every H-intertwining map from V to W
factors uniquely through VH .

VH = V/[H−1]V, [H − 1]V = SpanC{π(h)v − v}v∈V,h∈H .

Definition 3.2 When (π, V) is a representation of G, the subspace V∞

of smooth vectors is defined by:

V∞ =
⋃

H∈Op(G)

VH .

A representation (π, V) of G is called smooth if V = V∞. Let Rep∞
G

denote the category9 of smooth representations of G and G-intertwining 9 The category Rep∞
G is an abelian category

with enough injectives and arbitrary direct
sums.C-linear maps.

Proposition 3.3 If (π, V) is a representation of G, then (π, V∞) is a
subrepresentation10 of (π, V), and (π, V∞) is smooth. This defines a 10 A subrepresentation of (π, V) is just a

G-stable subspace.functor from RepG to Rep∞
G . If (σ, W) is any smooth representation of

G, and φ : W → V is a morphism in RepG, then φ factors uniquely
through the inclusion V∞ →֒ V.

Proof: The proof is not difficult, and is left to the reader.

Q.E.D

The category Rep∞
G is usually not semisimple. However, for

compact groups the category is semisimple and we discuss this a
bit further.

Let K be a compact ℓ-group. Let K̂ be a set of representatives
for the isomorphism classes of irreducible smooth representations
(abbreviated irrep hereafter) of K – in other words, if τ is an irrep
of K then there exists a unique ρ ∈ K̂ such that τ ∼= ρ.

Lemma 3.4 Every irrep τ of K is finite-dimensional and factors through
a finite quotient of K.

Proof: Let (τ, W) be an irrep of K, and let w be a nonzero vector
in W. Let H ⊂ K be an open subgroup such that w ∈ WH . By
compactness of K, we find that #(K/H) < ∞. Choosing represen-
tatives k1, . . . , kd for K/H, we find that

SpanC{τ(k)w}k∈K = SpanC{τ(ki)w}1≤i≤d.

By irreducibility, the left side is all of W. The right side is finite-
dimensional, and so dim(W) ≤ d = #(K/H).
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Now, each vector τ(ki)w is fixed by the open subgroup ki Hk−1
i .

Hence we find that

τ(ki)w ∈ WN , where N =
d⋂

i=1

ki Hk−1
i .

Observe that N is an open normal subgroup of K, so K/N is a
finite quotient of K, and τ factors through this quotient.

Q.E.D

Definition 3.5 Let (π, V) be a smooth representation of K, and (τ, W) ∈
K̂. The τ-isotypic subrepresentation of V is the image Vτ of the natural
injective K-intertwining operator:

W ⊗C HomK(W, V) → V.

The τ-isotypic subrepresentations of a smooth representation
(π, V) of K are certainly semisimple – they are isomorphic to a
direct sum of copies of τ.

Theorem 3.6 Let (π, V) be a smooth representation of K. Then the
inclusions of isotypic subrepresentations yield an isomorphism

⊕

τ∈K̂

Vτ
∼= V.

Proof: Schur’s orthogonality (for finite groups) implies that the
distinct isotypic subrepresentations of V have zero intersection.
Thus it remains to prove that every vector v ∈ V can be expressed
as a finite sum of vectors in isotypic subrepresentations.

But if v ∈ V, then v ∈ VH for some open subgroup H ⊂ K.
With the techniques of the previous lemma, we find that v ∈ VN

for some open normal subgroup N ⊂ H ⊂ K. Let W ⊂ V be
the smallest subrepresentation of K containing v. We find that W
is finite-dimensional, and the representation of K on W factors
through the quotient K/N.

From the complete decomposability of representations of finite
groups, we find that W decomposes into a finite number of K/N-
isotypic components. Pulling back, we find that W decomposes
into a finite number of K-isotypic components. In particular, v can
be expressed as a finite sum of vectors from isotypic subrepresen-
tations of V.

Q.E.D

It is important to contrast the case of compact ℓ-groups (which
are really no more difficult than finite groups) with noncompact
ℓ-groups. The simplest example of a noncompact ℓ-group is Z –
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every representation of Z is smooth. The category of represen-
tations of Z is isomorphic to the category of C[T±1]-modules,
transferring the action of n ∈ Z to the action of Tn ∈ C[T±1].

There are plenty of examples of non-semisimple representations
of Z; one may take (π, C2) for example, where

π(1) =
(

1 1
0 1

)
.

There is a short exact sequence of Z-representations:

0 → C → (π, C2) → C → 0,

where we write C here for the trivial representation. This is essen-
tially the best we can do for “decomposing” the representation π
into irreducibles.

One might also consider an infinite-dimensional representation,
like the space V = C∞

c (Z) of compactly (finitely) supported C-
valued functions on Z, on which Z acts by translation π:

[π(n) f ](x) = f (x + n).

Then (π, V) has no irreducible subrepresentation, though it has in-
finitely many irreducible quotients. Indeed, summation yields a
trivial irreducible quotient

Σ : V → C, Σ( f ) = ∑
n∈Z

f (n).

In fact, one can show

Theorem 3.7 Let (π, V) be a representation of Z. If V is finitely-
generated as a C[T±1]-module, then there exists an irreducible quotient
of V.

Proof: Consider V as a C[T±1]-module. Every irreducible rep-
resentation of Z is a character (one-dimensional) χz : Z → C×

(this will follow from Schur’s lemma, proven a bit later), for some
z ∈ C×, where we define

χz(n) = zn.

If Hom(V, χz) = 0, then we find that V/mzV = 0 for every
maximal ideal mz = 〈T − z〉 of C[T±1]. From Nakayama’s lemma,
it follows that V = 0.

Q.E.D

Thus the moral is: smooth representations of noncompact groups
often do not have irreducible subrepresentations; but usually
(assuming a finite-type hypothesis) have irreducible quotients.
Another example of this phenomenon is given by the following
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Example 3.8 Let V = C∞
c (k) be the space of smooth (i.e., locally

constant) compactly supported functions on k, viewed as a representation
of k = Ga(k) by translation:

[π(g) f ](x) = f (x + g), for all g ∈ k, x ∈ k, f ∈ V.

Then V has no irreducible subrepresentation. Indeed, we will see that
all irreducible subrepresentations are characters – but if translation of
a function acts as a character, the function cannot be compactly sup-
ported. However, every irreducible smooth representation of k occurs as
a quotient; if (ψ, C) is a smooth character of k then the following gives a
nontrivial k-intertwining map from (π, V) to (ψ, C):

f 7→
∫

k
f (x)ψ(x)dx,

where we fix the Haar measure for which O has measure 1.

Contragredience, admissibility

When (π, V) is a smooth representation of G, the linear dual
space V′ = HomC(V, C) is a representation of G via:

[π′(g)λ)](v) = λ(π(g−1)v) for all λ ∈ V′, v ∈ V.

But this representation is rarely smooth:

Definition 3.9 If (π, V) is a smooth representation of G, define Ṽ =
(V′)∞ – the space of smooth vectors in the linear dual of V. Let π̃ denote
the resulting representation of G on Ṽ. The representation (π̃, Ṽ) is
called the contragredient representation of (π, V). The contragredient
defines a contravariant functor from Rep∞

G to itself.

It is very important to note that the contragredient does not define
a duality – there is a natural transfomation of functors from the
identity functor to the double-contragredient, but this is not a
natural isomorphism. The contragredient functor does define a
duality for admissible representations:

Definition 3.10 A representation (π, V) of G is called admissible if it
is smooth and for all H ∈ Op(G), dim(VH) < ∞.

We may characterize admissible representations also as follows:

Proposition 3.11 Let (π, V) be a smooth representation of G. Let K be
a compact open subgroup of G. Then (π, V) is admissible if and only if
for every τ ∈ K̂, the (K, τ)-isotypic component Vτ is finite-dimensional.
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Proof: Suppose first that every (K, τ)-isotypic component of
V is finite-dimensional. Let H be an open subgroup of G. Let
H′ = H ∩ K; then K/H′ is finite. Define

J =
⋂

k∈K/H′
kH′k−1.

Then we find that J is a normal subgroup of K, J is open compact,
and J ⊂ H.

It follows that VH ⊂ V J and:

V J =
⊕

τ

(Vτ)
J .

But there are only finitely many isomorphism classes of irre-
ducible smooth representations of K for which V J 6= 0, since there
are only finitely many isomorphism classes of irreducible repre-
sentations of the quotient group K/J. Hence V J is a finite direct
sum, of finite-dimensional spaces. Hence V J is finite-dimensional,
and so VH is finite-dimensional. Hence V is admissible.

The converse is similar, and left to the reader.

Q.E.D

Proposition 3.12 Let (π, V) be an smooth representation of G. Then
(π, V) is admissible if and only if the natural homomorphism V → ˜̃V is
an isomorphism.

Proof: If (π, V) is admissible, one may choose an open compact
subgroup K ⊂ G, and decompose V into its isotypic components:

V =
⊕

τ∈K̂

Vτ .

The linear dual of V is then a direct product of finite-dimensional
spaces:

V′ = ∏
τ∈K̂

Hom(Vτ , C).

One may check that the smooth vectors in V′ are now:

Ṽ =
⊕

τ∈K̂

V′
τ .

It follows that Ṽ is admissible.
The details and other converse are left to the reader.

Q.E.D

The following theorem is much deeper.
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Theorem 3.13 (Jacquet) 11 If G is a connected reductive algebraic 11 Hervé Jacquet. Sur les représentations des
groupes réductifs p-adiques. C. R. Acad. Sci.
Paris Sér. A-B, 280:Aii, A1271–A1272, 1975.group over a local nonarchimedean field, and (π, V) is an irreducible

smooth representation of G = G(k), then (π, V) is admissible.

Corollary 3.14 If G is a connected reductive algebraic group over a
local nonarchimedean field, and (π, V) is an irreducible smooth rep-
resentation of G (or a representation of finite length), then (π, V) is
admissible and V is isomorphic to its double contragredient.

Schur’s lemma

Theorem 3.15 (Jacquet) 12 Suppose that G has a countable basis for its 12 Hervé Jacquet. Sur les représentations des
groupes réductifs p-adiques. C. R. Acad. Sci.
Paris Sér. A-B, 280:Aii, A1271–A1272, 1975.topology. Let (π, V) be an irreducible smooth representation of G. Then

the dimension of V is countable and EndG(V) = C.

Proof: (We have followed DeBacker’s notes13) Let 0 6= v ∈ V, 13 S. DeBacker. Some notes on the representation
theory of reductive p-adic groups. Available
online.and let K be a compact open subgroup of G for which v ∈ VK.

Then G/K is a countable set (since G has a countable basis for its
topology) and we may choose representatives g1, g2, . . . for this
countable set of cosets. We find that

SpanC{π(g)v}g∈G = SpanC{π(gi)v}i=1,2,....

The left side is a nonzero subrepresentation of V, hence equals V
by irreducibility. The right side is a countable-dimensional vector
space, and the first assertion is proven.

For the second assertion, consider any e ∈ EndG(V), and a
nonzero vector v ∈ V again. The operator e is uniquely deter-
mined by e(v), since e(π(g)v) = π(g)e(v), and the vectors π(g)v
span V as a complex vector space.

It follows that the map e 7→ e(v) is an injective C-linear map
from EndG(V) to V. Hence EndG(V) has countable dimension.
But since V is an irreducible representation of G, we know that
EndG(V) is a skew-field. Consider the (commutative) subfield:

C(e) ⊂ EndG(V).

If C 6= C(e) – i.e., if e is not a scalar endomorphism of V – then e
must be transcendental over C. But note that C(e) is uncountable-
dimensional as a C-vector space since the set

{(e − c)−1 : c ∈ C}

is uncountable and C-linearly independent. This is a contradic-
tion.

Hence C = C(e) – every element of EndG(V) is a scalar endo-
morphism.

Q.E.D
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This adaptation of Schur’s lemma has the usual consequences:

Corollary 3.16 If G is an abelian ℓ-group with countable basis for its
topology, then every irreducible representation of G is one-dimensional.14 14 We call a one-dimensional smooth repre-

sentation a character.

Corollary 3.17 Let G be an ℓ-group with countable basis for its topol-
ogy. Let (π, V) be an irreducible smooth representation of G. Let Z be
the center of G. Then there exists a smooth character χ : Z → C× such
that

π(z)v = χ(z) · v for all z ∈ Z, v ∈ V.

When G is an ℓ-group with countable basis for its topology, and
center Z, it is often convenient to consider not the category Rep∞

G ,
but rather the full subcategory consisting of representations with
a given central character. If χ : Z → C× is a character of Z, and
(π, V) is any smooth representation of G, we say that (π, V) has
central character χ if π(z)v = χ(z) · v for all z ∈ Z. Of course, not
all smooth representations of G have a central character (though
irreps do). We define Rep∞

G,χ to be the full subcategory of Rep∞
G ,

whose objects are those smooth representations with central char-
acter χ.

Corollary 3.18 If (π, V) and (σ, W) are two irreducible smooth repre-
sentations of G – an ℓ-group with countable basis for its topology – then
HomG(V, W) is either zero or one-dimensional.

Induction, Compact Induction

Our treatment of smooth induction follows Bernstein 15, to some 15 J. Bernstein. Represenations of p-adic groups.
Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.extent. Let H be a closed subgroup of an ℓ-group G. Let (π, V) be

a smooth representation of G, and let (σ, W) be a smooth repre-
sentation of H. Restriction of representations is quite simple:

Definition 3.19 Define16 ResG
Hπ to be the restriction of π to H. This 16 We always put the smaller group below,

and larger group above, in our notation for
induction and restriction.extends to a functor, ResG

H from Rep∞
G to Rep∞

H .

Induction of representations, as usual, is not as simple.

Definition 3.20 Define C[[H\σG, W]] to be the vector space of func-
tions f : G → W such that:

f (hx) = σ(h)( f (x)), for all x ∈ G, h ∈ H.

This is a representation of G by right translation:

[g f ](x) = f (xg) for all x, g ∈ G.

Define IndG
HW to be the subspace C[[H\σG, W]]∞ of smooth vectors for

this action. This extends to a functor, IndG
H from Rep∞

H to Rep∞
G .
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More concretely, an element of IndG
HW is a function f : G → W

which satisfies the following conditions:

1. f (hx) = σ(h)( f (x)) for all x ∈ G, h ∈ H.

2. There exists an open subgroup K ⊂ G such that f (xk) =
f (x) for all x ∈ G. In other words, f is uniformly17 locally 17 The uniformity is that K can be chosen

independently of x.constant.

There is an important subfunctor of IndG
H , called compact induc-

tion:

Definition 3.21 Define indG
HW to be the subspace of IndG

HW, consist-
ing of those functions f ∈ IndG

HW satisfying the additional condition:

There exists a compact subset X ⊂ G such that f (g) = 0 unless
g ∈ H · X. In other words, f is compactly supported, modulo H.

Then indG
HW is a G-subrepresentation of IndG

HW; it yields a subfunctor
indG

H ⊂ IndG
H .

Compact induction is simpler in many ways; for example, the
condition of uniform local constancy simplifies to the condition
of local constancy. Of course, if H\G is a compact space, then the
functors indG

H and IndG
H coincide. Less trivially,

Proposition 3.22 If (σ, W) is an admissible representation of H, and
H\G is compact, then IndG

HW is an admissible representation of G.

Proof: We leave the proof as an exercise. This can be found in
Proposition 9 of Bernstein’s notes18 as well. 18 J. Bernstein. Represenations of p-adic groups.

Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.Q.E.D

Frobenius reciprocity can now be formulated in the smooth
setting:

Theorem 3.23 Let (π, V) be a smooth representation of G, and (σ, W)
a smooth representation of H, a closed subgroup of G. Then there is a
natural isomorphism:

HomG(V, IndG
HW) ∼= HomH(ResG

HV, W).

This identifies IndG
H as a functor which is right adjoint to the functor

ResG
H . Both functors are exact.

Most typically, the functor indG
H of compact induction is used

when H is a closed and open (clopen) subgroup of G; in this case,
H\G is a discrete space. It follows that
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Lemma 3.24 Let H be a clopen subgroup of G. Let (σ, W) be a smooth
representation of H. Then there is a natural isomorphism of representa-
tions of G:

indG
HW ∼= W ⊗C[H] C[G].

From the adjointness of ring extension and pullback, we find
that

Theorem 3.25 (p. 125 of Cartier) 19 Let H be a clopen subgroup of 19 P. Cartier. Representations of p-adic groups:
a survey. In Automorphic forms, representations
and L-functions (Proc. Sympos. Pure Math.,
Oregon State Univ., Corvallis, Ore., 1977), Part
1, Proc. Sympos. Pure Math., XXXIII, pages
111–155. Amer. Math. Soc., Providence, R.I.,
1979.

G. Let (π, V) be a smooth representation of G, and (σ, W) a smooth
representation of H, a closed subgroup of G. Then there is a natural
isomorphism:

HomG(indG
HW, V) ∼= HomH(W, ResG

HV, ).

This identifies indG
H as a functor which is left adjoint to the functor

ResG
H . Both functors are exact.

Pullback, corestriction

Suppose now that B = T ⋉ U, where T, U are closed subgroups
of an ℓ-group B. Let p : B → T be the projection map. There is a
functor given by pullback:

Definition 3.26 Let (η, Y) be a smooth representation of T. Define
p∗η : B → AutC(V) by

p∗η(b) = η(p(b)).

Then (p∗η, Y) is a smooth representation of B, and p∗ extends to a
functor from Rep∞

T to Rep∞
B .

Of course, one may introduce the general pullback of smooth
representations, including restriction to a subgroup as well as the
above pullback as special cases. The pushforward functor is defined
by coinvariants:

Definition 3.27 Let (σ, W) be a smooth representation of B. Define
p∗W = WU = W/[U − 1]W to be the space of U-coinvariants of W.
Then, since T normalizes U, it follows that σ(T) stabilizes [U − 1]W
and hence the action σ of T on W descends to an action p∗σ of T on
WU = p∗W. This extends to a functor p∗ from Rep∞

B to Rep∞
T .

In this situation, we have the following adjointness theorem.

Theorem 3.28 (p. 125 of Cartier) 20 Let (η, Y) be a smooth represen- 20 P. Cartier. Representations of p-adic groups:
a survey. In Automorphic forms, representations
and L-functions (Proc. Sympos. Pure Math.,
Oregon State Univ., Corvallis, Ore., 1977), Part
1, Proc. Sympos. Pure Math., XXXIII, pages
111–155. Amer. Math. Soc., Providence, R.I.,
1979.

tation of T, and (σ, W) be a smooth representation of B. Then there is a
natural isomorphism:

HomB(p∗W, Y) ∼= HomT(W, p∗Y).

This makes p∗ a left adjoint to p∗.
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Indeed, the coinvariants WU can be naturally identified with a
module obtained by extension of scalars:

WU ∼= W ⊗C[B] C[T],

where C[T] is viewed as a C[B]-module via the trivial action of
U. The result follows from adjointness of ring-extension and pull-
back, suitably interpreted.

4 Representations of GL2, external theory

Hereafter, we let G = GL2(k), where k is a nonarchimedean local
field; very little will be lost by taking k = Qp. As usual, we study
the representations of a complicated group G, by understanding
the representations of “easier” subgroups, and the functors of
restriction and induction.

In addition, we drop the adjective “smooth” hereafter; all
groups will be ℓ-groups, and all representations will be smooth.
By “irrep”, we mean an irreducible smooth representation.

By the external theory, we focus our attention on subgroups H of
G which arise as H = H(k) for algebraic subgroups H ⊂ G. The
primary subgroups of interest are:

B =

{(
a b
0 d

)
: a, d ∈ k×, b ∈ k

}
,

T =

{(
a 0
0 d

)
: a, d ∈ k×

}
∼= k× × k×,

U =

{(
1 b
0 1

)
: b ∈ k

}
∼= k.

Z =

{(
a 0
0 a

)
: a ∈ k×

}
= Z(G) ∼= k×.

These subgroups arise as the k-points of algebraic subgroups
B = TU ⊂ G. At the level of k-points, one has a semidirect
product decomposition B = T ⋉ U. We write p : B → T for the
canonical projection.

Representation theory of T
Perhaps this treatment of the torus T is
excessive in notation, for such a simple
case. The advantage is that everything here
generalizes easily to split tori of any rank.

Corresponding to the obvious isomorphism T ∼= Gm × Gm, there
is an isomorphism of ℓ-groups: T ∼= k× × k×. The algebraic
characters and cocharacters of T are:

X•(T) = Hom(T, Gm) ∼= Z2,

X• = X•(T) = Hom(Gm, T) ∼= Z2.
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There is a canonical perfect pairing:

X• × X• → Z,

given by the identification Hom(Gm, Gm) ∼= Z.
We write T◦ for the maximal compact subgroup of T; there is

a unique maximal compact subgroup, and T◦ is isomorphic to
O× × O×. While this isomorphism is non-canonical, there is a
canonical isomorphism:

X• ∼= T/T◦,

given by sending α ∈ X• to α(̟) ∈ T/T◦; the choice of uniformiz-
ing element ̟ does not affect the T◦-coset of α(̟). The complex
dual torus of T is defined by:

T̂ = Hom(X•, C×) = X• ⊗Z C× ∼= C× × C×.

Since T is abelian, the irreps of T ∼= k×× k× are one-dimensional
– they are given by a pair χ = (χ1, χ2) of (smooth) characters

χ1, χ2 : k× → C×.

We will pay particular attention to the unramified characters of T
– these are given by pairs (χ1, χ2) of characters, which are both
trivial on O×. Writing T◦ = O× ×O×, the unramified characters
are just Hom(T/T◦, C×). Thus the unramified characters of T are
described easily by the dual torus:

Homunr(T, C×) = Hom(T/T◦, C×) ∼= T̂ = Hom(Z, T̂).

Much more generally, local class field theory implies that

Homcont(T, C×) ∼= Homcont(Wk, T̂).

The unramified characters correspond to those continuous ho-
momorphisms from Wk to T̂ that factor through the quotient
Wunr

k
∼= Z. We follow the convention that the unramified character

of T corresponding to t ∈ T̂ should correspond to the unramified
character of Wk which sends a geometric Frobenius element to t.

This is known as the local Langlands corresponence for T, and
was generalized by Langlands to arbitrary tori in an article that
took thirty years to publish (finally in Pac. J. of Math.21). 21 .

Jacquet functor, supercuspidals

For the classification of irreps of G = GL2(k), and more generally
in the classification of irreps of reductive p-adic groups, the most
important method is parabolic induction and Harish-Chandra’s
theory of cuspidal representations.22 22 This is the local analogue of the dichotomy

between Eisenstein series and cuspforms.
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Definition 4.1 Let (π, V) be a representation of G. The Jacquet func-
tor is

JG
B = p∗ ◦ ResG

B : Rep∞
G → Rep∞

T .

In particular, JG
B V = VU is the space of U-coinvariants of V, viewed as a

smooth representation of T.

Definition 4.2 Let (η, Y) be a representation of T. The functor of
parabolic induction is

IG
B = IndG

B ◦ p∗ : Rep∞
T → Rep∞

G .

In particular, IG
B Y consists of uniformly locally constant functions f :

G → Y which satisfy

f (tux) = η(t)( f (x) for all t ∈ T, u ∈ U, x ∈ G,

and G acts on this space of functions by right translation.

Theorem 4.3 The functor JG
B is left adjoint to IG

B ; for a representation
(π, V) of G and a representation (η, Y) of T, there is a natural isomor-
phism:

HomG(V, IG
B Y) ∼= HomT(JG

B V, Y).

Proof: Adjointness of ResG
B and IndG

B implies

HomG(V, IG
B Y) = HomG(V, IndG

B p∗Y) ∼= HomB(ResG
B V, p∗Y).

Adjointness of p∗ and p∗ implies

HomB(ResG
B V, p∗Y) ∼= HomT(p∗ResG

B V, Y) = HomT(JG
B V, Y).

The naturality of these isomorphisms, i.e., the adjointness of func-
tors, implies the adjointness of IG

B and JG
B as required.

Q.E.D

In what follows, it will be more convenient to use the normalized
parabolic induction and Jacquet functor. Let δ : T → R×

>0 be the
character23 given by: 23 This is usually called the modular character.

It describes the effect of T-conjugation on a
Haar measure on U. Something like it should
be used whenever carrying out induction and
restriction involving non-unimodular groups
(like B).

δ

(
a 0
0 d

)
= |a/d|.

Viewing characters of T as pairs of characters of k×, we find that

δ = (| · |, | · |−1).

We write IG
B δ1/2 for the functor which on objects sends a represen-

tation η of T to IG
B (η ⊗ δ1/2). Similarly, we write δ−1/2 JG

B for the
functor which sends a representation π of G to δ−1/2 ⊗ JG

B π.
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One advantage of this normalization is that unitarizability is
preserved; if χ is a unitary character of T (it has values in the unit
circle in the complex plane), then there is a natural Hermitian
inner product on IG

B δ1/2χ; this implies that subrepresentations
of IG

B δ1/2χ have complements – it eventually yields complete
reducibility of IG

B δ1/2χ.
The adjointness of JG

B and IG
B implies adjointness of the normal-

ized functors; in particular,

HomG(V, IG
B δ1/2Y) ∼= HomT(δ

−1/2 JG
B V, Y).

The following result makes the representation theory of p-adic
groups much easier, in some ways, than the representation theory
of real Lie groups:

Proposition 4.4 The functors IG
B and JG

B are exact. Same for the func-
tors IG

B δ1/2 and δ−1/2 JG
B .

Proof: (Sketch) Exactness of the functor IG
B is easy, as is left-

exactness of JG
B . To demonstrate the right-exactness of JG

B , it suf-
fices to demonstrate the right-exactness of the “U-coinvariant
functor” p∗. This follows from the fact that U is the union of com-
pact subgroups – the functor of coinvariants for a compact group
is exact (a basic result in group homology with coefficients in a
vector space over a characteristic zero field) – and the exactness of
direct limits.

For the normalized functors, the result follows by exactness of
twisting, which is trivial to check.

Q.E.D

A useful basic result is that IG
B and JG

B are compatible with
twisting and central characters, in a simple way.

Proposition 4.5 Let χ = (χ1, χ2) be a character of T. Then IG
B χ has

central character χ1χ2. Furthermore, let χ0 be a character of k× and
write χ0χ for the character (χ0χ1, χ0χ2) of T; then there is a natural
isomorphism of representations of G:

IG
B (χ0χ) ∼= (χ0 ◦ det)⊗ IG

B χ.

Proof: The proof is straightforward and left to the reader.

Q.E.D

The Jacquet functor gives an initial classification of irreps of
G = GL2(k):

Definition 4.6 A representation (π, V) of G is called supercuspidal if
JG
B V = 0.
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This would not be such an interesting definition if it were not
for the following nontrivial theorem, due in various parts, and
somewhat independently, to various authors (Bernstein 24, Cassel- 24 J. Bernstein. Represenations of p-adic groups.

Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.man25, Adler and Roche26, among possible others):

25 W. Casselman. Introduction to the theory
of admissible representations of p-adic reductive
groups. 1974. Unpublished manuscript,
available online.

26 Jeffrey D. Adler and Alan Roche. Injectivity,
projectivity and supercuspidal representa-
tions. J. London Math. Soc. (2), 70(2):356–368,
2004.

Theorem 4.7 The following conditions are equivalent, for an irrep
(π, V) of G, whose central character is χ : Z → C×:

1. (π, V) is supercuspidal – JG
B V = 0.

2. For all v ∈ V, and λ ∈ Ṽ = (V′)∞, the matrix coefficient mv,λ is
compactly supported, modulo Z; here mv,λ ∈ C∞(G) is defined by

mv,λ(g) = λ(π(g)v).

3. There exists v ∈ V and λ ∈ V∞, such that mv,λ 6= 0 and mv,λ is
compactly supported, modulo Z.

4. (π, V) is injective in the category Rep∞
G,χ.

5. (π, V) is projective in the category Rep∞
G,χ.

In particular, if (π, V) is a smooth representation of G which
possesses a central character, there are subrepresentations Vsc,
Vind such that Vsc is supercuspidal, and Vind has no supercuspidal
subrepresentation (nor quotient), and V = Vsc ⊕ Vind.

The description of supercuspidal representations of G is beyond
the scope of these notes; let us just say that all such representa-
tions arise via compact induction, from irreducible representations
of compact-modulo-Z subgroups of G, e.g., Z · GL2(O). We refer
to the excellent recent book of Bushnell-Henniart 27 for more. 27 Colin J. Bushnell and Guy Henniart.

The local Langlands conjecture for GL(2),
volume 335 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin,
2006.

Geometric Decomposition

Consider now an irrep (π, V) of G which is not supercuspidal;
that is, JG

B V 6= 0. A priori, JG
B V is just a smooth represenation of T.

Lemma 4.8 The representation JG
B V is finitely-generated as a T-module.

Proof: Let v be a nonzero vector in V, and let H be an open sub-
group of G fixing V. The compactness of B\G ∼= P1(k) implies
that there are a finite number of double cosets in B\G/H. Choos-
ing representatives g1, . . . , gd for these cosets, we find that V is
generated – as a B-module – by the finite set {π(gi)v}1≤i≤d. Thus,
since U acts trivially on VU , we find that VU = JG

B V is gener-
ated – as a T-module – by the projections of the vectors π(gi)v for
1 ≤ i ≤ d.

Q.E.D
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It follows that

Lemma 4.9 The representation JG
B V has an irreducible quotient.

Proof: The proof is somewhat difficult, and we just sketch the
idea. Note that the choice of uniformizing element ̟ yields a
decomposition T ∼= X• × T◦ of ℓ-groups, where X• is (non-
canonically) isomorphic to Z2. One may first decompose JG

B V
as a representation of the compact ℓ-group T◦:

JG
B V =

⊕

φ∈T̂◦

(JG
B V)φ.

Each T◦-isotypic component is then a representation of X• ∼= Z2.
In other words, each T◦-isotypic component is a C[X•]-module.
Since JG

B V is nonzero, there exists a φ ∈ T̂◦ such that (JG
B )φ 6= 0.

Thus to check that JG
B V has an irreducible quotient, it suffices to

check that (JG
B V)φ has an irreducible quotient as a C[X•]-module.

From our previous study of the representations of Z, it suffices
(by Nakayama’s lemma) to check that (JG

B V)φ is finitely-generated
as a C[X•]-module. But this follows from the fact that JG

B V is
finitely-generated as a T-module, and T◦ acts via a character on
(JG

B V)φ.28 28 In fact, just knowing that JG
B V is finitely

generated as a T-module is enough to show
that it has an irreducible quotient, using
a Zorn’s lemma argument. It is not really
necessary to use the T◦-isotypic components.

Q.E.D

When (π, V) is an irrep of G, we find that δ−1/2 JG
B V has an

irreducible quotient – a character χ of T:

HomT(δ
−1/2 JG

B V, χ) 6= 0.

We choose to use the normalized functors, for reasons that will
become clear. It follows that

HomG(V, IG
B δ1/2χ) 6= 0,

and so V is a subrepresentation of IG
B δ1/2χ. Thus the non-supercuspidal

representations arise as subrepresentations of principal series – rep-
resentations parabolically induced from characters of tori.

For this reason (and since we are not prepared to discuss su-
percuspidal representations here), we study the representations
IG
B δ1/2χ – the principal series representations of G. The key to

studying these representations is the Bruhat decomposition:

G = B ⊔ BwB, w =

(
0 1
1 0

)
.

Here BwB is an open subset of G, and B is its closed complement.
The short exact sequence of C-modules:

0 → C∞
c (BwB) → C∞

c (G) → C∞
c (B) → 0
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is in fact a short exact sequence of smooth representations of
B × B by left and right translation. From this (and a little work
to check right-exactness) we obtain a short exact sequence of B-
representations (by right-translation):

0 → Iw(δ1/2χ) → IG
B δ1/2χ → I1(δ1/2χ) → 0,

where:

Iw(χ) = { f ∈ C∞
c (BwB), such that f (tux) = χ(t)δ1/2(x) f (x)},

I1(χ) = { f : B → C, such that f (tux) = χ(t)δ1/2 f (x)} ∼= C.

An explicit and nontrivial29 computation demonstrates that: 29 A geometric argument – that BwB is
isomorphic to B × U as a k-variety – implies
that Iw(δ1/2χ) is one-dimensional. Seeing that
I1(δ1/2χ) is one-dimensional is easier. One
identifies the projection of Iw(δ1/2χ) onto
its U-coinvariants with an integral over U
– tracking through the T-action proves the
result.

δ−1/2 JG
B (Iw(δ1/2χ)) ∼= χw, δ−1/2 JG

B (I1(δ1/2χ)) ∼= χ.

To summarize, there is a short exact sequence of T-representations

0 → χw → δ−1/2 JG
B IG

B δ1/2χ → χ → 0. (1)

Here,
χ = (χ1, χ2), χw = (χ2, χ1).

If χ and χw are distinct characters of T, then the short exact se-
quence splits and:

δ−1/2 JG
B IG

B δ1/2χ ∼= χ ⊕ χw.

Lemma 4.10 If W is any subquotient of IG
B δ1/2χ, then JG

B W 6= 0.

Proof: If JG
B W = 0, then W is supercuspidal. It follows, from

injectivity and projectivity of supercuspidals30, and the fact that 30 Really, it is deceptive to utilize injectivity
and projectivity of supercuspidals for this
sort of result. The proof of injectivity and
projectivity of supercuspidals relies on results
like this lemma, to my recollection. It is much
better to prove this lemma using Jacquet’s
lemma, and compact subgroups with Iwahori
decomposition.

IG
B δ1/2χ has a central character δ1/2χ1χ2, that the subquotient W

of IG
B δ1/2χ also arises as a submodule. Hence

Hom(W, IG
B δ1/2χ) 6= 0.

By adjointness,
Hom(JG

B W, δ1/2χ) 6= 0.

This contradicts the fact that W is supercuspidal.

Q.E.D

Corollary 4.11 The representation IG
B δ1/2χ has length at most two.

Proof: The exactness of the functor JG
B , the previous lemma, and

the fact that δ−1/2 JG
B IG

B δ1/2χ is two-dimensional implies this corol-
lary.
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Q.E.D

The precise conditions for reducibility of IG
B δ1/2χ are given by

the following

Theorem 4.12 The representation IG
B δ1/2χ is reducible if and only if

χ1 = | · |χ2, or χ1 = | · |−1χ2.

Equivalently, IG
B δ1/2χ is reducible if and only if

χ = δ±1χw.

This theorem requires a lot of work – we refer to the exposition of
Tadic for a nice treatment. Partial results follow from Frobenius
reciprocity and the short exact sequence (??): we find that

EndG(IG
B δ1/2χ) ∼= HomT(δ

−1/2 JG
B IG

B δ1/2χ, χ).

We find two cases:

1. The space EndG(IG
B δ1/2χ) is one-dimensional, if χ 6= χw, or

if χ = χw and the extension δ−1/2 JG
B IG

B δ1/2χ of χ by itself is
nontrivial.

2. The space EndG(IG
B δ1/2χ) is two-dimensional if χ = χw and

the extension δ−1/2 JG
B IG

B δ1/2χ of χ by itself splits.

By Schur’s lemma, if EndG(IG
B δ1/2χ) is two-dimensional, then

IG
B δ1/2χ is reducible; but the above observation implies that χ =

χw, and Theorem ?? implies that there is no reducibility when
χ = χw (only when χ = δ±1χw). Hence we find that

Corollary 4.13 The representation IG
B δ1/2χ is either irreducible, or else

is a nonsplit extension of one irreducible representation of G by another
irreducible representation of G.

Proof: If IG
B δ1/2χ is reducible, we find that its G-endomorphisms

form a one-dimensional space. Hence it cannot be decomposed
into the direct sum of irreducible representations. Since it has
length at most two, the result follows immediately.

Q.E.D

One example is particularly easy to see, and important for ap-
plications:

Example 4.14 Considering χ = δ−1/2, we find that IG
B δ1/2χ = IG

B C

is a reducible representation of G, of length two. There is a short exact
sequence of smooth representations of G:

0 → C → IG
B C → St → 0.
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The embedding of C into IG
B C takes a complex number to the correspond-

ing constant function on G. Since its image is clearly one-dimensional,
and IG

B C is infinite-dimensional, there must be a nontrivial quotient.
This quotient is called the Steinberg representation.

The symmetry between χ1 and χ2 manifests in a rational family
(rational, in the parameter χ ∈ Homcont(T, C×)) of intertwining
operators, from IG

B δ1/2χ to IG
B δ1/2χw.

Proposition 4.15 Suppose that χ 6= χw. Then IG
B δ1/2χ is isomorphic to

IG
B δ1/2χw.

Proof: By Frobenius reciprocity, there is a natural C-linear iso-
morphism

HomG(IG
B δ1/2χ, IG

B δ1/2χw) ∼= HomT(δ
−1/2 JG

B IG
B δ1/2χ, χw).

Recall the short exact sequence of representations of T ??:

0 → χw → δ−1/2 JG
B IG

B δ1/2χ → χ → 0.

It follows that if χ 6= χw, then the above sequence splits, IG
B χ and

IG
B χw are irreducible, and hence are isomorphic to each other.

Q.E.D

In fact, the intertwining operators, which exist by Frobenius
reciprocity, form a complex algebraic family over (a Zariski-dense
subset of) the variety Homcont(T, C×). However, these operators
have zeros and poles, which correspond to the reducibility points
of the principal series representations.

Unramified principal series

Especially important for global applications are the unramified
principal series; these are the representations IG

B δ1/2χ, when χ :
T/T◦ → C× is an unramified character of T. In particular,

χ = (χ1, χ2), χi(x) = sval(x)
i ,

for some nonzero complex numbers s1, s2. The pair (s1, s2) can be
thought of as an element of T̂, if one wishes to be canonical. For
simplicity, we define

I(s1, s2) = IG
B δ1/2χ, when χ

(
a 0
0 d

)
= (sval(a)

1 , sval(d
2 ).

From Proposition ??, when s1 6= s2, there is an isomorphism:

I(s1, s2) ∼= I(s2, s1).

We find a reducibility point when χ1 = | · |±1χ2. In other words,
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Proposition 4.16 The unramified principal series I(s1, s2) is reducible
if and only if s1 = q±1s2. Here, we recall that q = #(O/̟) is the order
of the residue field of k.

Proof: This follows from the previous result on reducibility of
principal series representations, and changing notation.

Q.E.D

If s1 = q−1s2, then we find that

δ1/2 · (χ1, χ2) = (| · |1/2χ1, | · |−1/2χ2) = (| · |−1/2χ2, | · |−1/2χ2).

It follows that

IG
B δ1/2χ ∼= |det|−1/2sval(det)

2 ⊗ IG
B C.

In this case, IG
B δ1/2χ has an irreducible subrepresentation and

irreducible quotient:

0 → | · |−1/2sval(det) → I(s1, s2) → | · |−1/2sval(det) ⊗ St → 0.

If s1 = qs2, then one finds a similar short exact sequence, with a
twisted trivial representation as a quotient, and twisted Steinberg
representation as a subrepresentation.

To summarize, we have a two-dimensional complex algebraic
variety31 T̂ = MSpec(C[s±1

1 , s±1
2 ]), acted upon by a finite group 31 We identify complex algebraic varieties

with their C-points here.W = {1, w}, where w switches s1 and s2. There’s a W-stable
subvariety T̂red cut out by the equations s1 = q±1s2.

There is a complex algebraic family (see Bernstein32 for the 32 J. N. Bernstein. Le “centre” de Bernstein.
In Representations of reductive groups over a local
field, Travaux en Cours, pages 1–32. Hermann,
Paris, 1984. Edited by P. Deligne.

precise meaning) of representations I(s1, s2) of G, parameterized
by (s1, s2) ∈ T̂, which is generically irreducible, and everywhere
satisfies the conclusion of Schur’s lemma. The group W = {1, w}
acts on T̂, and on the Zariski-open irreducible locus T̂ − T̂red.
Intertwining operators make this complex algebraic family of
representations into a W-equivariant sheaf, when pulled back to
T̂ − T̂red.

In any case, we find that the irreducible constituents of unram-
ified principal series representations are parameterized by the
following data:

1. An unordered pair {s1, s2} of nonzero complex numbers,
such that s1 6= q±1s2 or...

2. An ordered pair (s1, s2) of nonzero complex numbers, such
that s1 = q−1s2 and an additional “bit of information”
encoding whether one takes the twisted trivial subrepresen-
tation or twisted Steinberg quotient representation.

To such data, we associate the following Langlands parameters:
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1. The GL2(C)-conjugacy class containing the semisimple

element
(

s1 0
0 s2

)
. (Note that this only depends on, and

uniquely determines, the unordered pair {s1, s2} of nonzero
complex numbers.

2. The GL2(C)-conjugacy class of the pair (t, N), where t is

the semisimple element
(

s1 0
0 s2

)
(with s1 = q−1s2), and

N is a nilpotent element of M2(C) satisfying tNt−1 = qN;
for any such (s1, s2), there are two such conjugacy classes of
pairs: one contains (t, 0) and the other contains (t, N) with

N =

(
0 1
0 0

)
.

The first case can also be thought of as a conjugacy class of pairs
(t, N) with tNt−1 = qN; but when s1 6= q±1s2, the only nilpotent
N satisfying that identity is zero. In the second case, the extra “bit
of information” given by whether N = 0 or N 6= 0 corresponds
to the extra “bit of information” given by whether one chooses the
twisted trivial representation of the twisted Steinberg representa-
tion, respectively.

If an irreducible constituent of an unramified principal series
representation (π, V) corresponds to a parameter (t, N) as above
(t semisimple in GL2(C) and N nilpotent in M2(C)), then the
standard (degree 2) L-function of (π, V) is:

L(π, Stand) = det(1 − tX|Ker(N)).

5 Representations of GL2, internal theory

Let K be an open compact subgroup of G = GL2(k). It is im-
portant to study representations with K-fixed vectors; in order
to have a good category of representations, we define RepK

G to be
the category of smooth representations of G which are generated
(as G-represenations) by their K-fixed vectors. These are called K-
spherical representations. For general K, this category is not stable
under subquotients!

Let H(G, K) be the Hecke algebra of compactly supported, K-bi-
invariant functions on G:

H(G, K) = C∞
c (K\G/K).

If (π, V) is a K-spherical representation, then VK is naturally an
H(G, K)-module, via

π( f )v =
∫

G
f (g)π(g)vdg.



25

If f1, f2 ∈ H(G, K), then

π( f1)π( f2)v = π( f1 ∗ f2)v,

where the convolution is defined by

[ f1 ∗ f2](g) =
∫

G
f1(h) f2(h−1g)dh.

In fact, this gives an equivalence of categories, from the cat-
egory of modules over the convolution algebra H(G, K) and the
category of K-spherical representations.

These categories are somewhat mysterious in general, but when
K = GL2(O), we have the category of unramified representations.
These are well-understood; moreover in the factorization of auto-
morphic representations, irreducible unramified representations
occur for almost all primes.

Unramified representations

Hereafter, let K = GL2(O). The remarkable theorem about the
spherical Hecke algebra is the following:

Theorem 5.1 Define, for f ∈ H(G, K), the Satake transform S f ∈
C∞

c (T)

[S f ](t) = δ(t)−1/2
∫

U
f (ut)du = δ(t)1/2

∫

U
f (tu)du.

Then
S f ∈ H(T, T◦) = C∞

c (T/T◦)W = C[X•]W ,

where W = {1, w}. Moreover, S determines an isomorphism of algebras:

H(G, K) ∼= C[X•]W .

In particular, this theorem implies that H(G, K) is a commutative
C-algebra! Highest weight theory, for the algebraic representations
of GL2(C), implies that

C[X•(T)]W = C[X•(T̂)]W ∼= Rep(GL2(C)),

where Rep(GL2(C)) is the complexification of K0 of the category
of finite-dimensional algebraic representations of GL2(C) – i.e.,
the complexified representation ring of GL2(C).

As the category of spherical representations of G is equivalent
to the category of H(G, K)-modules, which is equivalent to the
category of C[X±1

1 , X±1
2 ]W-modules. It follows that an irreducible

unramified representation of G is one-dimensional – determined
by two nonzero complex numbers (s1, s2), modulo switching;
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there is a natural bijection between the isomorphism classes of
irreducible unramified representations of G and unordered pairs
{s1, s2} of nonzero complex numbers.

More canonically, there is a natural bijection between the set of
isomorphism classes of irreducible unramified representations of
G and the W-orbits on T̂.

Connection to unramified principal series

Let I ⊂ K be the Iwahori subgroup, consisting of matrices in
GL2(O) whose lower-left entry is in ̟O. Recall that T◦ = T(O) ∼=
O× ×O×. The following is a fundamental theorem of Borel and
Matsumoto:

Theorem 5.2 Let (π, V) be an admissible (smooth and finite-length
certainly suffices) representation of G. Consider the natural projection
map V → VU from V onto the space of JG

B V. This projection map
induces an isomorphism of complex vector spaces:

V I → (VU)
T◦ .

A corollary of this result is the following:

Corollary 5.3 If (π, V) is a K-spherical admissible representation of
G, then JG

B V 6= 0. If moreover, (π, V) is an irreducible unramified
representation of G, then JG

B V has an unramified character of T as a
subquotient.

By adjointness, and what we know about unramified principal
series, we find that

Corollary 5.4 If (π, V) is an irreducible unramified representation of
G, then (π, V) occurs as a subquotient in an unramified principal series
representation IG

B δ1/2χ, where χ : T/T◦ → C× is uniquely determined
by V up to the action of W.

From this result, we find that an irreducible unramified repre-
sentation (π, V) of G yields two pairs of complex numbers:

1. Since (π, V) is associated to an irreducible H(G, K)-module,
we obtain two “Hecke eigenvalues” s1, s2 (up to switch-
ing). These are called the Satake parameters of (π, V), since
they arise from the Satake isomorphism from H(G, K) to
H(T, T◦).

2. Since (π, V) occurs in an unramified principal series repre-
sentation, we find that (π, V) is a subquotient of I(t1, t2), for
nonzero complex numbers t1, t2, uniquely determined, up to
switching.
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Furthermore, although the unramified principal series representa-
tion IG

B δ1/2χ may be reducible, it has a unique unramified subrep-
resentation – the twisted trivial representation (with unramified
twist, of course) is always unramified, and the twisted Steinberg
representation is never unramified (has no K-fixed vectors).

The connection between these is the following significant theo-
rem:

Theorem 5.5 The unordered pair {s1, s2} equals the unordered pair
{t1, t2}.

Let πs1,s2 denote the irreducible spherical representation of
GL2(k) with parameters s1, s2 ∈ C×.

The impact of this theorem, for the theory of modular forms, is
the following: Let f be a classical modular form for a congruence
subgroup Γ0(N); suppose that f is a cuspidal newform, of some
Nebentypus, for good measure. Then one associates to f an auto-
morphic representation Π =

⊗′ πv, where the (restricted) tensor
product is over all places v of Q. At all primes p not dividing N,
the representation πp is irreducible and unramified.

The previous theorem tells us that the eigenvalue of the Tp
operator (and the Nebentypus character), which determines the
Hecke eigenvalue and hence the Satake parameter for the repre-
sentation πp, also determines the isomorphism class of the rep-
resentation πp. The representation πp is precisely the irreducible
unramified constituent of the unramified principal series I(s1, s2),
where (s1, s2) is the Satake parameter deduced from the Hecke
eigenvalue of Tp.

Slightly more generally, if p divides N, but p2 does not divide
N, the representation πp ends up being isomorphic to a twist of
the Steinberg representation; proving this requires some analysis
of the Iwahori Hecke algebra H(G, I) instead of H(G, K).
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1. Some notations.

Let H = {z ∈ C;ℑ(z) > 0} be the Poincaré upper-half plane.
Let k and N be two integers, and, as usual, Γ0(N) be the subgroup of

SL(2,Z) of matrices whose lower left entries are divisible by N . It acts on
H by fractional linear transformations:

[
a b
c d

]
· z = az+b

cz+d .

Let χ be a Dirichlet character modulo q: it defines a character on Γ0(N),
by evaluating χ at the upper left entry. It will be convenient to define
χ(n) = 0 if the integer n is not coprime with N .

If X is a finite set, |X| denotes its cardinality; we reserve the letters p, ℓ
for prime numbers, and n,m for integers.

The letters K,E, k (resp. Kλ) denote fields (resp. the completion of K
with respect to the valuation associated to λ), and OK ,Oλ stand for the
rings of integers of K,Kλ in the relevant situations.

The set of adeles of Q is denoted ❆Q, and for a finite set of primes S

containing ∞, one denotes ❆Q,S =
∏

v∈S
Qv ×

∏

v/∈S
Zv. The finite adeles are

denoted ❆f .

For a complex number z, the notation e(z) stands for exp(2πiz).

The notation f(x,A) ≪A g(x) means that for any A, there exists a real
number C(A) such that for any x, |f(x,A)| ≤ C(A) · |g(x)|; if one adds “as

1
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x → ∞”, it means that the last inequality holds for x ≥ x(A) for some
real number x(A). In the same spirit, the notation f(x) = ox→x0(g(x))
(resp. f(x) = Ox→x0(g(x))) means that the quotient f(x)/g(x) is defined in
a (pointed) neighbourhood of x0, and that |f(x)/g(x)| tends to zero (resp.
stays bounded) when x tends to x0.

Some spaces of funtions: let X be a locally compact Hausdorff space.

• Cc(X) is the space of continuous compactly supported complex valued
funcions.

• C∞
c (X) denotes the subspace of smooth functions in the latter (when

X is a manifold, this means “locally constant” if the manifold is
totally disconnected).

2. Modular forms

2.1. For any holomorphic function f defined on H and γ ∈ Γ0(N), we
define:

f|γ (z) = χ(γ)−1(cz + d)−kf(γ · z)
Consider the following properties:

(M1): For any γ ∈ Γ0(N), f|γ = f . This implies, by Fourier analysis, that

for any σ ∈ SL(2,Z), there exists a positive integer h(σ) (with h(I) = 1)
such that one has an absolutely convergent decomposition:

f|γ (z) =
∑

n∈Z
cn(f, σ)e(nz/h(σ))

The holomorphy at i∞ is then expressed by:

(M2): For any σ ∈ SL(2,Z), cn(f, σ) = 0 for all negative n.

“Cuspidality” is:

(M2′): For any σ ∈ SL(2,Z), cn(f, σ) = 0 for all n ≥ 0.

2.2. The space of modular forms of weight k, level q and nebentypus χ
is the set of holomorphic functions satisfying (M1) and (M2) above; the
subspace of modular forms satisfying (M2′) as well is called the space of
cusp forms, noted Sk(N,χ). The latter is finite dimensional (as is the first),
and equipped with the Petersson inner product, invariant under the group
action (it is a quotient of a Haar measure on H = SO2(R)\SL2(R)):

〈f, g〉 =
∫

Γ0(N)\H
f(x+ iy)g(x+ iy)yk

dxdy

y2

Note right now that by taking γ = −I, (M1) gives f(z) = (−1)kχ(−1)f(z),
so if χ and k don’t have the same parity, the space of modular forms is {0};
we shall exclude this case.
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2.3. Hecke operators. On the space of modular forms of weight k and level
q, one has the so-called Hecke operators, defined as follows. Let n ≥ 1 be an
integer, and let ∆0(N) = {γ =

[
a b
c d

]
∈ M2(Z) : det(γ) > 0, N |c, (a,N) =

1}. For α ∈ ∆0(N), one defines first:

Tα(f)(z) = det(α)k−1χ(α)−1(cz + d)−kf

(
az + b

cz + d

)

To define the level n Hecke operator, one considers the set {α ∈ ∆0(N) :
det(α) = n} on which Γ0(N) acts on the left. One proves that one can write
it as a finite disjoint union ⊔jΓ0(N)αj , and one defines:

Tn(f)(z) =
∑

j

(Tαjf)(z)

More explicily, one has:

{α ∈ ∆0(N) : det(α) = n} =
⋃

ad=n
a>0

(a,q)=1

⋃

0≤b≤d−1

Γ0(N)

[
a b
0 d

]

from which one deduces (χ(a) = 0 if a and N are not coprime):

Tn(f)(z) := nk−1
∑

ad=n
a>0

0≤b≤d−1

χ(a)d−kf

(
az + b

d

)

With this definition, one sees easily that the Tn’s preserve the modularity
and cupsidality. One can then give the action of the Tp, for p prime, on
the Fourier expansion of a modular form (but the modularity is hardly seen
from this expression):

• If (p,N) = 1, Tp(f)(z) =
∑

n cpn(f)e(nz)+χ(p)p
k−1

∑
n cn(f)e(pnz)

– p is called a good prime.
• If p|N , Tp(f)(z) =

∑
n cpn(f)e(nz) – p is a bad prime.

The Hecke operators preserve the space of cusp forms; the Hecke operators
at good primes all commute, and are normal with respect to the Petersson
inner product. These important facts are explained in Miyake [M], as are
the multiplicativity relations. In particular, if f is an eigenfunction for
all the Hecke operators at good primes, with eigenvalues {ap(f)}, one has
cp(f) = cf (1)ap(f) at good p. To diagonalize further the Hecke operators,
and get a good definition of L-series, it is necessary to introduce

2.4. Newforms and oldforms. Suppose χ defines a Dirichlet character
modulo N ′, for N ′|N . For any cusp form g in Sk(N

′, χ), one checks easily
that z 7→ g(dz) defines an element of Sk(N,χ), for any d|(N/N ′). Let

Sold
k (N,χ) =

⋃

χ factors through N ′|N
d|(N/N ′)

{z 7→ g(dz) : g ∈ Sk(N
′, χ)}

3
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be the space of oldforms, and let

Snew
k (N,χ) = Sold

k (N,χ)⊥

be the space of newforms (it may be zero!). Then it can be shown that
the whole Hecke algebra (i.e. including bad primes) can be diagonalized
on the space of newforms. The primitive Hecke eigenforms (those with
c1(f) = 1) have pairwise distinct systems of eigenvalues outside a finite
number of primes (“multiplicity one”, well explained in the adelic setting
by Casselman [C], cf. Gelbart [G] as well). Their L-series have an Euler
product, absolutely convergent if ℜ(s) > 1 + k/2:

L(s, f) :=
∑

n

an(f)

ns
=
∏

p

L(s, fp)

with

L(s, fp) =

(
1− ap(f)p

−s + χ(p)pk−1−2s

)−1

=

(
1− α1(p, f)p

−s

)−1(
1− α2(p, f)p

−s

)−1

at a good prime p, and

L(s, fp) =

(
1− ap(f)p

−s

)−1

at a bad prime, along with an analytic continuation (easy to see with the
Mellin transform), functional equation – cf. Bump [Bu], Miyake [M], Iwaniec
[I], etc.

When one proves a theorem, one can often reduce it to the case of new-
forms, thanks to this decomposition.

2.5. Ramanujan conjecture. Let f be a primitive newform. The Ra-
manujan conjecture is the following inequality:

|ap(f)| ≤ 2p
k−1
2

for good p, which is equivalent to |αi(p, f)| = p
k−1
2 . It has been a theorem

for 35 years now, proven by Deligne for weight greater than two. In the case
of bad p one can compute the possibilities for ap(f) rather explicitly (see
[M]).

2.6. Rationality properties. Let f ∈ Sk(N,χ) be a eigenform for all the
Hecke operators at good primes, with Hecke eigenvalues {af (p)}p6 |N . Then:

Q(f) := Q(af (p), χ(p) : p 6 |N)

is a finite extension of Q, and all the Hecke eigenvalues are integers in this
extension. If the nebentypus is trivial, then this extension in totally real.
Serre explains all of this in terms of arithmetic geometry in his Durham
lectures.
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2.7. An interesting problem is the evaluation of the dimension of the space
of cusp forms, when one or more of the parameters (k,N) vary. For instance,
using Eichler-Selberg trace formula one can prove that (see Knightly-Li [KL]
theorem 29.5):

dim(Sk(N,χ)) =
k − 1

12
ψ(N) +O

(
N1/2τ(N)

)
(1)

uniform in k ≥ 2 and N , where ψ(N) = q
∏

p|N (1 + p−1) and τ(N) is the

number of divisors of N .

Similarly, one can bound the dimension of the space of newforms using the
Petersson trace formula (Iwaniec-Luo-Sarnak [ILS]), and one has a uniform
estimate for N squarefree, k ≥ 2:

dim(Snew
k (N,χ)) =

k − 1

12
ϕ(N) +O

(
(kN)2/3

)
(2)

with ϕ(N) = q
∏

p|N (1− p−1) the Euler phi function.

3. Representation theory

If G is a locally compact group, V a complex topological vector space (C
is endowed either with the discrete or the euclidean topology), a represen-
tation of G in V is a group homomorphism ρ : G → Aut(V ), such that the
mapping (g, v) ∈ G × V 7→ ρ(g)v ∈ V is continuous. One says: “(ρ, V ) is
a representation”, or simply “let ρ be a representation”. But this notion
is not sufficient in applications: if G is an algebraic group (over Q say),
then G(R) has a natural structure of a Lie group in which case the notion
of (g, K)-module is important. On G(Qp) for p ≥ 2, one is led to consider
also “smooth” representations. On G(❆Q), the notion of “automorphic rep-
resentation” has at least three interpretations. The point of this section
is to provide some background and references on this topic. We chose to
minimize the amount of references, but all that follows can be found in any
serious book on the subject.

3.1. Let H be a Hilbert space. A unitary representation is a representation
(ρ,H) such that ρ(g) is unitary for any g in G. Examples:

(1) Given f ∈ L2(G) (dg here is a right Haar measure), put

R(g)(f)(h) := f(hg)

Then (L2(G), R) is a unitary representation of G, called the right
regular representation. Indeed, let f1, f2 ∈ L2(G), x, y ∈ G. As
‖R(x)f1 −R(y)f2‖2 ≤ ‖f1 − f2‖2 + ‖R(xy−1)f2 − f2‖2, it suffices to
prove that for any f ∈ L2(G):

lim
x→e

‖R(x)f − f‖2 = 0

5
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By using exactly the same argument, and approximating f with
compactly supported continuous ϕ, it suffices to do it for ϕ instead
of f , and this is trivial.

One can extend this idea to the general situation, and prove using
the uniform boundedness theorem that if for any v in a fixed dense
subset of H and w ∈ H, the mapping g 7→ 〈ρ(g)v, w〉 is continuous
then ρ is a representation: see [Wal] lemma 1.1.3, [War] proposition
4.2.2.1, [Ro] chapter 13.

(2) With exactly the same proof, the right action ofG on L2(H\G) (H is
a closed subgroup of G, both of which are unimodular say) provides
a representation.

(3) If G is compact, and (ρ,H) a representation, one can show that one
can put an inner product on H, without changing the topology, so
that ρ becomes unitary: see lemma 1.4.8 of [Wal] (the idea is to
average over G the inner product of course).

One says that (ρ,H) is irreducible if H has no closed nontrivial G-invariant
proper subspaces. When a representation is not irreducible, it may (or
may not) be a Hilbert sum of irreducible subrepresentations. Two unitary
representations (ρ,H), (ρ′,H′) are equivalent if there exist a G-equivariant
linear homeomorphism between H and H′: it can be shown that such an
isomorphism can be chosen to be an isometry (cf. [Bo2], 5.2). Note that if
(ρ,H) is an irreducible unitary representation of G, then span(ρ(g)v : g ∈
G) is dense in H. This implies that the Hilbert dimension of H is less than
card(G), and therefore the set of unitary irreducible representations ofG up

to equivalence (or isomorphism) is a well defined object: it is denoted Ĝ.

Theorem 3.1 (Schur’s lemma). If (ρ,H) is irreducible, then HomG(H,H) =
CIdH. Furthermore, if (ρ′,H′) is another (not necessarily irreducible) uni-
tary representation, then any nonzero element of HomG(H,H

′) is a positive
real scalar multiple of an isometry.

Reference: [Wal] section 1.2, [KL] proposition 10.14.

Application: Let Z denote the center of G, and let (π,H) denote an
irreducible unitary representation of G. Then Schur’s lemma implies that
the action of Z on H is by a unitary character; i.e. there exists a continuous
character ωπ : Z → S1 such that π(z)x = ωπ(z)x for any x ∈ H: this is
called the central character of π.

Remark: Let (H, 〈·, ·〉) be a Hilbert space. A convenient way to check
that a unitary representation (ρ,H) is irreducible is to prove that any G-
invariant continuous inner product 〈·, ·〉2 on H is a multiple of 〈·, ·〉. Indeed,
if ρ contains a nonzero invariant closed proper subspace H0 then under the
decomposition H = H0 ⊕ H⊥

0 we can change the inner product on H⊥
0 by

positive scalars while leaving the one on H0 unchanged and this preserves
the G-invariance property. But such a modification inner product on H is
clearly not a scalar multiple of the given one, so no such H0 exists.
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Conversely, if (ρ,H) is irreducible, and 〈·, ·〉2 is a G-invariant inner product
on H, let H′ be the Hausdorff completion of (H, 〈·, ·〉2): the natural embed-
ding (H, 〈·, ·〉) → (H′, 〈·, ·〉2) is continuous, G-equivariant, with dense image.
By Schur’s lemma, it is a scalar multiple of an isometry: this proves our
contention.

Lemma 3.1. Let (ρ,H) be a unitary representation of G, and let H′ be a
closed G-invariant subspace. If (ρ,H) is a Hilbert sum of irreducible repre-
sentations, then so are (ρ,H′) and (ρ,H/H′).

Proof: Using duality and/or orthogonal complements, it suffices to treat
H/H′. Let’s write:

H =
⊕̂

i∈I
Hi

where Hi is an irreducible closedG-subspace of H (the set of index I is at most
countable if H is separable, which will be the case in all our applications).
We can also assume H/H′ 6= 0.

The projection p onto H/H′ is G-equivariant, so H/H′ is spanned (in the
Hilbert sense) by the p(Hi) (i ∈ I). In particular, some p(Hi) is nonzero.
But this projection is a closed G-invariant subspace of H/H′, so the set X of
collections of pairwise orthogonal closed G-invariant irreducible subspaces of
H/H′ is non-empty. By Zorn’s Lemma there is a maximal element in X , and
the corresponding Hilbert direct sum is a closed G-invariant subspace W of
H/H′. We just have to rule out the possibility that it is a proper subspace.
If so, then clearly its orthogonal complement (in H/H′) contains no closed
irreducible G-invariant subspace, so by replacing H′ with the preimage in H
corresponding to W we arrive at the case when the nonzero H/H′ contains
no irreducible G-invariant closed subspaces. It has already been seen that
such a situation cannot occur. qed

3.2. In some common situations, unitary representations are Hilbert sums
of irreducibles representations: this is the content of the next theorems.

Theorem 3.2. Let G be a compact group. Then any unitary representation
is a Hilbert sum of irreducible representations. Furthermore any irreducible
representation is finite dimensional.

References: [Wal] prop. 1.4.1 and 1.4.2; [Ro] chapter 5 or the excellent [BR]
chapter 7 for instance.

Remark: Let (ρ,H) be a unitary representation of G, and K be a compact
subgroup. One can therefore write:

H =
⊕̂

i∈I
Hi

where each Hi is a K-irreducible closed subspace of H. This decomposition
is not unique (think of the trivial representation, for which any Hilbert basis
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provides such a decomposition), and twoHi’s may be unitarilyK-equivalent.
One usually rewrites the decomposition as follows: for each (isomorphism
class of) irreducible representation π of K , let Iπ be the set of i ∈ I for
which (ρ|K ,Hi) is equivalent to π. The cardinal numbermπ = card(Iπ) is the
multiplicity of π in ρ|K : by Schur lemma, this cardinal number is independent
of the decomposition we started with. One writes H(π) =

⊕
i∈Iπ Hi = mπρ,

and the above Hilbert sum is written:

H =
⊕̂

π∈ bK

H(π) =
⊕̂

π∈ bK

mππ.

One says that ρ is K-admissible if mπ is a finite cardinal for each π ∈ K̂.
We’ll see later on that any irreducible unitary representation of a con-
nected reductive group is admissible (for K a maximal compact subgroup
in the archimedean case, and maximal compact open subgroup in the non-
archimedean case).

3.3. The next examples require the use of the integration in topological
vector spaces. A thorough treatment can be found in Bourbaki, Integration,
chap VI, §1,2 and chap VII, §2 for the application on representations; [War]
section 4.1.1; [Ro] section 6 for some comments. Let (π,H) be a unitary
representation of a locally compact group G (so H is a Hilbert space, though
to integrate continuous vector-valued functions it suffices to assume that H
is locally convex and quasi-complete). Let f ∈ Cc(G), v, w ∈ H, one can
consider the absolutely converging integral:

lv(w) :=

∫

G
f(g) 〈π(g)v, w〉 dg

The mapping w 7→ lv(w) is continuous and linear, therefore by Riesz’ repre-
sentation theorem it defines an element of H denoted

π(f)v :=

∫

G
f(g)π(g)vdg.

It is clearly linear in f and v, continuous as ‖π(f)v‖ ≤ ‖f‖1‖v‖ and can
be extended by density to L1(G) (actually even to the space of compactly
supported complex measures, cf. Bourbaki): in particular, one checks easily
that f ∈ L1(G) 7→ π(f) ∈ End(H) is a continuous homomorphism of Banach
algebras.

Remark: It is sometimes convenient to consider a continuous function f
whose support is contained in a compact subgroupK of G. If K is negligible
inG, then π(f) as defined above is zero. However, the same arguments shows
that the integral

∫
K f(k)π(k)vdk is absolutely convergent: by an abuse of

notations, we will denote this integral π(f)v. As soon as the Haar measures
are suitably normalized, this defines the same operator in the case K is also
open, so we hope this won’t cause any confusion.
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Theorem 3.3. Let (π,H) be a unitary representation of G. Assume the
existence of a delta-sequence (fn)n∈N in Cc(G), i.e. satisfying:

supp(fn+1) ⊂ supp(fn),
⋂

n≥1

supp(fn) = {e}

∀n ∈ N, ∀g ∈ G, fn(g) = fn(g
−1), fn ≥ 0,

∫

G
fn = 1

such that the operator π(fn) is compact for all n. Then (π,H) is a Hilbert
sum of irreducible representations, each occuring with finite multiplicities.

References: [Wal] proposition 1.4.1, [L] I §3. Note that the invariance of
the fn under g 7→ g−1 insures that π(fn) is self-adjoint: the proof uses the
spectral decomposition of such operators.

Remark: This theorem is fundamental in the theory of automorphic forms:
the most common proofs that the space of cusp forms splits as a sum of
irreducible representations is based on it – though Jacquet-Langlands seem
to have a purely algebraic proof of this fact.

Remark: Let G be a locally compact group. One says that G (actually its
stellar algebra: see [Dix], 13.9) is liminal if for any (π,H) irreducible unitary
representation of G, and any f ∈ Cc(G), π(f) is compact. We’ll see later
that all reductive groups over locally compact fields are liminal, and to what
extent this plays a role in the tensor product theorem.

Theorem 3.4. Let G be a locally compact group,K a compact subgroup of G,
and (π,H) a unitary representation of G. Assume that π is K-admissible.
Then there exists a delta-sequence satisfying the condition of the previous
theorem, and therefore (π,H) splits as a Hilbert direct sum of irreducible
representations.

Proof: (cf. [Bo2], 5.9 corollaire) If ρ ∈ K̂ occurs in π, denote its character
χρ: by hypothesis π(χρ) is compact. As any central function f of K is a
uniform limit of linear combinations of characters (cf. [Ro], 7.1, proposition),
so π(f) is compact as well (the subspace of compact operators is closed
in End(H) for the topology of uniform convergence on bounded sets). To
conclude, one uses a delta-sequence made of central functions (by averaging
over K of course), and one applies the previous theorem. qed

4. The case of reductive groups

In this section, let G be a reductive algebraic group over a local field F
(say F = R or Qp for some prime p). One denotes g its Lie algebra. Let K
be a compact subgroup of G(F ) such that:

• if F is archimedean, K is a maximal compact subgroup of G(F ) (e.g.
K = O2(R) if G = GL2, F = R)

• if F is non-archimedean, K is open (e.g. K = GL2(Zp) if G =
GL2, F = Qp)

9
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Theorem 4.1. Let (π,H) be an irreducible unitary representation of G(F ).
Then (π,H) is K-admissible.

References: for F archimedean, cf. [Wal] theorem 3.4.10, [Bo2] théorème
5.27. In the non-archimedean case, it is quoted by Cartier in [Cor] and it
is discussed in the unpublished notes of Garrett [Ga1]. As we are mainly
interested in the case of G = GL(2), refer to [Su] theorem 5.1. for the real
case, and to [BH] in the p-adic case, where the smooth representations are
completely classified – so that one is left to observe the admissibility.

Corollary 4.1.1. Let (π,H) be an irreducible unitary representation of
G(F ), and f ∈ Cc(G). Then π(f) is compact.

References: Théorème 5.27 in [Bo2] for the real case. In the p-adic case,
C∞
c (G) is dense in Cc(G) (for its natural inductive limit topology, stronger

than the uniform convergence): as the subspace of compact operators is
closed in End(H), it suffices to prove the claim for f ∈ C∞c (G). But for
such an f , it is immediate that one can find a compact open subgroup Kf

of G such that f(kgk−1) = f(g) for any g ∈ G, k ∈ Kf , in which case one
concludes as in the proof of theorem 3.4.

Remark: This proves that the (stellar algebra of) reductive groups are
liminal, as claimed above.

Before we state the next corollary, which will be useful in our discussion
of the tensor product theorem, let’s recall that given two Hilbert spaces
H1,H2, the bilinear map induced by

〈x1 ⊗ x2, y1 ⊗ y2〉 := 〈x1, y1〉1 〈x2, y2〉2
provides H1 ⊗ H2 with a non-degenerate inner product, whose completion
is denoted H1⊗̂H2: cf [Bour-EVT], chap V, §3, No 1 and 2. Let G1, G2

be two locally compact groups, and let (πi,Hi) (i = 1, 2) be two unitary
representations. Then π1⊗̂π2 denotes the unitary representation of G1×G2

on H1⊗̂H2 deduced from the representation on the pre-Hilbert spaceH1⊗H2,
itself induced by:

(π1 ⊗ π2)(g1, g2)(x1 ⊗ x2) = π1(g1)x1 ⊗ π2(g2)x2.

Let’s briefly justify this is a unitary representation: first, for any g1 ∈
G1, g2 ∈ G2, the operator π1(g1) ⊗ π2(g2) is unitary ([Bour-EVT], V, §4,
No 1, proposition 3 and the paragraph following proposition 2); as for the
continuity, given that G = G1 × G2 acts by unitary operators, it suffices
to prove that the mappings g ∈ G 7→ π(g)v are continuous for v in a total
subset of H1⊗̂H2 (cf [War] section 4.1.1 page 219): if we take this total
subset to be {x1 ⊗ x2 : x1 ∈ H1, x2 ∈ H2}, our contention is clear.

It is easy to see that π1⊗̂π2 is irreducible if π1, π2 are. Indeed, let Q be
a G1 × G2-invariant continuous inner product on H1⊗H2. Fix two nonzero
vectors x2, y2 ∈ H2: then the inner product on H1 defined by (x1, y1) 7→
Q(x1 ⊗ x2, y1 ⊗ y2) is continuous and G1-invariant, so is equal to 〈·, ·〉1 up
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to some constant by irreducibility of π1. One determines the constant the
same way, by varying x2, y2. Conversely:

Corollary 4.1.2. Let G1, G2 be two reductive groups over two local fields
(maybe distinct). Then any irreducible representation π of G = G1 ×G2 is
equivalent to a representation of the shape π1⊗̂π2, with π1, π2 irreducible.

Reference: [Dix] proposition 13.1.8, where it is proven that if at least one of
G1, G2 are of type 1, then the conclusion holds (see also [GGP] appendix to
chapter 2 and [Ro], section 20). It can be shown (cf. [Dix], theorem 5.5.2
and 13.9.4) that a group is of type 1 as soon as its stellar algebra is liminal,
which is the case here, by the corollary 4.1.1.

Remark: The previous corollary was stated only in the case of reductive
groups: it is of course true in the generality of type 1 groups, as the references
justify it.

4.1. Smooth vectors and (g, K)-modules. References: [Bu] chapter 2,
[Wal1], and [Wal] chapter 3. As we mentionned earlier, there are also more
algebraic counterparts of representation theory. In the case of archimedean
Lie groups, (g, K)-modules play an important role. LetG be an archimedean
reductive Lie group, g its complex Lie algebra, K a maximal compact sub-
group.

One can attach canonically to g an associative unitary algebra U(g) called
the (complexified) universal enveloping algebra, which gives rise to differen-
tial operators acting on C∞

c (G). We will denote z the center of U(g) (if G is
of inner type, this is also the set of elements z in U(g) such that Ad(g)z = z
for any g in G, cf [Wal] 3.4.1: this is the case for GLn(R)), which is finitely
generated, and generalizes the Laplace-Beltrami operator: cf [Wal] section
0.4.

A (g, K)-module is a complex vector space V (without topology), together
with

• a structure of a K-module, continuous in the following sense: if
v ∈ V , then there exists a finite dimensional subspace Wv such that
Kv ⊂ Wv and the mapping K → Aut(Wv) is continuous (therefore
analytic),

• a structure of a g-module,

such that:

(1) k ·X · v = (Ad(k)X) · k · v for k ∈ K,X ∈ g, v ∈ V ,
(2) d

dt(exp(tX)v)|t=0
= Xv for v ∈ V and X in the Lie algebra k of K.

In these conditions, one can prove that V is a semisimple K-module (cf.
[Wal] lemma 3.3.3). The (g, K)-module V is admissible if the ρ-isotypic

subspace V (ρ) is finite-dimensional for any ρ ∈ K̂.

Fundamental example: Let (π,H) be a unitary representation of G. Let
H∞ be the subspace of smooth vectors (i.e. the vectors v ∈ H such that
g ∈ G 7→ π(g)v is smooth). The real Lie algebra gR acts on H∞ by dπ(X)v =
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d
dt(exp(tX)v)|t=0

†, hence an action of g. G̊arding’s theorem states that H∞

is dense in H (exercise: use a δ-sequence of smooth functions to prove it,

cf [Wal] section 1.6). Write H =
⊕̂

ρ∈ bK
H(ρ): one can prove that H∞ ∩

H(ρ) is dense in H(ρ) for any ρ ∈ K̂. Define HK :=
⊕

ρ∈ bK
(H(ρ) ∩ H∞).

Then HK is stable under the action of K, g, satisfies the aforementioned
compatibilities and is called the (g, K)-module associated to the unitary
representation (π,H). By construction, HK is dense in H. One can prove

that HK is irreducible (=contains no algebraic submodule) if and only if
the representation π is (topologically) irreducible, thanks to this density: cf.
[Wal], theorem 3.4.11 – this uses the admissibility of π.

Remark: Note that if (π,H) is admissible, as H∞ ∩ H(ρ) is dense in H(ρ),
it must be equal to it. This implies that given an irreducible (necessarily
admissible) unitary representation of a reductive group G, its associated
(g, K)-module is actually

⊕
ρ∈ bK

H(ρ), and that theK-finite vectors of H are

smooth.

Remark: A (g, K)-module does not afford a representation of G. However,
one can define an “extension” of G, called the Hecke algebra and denoted
HG, such that (g, K)-modules correspond naturally toHG-modules: see [Bu]
proposition 3.4.4.

Remark: There is a version of the Schur lemma for irreducible (g, K)-
modules: cf [Wal] lemma 3.3.2. One can say a bit more in the case of
an irreducible unitary representation of G(R) for reductive G: the center
of the universal algebra z acts on H∞ by a character (here this means an
homomorphism of C-algebras χ : z → C), this is the content of lemma 1.6.5
of [Wal].

Remark: The complex conjugation on g extends to an conjugate-linear
anti-automorphism on U(g) (cf [Wal] 1.6.5) denoted x 7→ x⋆. The proof of
lemma 1.6.5 (ibid.) implies that if x ∈ U(g), then for any v, w ∈ H, with
(π,H) unitary representation ofG, 〈dπ(x)v, w〉 = 〈v, dπ(x⋆)w〉. In particular
if x = x⋆, then dπ(x) is self-adjoint. This applies to the Laplace-Beltrami
operator ∆ of SL2(R) acting for example on L2(SL2(Z)\SL2(R)), giving
a representation-theoritic proof of such self-adjointness in this case, usually
proved by Green’s identity, cf [Bu] section 2.1.

Remark: About K and z-finiteness, useful in the context of automorphic
forms. If (π,H) is a unitary representation, a vector v is K-finite if π(K)v is
finite dimensional: this makes sense for any vector in the representation. If v
is a smooth vector, then v is z-finite if dπ(z)v is finite dimensional. However,
it is technically important to define it for non-smooth vectors as well: this is

†The limit in consideration is with respect to the norm of H: when H is a space of
functions, the derivative can also taken with respect to the pointwise convergence, which
may not be coherent with the latter. For instance, the smooth vectors in L2(R) is not
C∞(R)!

12



Modular Forms and Automorphic Representations

way distributions play an important role in the theory of automorphic forms,
often implicitly. In this context, a vector v ∈ H defines a (vector-valued)
distribution Tv : C∞

c (G) → H by:

Tv(ϕ) =

∫

G
ϕ(g)π(g)vdg.

One says that v is z-finite (as a distribution) if span{zTv : z ∈ z} is a finite-
dimensional subspace of H-valued distributions, where xTv is the distribution
defined for x ∈ U(g) by:

(xTv)(ϕ) :=

∫

G
(ϕ ∗ x̌)(g)π(g)dg.

(Here and below, for x ∈ U(g) the notation ϕ ∗ x̌ denotes the action of x on
C∞
c (G) arising from the action of g via differential operators.) Note that if v

is smooth then xTv = Tdπ(x)v and that in the case where (π,H) is the right

regular representation of L2(G), f ∈ L2(G) is z-finite in the above sense if
and only if the real valued representations ϕ 7→

∫
G(ϕ∗ ž)gf(g)dg span, when

z varies in z, a finite dimensional subspace of (real valued) distributions (by
using the right regular representation on C∞

c (G)).

4.2. Smooth representations of non-archimedean groups. References
[BH] chapter 1, [Bu] chapter 4 for a thorough discussion of this topic. This is
the p-adic counterpart of the preceeding paragraph. Let G be a totally dis-
connected locally compact group, K an open compact subgroup. A smooth
representation of G is a vector space V together with an group homomor-
phism π : G→ Aut(V ) such that

(1) any v ∈ V is smooth, i.e. the subgroup {g ∈ G : π(g)v = v} is
compact and open in G.

In this situation, the restriction of the representation π to K is semisimple
(cf. [BH] lemma 2.2). It is said to be admissible if furthermore the space of
K-fixed vectors V K is finite dimensional: this implies that one can write

V =
⊕

ρ∈ bK

V (ρ)

where each V (ρ) is finite-dimensional.

Fundamental example: Let (π,H) be a unitary representation of G; de-
note by H∞ the subspace of smooth vectors in H, which is stable under G.
Then the corestriction of π to H∞ is a smooth representation of G.

Note that H∞ is dense in H: indeed, if v ∈ V , then π(f)v ∈ H∞ for any f ∈
C∞
c (G). Let C be the filter generated by open and compact neighbourhoods

of the identity and let fc be the characteristic function of c ∈ C: then
π(fc)v →C v, as claimed. This density implies that given an admissible

unitary representation (π,H), then (π,H) is irreducible if and only if (π,H∞)
is algebraically irreducible.

13
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Remark: Smooth representations of G are in one-to-one correspondence
with smooth representations of the Hecke algebra of G: cf [BH] section 1.

Case of GL2: spherical representations. Here F denotes a non-
archimedean field, and OF its integers with maximal ideal pF , ̟ a uni-
formizer and qF the cardinality of the residue field. As we mentioned ear-
lier, the smooth irreducible representations of GL2(F ) are classified (up to
equivalence), and fall into three families: principal series, special represen-
tations and supercuspidals (see [BH]) . We will need later a few facts on
unramified representations (as defined in the following result):

Theorem 4.2. Let (π, V ) be a smooth irreducible representation of GL2(F )
which is unramified in the sense that it contains nonzero spherical vectors;
i.e.,

V GL2(OF ) := {v ∈ V : π(k)v = v for all k ∈ GL2(OF )} 6= {0}
Then (π, V ) is equivalent to an unramified principal series representation,

and furthermore the space V GL2(OF ) is one-dimensional.

This means that π ∼= π(χ1, χ2) for some unramified quasi-characters of
F×. The one-dimensionality result comes from the fact that the spherical
Hecke algebra is commutative (cf [Bu] theorem 4.6.2)

A natural question is, given a unitary irreducible representation π of
GL2(F ), how to determine the characters χ1, χ2 from π: this leads to the
introduction of Hecke operators in this local setting.

First of all, an unramified quasi-character χ of F can be written χ(x) =
|x|t, for some t ∈ C (uniquely determined modulo 2iπ log(qF )

−1Z). As it
is known that π ∼= π(χ1, χ2) and π ∼= π(χ2, χ1) are unitarily equivalent, it
suffices to determine the set {qt1F , qt2F } of complex numbers (here the ti’s are
actually imaginary, as the quasi-characters χ1, χ2 are unitary). By looking
at the central characters, one has for any x ∈ F×:

ωπ(x) = χ1(x)χ2(x)

so this gives a condition on qt1F q
t2
F .

To determine completely our set, it suffices to get a condition on the sum
qt1F +qt2F . Let ϕ0 denote the characteristic function of the (compact and open)

subset GL2(OF )
[
̟ 0
0 1

]
GL2(OF ); then for any vector v, π(ϕ0)v is spherical

(if non-zero). Thus, in our setting, if one denotes v0 a non-zero spherical
vector in π(χ1, χ2), π(ϕ0)v and v are colinear, more precisely – and this will
end our discussion:

π(ϕ0)v = q
1/2
F (qt1F + qt2F )v.

For a proof, see for example [Bu] proposition 4.6.6: the standard notation for
the operator π(ϕ0) is T (pF ) or TpF – we’ll see later that the Hecke operators
introduced in section 2.3 “correspond” to these T (pF )’s once the adeles are
introduced.
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5. The adelization of a modular form and adelic Hecke
operators

In this section, we use the same notation as in section 2.
If G is an algebraic group over Q (we’ll use G = GL2 only), we’ll denote

g = (gv)v≤∞ an element of G(❆Q). Given a place v of Q, and an element
gv ∈ G(Qv), we’ll denote also gv the element of G(❆Q) whose component at
v is gv, and at w 6= v is 1. We’ll denote sometimes gf the “finite” part of g
(i.e. (gf )∞ = 1 and (gf )p = gp for p prime). For G = GL2, we recall that a

maximal compact subgroup of G(❆Q) is K =
∏

v≤∞Kv, with K∞ = O2(R)

and Kp = GL2(Zp) for p prime; the center of G(❆Q) will always be denoted
Z(❆Q). If N ∈ N, we’ll denote K0(N) the subgroup ofKf made of matrices

whose lower left entry is in N Ẑ (so the component at infinity is 1).

5.1. From a classical modular form to an automorphic form on
GL2(❆Q).
References: [KL] section 12.2, [G] §3, [Bu] section 3.6, [BCSGKK] section
7.

Let f be a modular form of weight k, nebentypus χ and level N . The
Dirichlet character χ is associated with a finite order idele class character
of ❆×

Q/Q
× denoted ωχ called the adelization of χ: see [KL] section 12.1 for

its construction. The strong apprimation theorem states that:

GL2(❆Q) = GL2(Q)GL+
2 (R)K0(N).

This means that any element g in GL2(❆) can be (non-uniquely) written
g = γh∞k, with γ ∈ GL2(Q), h∞ ∈ GL+

2 (R), k ∈ K0(N) (in other words
the continuous mapGL2(Q)×GL+

2 (R)×K0(N) → GL2(❆Q) is surjective).
See [KL] section 6.3 for an elementary proof in this setting.

One can prove as a consequence that vol(Z(❆Q)GL2(Q)\GL2(❆Q)) <
∞: cf [KL] section 7.11. We will still denote ωχ the character on K0(N)
defined by the evaluation of ωχ at the lower right entry.

Definition 5.1. Let f be a modular form of weight k, nebentypus χ and
level N . The adelization of f is the function ϕf : GL2(❆Q) → C defined
by:

ϕf (g) = j(h∞, i)−kf(h∞ · i)ωχ(k)

where:

(1) h∞ ∈ GL+
2 (R), k ∈ K0(N) are chosen so that g = γh∞k for some

γ ∈ GL2(Q),

(2) for any z ∈ C − R, j(h∞, z) = det(h∞)−1/2(cz + d), if one write
h∞ =

[
a b
c d

]

Remarks:
15
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• This is well defined (i.e. the number ϕf (g) does not depend on the
choices of γ, h∞, k) because of the modularity of f : see section 12.2
of [KL].

• The function ϕf is continuous. Indeed, its restriction to the (open)

subset γGL+
2 (R)K0(N) (for any γ ∈ GL2(Q)) is continuous by

definition, so by the “gluing lemma” ϕf is continuous on GL2(❆Q).
• For any γ ∈ GL2(Q), g ∈ GL2(❆Q), ϕf (γg) = ϕf (g).
• For a fixed finite adelic point gf , g∞ 7→ ϕf (g∞, gf ) is smooth.

• For a fixed g∞ ∈ GL+
2 (R), gf 7→ ϕf (g∞, gf ) is locally constant on

the finite adeles.

The last three points are obvious.

As the title of this section indicates, the function ϕf is actually an auto-
morphic form on GL2(❆Q): we list below the properties statisfied by ϕf to
inherit such a name: the proofs are to be found in [KL] or [G].

(1) (GL2(Q)-left invariance) For any γ ∈ GL2(Q), g ∈ GL2(❆Q), one
has: ϕf (γg) = ϕf (g).

(2) (K-finiteness) For k∞ =
[

cos θ sin θ
− sin θ cos θ

]
∈ SO2(R), kf ∈ K0(N), g ∈

GL2(❆Q), ϕf (gk∞kf ) = ω(kf ) exp(2πikθ)ϕf (g), where k ∈ Z is
the weight of f . In the adelic setting, the condition of K-finiteness
on ϕf means that the subspace span(R(g)ϕf : g ∈ K) is finite-
dimensional. The link with the classical setting is that all finite-
dimensional continuous representations of the circle groupSO2(R) =
R/(2πZ) are direct sums of 1-dimensional representations with the
character θ 7→ exp(ikθ) for various k ∈ Z.

(3) (z-finiteness) One has the differential equation: ∆ϕf = k
2

(
1− k

2

)
ϕf

(where the Casimir operator ∆ acts on the infinite component). This
implies that ϕ is ∆-finite: this, and the next item, implies that ϕ
is z-finite, as the center of the universal algebra is generated by ∆
and I). In other words, the subspace span(ϕf ∗ ž : z ∈ z) is finite
dimensional.

(4) (Action of the center) For any z ∈ Z(❆Q), g ∈ GL2(❆Q), ϕf (zg) =
ωχ(z)ϕf (g).

(5) (Growth condition) For any norm ‖ · ‖ on GL2(❆Q), there exists a

real number A > 0 such that: ϕf (g) ≪ ‖g‖A. In other words, ϕf

is moderate growth. This point is not obvious: see [Bo1] section
5, Borel-Jacquet in [Cor] and [Wal] for norms on Lie groups. It is
simpler to prove that if f is a cusp form, then ϕf is actually bounded:
this is because of the basic fact that f is cuspidal if and only if the
mapping g∞ ∈ GL+

2 (R) 7→ j(g∞, i)−kf(g∞ · i) is bounded: see [KL]
proposition 12.2.
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(6) (Cuspidality) If f is a cusp form, then ϕf is cuspidal, in the sense
that for any g ∈ GL2(❆Q) :

∫

Q\❆Q

ϕf

([
1 x
0 1

]
g
)
dx = 0.

See [KL] proposition 12.3 for a proof (if the form is unramified, then
[G] proves it as well, but for general levels, one has to use all the
cusps).

We tried to list the properties so that they are easily modified to define
an autmorphic form on a general reductive group G over Q (even over a
number field); the cuspidality condition is more difficult to handle, as one
has to write the vanishing condition on the unipotent radical of any parabolic
Q-subgroup of G.

It is important to notice that since ϕf is bounded for f cuspidal, |ϕf | is
square integrable on Z(❆)GL2(Q)\GL2(❆Q).

Remark: By using the strong approximation theorem, one can characterize
the image of Sk(N,χ) under this construction (which is clearly linear in f):
refer to [KL] section 12.4.

5.2. From a classical cuspidal modular form to a unitary automor-
phic representations of GL2(❆Q). We keep the same notations, and refer
to [G] for more details that we won’t cover (chapter 5 is especially relevant).

Definition 5.2. Let f be a cuspidal modular form of weight k, nebentypus
χ and level N . The unitary automorphic representation attached to f is
the restriction of the right regular representation of GL2(❆Q) on the closed
subspace Hf of L2

0(Z(❆Q)GL2(Q)\GL2(❆), ωχ) defined by:

Hf := span(R(g)ϕf : g ∈ GL2(❆Q))

This unitary representation is denoted πf .

Remark: see the appendix for a definition of the space of cuspidal functions
L2
0(Z(❆Q)GL2(Q)\GL2(❆), ωχ).

Remark: We chose to work with unitary automorphic representations; if
instead one wishes to work with the more algebraic theory of (admissible)
automorphic representations, one can attach to a modular form f theHGL2-
submodule HGL2ϕf of the space of automorphic forms on GL2 with central
character ωχ: here HGL2 denotes the adelic Hecke algebra, which is a re-
stricted tensor product of the local Hecke algebras – cf [Bu] section 3.4.

The main result is the following:

Theorem 5.1. Let f be a cuspidal modular form of weight k, nebentypus χ
and level N . Assume that there exists a finite set of primes S such that f
is a Hecke eigenform for the Tp, p /∈ S. Then the unitary representation πf
is irreducible.

17
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We will sketch the proof below – references: [Bu] section 3.6, and [G]
section 5.B. We will need the tensor product theorem and multiplicty one
to achieve that.

5.3. Hecke operators. Let f be a cuspidal modular form of weight k,
nebentypus χ and level N , and ϕf its adelization. We denote ω the adeliza-
tion of the Dirichlet character χ. Let p be a prime not dividing q (for
simplicity).

Let Hp be the compact open subset of GL2(Qp) defined by

Hp = GL2(Zp)
[
p 0
0 1

]
GL2(Zp)

For ϕ ∈ L2
0(Z(❆)GL2(Q)\GL2(❆Q), ω), we define:

❚p(ϕ) =

∫

Hp

f(gkp)dkp.

By using the disjoint union decomposition:

Hp =

p−1⋃

b=0

[
p b
0 1

]
GL2(Zp) ∪

[
1 0
0 p

]
GL2(Zp)

one proves easily that (cf [G] lemma 3.7):

❚p(ϕf ) = ϕp1−k/2Tp(f)
.

On the other hand, by using the disjoint union decomposition:

Hp =

p−1⋃

b=0

GL2(Zp)
[
1 b
0 p

]
∪GL2(Zp)

[
p 0
0 1

]

one sees that if ϕ is GL2(Zp)-invariant on the right then

❚p(ϕ) = (p+ 1)

∫

GL2(Zp)
ϕ
(
gkp
[
p 0
0 1

])
dkp.

The last integral can be modified in order to adelize the ramified Hecke
operators. Reference: [M2] and [We] chapter VI.
Remark: In [KL] section 13, it is explained how to use f to construct a
smooth function ψ on GL2(❆Q) as a product ψ =

∏
v ψv, where ψ∞ is

integrable modulo the center for weights ≥ 3 and the finite components
are smooth and compactly supported modulo the center: this is technically
important in order to use the (relative) trace formula.

6. The tensor product theorem

In this section, we collect some facts leading to the statement and proof
of the tensor product theorem. Again, our choice is to deal with unitary
representations, for two reasons:

• Automorphic representations are not representations of GL2(❆Q),
but of the Hecke algebra, which is difficult to define (see [Bu] section
3.4). It is simpler to define unitary representations in this context.

18



Modular Forms and Automorphic Representations

• Sooner or later in the theory, one really needs properties of Hilbert
spaces, compact operators, trace class operators. The author is not
sure to what extend a completely algebraic theory can do the job.

6.1. A construction. Let G denote the algebraic group GL2; all the no-
tations introduced in the preceding section remain in force. For each place
v ≤ ∞ of Q, let (πv,Hv) be a unitary representation ofG(Qv). Denote 〈·, ·〉v
the inner product of Hv. Let’s assume that there exists a finite set of finite
primes S0 containing ∞ such that for any v /∈ S0, the space of Kv-fixed vec-
tors is one-dimensional. For each place v /∈ S0, we choose a unitary vector
in HKv

v , which we will denote ξ0v . We will construct a unitary representation
π of GL2(❆Q) which is usually denoted

π =
⊗̂

v≤∞
πv

but one has to keep in mind that it might a priori depend on the choice of

ξ0 = (ξ0v)v/∈S0
(and so

⊗̂

v≤∞

ξ

πv would be a better notation).

Step 1: construction of the Hilbert space on which GL2(❆Q) will act:
reference [Gui].

For each finite set S of primes containing S0, one denotes by HS the
prehilbert space

HS =
⊗

v∈S
Hv

By general properties of the tensor product of modules, one does not have
to choose any order on the set of places. For two such sets S, T with S ⊂ T ,
there is a unique mapping jS,T : HS → HT defined for each family (xv ∈∏

v∈S Hv) by:

jS,T (
⊗

v∈S
xv) =

⊗

v∈S
xv ⊗

⊗

v∈T−S

ξ0v .

It is obvious that these mappings are injective Put on HS the (positive
definite) inner product 〈·, ·〉S induced by

〈⊗

v∈S
xv,
⊗

v∈S
yv
〉
S
:=
∏

v∈S
〈xv, yv〉v

See section 4 for some facts on these tensor products. One sees immediately
that the embeddings jS,T are isometric for these inner products. Denote

Halg the inductive limit of the system (HS , jS,T ) (the directed set is the

set of finite sets of primes, ordered by inclusion), and jS : HS → Halg the
canonical embedding.

For x, y ∈ Halg, there exist a finite set of places S, and elements xS , yS
of HS such that x = jS(xS), y = jS(yS) and we define an inner product on
Halg by:

〈x, y〉 = 〈xS , yS〉S
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This is well-defined, and this makes each jS an isometry. Finally, denote
by H the completion of Halg for this inner product: this space is denoted in

[Gui] as
⊗̂

v≤∞

ξ

Hv.

Remark: In [Gui], it is proved that canonically there is no dependence
on the vectors ξ0: this is Proposition 1.3 loc. cit., which can be applied as
the space of Kv-fixed vectors is one-dimensional (for another choice ξ1, one
has ξ1v = αvξ

0
v for a unique complex αv of modulus one, so the hypothesis is

trivially satisfied). Of course, the choice of the finite set S0 is unimportant,
by general properties of inductive limits.

Remark: If x =
⊗

v∈S
xv is a vector in HS , one often denotes its image in

H using the notation
⊗

v∈S
xv ⊗

⊗

v/∈S
ξ0v : this is an abuse of language, as the

latter makes sense only in the algebraic infinite tensor product
⊗

v≤∞
Hv as

defined in Bourbaki, Algèbre, chap II, §3, No 9, but this is common.

Step 2: construction of the representation.
For each finite set S of primes containing S0, GL2(❆Q,S) acts on HS

via the unitary representation
⊗

v∈S πv: unitarity and continuity of this
representation has been checked in section 4. One sees at once that one
gets an inductive system of unitary representations (of course by using the
Kv-invariance of the ξ0v ’s), and so one gets an algebraic representation πalg

of GL2(❆Q) on Halg by unitary operators. One can extend by uniform

continuity each operator πalg(g), for g ∈ GL2(❆Q), to a unitary operator on
the completion H, which we denote π: π affords an algebraic representation
of GL2(❆Q) by unitary operators, so we need only justify the continuity of
this action.

It suffices to prove that the mappings g ∈ GL2(❆Q) 7→ π(g)x ∈ H are
continuous for each x in a total subset of H (see section 4), so it is sufficient
to check this continuity for x of the shape x = jS(xS) for some finite set S
of primes containing S0. Because of the topology on the adeles, it suffices
to prove the continuity of g ∈ GL2(❆Q,T ) 7→ π(g)x ∈ H for T a fixed finite
set of primes with S ⊂ T , but in this case one has:

π(g)x = jT

(⊗

v∈S
πv(gv)xv ⊗

⊗

v∈T−S

πv(gv)ξ
0
v

)

and the continuity is clear.

We have therefore constructed from the data the unitary tensor product
representation π, denoted in the litterature

π =
⊗̂

v≤∞
πv.
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A slightly better notation would be
⊗̂

v≤∞

ξ0

πv a priori, but because of the

remark we made above, if one changes the family ξ0, one canonically gets a
unitarily equivalent representation.
Remark: If furthermore all the local representations πv are irreducible,
then so is their unitary tensor product: this is a simple adaptation of an
argument given in section 4. See [G], §4.C.
Remark: Let π be a unitary representation of GL2(❆Q) constructed as
above from irreducible unitary representations πv of GL2(Qv). Then the
restriction of π to GL2(Qv) splits as a Hilbert direct sum of irreducible
representations, all equivalent to πv: this means that (the equivalence class
of) πv is uniquely determined by π.

Remark: If an irreducible unitary representation π of GL2(❆Q) is equiv-
alent to a unitary tensor product as above, then π is admissible. Indeed,

any ρ ∈ K̂ is equivalent to a unitary tensor product representation
⊗̂

v

ρv,

where ρv is an irreducible representation of Kv for each place v, almost all
of which are trivial of dimension 1 ([Bu], lemma 3.3.1): each of these local
representations appear with finite multiplicities in their respective space,
which proves the claim.

Remark: If one is interested in the algebraic theory of the automorphic
representations, one has to modify slightly the above construction to a more
algebraic one: this is explained in Bump (ibid.).

6.2. The tensor product theorem. In this section, one is interested in
a converse statement of the previous construction. We take G = GL2, but
this would work mutatis mutandis for a reductive group over a number field,
as these are liminal.

Theorem 6.1 (The tensor product theorem). Let π be an irreducible uni-
tary representation of G(❆Q). Then there exist a finite set S0 of primes
containing ∞, an irreducible unitary representation πv of G(Qv) for each
place v such that πv is spherical for v /∈ S0, and a unitary Kv-fixed vector

ξ0v for each v /∈ S0, so that π is equivalent to
⊗̂

v≤∞

ξ0

πv for ξ0 = (ξ0v)v/∈S0
.

Remark: see [Bu] section 3.4 for a statement and proof of the algebraic
counterpart, as well as Cogdell in [CKM] lecture 3 for a statement without
proof of the various versions of the tensor product theorem.

References: Depending on the strength of the statement, there are more
or less difficult proofs of this result.

• Godement in [Go] §3.2 assumes furthermore that π is admissible.
Under this assumption, he considers the restriction of π to G(Qv),
which is also admissible, and therefore splits as a Hilbert direct sum
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of irreducible representations by theorem 3.4. As π is irreducible,
the Schur lemma insures that any continuous operator in the space
of π commuting with π|G(Qv)

and with the operators commuting with

π|G(Qv)
are scalars, so that π|G(Qv)

is a factor representation.

As G is of type 1, this implies that π|G(Qv)
is isotypical, i.e. isomor-

phic to a Hilbert direct sum of equivalent representations (cf [Dix]
or [Ro] section 20). Therefore, one has at one’s disposal a family
of irreducible unitary representations πv of G(Qv) for each place v,
and the rest of the proof is a tedious construction allowing to “glue”
together the local pieces. Note that along the way one chooses uni-
tary Kv-fixed vectors, getting for each choice a factorization into a
unitary tensor product – hence another justification in this context
of the “independence” in the choice of ξ0.

• In [GGP] chapter 3 §3.3, there is a proof which does not make use of
any admissibility condition. As a consequence, this proves that any
irreducible representation ofG(❆Q) is admissible, as explained in the
previous subsection. Without a doubt, one could adapt Godement’s
arguments in order not to assume that π is admissible, as this is used
only to find the local pieces πv: [GGP] get these another way, yet
the rest of the proofs are pretty close.

• If one is only interested in unitary cuspidal representations, one can
prove first the admissibility of these, and use Godement’s argument,
or even the algebraic tensor product theorem on the space ofK-finite
vectors: in the last case, one gets a factorization into a restricted
tensor product of smooth representations, which are unitarizable
because π is.

To prove the admissibility of an irreducible unitary cuspidal au-
tomorphic representation (π, Vπ), that is (a unitary representation
equivalent to a) G(❆Q)-invariant irreducible closed subspace of the
space L2

0(Z(❆Q)GL2(Q)\GL2(❆), ω) for some unitary character ω

of the idele class group, one can proceed as follows: let ρ =
⊗̂

v

ρv ∈ K̂,

where ρv is an irreducible representation of Kv for each place v. As
Kf is totally disconnected, and ρ is finite dimensional, there exists
an open compact normal subgroupK1 ofKf such that the restriction
of ρ to K1 is trivial.

One wants to prove that Vπ(ρ) is finite dimensional. The latter
is contained in the space of K1-fixed vectors in Vπ which we denote
V K1
π . Note right now that V K1

π is stable under the restriction of
the right regular representation of GL2(❆Q) to GL2(R), so that it

suffices to prove that V K1
π (ρ∞) is finite dimensional.

Consider ϕ = ϕ∞ϕf ∈ C∞c (G(❆Q)), where:
– the function (defined onGL2(❆f )) ϕf is the characteristic func-

tion of K1,
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– the archimedean component ϕ∞ ∈ C∞c (GL2(R)) is arbitrary.
The mapping R(ϕ) defined for f ∈ L2

0(Z(❆)GL2(Q)\GL2(❆Q), ω)
by:

R(ϕ)(f)(x) =

∫

GL2(❆Q)
ϕ(y)f(xy)dy for any x ∈ GL2(❆Q)

is a compact operator on L2
0(Z(❆)GL2(Q)\GL2(❆Q), ω), and so is

its restriction to Vπ. But for f ∈ V K1
π , x ∈ GL2(❆Q), one has:

(R(ϕ)f)(x) = vol(K1)

∫

GL2(R)
ϕ∞(y∞)f(xy∞)dy∞

which is also a compact operator. As a consequence, theorem 3.3
implies that V K1

π splits as a Hilbert direct sum of irreducible repre-
sentations (Vi)i∈I ofGL2(R), each occuring with finite multiplicities.

We also have:

V K1
π (ρ∞) =

⊕̂

i∈I
Vi(ρ∞)

so it suffices to prove that only finitely many i are such that Vi(ρ∞) 6=
{0}.

One the other hand, z acts by characters on the smooth vectors
of V∞

i for each i ∈ I: in particular, there exists a complex number
λ such that V := ker(∆ − λId) 6= {0} (here we take the kernel
in V∞

π ), where ∆ denotes the Casimir element of GL2(R). This
subspace V is obviously stable under the action of GL2(❆f ) and
of GL2(R): therefore it must be dense in Vπ. This implies that
∆ acts by λ on each V∞

i (by using the self-adjointness of ∆). By
the classification of irreducible unitary representations of GL2(R),
there are only finitely many equivalence classes of representations of
GL2(R) containing ρ∞, with central character ω∞, such that ∆ acts
by λ on the smooth vectors: this ends the proof.
Remark: This argument works in generality for reductive groups
(use [Bo2] théorème 5.29), but instead of using the Casimir element,
one can argue as follows – this affects the last paragraph of the
previous proof: z acts by characters on the smooth vectors of V∞

i for
each i ∈ I: let χ be one of them. Let V be the space of smooth vectors
son which z acts through χ: V is dense in Vπ for the same reasons.
This implies that for any v ∈ Vπ, dπ(z) = χ(z)v as a distribution,
for any z ∈ z (by taking a sequence in V tending to v), and so that
on any smooth vector of Vπ, z acts through χ. This implies that
the infinitesimal character of each Vi is χ, and again, there are only
finitely many irreducible unitary representations containingρ∞, with
central character ω∞ and infinitesimal character χ.
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7. Proof of theorem 5.1

Let f be a cuspidal modular form of weight k, nebentypus χ and level
N . Assume that there exists a finite set of primes Sf such that f is a Hecke
eigenform for the Tp, p /∈ Sf : we may and will assume that Sf contains the
divisors of q. We wish to prove that that the unitary representation (Hf , πf )
we attached to f in section 5 is irreducible.

To simplify the proof, we’ll make use of the strong multiplicity one the-
orem, which asserts that given two irreducible unitary cuspidal representa-

tions π ∼=
⊗̂

v≤∞
πv, π

′ ∼=
⊗̂

v≤∞
π′v of GL2(❆Q) are equivalent if and only if there

exists a finite set of primes S (containing or not ∞) such that πv ∼= π′v
for each v /∈ S. This theorem holds actually for irreducible automorphic
representations, and can be proven using Whittaker models (cf [Bu] section
3.5, [Go] §3.5 and [G] §6) or the Rankin-Selberg L-function (as in [CKM]
theorem 9.3): in any case, the proof makes use of the algebraic theory of
automorphic forms, in the sense that Whittaker models are smooth models,
not unitary representations.

As L2
0(Z(❆)GL2(Q)\GL2(❆Q), ωχ) is GL2(❆Q)-invariant, Hf is a sub-

space of it. Also, as L2
0(Z(❆)GL2(Q)\GL2(❆Q), ωχ) splits as a Hilbert

sums of irreducibles, then so does (Hf , πf ) by Lemma 3.1. We may there-
fore write:

Hf =
⊕̂

i∈I
Hi

where each Hi is a closed subspace of Hf stable and irreducible under
GL2(❆Q). We have to prove that card(I) = 1.

To do so, let’s denote πi the representation of GL2(❆Q) on Hi. By the
tensor product theorem, for each i we can write (with alleged notations)

πi ∼=
⊗̂

v≤∞
πi,v.

To prove the theorem, due to the multiplicity one theorem, it is sufficent to
prove that πi,p ∼= πj,p for any p /∈ Sf and each i, j ∈ I.

As the adelization of f , ϕf , is in Hf , we can write, in a unique way – with
convergence in L2:

ϕf =
∑

i∈I
ϕi

with ϕi ∈ Hi − {0}. If K ′ denotes the product of the GL2(Zp)’s for p /∈ Sf ,
then ϕf is K ′ right invariant, and we can assume that so are the ϕi’s (if not,

one writes ϕf (g) = 1
vol(K′)

∫
K′ ψ(k)ϕf (gk)dk =

∑
i

∫
K′ ψ(k)ϕi(gk)dk with

ψ = the characteristic function of K ′, and the job is done, or one simply
projects on the K ′-invariant vectors).
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Let i ∈ I. By the tensor product theorem, one can write Hi =
⊗̂

v≤∞
Hi,v,

and so there exists a set J such that:

ϕi =
∑

j∈J
xj

where xj is of the form xj = jSj (xSj ) with xSj ∈ Hi,Sj – see section 6 for
the notations. As we did above, one can assume that each of the xj ’s are
K ′-invariant, i.e. that Sj ⊂ Sf . All this proves that the πi’s are unramified
outside Sf .

Let p /∈ Sf be a prime. Obviously, all the πi’s have the same central
character (namely ω): so do all the πi,p (for various i’s). To prove the
theorem, it is sufficient to prove that the πi,p share the same eigenvalue
under the Hecke operator Tp we introduced in section 4.2. We defined in
section 5.3 the adelization of the classical Hecke operator ❚p. By hypothesis,
we have:

❚pϕf = λf (p)ϕf

and so, by continuity for each i ∈ I:

(3) ❚pϕi = λf (p)ϕi.

As each xj is a “pure tensor”, say xj = ⊗vxj,v (for p /∈ Sf , xj,p = ξ0j,p, the

Kp-fixed vector), one has :

❚pxj =
⊗

v 6=p

xj,v ⊗ (Tp(xj,p)).

The vector xj,p is Kp-invariant, so by denoting ci,p the Hecke eigenvalue of
πi,p:

Tp(xj,p) = ci,pxj,p.

By comparing with (3), one gets λf (p) = ci,p for any i ∈ I, so we get exactly
what we wanted. qed

8. Appendix

8.1. Appendix 1. Let G be a locally compact unimodular group, H a
closed unimodular subgroup of G, Z the center of G (or more generally a
closed subgroup of the center) and ω : Z → ❙1 a character. We want to first
define in this appendix what is meant in the literature by L2(ZH\G,ω),
as it was mentioned in section 5.2. So let L2(ZH\G,ω) (L2(ω) is a useful
abbreviation if no confusion arises) be the space of classes of functions (the
equivalence is equality almost everywhere on H\G) f : H\G→ C such that:

(1) f is Borel-measureable on H\G,
(2) |f | is Borel-measureable on ZH\G,
(3) for any z ∈ Z, f(zx) = ω(z)f(x) for almost all x ∈ H\G,
(4)

∫
ZH\G |f |2 <∞

We claim that:
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(1) L2(ZH\G,ω) is a Hilbert space for the inner product 〈·, ·〉 defined
by:

〈f, g〉 =
∫

ZH\G
f(x)g(x)dx

(2) The space of bounded continuous functions Cb(ZH\G,ω) satisfying:

f(zx) = ω(z)f(x)

for all x ∈ H\G, is dense in L2(ZH\G,ω)
Let (fn) be a Cauchy sequence in L2(ZH\G,ω). One can find a subsequence
ϕn such that:

‖ϕn+1 − ϕn‖ ≤ 2−n

This implies that the series
∑

n∈N |ϕn+1−ϕn| converges almost everywhere
on ZH\G, and thus that

∑
n∈N(ϕn+1−ϕn) is absolutely convergent almost

everywhere on H\G: this proves the first claim.

To prove the second claim, note first that the subspace L2
c(ZH\G,ω) of

functions with compact support in ZH\G is dense in L2(ZH\G,ω): for
instance, if K is a (large) compact subset of ZH\G, f ×CharK′ will do the
job (K ′ is the inverse image of K under the projection H\G → ZH\G).
Then, let f be in L2

c(ZH\G,ω), and let ϕn a continuous δ-sequence in G.
Consider the function:

fn(x) =

∫

G
f(xg)ϕn(g)dg

It is well-defined: denoting by Kn a compact of G containing the support of
ϕn, one has:

∫

ZH\G
|fn(x)|2dx ≤

∫

ZH\G

(∫

G
|ϕn(g)|2dg

∫

G
|f(xg)|2CharKn(g)dg

)
dx

≤ vol(Kn)×
∫

G
|ϕn(g)|2dg ×

∫

ZH\G
|f(x)|2dx

The function fn is continuous, as this is easily seen after a legal change
of variable and a use of Lebesgue dominated convergence theorem, and its
support is compact (because it is the convolution of two such functions).
This ends our contention.

8.2. On cuspidal functions. We refer to [L] and [Bo1] (especially chap
8) for a rigorous definition of this space, in the classical setting. In the
litterature, given a unitary Grossencharakter ω : ❆×

Q/Q
× → C×, the space
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of square-integrable cusp forms is often “defined” by:

L2
0(Z(❆Q)GL2(Q)\GL2(❆Q), ω) =
{
f : GL2(Q)\GL2(❆Q) → C : for all z ∈ Z(❆Q), f(zg) = ω(z)f(g)

for almost all g,

∫

Z(❆Q)GL2(Q)\GL2(❆Q)
|f |2 <∞ and

∫

Q\❆Q

f
([

1 x
0 1

]
g
)
dx = 0 for almost all g

}

The problem is that the last condition is not a closed one, a priori. One
option is to define this space as the closure in L2(ω) –which we defined in
the previous paragraph – of the space of bounded continuous satisfying the
above (well defined) conditions: this is what Lang does.

Another possibility is to consider, for a compactly supported function
ϕ on U(❆Q)\GL2(❆Q) (here U denotes the usual unipotent subgroup of
GL2), the linear form:

f ∈ L2(ω) → Λϕ(f) =

∫

U(Q)\GL2(❆Q)
f(g)ϕ(g)dg

This mapping is well-defined, and continuous: indeed, the support of ϕ,
viewed as a function on GL2(❆Q), is contained in a set of the shape U(Q)Ω,
where Ω is a compact subset of GL2(❆) – this is because Q is cocompact
inside ❆Q. So one has:

|Λϕ(f)| ≤ ‖ϕ‖∞
∫

Ω
|f(x)|dx

To finish, one covers Ω with finitely many (say m) relatively compact open
sets Ui of GL2(❆) such that the projectionGL2(❆Q) → GL2(Q)\GL2(❆Q)
induces on each Ui a homeomorphism onto its image – which is possible by
the discreteness of GL2(Q) in GL2(❆Q):

∫

Ω
|f(x)|dx ≤ m

∫

Z(❆Q)GL2(Q)\GL2(❆Q)
|f(x)|dx× supi(vol)(Ui)

this proves the continuity, because vol(Z(❆Q)GL2(Q)\GL2(❆Q)) <∞.
Finally, to see the link with the cuspidal condition, one notes that:

Λϕ(f) =

∫

U(❆Q)\GL2(❆)
Wf (g)ϕ(g)dg

where

Wf (g) :=

∫

Q\❆Q

f
([

1 x
0 1

]
g
)
dx,

and the space of cusp forms can be identified with the intersection of the
kernels of all the Λϕ, when ϕ varies among such functions (it is a posteriori
easy to see this, by using convolution with a δ-sequence).
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Lecture 11: Hecke characters and Galois characters

Andrew Snowden
January 28, 2010

1. Introduction

Let K be a number field, let A×
K be its idele group and let GK be its absolute Galois group. Class field

theory states that there is a natural map (up to a choice of normalization)

A×
K/K

× → Gab
K

which identifies Gab
K as the profinite completion of A×

K/K
×. Equivalently, class field theory can be stated

as an isomorphism

{finite order characters of A×
K/K

×} = {finite order characters of GK}.
Thus we have a description of the finite order characters of GK .

A p-adic character of GK is a continuous homomorphism GK → Q
×
p ; since GK is compact any such

character takes values in O×
F for some finite extension F/Qp. There are many interesting p-adic characters

which are not of finite order: for instance, the cyclotomic character χp. Since O×
F is profinite, p-adic

characters of GK are limits of finite order characters, and so we can use class field theory to understand

them. Define a p-adic Hecke character (of K) to be a continuous homomorphism A×
K/K

× → Q
×
p ; again,

the image is always contained in O×
F for some F finite over Qp. We then have an identification

{p-adic Hecke characters of K} = {p-adic characters of GK}.
induced by class field theory.

We thus have an understanding of p-adic characters of the Galois group. However, this is not the end of
the story: there are compatible systems of characters. Such a system consists of a p-adic character ψp of GK

for each prime p such that for each place v of K the quantity ψp(Frobv) is independent of p in a suitable
sense. We would like to understand the collection of compatible systems. The Langlands program suggests
that compatible systems of characters should correspond to automorphic representations of GL1(AK), so
we now examine these objects.

What is an automorphic representation of GL1(K)? To begin with, it should be an irreducible subrepre-
sentation of GL1(AK) acting on the space of automorphic forms on GL1(AK) by right translation. (Recall
that an automorphic form on GL1(K) is a function K×\GL1(K) → C satisfying certain natural conditions.)
Since GL1(AK) is commutative, such a representation must be one dimensional. It is thus spanned by some
non-zero automorphic form f . Since Cf is stable by right translation, we find f(xg) = λgf(x) for all
x, g ∈ GL1(AK). Taking x = 1, we find λgf(1) = f(g) and so f(1)f(xg) = f(g)f(x) holds for all x and g.
Since f is non-zero we find that f(1) is non-zero; scale f so that f(1) = 1. We then find that f is a homo-
morphism, and since it is invariant under K× it also satisfies f(K×) = 1. The properties of automorphic
forms that we did not list amount to f being continuous. A continuous homomorphism A×

K/K
× → C× is

called a Hecke character. We have thus shown that every automorphic representation of GL1(K) is spanned
by a Hecke character. It is clear that the character is unique. It is also not difficult to show that every Hecke
character spans an automorphic representation. We thus have an identification

{automorphic representations of GL1(K)} = {Hecke characters of K}.
Consider now the diagram

{Hecke characters of K} oo //____

���
�
�

{compatible systems of characters of GK}

��
{p-adic Hecke characters of K} {p-adic characters of GK}

We have already explained the bottom map. The right map takes a compatible system of characters {ψp}
to its pth member ψp. The top arrow means “we expect a relationship.” Given a top arrow, the left arrow
is obtained by going around the diagram.

1
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As we have introduced it, the left arrow might seem the most mysterious: it is given by combining three
operations, one of which is itself somewhat unclear. However, it is actually quite accessible. We will explain
this in the coming sections. Once one has this left arrow, it is not difficult to understand the top arrow.
The story goes like this. There are certain special Hecke characters, the algebraic ones. Given an algebraic
Hecke character f one can build a p-adic Hecke character fp for any prime p. Each fp is associated to some
p-adic character ψp of GK and these ψp form a compatible system. In fact, this is a bijection, that is, every
compatible system arises from a unique algebraic Hecke character.

2. The case K = Q

We begin by considering the case K = Q. The general case does not differ much from this case except
that it is more notationally complicated. We have

A×
Q/Q

× =
∏

p

Z×
p ×R+.

Here R+ denotes the group of positive real numbers under multiplication. Each Z×
p has its usual topology

and the product has the product topology; it is profinite.
Let f be a Hecke character. The restriction η of f to

∏
Z×
p is a finite order character, as is any continuous

homomorphism from a profinite group toC×. The restriction of f to R+ is of the form x 7→ xa for some real
number a. We call f algebraic if this number a is an integer. Let α∞ be the Hecke character which is trivial
on
∏

Z×
p and on R+ is given by the standard inclusion R+ → C×. Then an arbitrary Hecke character f is

algebraic if and only if it is of the form ηαn
∞ for some finite order character η and integer n. The character

η and the integer n are then uniquely determined.
Now let f be a p-adic Hecke character. The restriction of f to R+ is then trivial. The restriction of f to∏
ℓ 6=p Z

×
ℓ is of finite order. The restriction of f to Z×

p is a continuous homomorphism Z×
p → Q

×
p . It is not

difficult to classify all such maps, but we will not do this. We call f algebraic if this restriction is of the form
x 7→ xn on a compact open subset of Z×

p . Let αp be the p-adic Hecke character which is trivial on R+ and
∏

Z×
ℓ and on Z×

p is given by the standard inclusion Z×
p → Q

×
p . Then an arbitrary p-adic Hecke character

f is algebraic if and only if it is of the form ηαn
p for some finite order character η and integer n. Again, η

and n are uniquely determined.
Let f be an algebraic Hecke character. We can then write f = ηαn

∞. Define a p-adic Hecke character fp
by fp = ηαn

p . (Here we are implicitly identifying the roots of unity in C and Qp so that we may regard η
as being valued in either field.) Under class field theory, the p-adic Hecke character αp corresponds to the
cyclotomic character χp. Thus fp corresponds to ψp = η′χn

p , where η
′ is the finite order character of GK

corresponding to η. Since the χp form a compatible system, we thus see that the ψp do as well. Therefore,
starting from a Hecke character f we can produce a system {fp} of p-adic Hecke characters and from this
obtain a compatible system {ψp} of one dimensional Galois representations.

3. The general case

Let K be an arbitrary number field. We will find it convenient to treat p-adic Hecke characters and normal
Hecke characters (which we now call ∞-adic Hecke characters) simultaneously. Thus let p be a prime or ∞.
Let Cp be Qp or C correspondingly (one could use Cp in place of Qp). A p-adic Hecke character is then
just a continuous homomorphism

A×
K/K

× → C×
p .

We fix an emedding K → Cp for each p. We explain how this large number of choices can be cut down at
the end of the section.

Let f be a p-adic Hecke character. We regard f as a character of

A×
K = (K ⊗Qp)

× ×
∏

ℓ 6=p

(K ⊗Qℓ)
×

which is invariant underK×. (If p = ∞ then Qp means R.) Of course, f restricts to a finite order character
on the second factor since ℓ-adic and p-adic topologies do not interact. On the first factor, however, f can
be much more complicated. We say that f is algebraic if its restriction to the first factor is given by a
rational function on an open subgroup, in the following sense. Regard K ⊗ Qp as an n-dimensional Qp

vector space, where n = [K : Qp], and let xi : K ⊗Qp → Qp be the n coordinates. Then we want f to be
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a rational function function of the xi, with coefficients in Qp, after it is restricted to some open subgroup

of (K ⊗Qp)
×. (Note that we do not say compact open here. If K ⊗ Qp = R then we allow f to be the

absolute value character. This is an algebraic function when restricted to the open subgroup R+.)
We now give a nicer reformulation of this algebraic condition. Define a weight to be a character of the

torus ResKQ(Gm) over Q, that is, a weight is a homomorphism of algebraic groups

w : (ResKQ(Gm))Q → (Gm)Q.

Here Res denotes restriction of scalars. A weight gives a homomorphism K× → Q
×

which we also call
w. For f to be algebraic, it is equivalent to ask that there exists a weight w and an open subgroup U of
(K ⊗Qp)

× such that f(x) = w(x) for x ∈ K× ∩U . The weight w is then unique and called the weight of f .

Before continuing we give an example. Let K = Q(
√
d) be an imaginary quadratic field. Let u be a root

of d in K and let u′ be a root of d in C. We fix an embedding K → C by u 7→ u′. Let f be a (∞-adic)
Hecke character. At infinity, f gives a map (K ⊗R)× → C×. Now, (K ⊗R)× is isomorphic to C×. Every
homomorphism C× → C× is of the form

reiθ 7→ raeinθ = ea log r+inθ

where a is a complex number and n is an integer. We wish to rephrase this classification in terms of K.
Every element of K can be written as x + yu with x and y in Q. In these coordinates, r is given by the

positive square root of x2 + dy2 while eiθ is (x + du′)/
√
x2 + dy2. We thus find that every homomorphism

(K ⊗R)× → C× is of the form

x+ yu 7→ (x2 + dy2)a/2

(
x+ du′√
x2 + dy2

)n

= (x2 + dy2)(a−n)/2(x+ du′)n

where a is a complex number and n is an integer. Of course, a and n are uniquely determined. We find that
this is a rational function of x and y if and only if a− n is an even integer, say 2m. In this case, the above
formula can be written as

x+ yu 7→ (x− du′)m(x+ du′)n+m.

Thus if we identify K ⊗R with C via u 7→ u′ then any algebraic character (K ⊗R)× → C× is of the form
z 7→ znzm. Of course, n and m are uniquely determined, but if we use the embedding u 7→ −u′ then n and
m are switched.

We now examine the same example from the point of view of weights. Let T be the torus ResKQ(Gm). It
can be thought of as the group of all matrices inside of GL2(Q) of the form

(
x y
dy x

)

The group of characters TQ → (Gm)Q is a free abelian group of rank two, generated by the two characters
(

x y
dy x

)
7→ x+ uy,

(
x y
dy x

)
7→ x− ux.

We thus see that the maps K× → Q
×

coming from weights are exactly the ones of the form

(x+ uy) 7→ (x+ uy)n(x − uy)m.

(Here we identify T (Q) with K× by letting x + uy correspond to the matrix whose top left entry is x and
bottom right entry is y.) Thus the homomorphisms (K ⊗R)× → C× which come from weights are exactly
the ones z 7→ znzm. This shows that our two characterizations of algebraic homomorphisms agree in this
case.

We now return to the general setting. Let f be an algebraic ∞-adic Hecke character with weight w. For
any prime p let αw,p be the homomorphism A×

K → C×
p which is trivial on the prime to p components of A×

K

and given by w(x) for x ∈ (K ⊗Qp)
×. Since f is algebraic of weight w, the character η = fα−1

w,∞ is locally

constant on A×
K , that is, its kernel is open. It is not difficult to see that there is a number field M such

that η takes values in M×. Choose an embedding of M into Qp. We now define fp to be ηαw,p. We have
thus associated a family of algebraic p-adic Hecke characters {fp} to our initial Hecke character f . Letting
ψp be the character of GK associated to fp we also get a system {ψp} of Galois characters. In fact, this is
a compatible system.
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Throughout we have been assuming an embedding of K into Cp for each p. This was actually not
used in our first characterization of algebraic. However, it was used to move between f and fp. We now
explain a nicer set-up that requires fewer choices. The idea is to work with a field of coefficients. Let M
be a number field. For a place v of M define a v-adic Hecke character to be a continuous homomorphism
A×

K/K
× → M×

v . Then, in this setting, one need only choose an embedding K → M . That is, after having
picked an embedding one can take an algebraic v-adic Hecke character and form from it a system of algebraic
Hecke characters indexed by the places of M .

4. Conclusion

We have a diagram

{algebraic Hecke characters} {compatible systems of characters}

{algebraic p-adic Hecke characters}� _

��

{certain p-adic characters of GK}� _

��
{all p-adic Hecke characters} {all p-adic characters of GK}

We now explain this. Equal signs mean isomorphism. The top left vertical arrow is our construction to go
between algebraic Hecke characters and algebraic p-adic Hecke characters. It is clearly an isomorphism, since
one can run the construction in reverse. The bottom left vertical arrow is just the inclusion of the algebraic
characters into all characters. The bottom horizontal arrow has already been discussed. The “certain p-adic
characters of GK” are just those that come from algebraic Hecke characters. The middle horizontal and
bottom right vertical arrow are evident. The top right vertical arrow takes a compatible system to its pth
member. It is injective since a compatible system is determined by any of its members. We now come to
interesting part. We have shown how to attach to an algebraic Hecke character a system of p-adic Hecke
characters, and therefore a system of p-adic characters of GK . As we stated, this is a compatible system.
This gives a map from the top left to the top right. It is easily seen to be injective. A more difficult result
is that it is surjective — every compatible system is associated to an algebraic Hecke character. A diagram
chase now gives the surjectivity of the top right vertical arrow.

A natural question one may now ask is: which are the “certain” p-adic characters of GK that arise from
algebraic Hecke characters? One answer is provided by the diagram: they are exactly those that fit into a
compatible system of characters. There is a better answer, though, one that is intrinsic to the character.
Namely, a p-adic character of GK comes from an algberaic Hecke character if and only if it is Hodge-Tate.
This is a condition from p-adic Hodge theory.



AUTOMORPHIC FORMS ON QUATERNION ALGEBRAS

ANDREW SNOWDEN

Let F be a totally real number field and let D be a quaternion algebra over F . Define an algebraic group
G over F by G(A) = (A ⊗F D)× for an F -algebra A. It is easy to see that if F ′/F splits D then GF ′ is
isomorphic to GL(2). Thus G is a reductive algebraic group. We therefore have a theory of automorphic
forms and representations for G. We will look at the basics of this theory in these notes.

To begin with, let us examine the spaces on which automorphic forms are functions. Let f be an
automorphic form on G(AF ). By definition, f is a function G(AF ) → C subject to the following:

• f is left invariant under G(F ).
• f is invariant under a compact open subgroup U of G(AF,f ).
• f is finite under translations by a maximal compact subgroup K of G(F ⊗R).
• f is finite under the center of the universal enveloping algebra of G(F ⊗R).
• f satisfies certain continuity and growth conditions.

For simplicity, let us consider the case where f is invariant under the center Z of G(AF ) and transforms
under K by a one dimensional representation σ, i.e., f(gk) = σ(k)f(g) holds. Then f defines a section of a
line bundle determined by σ on the space

X(U) = G(F )\G(AF )/ZKU.

Our first task is to describe this space.
The most important thing to initially consider about X(U) is the contributions of the infinite places.

At an infinite place v the division algebra D has two possibles behaviors: it can either split or not. In
either case, D×

v is a four dimensional real Lie group. If Dv is split then Gv looks like GL2(R) and so its
maximal compact is the two dimensional orthogonal group. We thus find that Gv/KvZv is a copy of the
upper half plane. In particular, it is a one dimensional complex manifold. If Dv is non-split then Gv is the
multiplicative group in the Hamilton quaternions. This group is an extension of the rank 2 unitary group
by R+. Thus Gv = ZvKv and so the quotient Gv/ZvKv is a point. We therefore find

G(F ⊗R)/Z∞K = hn

where n is the number of infinite places at which D is split. This computation is significant for two reasons.
First, we see that the quotient is canonically a complex manifold, so we can make sense of holomorphic
functions on it. And secondly, if n = 0, that is, if D is non-split at all infinite places, then this space is just
a point.

Consider the case n > 0. Since G(F ⊗R) is non-compact, strong approximation gives

G(AF ) = G(F )G(F ⊗R)U

and so the usual computation show that

X(U) = Γ(U)\hn

where Γ(U) is the arithmetic group obtained from intersectingG(F ) and U . (This assumes something about
U : the norm map U → ∏

Gm(OF,v) is surjective. For a general U , X(U) will not be connected but will have
finitely many connected components, each of the above form.) Thus X(U) is a complex manifold obtained
as the quotient of n copies of the upper half plane by the action of a totally discontinuous subgroup. When
n = 1 (and F 6= Q) these spaces are called Shimura curves. In contrast to the modular curves, they are
compact — no cusps need to be added to obtain a compact space.

Now consider the case n = 0. Strong approprixmation no longer applies to G(F ⊗R) since this group is
compact. However, we do not really need to use strong approximation. Since KZ contains all of G(F ⊗R)
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2 ANDREW SNOWDEN

we can completely ignore the infinite places. We find

X(U) = G(F )\G(AF,f )/ZfU.

Since U is a compact open subgroup of G(AF,f ), this quotient is discrete. In fact, it is a finite set; this
follows from it being discrete and having finite volume. Thus in this case, automorphic forms on D are
simply functions on a finite set. There are therefore no continuity or analytic conditions placed on the forms
— they are just functions on a finite set!

We did not consider the most general possible set-up. One does not need to assume Z-invariance: one
can allow f to transform under Z by a character. Also, the representation σ of K, which plays the role of
the weight, does not have to be one dimensional. (One must then take f to be vector valued.) The rank
two unitary group has irreducible representations of all dimensions, so when D is non-split at infinite places
one might want to consider such representations of K.

We now change directions and consider automorphic representations of G(AF ). Such a representation
decomposes as a tensor product ⊗πv over the places of F , where πv is an irreducible admissible representation
of Gv. For almost all places, Dv is split, and so Gv is isomorphic to GL2(Fv). The local invariants (such
as conductor, L-series and ǫ-factors) at these places are defined as usual. We now consider a place v at
which Dv is non-split. The group Gv is compact modulo its center. This implies that the representation

πv is finite dimensional. The maximal compact subgroup Kv of Gv has a natural filtration K
(n)
v obtained

by looking at the group of elements congruent to 1 modulo powers of the maximal ideal. There is a unique

minimal n such that πv contains K
(n)
v in its kernel. The number n + 1 is called the conductor of πv (or

perhaps the exponent of the conductor). The prime power pn+1
v is the local contribution of πv to the level.

Note that this exponent is never 0 — even when πv contains the full maximal compact subgroup Kv in
its kernel the conductor is 1. The reason for this will be evident later — suffice it to say for now that the
Galois representations coming from modular forms on a quaternion algebra are always ramified where the
quaternion algebra is, so these places should appear in the conductor.

We can additionally attach local L-functions and ǫ-factors to πv. This goes quite similarly to the GL(1)
case (Tate’s thesis). For a Schwartz function φ on Dv one considers the integral

Z(s, φ, πv) =

∫

Dv

φ(x) trπv(x)|x|s+···dx.

The elipses in the exponent is a normalizing factor, which is not important for the present discussion. One
then finds that there is a unique Euler factor L(s, πv) such that the quotient

Z(s, φ, πv)

L(s, πv)

is an entire function of s and for some choice of φ is equal to 1. Furthermore, there is a functional equation

Z(1− s, φ̂, π∨v )
L(1− s, π∨v )

= ǫ(s, πv, ψv)
Z(s, φ, πv)

L(s, πv)
.

Here ψv is a non-trivial additive character of Fv, φ̂ denotes the Fourier transform of φ with respect to ψv

and π∨
v denotes the contragredient of πv. The factor ǫ(s, πv, ψv) is of the form s 7→ abs. The base b of this

exponential is equal (or almost equal) to the conductor of πv.



Generalities on Central Simple Algebras

Michael Lipnowski

Introduction

The goal of this talk is to make readers (somewhat) comfortable with statements like “*the*
quaternion algebra over Q ramified at 2,5,7,11.” Statements like this will come up all the time,
when we use Jacquet-Langlands.

The Basic Theorems

Definition 1. A central simple algebra (CSA) over a field k is a finite dimensional k-algebra
with center k and no non-trivial two-sided ideals.

Some examples:

• Any division algebra over k is clearly a central simple algebra since any non-zero element is
a unit. For example, we have quaternion algebras:

H(a, b) = spank{1, i, j, ij}

with multiplication given by
i2 = a, j2 = b, ij = −ji.

For example, when k = R, a = b = −1, we recover the familiar Hamilton quaternions H.

• Let G be a finite group and ρ : G → GLn(k) be an irreducible k-representation. Then
EndG(ρ) is a division algebra by Schur’s Lemma. Hence, it is a CSA.

• Mn(k) is a CSA. Indeed the left ideals are of the form


∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 0




and right ideals have a similar “transpose” shape.

A first step to understanding division algebras are the following basic theorems.

Double Centralizer Theorem 1. Let A be a k-algebra and V a faithful, semi-simple A-module.
Then

C(C(A)) = Endk(V ),

where the centralizers are taken in Endk(V ).
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Classification of simple k-algebras. Every simple k-algebra is isomorphic to Mn(D) for some
division k-algebra D.

Proof. Choose a simple A-module S (for example, a minimal left ideal of A).
A acts faithfully on S since the kernel of A → Endk(S) is a two-sided ideal not containing 1.
Let D be the centralizer of A in the k-algebra Endk(S). By the double centralizer theorem,
A = C(D), i.e. A = EndD(S).
But S is a simple A-module. Thus for d ∈ D multiplication by d is an A-linear endomorphism
d : S → S and hence is either 0 or invertible, by Schur’s Lemma. Since the inverse is also A-linear
and D = C(A), it follows that D is a division algebra.
It follows that D is a division k-algebra and so S ∼= Dn for some n. Hence,

A = EndD(D
n) = Mn(D

opp).

Noether-Skolem Theorem. Let A be a simple k-algebra and B a semi-simple k-algebra. If

f, g : A → B

are k-algebra maps, then there is an invertible b ∈ B such that

f(a) = bg(a)b−1

for all a ∈ A.

The Brauer Group

We note the two following facts:

Proposition. If A and B are CSAs over k, then A⊗k B is a CSA over k.

Proposition. Let A be a CSA over k. Then A⊗k A
opp ∼= Endk(V ).

We define an equivalence relation on the set of CSAs over k by

A ∼ BifA⊗k Mn(k) ∼= B ⊗k Mm(k)for some positive integersn,m.

This allows us to define the Brauer group of k,Br(k), to be the set of equivalence classes of
CSAs over k.
As of right now, this is only a Bruaer set. But we can endow it with a group operation
[A][B] = [A⊗k B].

• This operation is well-defined on equivalence classes since Mn(k)⊗k Mm(k) ∼= Mmn(k).

• It is clearly associative and commutative.

• [k] acts as the identity.

• [Aopp] is the inverse of [A]

Some examples of Baruer groups:
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• If k is algebraically closed, then Br(k) = 0. Indeed, any CSA A is isomorphic to Mn(D) for
some division k-algebra D. But for any element d ∈ D, k[d] is a finite field extension of k.
But k is algebraically closed! Hence, D = k. But then A ∼ k.

• Br(R) = {[R], [H]}.

• By a theorem of Wedderburn, all division algebras over finite fields are commutative. Hence,
Br(finite field) = 0.

Extension of Base Field

Proposition. Let A be a CSA over k,K ⊃ k a field extension. Then A⊗k K is a CSA over K.

In this statement, K need not necessarily be finite over k.

Corollary. If A is a CSA over k, then [A : k] is a square.

Proof.
[A : k] = [A⊗k k : k].

But A⊗k k is a CSA over k and so is isomorphic to Mn(k) for some n. Thus, [A : k] = n2.

Note that if L/k is any field extension, then

Br(k) → Br(K) : A 7→ A⊗k L

defines a homomorphism. We let Br(L/k) denote its kernel.

Brauer Groups and Cohomology

There is a natural isomorphism H2(L/k) = H2(GL/k, L
×) → Br(L/k). This is very handy, as it

allows Br(L/k) and H2(L/k) to play off each other. For example, it is not otherwise clear that
Br(k) is torsion or that H2(Gk, k

×) = H2(Gun
k , k×) for a local field k.

Here is a slightly more general version of the double centralizer theorem that we’ll find useful.

Theorem. Let B be a simple k-subalgebra of A. Then D = CA(B) is simple, B = CA(D), and
[B : k][D : k] = [A : k].

Proposition. Let A be a CSA over k. Let L ⊂ A be a (commutative) field containing k. Then
TFAE:

(a) L = CA(L).

(b) [A : k] = [L : k]2

(c) L is a maximal commutative subalgebra of A.

Along with this criterion, the following is an exercise in using the double centralizer theorem.

Corollary (CFT, 3.6). Let A be a central simple algebra over k. A field L of finite degree over k
splits A iff there exists an algebra B representing the same Brauer group element containing L and
such that [B : k] = [L : k]2.
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We can give some additional information about splitting fields of A.
If A is any CSA over k with [A; k] = n2, there is a variety/k Isom(A,Mn) which represents the
functor

k-algebras → Sets : R → { isomorphisms A⊗k R → Mn(R)}.
Indeed, this is easy to represent, since a map of k-algebras is a linear map determined by a
non-vanishing determinant and preservation of the algebra’s structure constants, all algebraic
conditions. The variety is non-empty since it contains at least one k point (all CSAs split over an
algebraically closed field). Furthermore, it can be checked that this is smooth (by Grothendieck’s
functorial criterion for smoothness). Hence, the ksep points are dense. In particular, A-splits over
some finite separable extension.

CSAs and 2-cocycles

This entire section follows Milne’s treatement in CFT almost verbatim.

Let L/k be a finite Galois extension.
Let A(L/k) = {A : A = CSA overkcontainingLof degree[A : k] = [L; k]2}.

By Noether-Skolem, for any σ ∈ GL/K , there exists some eσ ∈ A× such that

σa = eσae
−1
σ for all a ∈ A.(1)

We see that eσeτe
−1
στ = φA(σ, τ) (1) centralizes L and hence lies in L×. Because the multiplication

in A is associative, we easily see that φA : G×G → L× is a 2-cocycle. Furthermore, it’s clear that
different choices of e′σ lead to a cocycle φ′

A which differs from φA by a coboundary. Thus, we get a
well-defined cohomology class.

Claim (CFT, 3.12). The elements eσ, σ ∈ G, are linearly independent over L.

Proof. dimL(A) = dimk(A)/ dimk(L) = n = |G|. Thus, it suffices to show that the eσ are linearly
indepedent.
Let {eσ}J be a maximal L-linearly independent subset. We assume, for a contradiction, that
J 6= G. If τ /∈ J, express

eτ =
∑

σ∈J
aσeσ. (∗)

for some aσ ∈ L. But we compute eτa in two different ways:
First, by the defining property eτae

−1
τ = τa, we have

eτa = τaeτ =
∑

σ∈J
(τa)aσeσ.

On the other hand, by our assumption (*) and the definiting property applied to each eσ, we get

eτa =
∑

σ∈J
aσeσa =

∑

σ∈J
aσ(σa)eσ.

Hence aσ(σa) = aσ(τa) for each σ ∈ J. But aσ is non-zero for some σ ∈ J, whence σ = τ. This
contradicts τ /∈ J.
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Suppose that A and A′ are isomorphic elements of A(L/k). By Noether-Skolem, we can find an
isomorphism f : A → A′ such that f(L) = L and f |L is the identity map.
Note that if we choose elements eσ ∈ A which satisfy (1)A, (2)A then the elements f(eσ) ∈ A′

satisfy (1)A′ , (2)A′ with cocycle φA. Hence, the cohomology class only depends on the isomorphism
class of A. Furthermore, if L-bases {eσ} ⊂ A and {e′σ} ⊂ A′ both have the same cocycle, then
extending eσ → e′σ by L-linearity clearly gives an isomorphism A ∼= A′.
Hence, we have an injective map

A(L/k)/ ∼=→ H2(L/k).

But this map is surjective too. Given a 2-cocycle φ, we can just define an algebra by (1) and (2).
Namely, let

A(φ) = ⊕σ∈Geσ

with defining relations

eσae
−1
σ = σa for all σ ∈ G, a ∈ L

eσeτ = φ(σ, τ)eστ for all σ, τ ∈ G.

By the cocycle relation for φ, it follows that the above defines a k-algebra.

Fact (CFT, 3.13). A(φ) is a CSA over k. Furthermore, this construction is a group
homomorphism: [A(φ)][A(φ′)] = [A(φ+ φ′)].

This isomorphism is actually functorial:

H2(L/k)
Inf−−→ H2(E/k)

↓ ↓
Br(L/k)

inclusion−−−−−→ Br(E/k)

where the vertical maps are φ 7→ A(φ). Since both the Brauer groups (resp. H2s) are limits under
inclusions (resp. inflation maps) of finite Galois extensions L/k, the above diagram implies that
there is a canonical isomorphism

H2(k)
∼−→ Br(k).

This implies the otherwise unobvious fact that

Corollary. For any field k,Br(k) is torsion. For any finite extension L/k,Br(L/k) is killed by
[L : k].

Proof. The same results are true for cohomology groups.
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Brauer Groups of Local Fields

Usually, the invariant map of local class field theory is constructed by pure group cohomology. We
give an alternate presentation based more directly related to CSAs.

Let D be a central division algebra over non-archimedean local field K, say n2 = [D : k]. Let K
have ring of integers OK , maximal ideal p = (π), and residue field k of size q.
It has a valuation satisfying the usual properties:

• |α| = 0 iff α = 0.

• For all α, β ∈ D, |αβ| = |α||β|.
• For all α, β ∈ D, |α, β| ≤ max{|α|, |β|}.

We define |α| as the scaling effect of right multiplication by α. This is equivalently the absolute
value (in K) of the determinant of right multiplication by x as a map from D, as a K-vector
space, to itself. Then it is clear that the first and second properties from the above list hold. But
the triangle inequality is less obvious.
But this actually reduces to the commutative case.
Indeed, we want to show that if |x| ≤ 1, then |1 + x| ≤ 1. But the way we’ve defined it,

|x| = |NK[x]/K(x)|[D:K[x]]
K .

So we just need to show that if |NK[x]/K(x)|K ≤ 1, then |NK[x]/K(1 + x)|K ≤ 1. But this is a result
that we know to be true of commutative field extensions. Hence, it’s true here too.

Define |α| = (1/q)ord(α), giving the normalized valuation on D.
By the way we’ve defined the valuation, ord extends the usual valuation on any field extension
L/K.
We know that any element x ∈ D is contained in a field extension K[x]/K of degree ≤ n (since
any maximal subfield of D has degree n over K). Hence,

ord(D×) ⊂ n−1Z.
As usual, we define

OD = {α ∈ D : |α| ≤ 1}

P = {α ∈ D : |α| < 1}.
The absolute value is discrete and multiplicative. So, just as in the case of fields, any element π of
largest absolute value generates the two sided ideal P . And any element of OD can be expressed
uniquely as u× πm for some m ≥ 0. Thus, any two-sided ideal can be expressed uniquely as Pm.
In particular, if p denotes the prime ideal of K, then pOD = PeOD for some integer e, the
ramification index. In particular, ord(D×) = e−1Z, implying that e ≤ n.
Also, if |α| = 1 for some α ∈ D, then α ∈ O×

D. Hence, j = OD/P is a finite division algebra, and
hence a field. Let f = [j : k]. If j = k[a] and α is a lift of a to OD, then

f = [j : k] ≤ [K[α] : K] ≤ n.

Exactly as in the case of commutative fields, we see that n2 = ef. Note that OD is a free
OK-module of some rank, say m.
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• OD ⊗OK
K = D, so m = n2.

• OD ⊗OK
k = OD/pOD. Thus, n

2 = dimk OD/pOD. But we can filter

OD ⊃ P ⊃ ... ⊃ Pe = pOD.

Each successive quotient, of which there are e, has dimension f as a k-vector space. Hence,
n2 = ef.

But since e, f ≤ n the equality ef = n2 implies that e = f = n.

n = [j : k] ≤ [K[a] : K]

Also, we know that the field k[a] = j, so K[α] is an extension of K with residue field j.
But the maximal commutative subfield of D has degree n over K. Thus,

n ≥ [K[a] : K] ≥ [j : k] = n.

Thus K[α]/K has both degree and residue degree n. Thus, K[α]/K is unramified.
Since every CSA is in the same class as some division algebra, we know that every CSA is split by
an unramified extension. Hence,

Br(K) = Br(Kun/K).

The Local Invariant Map

We can use this Brauer group perspective to directly define the invariant map

invK : Br(K) → Q/Z

and the fundamental class of class field theory.

Any CSA over K is split by some unramified field extension A ⊂ L/K. By Noether Skolem, there
is some α ∈ A× such that

Frob(x) = αxα−1 for all x ∈ GL/K .

We define

invK(A) = ord(α) (mod Z).

But Frobenii are compatible: if L′ ⊂ L ⊂ K is a tower of unramified field extensions, then
FrobL′/K |L = FrobL/K . Thus, this map does not depend on choice of splitting field.
Also, if A/K is split by L and A′/K is split by L′, then A⊗k A

′/K is split by LL′.
Furthermore, if Frob(x) = axa−1, F rob(x′) = a′xa, then

Frob(x⊗k x
′) = (a⊗k 1)(1⊗k a)(x⊗k x

′)(1⊗k a)
−1(a⊗k 1)

−1.

Thus, we get a homomorphism from CSAs over K to Q/Z. Furthermore, Mn(K) 7→ 0, because it
is already split over K. Thus,
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Br(K) → Q/Z : A 7→ invK(A)

is a well-defined group homomorphism. The above work we’ve done also easily shows that

Br(L/K) → 1/[L : K]Z/Z

for an unramified extension L/K.
Here’s the most important example of this:

• Let L/K be an unramified extension of degree n with σ = Frob. Let φ be the 2-cocycle

φ(σi, σj) =

{
1 if i+ j ≤ n− 1

π otherwise.

This is the 2-cocycle of the fundamental class uL/K ∈ H2(L/K). In particular, it maps to
1/n ∈ 1/nZ/Z via the invariant map, inv′L/K , of Galois cohomology.

It has associated CSA A(φ) = ⊕ieiL with mutiplication determined by

eiae
−1
i = σia for all a ∈ L

and

eiej =

{
ei+j if i+ j ≤ n− 1

πei+j−n otherwise.

So in particular, e0 is the identity and L is identified with Le0. But e
n
1 = en−1e1 = πe0 = π.

Hence,

invK(A(φ)) = ord(e1) =
1

n
.

Hence, we have a commutative diagram

H2(L/K)
inv′

L/K−−−−→ 1/nZ/Z
↓ ↓

Br(L/K)
invL/K−−−−→ 1/nZ/Z

.

It commutes because it commutes on a generator φ of H2(L/K). Since the top row is an
isomorphism, so is the bottom row. Hence, we get a canonical isomorphism

invK : Br(K) → Q/Z

for any local field K.
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Brauer Groups of Global Fields

The following is the fundamental exact sequence of class field theory

0 → Br(K)
∑

v invv−−−−→ ⊕vBr(Kv) → Q/Z → 0.

None of the exactness comes easily. In fact, it’s not even immediately clear why the first map is
well-defined, i.e. why is it impossible for infinintely many of the local invariants to be non-zero
simultaneously?
For this, we could return to the variety of ismorphisms Isom(A,Mn). This is a variety over k. If we
spread it out to some ring of S-integers OS, then we’d get a variety V/OS which represents the
functor

OS-algebras → Sets : R → { isomorphisms A⊗k R → Mn(R)}.
We could check that this is a non-empty smooth variety. Furthermore, over the residue fields
kv, v /∈ S there is a point. By Hensel’s Lemma, these lift to Ov points. (This is a “reason”, but not
a proof.)

Exactness of the above sequence is the essence of the proofs behind class field theory. For details,
see CFT.
Another miracle happens over global fields (containing a primitive nth root of 1, call it ζ).
We define the Milnor K-group, K2(K) to be K× ⊗Z K× modulo the relation

u⊗Z (1− u) = 1 whenever u, 1− u 6= 1.

Now, consider the algebra A(a, b; ζ) over K generated by i, j subject to the relations:

in = a, jn = b, ij = ζji.

The Milnor relations are satisfied by the A(a, b; ζ) and so define a homomorphism

K2(k) → Br(k).

It turns out that

K2(K)/nK2(K) → Br(K)[n]

is an isomorphism! (Merkuryev-Suslin)
In particular, combining the class field theory exact sequence with this miracle, we see that any
2-torsion element of Br(K) is in the class of a unique quaternion algebra (up to isomorphism).

References

CFT J.S. Milne. Class Field Theory (version 4.00). Available at www.jmilne.org/math/
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Warning – these notes were written for AV’s personal use and have
not been checked in any way whatsoever, nor have they been edited for
coherence beyond adding one or two sentences. AV makes absolutely no
warranty of correctness and these should be used with extreme caution.
The talk sketched a proof of Jacquet-Langlands between the quaternion
algebra ramified at {∞, 11} and GL2 at level 11.

1. The adelic quotient associated to a quaternion algebra

D the quaternion algebra ramified at {11,∞}. This is represented by x + yi +
zj + wk, where i2 = −11, j2 = −11, k2 = −1; also ij = 11k, jk = i, ki = j.

We want to have some “concrete” understanding of the adelic quotientQ×\(D⊗
A)×/A×U , where U is a maximal compact subgroup of (D ⊗ A)×. It comes with
Hecke operators Tp for each prime p.

The maps1 q 7→ Cliff0(q), E 7→ End(E) give bijections:

• Maximal orders in D, i.e. quaternion rings2 of discriminant −11.
• Isomorphism classes of supersingular elliptic curves over F11;
• (Definite) ternary quadratic forms of 1

2 -discriminant −11.

This set is equipped with the structure of a p+1-valent directed graph from the
Hecke operators; they are represented by matrices

A2 =

(
1 3
0 2

)
, A3 =

(
2 3
2 1

)
, A5 =

(
4 3
2 3

)
, A7 =

(
4 6
4 2

)
.

Exercise. Why are these matrices not symmetric?
We describe each of the three realizations in turn.

1.1. Maximal orders.– Write o = Z[ 1+j
2 ]. Then o[k] is a maximal order.

O1 :=
x+ yi+ zj + wk

2
x ≡ z, y ≡ w(2).

The group of units (elements of norm 1) is simply {±1,±k}.
Write ω = 2+i+k

4 , a cube root of 1, and ν = 1+i−j−k
2 , with norm 6. Then

O2 := Z+ Zj + Zω + Zν

is another maximal order. The group of units is {±1,±ω,±ω2}.
O1 and O2 intersect in an order that has index 2 in both. We can describe the

passage from O1 to O2 as follows (with q = 2ω):

O2 =
q

2
+ 〈z ∈ O : tr(zq) even〉.

The element q has the property that tr(q) = 0,N(q) ≡ 0 modulo 2.
More generally: Given any maximal order B, there exist p + 1 neighbours B′.

Namely, there exist exactly p+ 1 elements of B/pB of trace and norm 0. For each

such x, let x∗ ∈ B be a lift that has norm divisible by p2. Set B′ = x∗

p + (x∗)⊥.

1Given a ternary quadratic form q the even Clifford algebra gives a ternary quadratic form of
the same discriminant. For instance

ax2 + by2 + cz2 7→ 〈i, j, k|i2 = −bc, j2 = −ac, k2 = −ab〉
Note that upon composition with “trace form” we get the map “multiplication by disc,” at least

over a field.
2A quaternion ring over R is free of rank 4 together with an involution x 7→ x∗ so that the

characteristic polynomial is as expected (roots x, x∗ with multiplicty 2).
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1.2. Supersingular elliptic curves.–
The p-neighbour operation is described thus: For each supersingular elliptic

curve and prime p 6= 11, we can consider the p + 1 different curves formed by
quotienting by a subgroup of order p. This gives a δ× δ matrix whose columns add
up to p+ 1, a “Brandt matrix.”

There are two supersingular j-invariants in characteristic 11, namely, 1728 and
0. Over C these are represented by points i, ω. The j-invariant of all points
3i, i/3, (i+1)/3, (i+2)/3 satisfy the equation x2−153542016x−1790957481984 = 0,
which has roots {0, 1728} in F11. On the other hand, j(3ω) = −12288000, as are
two of the other Hecke translates; the other Hecke translate (ω+1)/3 has j-invariant
zero.

There is a 2-isogeny from y2 = x3 − x to y2 = x3 + 1 in characteristic 11.

x 7→ 6x2 + 5x+ 1

x− 1
, y 7→ y

x2 + 9x+ 10

(x− 1)2
.

1.3. Quadratic forms. – There are two quadratic forms, represented by q1 :=
x2 + y2 + 3z2 − xz, x2 + y2 + xy− yz − zx+ 4z2, and they have respectively 8 and
12 automorphisms. The total mass of the genus is 5/24.

Example of q1. The associated quaternion algebra spanned by 1, i = e2e3, j =
e3e1, k = e1e2 has relations

i2 = −3, j2 = −j − 3, k2 = −1, jk = i∗, ki = j∗, ij = 3k∗

For instance e3e1e3e1 = e23e
2
1 + 2e23〈e1, e3〉 = −3 − e3e1. Note that we can write

this as (x− z/2)2 + y2 +11z2/4; in other terms, in terms of the basis e′1 = e1, e
′
2 =

e2, e
′
3 = 2e3 + e1 it is x2 + y2 + 11z2. Note that k′ := e′1e

′
2 = k, j′ := e′3e

′
1 =

2j + 1, i′ := e′2e
′
3 = 2i− k. These satisfy

j′2 = −11, k′2 = −1, i′2 = −13− 2(ik + ki) · · · = −11, . . .

Note ki = j∗, so also i∗k∗ = j, that is ik = j. So ki+ik = j+j∗ = −1 and so on. In
particular, Bq is isomorphic to the suborder of D spanned by k, (j−1)/2, (i+k)/2.

2. The cusp form of weight 11

There is precisely weight 2 one cusp form of weight 11, viz.

q
∏

(1− qn)2
∏

(1− q11n)2 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 . . .

(Note that it is congruent to ∆ modulo 11.) This corresponds to the elliptic curve

y2 + y = x3 − x2,

which is in fact X1(11) not X0(11). We denote by N(p) the number of points on
this curve modulo p. So N(2, 3, 5, 7) = 5, 5, 5, 10 . . . whereas ap = −2,−1, 1,−2.

Exercise. Why are all the numbers are all divisible by 5?
The trace formula. – By the Lefschetz formula, the number of fixed points of Tp

is 2(p+ 1− ap). (So, 10, 10, 10, 20.)
The contribution of each cusp is 2.
The fixed points of Tp on X0(11) are parameterized by pairs (E,Λ) together with

a cyclic p-isogeny ψ : E → E that fixes Λ. In other terms, E has CM by some order
o that has an element of norm p. Once we fix o and an element t ∈ o of norm p,
the remaining question is whether t acting on o/11 fixes a line; if we suppose that
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the p 6= 11 and that 11 is unramified in o, this will be so just when o is split at 11;
if so, there are two such points.

The orders of small discriminant split at 11 are Z[
√
−2] and Z[

√
−7]. These

orders are both of class number 1.
In all cases each solution (up to sign) contributes +2 if unramified at 11, +1

else.
Example. There is an element of norm 2 in Z[

√
−2], namely ±

√
−2; also

± 1+
√−7
2 .

Example. Norm 3: ±1±
√
−2, 1±

√−11
2 .

Example. Norm 5. We need to solve 20 = x2+dy2; the solutions are ±1±√−19
2 , ±3±√−11

2 .

Example. Norm 7. We need to solve 28 = x2 + dy2. The solutions are ±1 ±√
−6, ±3±√−19

2 ,
√
−7. But 1 +

√
−6 contributes +4 (class number two) and

√
−7

also does (two orders). Total 8 + 4 + 4 = 16.

Example. Norm 13. ±1±√−51
2 , same for 43. Class numbers are 2 and 1. Total

+12. Finally
√
−13 gives +4 – class number two. total 20. Correct (a13 = 4).

3. The trace of Brandt matrices

The trace of Tp on the split side is a summation

−
∑

o,λ

h(o)(1 +

(−11

d

)
).

I’ll sketch why the trace of Tp on the quaternionic side is

(1) p+ 1 +
∑

o,λ

h(o)(1−
(−11

d

)
).

Why are these equal? We need to check
∑

o,λ

h(o) = p+ 1,

and there are two ways to proceed:

(1) Compute the trace of Tp on forms of weight 2, level 1.

(2) Use the fact that (
∑
qn

2

)3
∑
qn

2

= (
∑
qn

2

)4.

Sketch of proof of (1): I’ll explain it in terms of CM elliptic curves: Suppose o
is inert or ramified at 11 and λ ∈ o has norm p. (Let H be the Hilbert class field,
and choose a prime above p). For each ideal class J of o, the elliptic curve EJ ,
when reduced mod p, comes equipped with a p-isogeny EJ → EJ , i.e., a loop in
the adjacency graph.

Example. Let us reconsider norm 3 from this perspective. It is the norm of√
−3, 1±

√−11
2 in inert orders.

First,
√
−3. It gives rise to the CM elliptic curve with j-invariant 0, y2 = x3−1.

However, there are two CM-maps over F11, namely x 7→ ζx and x 7→ −ζx.
On the other hand,

√
−11 gives rise a CM elliptic curve of j-invariant −32768.

Explicitly, with a = 4 × 24 × 539 and b = 16 ∗ 5392, it is y2 = x3 − ax − b,
a curve of j-invariant −215. This curve is the minimal model (!!) and it has
conductor 243272112. On the other hand, over Q(

√
−11) it becomes the curve
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y2 = 4x3 − 24x−
√
539, which does have good reduction at the prime above 11; it

has j invariant 1728 ∈ F11.
Remark. You can construct the curve with conductor 121 by twisting. It is

y2 = x3 − 9504x+ 365904.

Alternate. If you are proficient with ternary quadratic forms [...]
The file contained a section concerning computations at level 121 (esp. local

representations at 11). These have been commented out.



Automorphy, Potentially Automorphy and Langlands
Base Change

Alexander Paulin

February 18, 2010

Automorphic Galois Representations

Notation

Let F be a number field (not necessarily totally real) and n ∈ N. Let Sf , S∞ denote the set
of all finite and infinite places of F respectively. For v ∈ Sf ∪ S∞ we denote the completion
by Fv and for v ∈ Sf we denote by Ov the ring of integers. Let AF denote the adeles over F
and A∞

F their finite component. Fix algebraic closures F̄ and F̄v and let GF := Gal(F̄ /F )
and GFv := Gal(F̄v, Fv). We fix embeddings F̄ ⊂ F̄v, which induces embeddings GFv ⊂ GF .
For S ⊂ Sf a finite subset let GF,S denote the Galois group of the maximal extension of F
(contained in F̄ ) unramified outside S. For v ∈ Sf \S let frobv ∈ GF,S denote the frobenius
element at v.

Automorphic Representations of GLn/F

Let π be an automorphic representation ofGLn/F . Rather than defining such a representation
let us recall its predominant features:

1. π is a complex vector space with a tensor decomposition

π = πf

⊗
(⊗v∈S∞π∞,v)

where πf is an irreducible, smooth, admissible representation of GLn(A∞
F ) and π∞,v is

an irreducible, admissible Harish-Chandra module associated to the Lie groupGLn(Fv).

2. We have the restricted tensor decomposition

πf = ⊗′
v∈Sf

πf,v

where πf,v is an irreducible, smooth, admissible representation of GLn(Fv) (v ∈ Sf ).
Moreover, for almost all finite places πf,v is unramified, i.e. posesses a GLn(OFv) fixed
vector. Let Sπ ⊂ Sf denote the set of finite places of F for which πf,v is ramified.
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Recall that for any v ∈ Sf the Satake Isomorphism induces a natural bijection:

{ Semisimple conjugacy classes of GLn(C) }

l

{ Isomorphism classes of unramified, irreducible, smooth admissible complex
representations of GLn(Fv). }

Hence for every v /∈ Sπ we get the semisimple conjugacy class Υv ⊂ GLn(C). By Strong
Multiplicity One the set {Υv}v/∈Sπ determines π up to isomorphism.

Fix k ∈ Z. In the case where n = 2 and F is totally real if we demand that the Harish-
Chandra modules at ∞ are all holomorphic discrete series of weight k, then π is associated
to a cuspidal Hilbert modular newform g of parallel weight k ≥ 2. If v /∈ Sπ and Tv is the
usual Hecke operator at v then if Tvg = avg we have the equality

av = trace(Υv).

Now fix a prime p ∈ N and an algebraic closure Q̄p. Also fix an isomorphism ς : Q̄p
∼= C.

Let ρ be a continuous (for the p-adic topology) representation

ρ : GF → GLn(Q̄p),

which is unramified outside the finite set Sρ ⊂ Sf . Hence ρ factors through GF,Sρ . For
v ∈ Sf \ Sρ let φv ⊂ GLn(C) denote the semisimple conjugacy class associated to ρ(Frobv).
Here was are implicitly using the isomorphism ς. The information {φv}v/∈Sρ determines ρ up
to isomorphism by Tchebotarev density.

Definition. ρ is automorphic if there exists π, an automorphic representation of GLn/F and
a finite subset S ⊂ Sf such that

1. Sπ ⊂ S and Sρ ⊂ S.

2. {φv}v/∈S = {Υv}v/∈S.

We say that ρ is potentially automorphic if there exists a finite extension E/F , contained in
F̄ , such that ρ|GE

is automorphic.

Global Langlands Reciprocity Conjecture. If ρ is semisimple, deRham (at all places
over p) and unramified outside of a finite set of primes then ρ is automorphic.

Of course conjecturally all local data should match under the Local Langlands correspon-
dence.

2



In the Hilbert case this implies that the traces of Frobenius away from Sρ arise as eigenvalues
of Hecke operators on of the space of Hilbert modular forms.

Now let F be totally real and D a quaterion algebra over F . If ρ is 2-dimensional then
we say it is automorphic for D if we can find πD, an automorphic representation of D/F ,
such that ρ is associated to πJL

D , its Jacquet-Langlands transfer. Informally this is saying
that the traces of Frobenius away from Sρ arise as eigenvalues of Hecke operators of the
space of automorphic forms associated to D. Of course there is a converse to this - to any
cuspidal Hilbert eigenform π of parallel weight k ≥ 2 there is an associated 2-dimensional
p-adic representation of GF .

1 Langlands Base Change

Let E/F be a finite extension (contained in F̄ ). We have the natural inclusion GE ⊂ GF . If
ρ is a representation as in the Global Reciprocity Conjecture then ρ|GE

is also of this form.
If we where to believe the reciprocity conjecture then if π is associated to ρ there should be
an automorphic representation of GLn/E, denoted π′, associated to ρ|GE

.
This ”base change” transfer is also predicted by Langlands principle of Functoriality.

More precisely, let G = ResE/F (GLn/E). The L-group of this groups is

LG = (
∏

GE\GF

GLn(C))⋊GF

where the GF acts by permutations. Thus there is a natural L-homomorphism

LGLn/F = GLn(C)×GF →L G

which is the diagonal embedding. Functoriality in this case would transfer an automorphic
representation of GLn/F to an automorphic representation of G. However, observing that
G(AF ) = GLn(AE), we see that an automorphic representation of this latter group is simply
an automorphic representation of GLn/E.

We have the following:

1. For E/F a solvable extension functoriality has been established in this case by Lang-
lands (n = 2) and by Aurthur and Clozel (n > 2). They use the trace formula to
establish functoriality for cyclic extensions of prime degree, then the result follows by
induction. We denote the functorial transfer by BCE/F (BC for base change).

2. If E/F is solvable and π is an automorphic representation of GLn/F associated to
a Galois representation ρ then ρ|GE

is automorphic with associated representation
BCE/F (π).

In the Hilbert case we have the converse:
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Theorem. Let E/F be a solvable extension of totally real number fields. Let ρ be a 2-
dimensional p-adic representation of GF . Suppose that ρ|GE

is automorphic with associated
representation π′, a cuspidal automorphic representation of GL2/E all of who infinite compo-
nents are holomorphic discrete series of weight k ≥ 2 (i.e. coming from a Hilbert eigenform
over E of parallel weight k). Then there is a cuspidal automorphic representation of GL2/F

all of whose infinite components are discrete series of weight k such that π′ = BCE/F (π)
(i.e. coming from a Hilbert eigenform over F of parallel weight k).

The proof of this result relies on a determining the image of the base change map and then
determining the fibres. Because π′ is associated to a representation of GE which extends
to GF it is invariant under Gal(E/F ). This ensures that it is the base change of some
automorphic representation of GLn/F . The trick then is to find a lift with the desired
properties.

Corollary. If ρ is a two dimensional p-adic representation of GF what becomes automorphic
(of parallel weight k ≥ 2) over a solvable totally real extension then ρ is already automorphic
(of parallel weight k).

Hence constructing solvable extensions will be important to us. In particular it will
be important to construct solvable global extensions with prescribed local behaviour. In
this regard we have the following theorem (an extension of the classical Grunwald-Wang
theorem):

Theorem. Let F be a totally real number field and {v1, · · · , vn} ⊂ Sf . Let Ki/Fvi be a finite
Galois extension for each i. Then there exists a totally real solvable extension E/F including
Ki/Fvi as the local extension at vi for each i, such that E/F can be chosen to be unramified
at any auxilliary finite set of places.

For a proof of this see Brians number theory handout.
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Lecture 16: Review of representation theory

Andrew Snowden
February 26, 2010

In the first (and main) part of these notes, I review the representation theory we have done this semester,
highlighting the points that are of most relevance to us. Then I will state a modularity lifting theorem and
make a few remarks about how the rerpesentation theory is used in the proof. In my next talk, I will give
an outline of the proof of this modularity lifting theorem.

1. Representation theory

The lectures we have had on representation theory centered around these topics:

• The theory of admissible representations of GL(2,Qp) (or more generally, GL(2, F ) with F/Qp a
finite extension).

• The theory of automorphic representations of GL(2); in particular, the correspondence between
Hecke eigenforms in the classical sense and automorphic representations.

• The Jacquet-Langlands correspondence, relating automorphic forms on GL(2) with those on a divi-
sion algebra.

• Base change, relating automorphic forms on GL(2) over two different fields (one a solvable extension
of the other).

I will go through each of these four topics and remind us of the key points for our applications. I will also
throw in some material abouth the Langlands correspondence (both local and global) that we may not have
covered.

1.1. Admissible representations. Let F/Qp be a finite extension and let G be the group GL(2, F ). Fix
an algebraically closed field K of characteristic zero (one always takes K to be the complex numbers or the
closue of some Qℓ). A representation of G on a K-vector space V is smooth if the stabilizer of any vector in
V is an open subgroup ofG; it is admissible if it is smooth and for every open subgroup U of G the space V U

is finite dimensional. We are most interested in irreducible admissible representations. Here “irreducible”
has its usual sense: the only stable subspaces are 0 and the whole space.

An easy way to construct admissible representations is through induction. Let α, β : F× → K× be two
continuous characters. Continuity amounts to the condition that the restriction of α and β to the group of
units UF should factor through a finite quotient of UF . Let V = V (α, β) be the space of all locally constant
functions f : G → K which satisfy the identity

f

((
a x

b

)
g

)
= α(a)β(b)

∣∣∣a
b

∣∣∣
1/2

f(g)

for all a, b ∈ F×, x ∈ F and g ∈ G. We let G act on V by right translation: (gf)(g′) = f(g′g). It is quite
easy to see that this makes V into an admissible representation of V . A more difficult result is the following:
if αβ−1 is not equal to | · | or | · |−1 then V is irreducible. Here | · | is the norm character of F×, which takes
a ∈ F× to q− val a where q is the cardinality of the residue field. These irreducible admissible representations
are called the principal series.

When αβ−1 is equal to | · |±1 the representation V (α, β) is no longer irreducible. Rather, it is indecompos-
able and has two Jordan-Holder constituents. One of these constituents is one dimensional while the other
is infinite dimensional. Precisley, say αβ−1 = | · | and write α = γ| · |1/2 and β = γ−1| · |−1/2. Then V (α, β)
has a unique irreducible subrepresentation St(γ) which is infinite dimensional. The quotient V (α, β)/ St(γ)
is one dimensional and G acts on it through the character g 7→ γ(det g). Write St in place of St(γ) where γ
is the trivial character. The representation St is called the Steinberg representation. One has St(γ) = St⊗γ.

We have thus completely analyzed the representations V (α, β). There are many irreducible admissible
representations of G which do not appear inside of these reperesentations, however; these are called the
supercuspidal representations ofG. We now have the following classification of the irreducible representations
of G.

Theorem 1.1. Let V be an irreducible admissible representation of G over K. Then V is equivalent to one
and only one of the following:

1
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• An irreducible principal series V (α, β) with αβ−1 6= | · |±1.
• A one dimensional representation corresponding to a character g 7→ γ(det g).
• A twist St⊗γ of the Steinberg representation St.
• A supercuspidal representation.

This theorem almost follows by our definition of supercuspidal. The one part that does not is its assertion
that the principal series and twists of Steinbergs are inequivalent. The one dimensional representations are
often counted as principal series. We will sometimes treat them as such and sometimes not.

An irreducible admissible representation V of G is called unramified if it has a vector which is invariant
under the maximal compact subgroup GL(2,OF ). It is a theorem that V is unramified if and only if it is a
principal series of the form V (α, β) with α and β unramified characters of F× (where here unramified means
trivial on UF ), or a one dimensional principal series given by g 7→ γ(det g) with γ unramified. Note that an
unramified character of F× is determined by a single number, namely, its value on any uniformizer.

Key points: (1) The irreducible admissible representations of G fall into three classes: principal series,
twists of Steinberg and supercuspidal. (2) The unramified representations of G are exactly the principal
series representations coming from unramified characters. These are parameterized by (unordered) pairs of
numbers (elements of K×).

1.2. The local Langlands correspondence. Keep the notation of the previous section. We have an exact
sequence

0 → IF → Gal(F/F )
val→ Ẑ → 0

where IF is the inertia subgroup of the Galois group. The Weil group of F is by definition the subgroup of
Gal(F/F ) given by val−1(Z). We call a representation of WF on a K-vector space V Frobenius semi-simple
if some fixed Frob in WF acts semi-simply. Recall that a Weil-Deligne representation of F with coefficients
in K is a pair (V,N) where:

• V is a K vector space with an action of WF which is Frobenius semi-simple and under which inertia
acts through a finite quotient.

• N is an endomorphism of V which satisfies

gNg−1 = qval gN

where q denotes the cardinality of the residue field of F . Equivalently, N defines a WF -equivariant
map V (1) → V where V (1) is the twist of V by the character g 7→ qval g.

The collection of all Weil-Deligne representations forms a category and this cateogry is abelian. The following
theorem is not difficult:

Theorem 1.2. Let ℓ 6= p be a prime number. There is then an equivalence of categories:
{
Weil-Deligne representations
with coefficients in Qℓ

}
↔

{
Continuous Frobenius semi-simple representa-
tions of WF on Qℓ vector spaces

}

Sketch of proof. Let (V,N) be a Weil-Deligne representation. Let ρ denote the action of WF on V . Define
a new representation ρ′ of WF on V by

ρ′(Frobng) = ρ(Frobng) exp(Ntℓ(g)).

Here Frob ∈ WF is a fixed Frobenius element, g is an element of the inertia subgroup IF of WF and
tℓ : IF → Zℓ is the tame ℓ-adic character. One easily verifies that ρ′ is a continuous Frobenius semi-simple
representation. We have thus defined a map of categories. One must then check that it is in fact an
equivalence, which is not difficult. �

It is not difficult to classify two dimensional Weil-Deligne representations:

Theorem 1.3. Let (V,N) be a two dimensional Weil-Delgine representation of F with coefficients in K.
Then (V,N) falls into exactly one of the following three cases:

• V is a direct sum of two characters of WF and N = 0.
• V is irreducible under WF and N = 0.
• V is a direct sum W ⊕ W (1) where W is one dimensional (and thus acted on by a character γ of
WF ); N kills W (1) and maps W isomorphically onto W (1).
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We can now state a version of the local Langlands correspondence for GL(2).

Theorem 1.4. There is a natural bijection
{
Irreducible admissible represen-
tations of GL(2, F ) over K

}
↔

{
Two dimensional Weil-Deligne repre-
sentations with coefficients in K

}
.

Under thie bijection, the principal series correspond to direct sums of characters, the supercuspidals to
irreducibles and the twists of Steinberg to the Weil-Deligne representations with non-zero N . More precisely,
the principal series V (α, β) corresponds to the representation α′ ⊕ β′ where α′ and β′ correspond to α and
β by class field theory. One can make a similar statement for twists of Steinberg.

Key points: (1) Two dimensional Weil-Deligne representations fall into three classes. (2) There is a natural
bijection between two dimensional Weil-Deligne representations and irreducible admissible representations of
GL(2, F ). This bijection preserves the trichotomy on each side and on principal series and twists of Steinberg
can be computed in terms of class field theory. (3) Weil-Deligne representations basically correspond to
continuous ℓ-adic representations of the Weil group for any ℓ 6= p, and these are almost the same thing as
representations of the absolute Galois group.

1.3. Automorphic representations. Now let F be a number field and let AF be its adele ring. An
automorphic form on GL(2) over F is a function f : GL(2,AF ) → C satisfying a number of properties, the
most important of which is that it is invariant on the left under GL(2, F ). The set of all automorphic forms

forms a vector space AF . This vector space carries an action of GL(2,Af
F ) by right translation. Furthermore,

the Lie algebra and the maximal compact of GL(2, F∞) act on AF (that is, AF is a Harish-Chandra module
for GL(2, F∞)). (The full group GL(2, F∞) does not act on AF as it destroys the K-finiteness condition.)
An automorphic representation of GL(2,AF ) is something of the form πf ⊗ π∞ where πf is an irreducible

admissible representation of GL(2,Af
F ) and π∞ is an irreducible Harish-Chandra module of GL(2, F∞) such

that πf ⊗ π∞ is equivalent to a submodule of AF . There is a certain condition called cuspidal that one
can impose on automorphic forms. The set of all cuspidal forms forms a vector subspace A ◦

F of AF which
is stable under the various actions of pieces of GL(2,AF ). An automorphic representation is cuspidal if it
appears inside this cuspidal space.

Say for the moment that F = Q. As we have discussed earlier in the semester, classical modular eigenforms
correspond bijectively to automorphic representations π for which π∞ is a discrete series representation.
More precisely, say f is a newform of level N and weight k and let π be the corresponding automorphic
representation. We can then write π = πf ⊗ π∞ and further decompose πf as a restricted tensor product
⊗πp, where πp is an irreducible admissible representation of GL(2,Qp). The Harish-Chandra module π∞ is
completely determined by the weight k. For primes p not dividing the level, πp is an unramified representation
of GL(2,Qp). As we have seen, such representations are determined by two numbers; the representation πp

corresponds to the eigenvalues of the Hecke operators Tp and Tp,p acting of f . (There is a precise formula to
take these two numbers and produce two characters α and β of Q×

p such that πp is equivalent to V (α, β).)
For primes p dividing N the representation πp is not unramified. I imagine that it is possible to determine
πp from a classical point of view; however, this is probably a bit complicated. This is one of the main
advantages of the formulation in terms of automorphic representations: the information at ramified primes
is more readily accessible.

When F 6= Q the discussion of the previous paragraph carries over but is a bit more complicated.
The reason that it becomes more complicated is that the corresponding classical picture becomes more
complicated. For example, in the setting of Hillbert modular forms the space which plays the role of the
modular curve can be disconnected: it will be a disjoint union of spaces of the form hn/Γi where h is the
upper half plane and the Γi are certain arithmetic groups. The proper analogue of a modular form is then
a tuple (fi) where fi is a function on hn invariant under Γi. The Hecke operators then permute the fi in
addition to acting in the usual fashion. This additional bookkeeping required makes the classical point of
view much more cumbersome to deal with. It is another reason for swithcing to the representation theoretic
perspective.

Key points: (1) Classical modular forms correspond to automorphic representations of GL(2,AQ) satisfying
a certain condition at infinity. (2) Automorphic representations are built out of irreducible admissible
representations at each finite place and a Harish-Chandra module at infinity. Almost all of these irreducible
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admissible representations are unramified and the two parameters that determine them correspond to the
two Hecke eigenvalues in the classical picture. (3) Automorphic representations are much better to deal with
for certain applications: even in the most basic case of classical modular forms they give easier access to
information at ramified primes; in more complicated situations, they remove the cumbersome bookkeeping
that is present in the classical picture.

1.4. The global Langlands correspondence. Let f be a modular form on the upper half plane of weight
k and level N which is an eigenform for the Hecke operators Tp and Tp,p away from N . As we discussed in
the first semester, there is a Galois representation

ρf,ℓ : GQ → GL2(Qℓ)

which satisfies and is uniquely determined by the following property: if p 6= ℓ is a prime not dividing N
then ρf,ℓ is unramified at p and the characteristic polynomial of ρf,ℓ(Frobp) is given by T 2 − apT + ap,p
where ap and ap,p are the eigenvalues of f under Tp and Tp,p. The representation ρf,ℓ is “odd,” that is, its
determinant on a complex conjugation is −1.

As we have seen, in certain situations it is better to use automorphic representations in place of modular
forms. This is one of those situations! The above result can be generalized and refined, and to state the
improved version it is better to use automorphic representations. Let F be a totally real number field and
let π be an automorphic representation of GL(2,AF ) such that π∞ is a discrete series representation. Then
there is a Galois representation

ρπ,ℓ : GF → GL2(Qℓ)

which satisfies and is uniquely determined by the following property: if v is a place of F which does not
lie above ℓ then ρπ,ℓ|GF,v corresponds to πv under the local Langlands correspondence. The representation
ρπ,ℓ is also odd: its determinant on any complex conjugation is −1. (Note that the condition that π∞ be
discrete series is equivalent to the condition that the corresponding classical modular form be holomorphic.)

The above result is clearly more general than the first one since it permits F to be a totally real field rather
than just Q. However, even for F = Q it is a stronger result: it specified the local Galois representation
everywhere except at ℓ in terms of the corresponding local component of the automorphic representation. The
local Galois representation at ℓ is much more subtle: it is not determined by the corresponding component
of the automorphic representation.

It is expected that the ρπ,ℓ give all the Galois representations which are odd, ramified at finitely many
places and satisfy some local condition at ℓ (coming from ℓ-adic Hodge theory). This has basically been
proved for F = Q but is still open for all other F . The most critical intermediate result in the proof for
F = Q is a modular lifting theorem; we will prove such a theorem in this seminar.

Key point : Given an automorphic representation π of a toally real number field which is discrete series at
infinity, there is a corresponding Galois representation ρπ,ℓ. (Or rather, one for each ℓ.) The restriction
of ρπ,ℓ to a decomposition group away from ℓ corresponds to the local component of π under the local
Langlands correspondence. Furthermore, ρπ,ℓ is an odd representation.

1.5. The Jacquet-Langlands correspondence. Let F be a number field. Let G be the algebraic group
GL(2) over F . Let D be a quaternion algebra over F and let G′ be its unit group, regarded as an algebraic
group (so G′(A) = (D ⊗F A)×). One then has the notion of an automorphic representation of G′. The
global Jacquet-Langlands correspondence is the following theorem:

Theorem 1.5. The is a natural bijection:

{Automorphic representations of G′ } ↔
{
Automorphic representations of G
which are essentially square integrable
at all places where D ramifies

}

(An irreducible admissible representation of GL(2, Fv) is essentially square integrable if it is a twist of the
Steinberg or supercuspidal, i.e., not principal series.) Furthermore, if π′ is an automorphic representation of
G′ and π the corresponding automorphic representation of G then πv is determined completely by π′

v. Two
special cases: (1) if D splits at v and we identify Dv with M2(Fv) then π′

v is identified with πv; (2) if π′
v is

the trivial representation then πv is the Steinberg representation.
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Assume that D is ramified at all infinite places; this is the case we care most about. For a compact open

subgroup U of (D ⊗Af
F )

× let S2(U) denote the space of all functions

D×\(D ⊗Af
F )

×/U → C.

Note that the double quotient above is a finite set; we really do mean all possible functions, there is no
possible continuity condition to impose. For a place v of F at which U is maximal compact and D is
split there is a natural Hecke operator Tv that acts on S2(U). The Jacquet-Langlands correspondence
implies that if f is a parallel weight 2 holomorphic cuspidal Hilbert eigenform whose associated automorphic
representation is essentially square integrable at the places where D is ramified then there is an element
g of S2(U) which is an eigenvector for all the Hecke operators and has the same eigenvalues as f . (Here
U is determined from the level of f .) Therefore, as long as we are in a situation where the appropriate
local conditions are in place, we can work with S2(U) instead of the space of Hilbert modular forms. This
is advantageous because functions on a finite set are very easy to think about! For instance, there is an
obvious integral structure on S2(U) (take integral valued functions) and so the notion of a mod p modular
form on D is evident.

Key points: (1) One can move automorphic forms and representations between GL(2) and quaternion
algebras; the only obstructions are local and fairly simple. (2) By taking D to be ramified at infinity,
automorphic forms on D can be thought of as functions on a finite set.

1.6. Base change. Let π be an automorphic representation of GL(2,AF ) with F a number field, such that
π∞ is discrete series. As we have seen, there is then an associated Galois representation ρπ,ℓ. Given an
extension F ′/F we can restrict ρπ,ℓ to GF ′ . This is the sort of Galois representation that we expect is of
the form ρπ′,ℓ for some automorphic representation π′ of GL(2,AF ′). The automorphic representation π′

has been proven to exist when the extension F ′/F is solvable. Precisely we have the following:

Theorem 1.6. Let F ′/F be a solvable extension of number fields. There is a natural map of sets

BC :

{
Automorphic representations
of GL(2,AF )

}
→

{
Automorphic representations
of GL(2,A′

F )

}

such that if π′ = BC(π) then: (1) the local component π′
v can be computed in terms of πv; (2) if π∞ is

discrete series then so is π′ and ρπ′,ℓ = ρπ,ℓ|GF ′ .

There is a local base change map also: if F ′
v is a finite extension of Fv then there is a base change map

BC from irreducible admissible representations of GL(2, Fv) to those of GL(2, F ′
v). In fact, the meaning of

(1) in the above theorem is precisely that π′
v = BC(πv). Thus local and global base change are compatible.

The local base change map satisfies a property analogous to (2) above, namely, it commutes with the local
Langlands correspondence.

From the above properties of local base change, and what we know about local Langlands, it is easy to see
some examples of how local base change works. For example, the principal series V (α, β) corresponds under
local Langlands to the Galois representation α′ ⊕β′ where α′ and β′ correspond to α and β under class field
theory. Restricting this to GF ′

v
we simply get α′|GF ′

v
⊕ β′|GF ′

v
. Going the other way under local Langlands,

this corresponds to the principal series V (α′′, β′′) where α′′ and β′′ correspond to α′|GF ′
v
and β|GF ′

v
under

class field theory. Now, class field theory turns restriction to a larger number field into composition with
the norm. Thus α′′ = N∗α and β′′ = N∗β, where N : (F ′)× → F× is the norm map. We thus find

BC(V (α, β)) = V (N∗α,N∗β).

The base change of a principal series is always a principal series. Similarly, the base change of a twist of
Steinberg is again a twist of Steinberg — restricting to a bigger field will never turn a non-zero N zero or
vice versa. By this reasoning, the base change of a supercuspidal will never be a twist of Steinberg. However,
an irreducible Galois representation can certainly restrict to a reducible one. Thus it is possible for the base
change of a supercuspidal to be principal series. In fact, if π is any irreducible admissible representation of
GL(2, Fv) then one can find an extension F ′

v/Fv such that BC(π) is either unramified or Steinberg. Any
base change of Steinberg is still Steinberg, however.

The above local discussion has the following global application (when compbined with some global class
field theory). Given an automorphic representation π of GL(2,AF ) there exists a finite solvable Galois
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extension F ′/F such that the base change of π to F ′ is everywhere unramified or Steinberg. In fact, if F is
totally real (as it will be in our applications) then F ′ can be taken to be totally real as well.

There is a sort of converse to base change that will be useful for us, which we refer to as solvable descent.

Theorem 1.7. Let F be a totally real number field and let ρ : GF → GL2(Qp) be a Galois representation.
Assume that there exists a finite, totally real, solvable extension F ′/F and a parallel weight 2 automorphic
representation π′ of GL(2,AF ′) such that ρ|GF ′ = ρπ′,p and both are irreducible. Then there exists a parallel
weight 2 automorphic representation π of GL(2,AF ) such that ρ = ρπ,p.

In other words: if ρ becomes modular over a solvable extension then ρ is modular.

Key points: (1) There is an operation (“base change”) on automorphic representations and local repre-
sentations which corresponds to restriction on the Galois side, at least for solvable extensions. (2) Given
an automorphic representation, one can always make a solvable base change such that the result is either
unramified or Steinberg at all places. One cannot get rid of Steinbergs through base change, however. (3)
Given a Galois representation, one can check if it comes from an automorphic form by checkings over a
solvable extension (subject to some technicalities).

2. Modularity lifting

We will now state a modularity lifting theorem that we will later use and indicate how base change and
the Jacquet-Langlands correspondence are used in the proof. We must first make some Galois theoretic
definitions.

Let F/Qp be a finite extension. We say that a Galois representation ρ : GF → GL2(Qp) is ordinary if it
is of the form (

αχp ∗
β

)

where α and β are finitely ramified characters, and, as always, χp denotes the p-adic cycloctomic character.
(One could allow for more general definitions of ordinary, replacing χp by χn

p ; for now we will stick with
this one.) Let E/F be an extension over which α and β become unramified. The representation ρ|IE is an
extension of the trivial representation by χp and so defines an element of H1(IE ,Qp(χp)), which is identified

with Qp ⊗ (Eun)× by Kummer theory. (Here Eun is the maximal unramified extension of E and IE is the

inertia subgroup of GE .) We say that ρ is potentially crystalline if this class belongs to Qp ⊗ O×
Eun . This is

idendependent of the choice of E.
Now let F/Q be a finite totally real extension. Recall that a representation ρ : GF → GL2(Qp) is odd if

det ρ(c) = −1 for all complex conjugations c ∈ GF . We can now state a modular lifting theorem.

Theorem 2.1. Let p > 5. Let ρ : GF → GL2(Qp) be an odd, finitely ramified representation such that
ρ|GF(ζp)

is absolutely irreducible and ρ is potentially crystalline and ordinary at all places above p. Assume

that there exists an automorphic representation π of GL(2,AF ) such that ρπ,p is potentially crystalline and
ordinary at all places above p and ρπ,p = ρ. Then there exists an automorphic rerpesentation π′ such that
ρ = ρπ′,p.

We will now indicate some ways in which base change and the Jacquet-Langlands correspondence come
up in the proof of this theorem. To begin with, we can use base change to make some immediate reductions
that simplify the situation. For example, our representation ρ is of the form(

αχp ∗
β

)

at each place above p. By making a solvable base change, we can reduce to the case where α and β are
unramified. Even more drastically, we can make a solvable base change to reduce to the case where ρ|GFv

is
trivial at any given finite set of places. Moving to such a situation can make some of the local deformation
theory easier. Two other things we can do with base change: we can reduce to the case where det ρ is the
cyclotomic character (our hypotheses imply that it is a finite twist of the cyclotomic character); and we can
reduce to the case that F/Q has even degree, which is useful for finding quaternion algebras with prescribed
ramification.

The above applications of base change are very useful but fairly superficial. We now describe a more
serious application. In the hypotheses of the theorem, we have been given an automorphic rerpesentation
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π such that ρ = ρπ,p. In the proof, however, we need it to be the case that ρ and ρπ,p are potentially
unramified at the same set of places. This need not be the case for the π we have. Of course, we are free to
replace π with another form π′ such that ρπ,p = ρπ′,p, that is, one that is congruent to π modulo p (while still
maintaining the other hypotheses). So the question is: given π as in the theorem, can we find a congruent
π′ such that ρπ′,p and ρ are potentially unramified at the same set of places? Alternatively, we know that
ρπ′,p is potentially unramified precisely at the places where it is not Steinberg, so we could also ask if we
can replace π by a congruent form and prescribe the set of places at which this new form is Steinberg.

Clearly, this issue cannot be resolved with base change; in fact, it requires some real work. In the early
days of the modularity lifting theorem, these congruences were found using the geometry of the modular
curves. These proofs were difficult and fairly specific. Since then, new proofs have been found which are
easier and more general. The common theme of these proofs is to use the Jacquet-Langlands correspondence
and then do some computations with modular forms on quaternion algebras — which are just functions on
a finite set. It is much easier to manipulate these functions than forms on the modular curve!

To prove the theorem we identify a cerain universal deformation ring of the Galois representation ρ with
a certain Hecke algebra. Originally, this Hecke algebra was one for GL(2). However, by Jacquet-Langlands,
we can find the same Hecke algebra on a quaternion algebra, and as we have explained, it is often easier
to prove things in that setting. So we will in fact use a Hecke algebra on a quaternion algebra. Thus the
Jacquet-Langlands correspondence will be built into our proof at a very fundamental level.
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1. Statement of theorem

The goal of this lecture is to sketch a proof of the following modularity lifting theorem.

Theorem 1. Let F/Q be a totally real number field and let ρ : GF → GL2(Qp) be a continuous represen-
tation of its absolute Galois group, with p > 5. Assume that ρ satisfies the following conditions:

• ρ ramifies at only finitely many places.
• ρ is odd, i.e., det ρ(c) = −1 for all complex conjugations c ∈ GF .
• ρ is potentially crystalline and ordinary at all places above p.
• ρ|GF (ζp)

is absolutely irreducible.

• There exists a parallel weight two Hilbert modular form f such that ρf is potentially crystalline and
ordinary at all places above p and ρ = ρf .

Then there exists a Hilbert modular form g such that ρ = ρg.

We will prove this theorem by proving an R = T theorem, where R is a deformation ring of ρ with
certain local conditions imposed and T is a certain Hecke algebra. Clearly, if we have an appropriate R = T
theorem then we get a modularity lifting theorem, as ρ defines a homomorphism R → Qp and thus (by

R = T), a homomorphism T → Qp, which is the same as a modular form.

2. Initial reductions

As we have previously explained, by using base change we may pass to totally real solvable extensions of
F . The hypotheses of the theorem imply that detρ is of the form χpψ where ψ is a finite order character of
GF . It is not difficult to see that there is a totally real solvable extension F ′/F such that ψ|GF ′ = (ψ′)2 for
some finite order character ψ′ of GF . Thus (ψ

′)−1ρf |GF ′ has determinant χp. Since twisting by a character

does not affect modularity, it is enough to show that (ψ′)−1ρ|GF ′ is modular. We may therefore assume
det ρ = χp. Similarly, after possibly another base change, we can assume that det ρf = χp as well.

Let v ∤ p be a place of F . Call a representation GFv → GL2(Qp) Steinberg if it is of the form
(
χp ∗

1

)
.

If ρv : GFv → GL2(Qp) is any continuous representation, then there is a finite extension F ′
v/Fv such that

ρv|GF ′
v
is either unramified or Steinberg. We may thus make a global solvable extension F ′/F such that

ρ|GF ′ and ρf |GF ′ are unramified or Steinberg at all places away from p. Let S be the set of places (away
from p) at which ρ is ramified (and thus Steinberg), and let S′ be the corresponding set for ρf . By making
another solvable extension, we may assume that ρ|GFv

and ρf |GFv
are crystalline at v | p. Finally, we may

pass to another solvable extension and assume that ρ|GFv
and ρf |GFv

are trivial at all places v above p or
in S ∪ S′.

Now, we will not be able to prove the strongest possible form of an R = T theorem. We must impose
the following hypothesis: the local deformation spaces used to construct R must be connected. Practically
speaking, this means that ρ|GFv

and ρf |GFv
must lie on the same irreducible component of the universal

semi-stable deformation space of ρ|GFv
. What are the components of this space? For v | p there are

three components: ordinary crystalline, ordinary non-crystalline and non-ordinary. Thus our “ordinary and
crystalline” hypotheses ensure that there is no problem at the places above p. Unramified representations
always lie on the same component, so there is no problem outside of S ∪ S′. However, if v ∤ p then the
universal semi-stable deformation space of the trivial representation has two components: unramified and
Steinberg. We must therefore assume S = S′, which is a non-trivial assumption that may not be satisfied
by the ρf that is given to us. However, one can always find a congruence with a form f ′ which does satisfy
this condition. (Finding this f ′ is not at all trivial, but occurs outside the scope of the R = T theorem, and
we will not discuss it further in this lecture.)

1
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By making a further base change, we may assume that F has even degree over Q and that S has even
cardinality.

3. The R = T theorem: set-up

We begin by precisely stating the situation in which we have placed ourselves. We have a representation

ρ : GF → GL2(k)

where k is a finite field of characteristic p, a finite set S of places of F away from p and a modular
representation ρf lifting ρ. Let Sp denote the places of F above p. We assume the following hypotheses:

(A1) ρf is crystalline and ordinary at all places in Sp, Steinberg at all places in S and unramified at all
other places.

(A2) det ρf = χp.
(A3) ρ|GF (ζp)

is absolutely irreducible.

(A4) ρ|GFv
is trivial for v ∈ Sp ∪ S.

(A5) F has even degree over Q and S has even cardinailty.

Note that the representation we had previously called ρ has completely disappeared from the set-up. It may
not be absolutely necessary to assume (A4), but it does not cost us anything to do so, and makes study of
the local deformation rings a bit easier.

We now define the ring R. Let R̃ be the universal deformation ring of ρ unramified outside of S ∪Sp and
with determinant χp. (Here we take coefficients in some fixed O/Zp with residue field k.) For a place v let

R̃v be the universal deformation ring of ρ|GFv
with determinant χp. For v ∈ Sp let Rv be the quotient of R̃v

classifying ordinary crystalline representations. For v ∈ S let Rv be the quotient of R̃v classifying Steinberg

representations. We then let R be the tensor product of R̃ with ⊗Rv over ⊗R̃v. The latter tensor products
are over S ∪ Sp and we should complete these tensor products.

We now define the Hecke algebra. Let D be the unique quaternion algebra over F ramifying at all the
infinite places and the places in S (and nowhere else). This exists by (A5). For a compact open set U of

(D ⊗Af
F )

× let S2(U) denote the set of functions

X(U) = D×\(D ⊗Af
F )

×/((Af
F )

× · U) → O.

For places v at which U is maximal and D unramified, there is a Hecke operator Tv acting on S2(U).

Let U◦ be “the” maximal compact open subgroup of (D ⊗ Af
F )

×. Let T(p) be the subalgebra of
End(S2(U

◦)) generated by the Hecke operators Tv for v 6∈ Sp ∪ S. Let T be the subalgebra generated

by the Tv for v 6∈ S. Thus T contains the Hecke operators above p and T(p) does not. By the Jacquet-
Langlands correspondence and conditions (A1) and (A2), our modular form f can be transferred to an
element of S2(U

◦) which is an eigenform for T. The form f defines a homomorphism T → O, the kernel of
which is contained in a unique maximal ideal m. The form f is actually irrelevant; all that matters is the
ideal m. It has the following two properties (which characterize it uniquely):

• For v 6∈ S ∪ Sp, the image of Tv in T/m is equal to tr ρ(Frobv).
• For v ∈ Sp, the Hecke operator Tv does not belong to m.

The first condition means that m is associated to the representation ρ; the second is the ordinarity condition.
We regardm as an ideal ofT(p) by contraction. (Remark: we need the group U◦ to satisfy a certain smallness
condition which our group U◦ does not. To get a correct definition of U◦ one picks an auxiliary place vaux
with certain nice properties and takes U◦

vaux to be sufficiently small; away from vaux the group U◦ is maximal.
One must also modify the definition of R to allow for ramification at vaux. We will ignore this subtlety for
now.)

As we have seen, there is a representation

GF → GL2(T
(p)
m ),

which lifts ρ. This induces a surjection R̃ → T
(p)
m . The above representation is Steinberg at all the places

in S (since D ramifies at S and local and global Langlands are compatible). However, it is not necessarily
ordinary at the places in Sp (though it is automatically crystalline). This should not be surprising, as we
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have not told T
(p)
m anything about what is happening at p. There is a map T

(p)
m → Tm; composing this with

the above representation gives a representation

GF → GL2(Tm).

This representation is ordinary at the places above p; one should think that the Hecke operators at p

specify the local component of the deformation space at p. Thus the map R̃ → Tm factors through R.
Unfortunately, this map is no longer surjective. However, it is not very far from being surjective and the
problem can be controlled locally at p: for v ∈ Sp there is a modified local deformation ring R′

v which is a
finite Rv-algebra and isomorphic to Rv after p is inverted. Define R′ to be like R but use R′

v for v ∈ Sp.
Then there is a natural surjection R′ → Tm. Our goal is to prove:

Theorem 2. The map R′[1/p] → Tm[1/p] is an isomorphism and R′ is finite over O.

The ring Tm is torsion-free by consturction. This theorem does not allow us to control the torsion in R′,
except to say that it is finite. One expects that R′ is torsion free; this may actually be proved in the case we
are in (the ordinary case), but I do not know for certain. One can modify the proof of the above theorem
to show that R is finite over O, which is often more relevant but does not seem to follow formally from the
finiteness of R′.

4. Taylor-Wiles primes

The basic idea to the proof of Theorem 2 (called the Taylor-Wiles method) is to find a tower of maps
Rn → Tn lifting R′ → Tm and then build a sort of inverse limit R∞ and T∞ out of the Rn and Tn, which
is a nice ring. We can then prove that R∞[1/p] → T∞[1/p] is an isomorphism and deduce from this the
statement we want. Actually, the Hecke algebras will not be so important; they will be replaced by spaces
of modular forms.

We find the rings Rn be introducing certain auxiliary deformation rings. By a TW set of places we mean
a finite set Q of places of F satisfying the following conditions:

• Q is disjoint from Sp and S. (And does not contain vaux.)
• N v = 1 (mod p) for all v ∈ Q.
• The eigenvalues of ρ(Frobv) are distinct and belong to k.

(The “belong to k” part is not serious — we can replace k by its quadratic extension and then all eigenvalues
of all Frobenii belong to k.) Given such a set Q of places, we define RQ similarly to R′ except we allow
ramification at the places in Q. Note that R∅ = R′. We will typically write R∅ in place of R′ for notational
uniformity.

Although we did not impose any deformation conditions at the places in Q, the conditions on the places
in Q has strong consequences. Let v ∈ Q. Then the universal deformation GF → GL2(RQ) restricted to GFv

is a sum of two characters η1 ⊕ η2. These characters are necessarily tamely ramified, since their reduction is
unramified, and in fact the image of inertia is p-power. By class field theory, η1 defines a map F×

v → R×
Q.

We thus get a map (OFv/pv)
× → R×

Q, which factors through the maximal p-power quotient of (OFv/pv)
×.

Define ∆Q to be the product of the maximal p-power quotients of (OFv/pv)
× for v ∈ Q. Then we have

just given RQ the structure of an O[∆Q]-algebra. This was not quite canonical, since we had to choose η1.
Define a TW datum to be a pair (Q, {αv}) where Q is a TW set of primes and αv is a chosen eigenvalue
of ρ(Frobv) for each place v ∈ Q. Given such a datum we get a canonical O[∆Q]-algebra structure on RQ,
since we can take η1 to correspond to αv. The following result is not difficult:

Proposition 3. The canonical map RQ → R∅ is surjective. Its kernel is aQRQ, where aQ is the augmen-
tation ideal of O[∆Q].

We now define the auxiliary Hecke algebras and spaces of modular forms. Thus let (Q, {αv}) be a TW-
datum. We define compact open subgroups UQ ⊂ VQ. At places v 6∈ Q, we define UQ,v = VQ,v = U◦

v . Let
v ∈ Q. We then define

VQ,v =

{(
a b
c d

)
∈ GL2(OFv )

∣∣∣∣ c ∈ pv

}

and

UQ,v =

{(
a b
c d

)
∈ GL2(OFv )

∣∣∣∣ c ∈ pv and ad−1 maps to 1 in ∆Q

}
.
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Of course, V∅ = U∅ = U◦. Note that UQ is normal in VQ and VQ/UQ is identified with ∆Q.
Let T(VQ) be the subalgebra of End(S2(VQ)) generated by the Tv for v 6∈ S ∪Q, and let T+(VQ) be the

subalgebra generated by these Tv together with the Uv for v ∈ Q. We have a map T(VQ) → T(V∅) and can
thus regard m as an ideal of T(VQ). We also have a map T(VQ) → T+(VQ). Let nQ be the ideal of T+(VQ)
generated by m and Uv − αv for v ∈ Q. We then have the following result:

Proposition 4. We have an isomorphism S2(VQ)nQ = S2(U
◦)m.

Proof. We just indicate the map S2(U
◦)m → S2(VQ)nQ in the case that Q = {v} (it suffices to treat this

case by an inductive argument). By Hensel’s lemma we have a factorization

X2 − TvX +N v = (X −A)(X −B)

for A and B in T(U◦)m, with A mapping to αv modulo m. We thus have a map

S2(U
◦)m → S2(VQ), f 7→ Af −

(
1

̟v

)
f.

Here ̟v denotes a uniformizer at v and the operator Uv is defined using the double coset of

(
̟v

1

)
.

One must show that the above map actually lands in S2(VQ)nQ (which we think of as a summand of S2(VQ))
and that it is an isomorphism. Note in particular, that the proposition implies that S2(VQ)nQ consists only
of old forms. We note that there is also an isomorphism T+(VQ)nQ = Tm, though we will not need it. �

Let T+(UQ) be the subalgebra of End(S2(UQ)) generated by the Tv for v 6∈ S ∪Q and the Uv for v ∈ Q.
There is a natural map T+(UQ) → T′

+(VQ). We let mQ be the contraction of nQ under this map. We let
TQ be the localization T+(UQ)mQ and we let MQ be the localization S2(UQ)mQ . Note that T∅ = Tm and
that VQ/UQ = ∆Q acts on MQ. We then have

Proposition 5. The space MQ is free over O[∆Q]. There is a natural isomorphism MQ/aQMQ →M∅.

Proof. The map X(UQ) → X(VQ) is a Galois cover with group ∆Q. (This uses the smallness hypothesis on
U◦.) From this, one easily deduces thatMQ is free over O[∆Q] and thatMQ/aQMQ is naturally isomorphic
to S2(VQ)nQ . To get the isomorphism with M∅ apply the previous proposition. �

We have a Galois representation GF → GL2(T
(p)
Q ), which yields a surjection R̃Q → T

(p)
Q (where R̃Q

is the universal deformation ring of ρ unramified outside S ∪ Sp ∪ Q). This Galois representation is not
necessarily ordinary at the places above p, but the induced representation GF → GL2(TQ) is. The resulting

map R̃Q → TQ is not longer surjective, but there is a natural surjection RQ → TQ of R̃Q-algebras.

In the next section, it will be important to have framed versions of everything. For v ∈ S ∪ Sp we let R�
v

be the framed local deformation ring. (It is actually the only one that makes sense; what we had called Rv

before does not really exist as a ring.) We let (R′
v)

� be the modification at places above p. We let B be the
tensor product of the R�

v for v ∈ S and the (R′
v)

� for v ∈ Sp. We let R�
Q be like RQ but have framings at

all places in S ∪ Sp. It is an algebra over B. Finally, we define T�
Q = TQ ⊗RQ R

�
Q and M�

Q =MQ ⊗TQ T
�
Q .

5. The patching argument

For each TW set of primes we have constructed a ring RQ and given it the structure of a module over

O[∆Q], which is a ring of the form O[T1, . . . , Tn]/(T
pai

i = 1) where n = #Q. We would like to use various
Q’s to build a ring R∞ which is an algebra over OJT1, . . . , TnK for some n (which does not obviously factor
through a large quotient). To do this, we need to hold #Q fixed and let its elements have norm congruent
to 1 modulo higher and higher powers of p. There will not be natural maps between the various RQ’s, but
we will nonetheless manage to find maps between pieces of these rings by a sort of pigeonhole principle.

We now assume that we can find integers h and g and for each n a TW set of primes Qn satisfying the
following conditions:

• #Qn = h
• N v = 1 (mod pn) for all v ∈ Qn

• R�
Qn

is topologically generated by g elements over B.
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We extend each Qn to a TW datum by arbitrarily choosing eigenvalues. We write R�
n in place of R�

Qn
, and

make this convention for other notations (e.g.,M�
n ). We did not give motivation for the last condition, but

it is a natural condition to impose if we want patched ring R�
∞ to be finitely generated. We fix surjections

BJz1, . . . , zgK → R�
n for each n.

For a complete local ring A let mA denote its maximal ideal. Also, let m
(n)
A denote the ideal generated

by nth powers of elements of A; this is not the same as mn
A. Let ℓ = 4(#Sp +#S)− 1 and define

P = OJx1, . . . , xℓ, y1, . . . , yhK.
We make R�

n into a P -algebra by letting the xi be the framing variables and letting the yi act through a
chosen surjection OJy1, . . . , yhK → O[∆n]. For an integer n let cn be the ideal of P generated by

(πn, xp
n

1 , . . . , xp
n

ℓ , (y1 + 1)p
n − 1, . . . , (yh + 1)p

n − 1)

(where π is a uniformizer of O). Let s denote the rank ofM0 over O. For an integer n let rn = snpn(h+ ℓ).
We remind the reader that R�

n is an algebra over B and that M�
n is an R�

n -module.
A patching datum of level n consists of the following:

• A complete local B-algebra D with m
(rn)
D = 0.

• A map of O-algebras P/cn → D.

• A surjection of B-algebras D → R�
0 /(cnR

�
0 +m

(rn)

R�
0

).

• A surjection of B-algebras BJz1, . . . , zgK → D.
• A D-module L which is finite free over P/cn of rank s.
• A surjection of BJz1, . . . , zgK modules L→M�

0 /cnM
�
0 .

The number of elements of D is finite (it can be bounded in terms of B and n). We thus find that, up to
the obvious notion of isomorphism, there are only finitely many patching data of a given level.

Let m ≥ n be integers. Put

Dn,m = R�
m/(cnR

�
m +m

(rn)

R�
m

), Ln,m =M�
m/cnM

�
m.

One verifies that (Dn,m, Ln,m) is a patching datum of level n. Since there only only finitely many patching
data of a given level, we can pass to a subsequence and assume Dn,m = Dn,n and Ln,m = Ln,n for all m ≥ n.
Denote the common value by Dn and Ln. Then the maps

Dn+1/(cnDn+1 +m
(rn)
Dn+1

) → Dn, Ln+1/cnLn → Ln

are isomorphisms.
Let R�

∞ be the inverse limit of the Dn and M�
∞ the inverse limit of the Ln. The space M�

∞ is a free
P -module of rank s. The ring R�

∞ is a P -algebra and a B-algebra, and there is a given surjection

BJz1, . . . , zgK → R�
∞.

Since P is a power series ring, the map P → R�
∞ can be lifted through the above surjection. We now have

the following lemma:

Lemma 6. Let R → S be a map of noetherian domains of the same dimension and let M be a non-zero
S-module which is finite projective over R. Then R → S is a finite map. If R and S are regular then M is
a finite projective faithful S-module.

Now, by the way we chose our deformation conditions, B is a domain and B[1/p] is smooth over Qp.
(These are theorems that we need to prove!) Note that B being a domain is the hypothesis mentioned at
the beginning of these notes, that our local deformation spaces needed to be irreducible. We now assume:

dimB = 1 + h+ ℓ− g.

We will address this assumption below. This dimension assumption implies that P and BJz1, . . . , zgK have
the same dimension. We conclude from the lemma that BJz1, . . . , zgK is finite over P andM [1/p] is a faithful

BJz1, . . . , zgK[1/p] module. The former implies that R�
∞ is finite over P while the latter implies thatM�

∞[1/p]

is a faithful R�
∞[1/p] module (since the map BJz1, . . . , zgK → End(M�

∞) factors through R�
∞).

Now, by the construction of R�
∞ and M�

∞ we have isomorphisms

R�
∞/(y1, . . . , yh)R

�
∞ → R�

0 , M�
∞/(y1, . . . , yh)M

�
∞ →M�

0 .
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It follows that R�
0 is finite over OJx1, . . . , xℓK, which implies that R0 is finite over O. Since M�

0 is free
over P , we see that the action of R�

0 [1/p] on M
�
0 [1/p] is still faithful. Since this action came via the map

R�
0 → T�

0 , we conclude that R�
0 [1/p] → T�

0 [1/p] is injective. Since we already knew this to be surjective, it
must be an isomorphism.

6. Resolving the assumptions

In the last section we proved Theorem 2 assuming the following: there exist integers h and g satisfying

dimB = 1 + h+ ℓ− g

such that for every integer n there is a set of primes Qn satisfying:

• #Qn = h
• N v = 1 (mod pn) for all v ∈ Qn

• RQn is topologically generated by g elements over B.

In fact, one can find Qn as above with

h = dimH1(GF,S , ad
◦ ρ(1))

g = h− [F : Q] + #S +#Sp − 1.

The proof of this will probably require its own talk; it is purely Galois theoretic and makes no use of modular
forms. It uses condition (A3), the assumption p > 5 and certain conditions on vaux that we did not state.
Now,

dimRv − dimO =

{
3 v ∈ S

3 + [Fv : Qp] v ∈ Sp

and so

dimB − dimO =
∑

v∈S

3 +
∑

v∈Sp

(3 + [Fv : Qp])

= 3#S + 3#Sp + [F : Q]

= h+ ℓ− g.

(Since B is the tensor product of the Rv over O, the relative dimension of B over O is the sum of the relative
dimensions of the Rv over O.) Therefore everything works!
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Def�(ρ)(A) = lim←−Def�(ρ)(A/mi).

❚❤❡ ❢✉♥❝t♦rs Def ❛♥❞ Def� ❛r❡ ♥♦t ❛❧✇❛②s r❡♣r❡s❡♥t❛❜❧❡✳ ❍♦✇❡✈❡r✱ ✇❡ ✐♠♣♦s❡
s♦♠❡ r❡str✐❝t✐♦♥s t♦ ❣✉❛r❛♥t❡❡ t❤❛t ❛t ❧❡❛st Def� ✇✐❧❧ ❜❡✳ ❲❡ s❛② t❤❛t G s❛t✐s✜❡s t❤❡
p✲✜♥✐t❡♥❡ss ❝♦♥❞✐t✐♦♥ ✐❢ ❢♦r ❡✈❡r② ♦♣❡♥ s✉❜❣r♦✉♣ H ⊂ G ♦❢ ✜♥✐t❡ ✐♥❞❡①✱ t❤❡r❡ ❛r❡ ♦♥❧②
✜♥✐t❡❧② ♠❛♥② ❝♦♥t✐♥✉♦✉s ❤♦♠♦♠♦r♣❤✐s♠s H → Z/pZ✳ ❋r♦♠ ♥♦✇ ♦♥✱ ✇❡✬❧❧ ❛ss✉♠❡
t❤❛t G s❛t✐s✜❡s t❤❡ p✲✜♥✐t❡♥❡ss ❝♦♥❞✐t✐♦♥✳ ❚❤✐s ✐s ❛ r❡❛s♦♥❛❜❧❡ ❛ss✉♠♣t✐♦♥✱ s✐♥❝❡ ✐t
❤♦❧❞s ✐♥ ❝❛s❡s ✇❡✬r❡ ❧✐❦❡❧② t♦ ❝❛r❡ ❛❜♦✉t✳ ❋♦r ❡①❛♠♣❧❡✱ ✐❢ K ✐s ❛ ❣❧♦❜❛❧ ✜❡❧❞ ♥♦t ♦❢
❝❤❛r❛❝t❡r✐st✐❝ p ❛♥❞ S ✐s ❛ ✜♥✐t❡ s❡t ♦❢ ♣❧❛❝❡s✱ t❤❡♥ GK,S s❛t✐s✜❡s t❤❡ p✲✜♥✐t❡♥❡ss
❝♦♥❞✐t✐♦♥ ❢♦r ❛❧❧ p✳ ❆❧s♦✱ ✐❢ K ✐s ❛ ❧♦❝❛❧ ✜❡❧❞ ♦❢ r❡s✐❞✉❡ ❝❤❛r❛❝t❡r✐st✐❝ p✱ t❤❡♥ GK

s❛t✐s✜❡s t❤❡ ℓ✲✜♥✐t❡♥❡ss ❝♦♥❞✐t✐♦♥ ❢♦r ❛❧❧ ℓ 6= p✳

❉❛t❡✿ ✸✵ ▼❛r❝❤✱ ✷✵✶✵✳

✶
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■♥ t❤✐s ❝❛s❡✱ Def�(ρ) ✐s r❡♣r❡s❡♥t❛❜❧❡❀ ❝❛❧❧ ✐ts r❡♣r❡s❡♥t✐♥❣ ♦❜❥❡❝t R�(ρ)✳ ■❢ Def(ρ)
✐s ❛❧s♦ r❡♣r❡s❡♥t❛❜❧❡✱ ❝❛❧❧ ✐ts r❡♣r❡s❡♥t✐♥❣ ♦❜❥❡❝t R(ρ)✳ ❚❤❡s❡ ❛r❡ t❤❡ ❢r❛♠❡❞ ❞❡❢♦r✲
♠❛t✐♦♥ r✐♥❣ ❛♥❞ t❤❡ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣✱ r❡s♣❡❝t✐✈❡❧②✳ ❈♦♥❝r❡t❡❧②✱ ✇❤❡♥ Def�(ρ) ♦r
Def(ρ) ✐s r❡♣r❡s❡♥t❛❜❧❡✱ t❤✐s ♠❡❛♥s t❤❛t t❤❡r❡ ✐s s♦♠❡ r✐♥❣ R�(ρ) ♦r R(ρ) s♦ t❤❛t ❛♥②
❞❡❢♦r♠❛t✐♦♥ ❢❛❝t♦rs ✉♥✐q✉❡❧② t❤r♦✉❣❤ t❤❡ ♠❛♣

G→ GLn(R
�(ρ)) ♦r G→ GLn(R(ρ)).

❙❝❤❧❡ss✐♥❣❡r✬s ❝r✐t❡r✐♦♥ t❡❧❧s ✉s ✇❤❡♥ ❢✉♥❝t♦rs CΛ → ❙❡ts ❛r❡ ✭♣r♦✮✲r❡♣r❡s❡♥t❛❜❧❡✳
❲❤❡♥ ✇❡ ❛♣♣❧② ✐t t♦ t❤❡ ❝❛s❡ ♦❢ t❤❡ ❞❡❢♦r♠❛t✐♦♥ ❢✉♥❝t♦r✱ ✇❡ ❣❡t t❤❡ ❢♦❧❧♦✇✐♥❣✿

Pr♦♣♦s✐t✐♦♥ ✶✳ ■❢ G s❛t✐s✜❡s t❤❡ p✲✜♥✐t❡♥❡ss ❝♦♥❞✐t✐♦♥ ❛♥❞ EndG(ρ) = k ✭ρ ✐s ❛❜✲
s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡✱ ♠❡❛♥✐♥❣ t❤❛t ρ⊗k k

′ ✐s ✐rr❡❞✉❝✐❜❧❡ ❢♦r ❛❧❧ ✜♥✐t❡ ❡①t❡♥s✐♦♥s k′/k✮✱
t❤❡♥ Def(ρ) ✐s r❡♣r❡s❡♥t❛❜❧❡✳

❋♦r ❛♥♦t❤❡r ❡①❛♠♣❧❡ ♦❢ r❡♣r❡s❡♥t❛❜✐❧✐t② ♦❢ ❞❡❢♦r♠❛t✐♦♥ ❢✉♥❝t♦rs✱ ✇❡ r❡✈✐❡✇ ♦r❞✐♥❛r②
❞❡❢♦♠r❛t✐♦♥s✳ ▲❡t K ❜❡ ❛ p✲❛❞✐❝ ✜❡❧❞✱ ❛♥❞ ❧❡t ψ : GK → Z×

p ❜❡ t❤❡ p✲❛❞✐❝ ❝②❝❧♦✲
t♦♠✐❝ ❝❤❛r❛❝t❡r✳ ❆♥ n✲❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ρ ♦❢ G ✐s s❛✐❞ t♦ ❜❡ ✭❞✐st✐♥❣✉✐s❤❡❞✮
♦r❞✐♥❛r② ✐❢ t❤❡r❡ ❡①✐st ✐♥t❡❣❡rs e1 > e2 > · · · > en−1 > en = 0 s♦ t❤❛t

ρ |IK∼




ψe1 ∗ · · · ∗
0 ψe2 · ∗
0 0

✳ ✳ ✳ ∗
0 0 · · · ψen = 1


 .

❋♦r ✜①❡❞ e1, . . . , en ✇❤✐❝❤ ❛r❡ ❞✐st✐♥❝t ♠♦❞✉❧♦ p−1✱ t❤❡ ♦r❞✐♥❛r② ❞❡❢♦r♠❛t✐♦♥ ❢✉♥❝t♦r
Deford(ρ) ✐s t❤❡ s✉❜❢✉♥❝t♦r ♦❢ Def(ρ) ❝♦♥s✐st✐♥❣ ♦❢ ♦♥❧② t❤❡ ❞✐st✐♥❣✉✐s❤❡❞ ♦r❞✐♥❛r②
❧✐❢ts ♦❢ ρ ❢♦r t❤❛t ❝❤♦✐❝❡ ♦❢ e1, . . . , en✳

Pr♦♣♦s✐t✐♦♥ ✷✳ ■❢ ❛ t✇♦✲❞✐♠❡♥s✐♦♥❛❧ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ρ ✐s ♥♦♥✲s♣❧✐t✱ t❤❡♥
Deford(ρ) ✐s r❡♣r❡s❡♥t❛❜❧❡✳ ▼♦r❡ ❣❡♥❡r❛❧❧②✱ ✐❢ ρ ✐s n✲❞✐♠❡♥s✐♦♥❛❧✱ ❛♥❞ ❡✈❡r② 2 × 2
❞✐❛❣♦♥❛❧ ♠✐♥♦r ✐s ♥♦♥✲s♣❧✐t✱ t❤❡♥ Deford(ρ) ✐s r❡♣r❡s❡♥t❛❜❧❡✳

▲❡t✬s r❡❝❛❧❧ s♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣s✳ ❆♥ ✐♠♣♦rt❛♥t ♣r♦♣❡rt② ♦❢ ❞❡❢♦r✲
♠❛t✐♦♥ r✐♥❣s ✐s t❤❛t t❤❡② ❝♦♠♠✉t❡ ✇✐t❤ ✜♥✐t❡ ❡①t❡♥s✐♦♥ ♦❢ r❡s✐❞✉❡ ✜❡❧❞s✳ ❚❤❛t ✐s✱
s✉♣♣♦s❡ k′/k ✐s ❛ ✜♥✐t❡ ❡①t❡♥s✐♦♥✳ ▲❡t ρ ❜❡ ❛♥ ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡ r❡s✐❞✉❛❧ r❡♣r❡✲
s❡♥t❛t✐♦♥ ♦❢ k❀ ✇❡ ❝❛♥ ❡①t❡♥❞ s❝❛❧❛rs t♦ k′ t♦ ❣❡t ❛♥ ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡ r❡s✐❞✉❛❧
r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ k′✳ ❚❤❡♥✱ ✐❢ W (k) ❞❡♥♦t❡s t❤❡ r✐♥❣ ♦❢ ❲✐tt ✈❡❝t♦rs ♦✈❡r k✱ ✇❡ ❤❛✈❡

R�(ρ)⊗W (k) W (k′) ∼= R�(ρ⊗k k
′),

R(ρ)⊗W (k) W (k′) ∼= R(ρ⊗k k
′).

❙✉♣♣♦s❡ ρ ✐s ❛♥ ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❞✐♠❡♥s✐♦♥ N ✱ ❛♥❞
❧❡t det : GLN(k)→ GL1(k) ❜❡ t❤❡ ❞❡t❡r♠✐♥❛♥t ♠❛♣✳ ❚❤❡♥ t❤❡r❡ ✐s ❛ ♥❛t✉r❛❧ ❤♦♠♦✲
♠♦r♣❤✐s♠

R(det(ρ))→ R(ρ).
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▼♦r❡ ❣❡♥❡r❛❧❧②✱ ✐❢ δ : GLN → GLM ✐s ❛ ❤♦♠♦♠♦r♣❤✐s♠ ♦❢ ❣r♦✉♣ s❝❤❡♠❡s✱ ✇❡ ❣❡t ❛
♥❛t✉r❛❧ ♠❛♣ ♦❢ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣s

R(δ(ρ))→ R(ρ).

❉❡❢♦r♠❛t✐♦♥ r✐♥❣s ❛❧s♦ ❝♦♠♠✉t❡ ✇✐t❤ t❡♥s♦r ♣r♦❞✉❝ts ♦❢ r❡♣r❡s❡♥t❛t✐♦♥s✳ ▲❡t π, ρ
❜❡ t✇♦ ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥s ✇❤♦s❡ t❡♥s♦r ♣r♦❞✉❝t ✐s ❛❧s♦
❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡✳ ❚❤❡♥ ✇❡ ❣❡t ❛ ♥❛t✉r❛❧ ♠❛♣

R(π ⊗ ρ)→ R(π)⊗̂R(ρ).
■❢ π ✐s ❛ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ r❡♣r❡s❡♥t❛t✐♦♥✱ ✐✳❡✳ ❛ ❝❤❛r❛❝t❡r✱ ✇❡ ❝❛❧❧ t❤✐s ♠❛♣ t✇✐st✐♥❣

❜② π✳
❉❡❢♦r♠❛t✐♦♥ r✐♥❣s ❛r❡ ❛❧s♦ ❢✉♥❝t♦r✐❛❧ ✐♥ t❤❡ ❝❤♦✐❝❡ ♦❢ ♣r♦✜♥✐t❡ ❣r♦✉♣✳ ▲❡t φ : G→

G′ ❜❡ ❛ ❣r♦✉♣ ❤♦♠♦♠♦r♣❤✐s♠✱ ❛♥❞ ❧❡t ρ ❜❡ ❛ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ G′✳ ❚❤❡♥
❝♦♠♣♦s✐t✐♦♥ ✇✐t❤ φ ❣✐✈❡s ❛ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ G✳ ❚❤✐s ❣✐✈❡s ✉s ❛ ♠❛♣

RG(ρ)→ RG′(ρ).

❆♥ ✐♠♣♦rt❛♥t ❡①❛♠♣❧❡ ♦❢ ❞❡❢♦r♠❛t✐♦♥s ❝♦♠❡s ❢r♦♠ ❧♦♦❦✐♥❣ ❛t t❤❡ ❩❛r✐s❦✐ t❛♥❣❡♥t
s♣❛❝❡✳ ▲❡t k[ε] ❞❡♥♦t❡ t❤❡ ❞✉❛❧ ♥✉♠❜❡rs✳ ■❢ F : ĈΛ → ❙❡ts ✐s ❛ ❢✉♥❝t♦r✱ ✐ts t❛♥❣❡♥t
s♣❛❝❡ ✐s F (k[ε]) =: tF ✳
▲❡t V ∈ tDef(ρ)✳ ❚❤❡♥ V/εV ∼= ρ✱ s♦ ✇❡ ❤❛✈❡ ❛ s❤♦rt ❡①❛❝t s❡q✉❡♥❝❡

0→ εV → V → ρ→ 0.

❆s G✲♠♦❞✉❧❡s✱ εV ∼= ρ✱ s♦

tDef(ρ)
∼= Ext1k[G](ρ, ρ) = H1(G,Ad(ρ)) = (m/(m, p))2

❢♦r ρ ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡✳ ❍❡r❡✱ Ad(ρ) ✐s ❞❡✜♥❡❞ ❛s ❢♦❧❧♦✇s✿ ✐t ✐s t❤❡ r❡♣r❡s❡♥t❛t✐♦♥
♦❢ G ✇❤♦s❡ ✉♥❞❡r❧②✐♥❣ ✈❡❝t♦r s♣❛❝❡ ✐s MN(k)✱ ❛♥❞ ✇❤♦s❡ G✲❛❝t✐♦♥ ✐s ❣✐✈❡♥ ❜② g.m =
ρ(g)−1mρ(g)✳
▲❡t G ❜❡ GK ✐❢ K ✐s ❛ ❧♦❝❛❧ ✜❡❧❞✱ ♦r GK,S ❢♦r s♦♠❡ ✜♥✐t❡ s❡t ♦❢ ♣❧❛❝❡s S ✐❢ K ✐s ❛

❣❧♦❜❛❧ ✜❡❧❞✳ ❋✐① ❛ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ρ : G → GLn(k)✳ ■❢ ❛ ❞❡❢♦r♠❛t✐♦♥ ❢✉♥❝t♦r
F ❢♦r ρ ✐s r❡♣r❡s❡♥t❡❞ ❜② R✱ t❤❡♥ ✇❡ ❤❛✈❡

tF = F (k[ε]) = HomΛ(R, k[ε]) = HomΛ(R/(m
2
R +mΛ), k[ε]).

❙✐♥❝❡ ✇❡ ❛❧s♦ ❤❛✈❡
R

m2
R +mΛ

= k ⊕ mR

m2
R +mΛ

,

❛♥❞ t❤❡ s❡❝♦♥❞ s✉♠♠❛♥❞ ❤❛s sq✉❛r❡ ③❡r♦✱ ✇❡ ❤❛✈❡

tF = Homk

(
mR

m2
R +mΛ

, k

)
= t∗R,

✇❤❡r❡ ❢♦r A ∈ ĈΛ✱ ✇❡ s❡t
tA =

mA

m2
A +mΛ

,
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❛♥❞ t∗A ✐s ✐ts ❞✉❛❧✳

✷✳ ❲❤② st✉❞② ●❛❧♦✐s ❞❡❢♦r♠❛t✐♦♥s❄

❲❡✬r❡ ♠♦st❧② ✐♥t❡r❡st❡❞ ✐♥ t❤❡ ❝❛s❡ ♦❢ G = GK,S ❢♦r s♦♠❡ ✜♥✐t❡ s❡t ♦❢ ♣❧❛❝❡s S ♦❢
❛ ♥✉♠❜❡r ✜❡❧❞ K✳ ❚❤❡r❡ ❛r❡ s❡✈❡r❛❧ r❡❛s♦♥s t❤❛t t❤✐s ✐s ❛ ❣♦♦❞ ✐❞❡❛✳

✭✶✮ ❲❡ ❝❛♥ s♣❡❝✐❢② ❛ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ρ : GK,S → GLN(k) ✉s✐♥❣ ♦♥❧② ❛
✜♥✐t❡ ❛♠♦✉♥t ♦❢ ❞❛t❛✱ ❛♥❞ t❤❡r❡ ❛r❡ ♦♥❧② ✜♥✐t❡❧② ♠❛♥② s✉❝❤ r❡♣r❡s❡♥t❛t✐♦♥s✱
❢♦r K✱ S✱ N ✱ ❛♥❞ k ✜①❡❞✳ ❲❤❡♥ ρ ✐s ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡✱ ✇❡ s❛✇ t❤❛t ✇❡
❤❛✈❡ ❛ ✉♥✐✈❡rs❛❧ ❞❡❢♦r♠❛t✐♦♥✱ s♦ ❛❧❧ t❤❡ ❧✐❢ts ♦❢ ρ ❝❛♥ ❜❡ ♣❛❝❦❛❣❡❞ t♦❣❡t❤❡r
✐♥t♦ ❛ s✐♥❣❧❡ ❝♦♠♣❧❡t❡ ♥♦❡t❤❡r✐❛♥ ❧♦❝❛❧ r✐♥❣ ✇✐t❤ r❡s✐❞✉❡ ✜❡❧❞ k✳

✭✷✮ ❲❡ ♠✐❣❤t s♦♠❡t✐♠❡s ❜❡ ✐♥t❡r❡st❡❞ ✐♥ st✉❞②✐♥❣ t❤♦s❡ ❞❡❢♦r♠❛t✐♦♥s ♦❢ ρ t❤❛t
❤❛✈❡ ♣❛rt✐❝✉❧❛r ♣r♦♣❡rt✐❡s✳ ❋♦r ❡①❛♠♣❧❡✱ ✇❡ ♠❡♥t✐♦♥❡❞ ♦r❞✐♥❛r② ❞❡❢♦r♠❛t✐♦♥s
❡❛r❧✐❡r✳ ❆♥♦t❤❡r ♣♦ss✐❜✐❧✐t② t❤❛t✬s r❡❧❡✈❛♥t t♦ ✉s ✇♦✉❧❞ ❜❡ t♦ ❧♦♦❦ ❛t ♠♦❞✉✲
❧❛r ❞❡❢♦r♠❛t✐♦♥s✿ t❤♦s❡ r❡♣r❡s❡♥t❛t✐♦♥s ❝♦♠✐♥❣ ❢r♦♠ ♠♦❞✉❧❛r ❢♦r♠s✳ ❚❤❡s❡
❝♦rr❡s♣♦♥❞ t♦ q✉♦t✐❡♥ts ♦❢ t❤❡ ✉♥✐✈❡rs❛❧ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣✳ P❧❛❝✐♥❣ s✉❝❤ ❝♦♥❞✐✲
t✐♦♥s ♦♥ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥s ❛t ❧❡❛st ❝♦♥❥❡❝t✉r❛❧❧② ❛♠♦✉♥ts t♦ ✐♠♣♦s✐♥❣ ❧♦❝❛❧
❝♦♥❞✐t✐♦♥s ❛t t❤❡ r❛♠✐✜❡❞ ♣r✐♠❡s✳ ❲❡✬❧❧ ❞✐s❝✉ss t❤✐s ❛ ❜✐t ♠♦r❡ ❧❛t❡r✳

✸✳ ●❛❧♦✐s ❝♦❤♦♠♦❧♦❣②

❲❡ ♥♦✇ r❡✈✐❡✇ s♦♠❡ ❝♦❤♦♠♦❧♦❣② ♦❢ ❧♦❝❛❧ ✜❡❧❞s✳ ▲❡t K ❜❡ ❛ ✜♥✐t❡ ❡①t❡♥s✐♦♥ ♦❢ Qp✱
✇✐t❤ ●❛❧♦✐s ❣r♦✉♣ GK ✳ ▲❡t µ ❜❡ t❤❡ r♦♦ts ♦❢ ✉♥✐t② ♦❢ Ks✳ ■❢M ✐s ❛ ✜♥✐t❡ GK✲♠♦❞✉❧❡✱
s❡t M ′ = Hom(M,µ)✳ ❚❤❡♥ ❢♦r 0 ≤ i ≤ 2✱ t❤❡ ❝✉♣ ♣r♦❞✉❝t

H i(K,M)⊗H2−i(K,M ′)→ H2(K,µ) ∼= Q/Z

✐s ❛ ♣❡r❢❡❝t ♣❛✐r✐♥❣✳
❲❡ ❤❛✈❡ ❛ s✐♠✐❧❛r st❛t❡♠❡♥t ✇❤❡♥ M ✐s ❛♥ ℓ✲❛❞✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ GK ✳ ▲❡t ℓ ❜❡

❛ ♣r✐♠❡✱ ♣♦ss✐❜❧② ❡q✉❛❧ t♦ p✱ ❛♥❞ ❧❡t F ❜❡ ❛ ✜♥✐t❡ ❡①t❡♥s✐♦♥ ♦❢ Qℓ✳ ❙✉♣♣♦s❡ T ✐s
❛ ❢r❡❡ oF ✲♠♦❞✉❧❡ ✇✐t❤ ❛ ❝♦♥t✐♥✉♦✉s oF ✲❧✐♥❡❛r GK✲❛❝t✐♦♥✱ ❛♥❞ ❧❡t V = T ⊗oF F ❜❡
t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ Qℓ✲✈❡❝t♦r s♣❛❝❡✳ ❚❤❡♥ GK ❛❝ts ♦♥ V ❛s ✇❡❧❧✳ ▲❡t V ∗ ❜❡ t❤❡ ❞✉❛❧
r❡♣r❡s❡♥t❛t✐♦♥ ❣✐✈❡♥ ❜② V ∗ = HomoF (V, F (1))✳ ❚❤❡♥ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❞✉❛❧✐t②
✐♥❞✉❝❡❞ ❜② t❤❡ ❝✉♣ ♣r♦❞✉❝t✿ ❢♦r 0 ≤ i ≤ 2✱

H i(K,V )⊗H2−i(K,V ∗)→ H2(K,F (1)) ∼= F

✐s ❛ ♣❡r❢❡❝t ♣❛✐r✐♥❣✳
■❢ M ✐s ❛ ✜♥✐t❡ GK✲♠♦❞✉❧❡✱ t❤❡♥ H i(K,M) ✐s ❛ ✜♥✐t❡ ❣r♦✉♣ ❢♦r 0 ≤ i ≤ 2✱ ❛♥❞

H i(K,M) = 0 ❢♦r i ≥ 3✳ ▲❡t hi(K,M) ❜❡ t❤❡ s✐③❡ ♦❢ H i(K,M)✳ ❚❤❡♥✱ ✇❡ ❞❡✜♥❡ t❤❡
❊✉❧❡r✲P♦✐♥❝❛ré ❝❤❛r❛❝t❡r✐st✐❝ ♦❢ M t♦ ❜❡

χ(M) =
h0(K,M)h2(K,M)

h1(K,M)
.

❲❡ r❡❝❛❧❧ ❛ ❢❡✇ ❦❡② ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❊✉❧❡r✲P♦✐♥❝❛ré ❝❤❛r❛❝t❡r✐st✐❝✳
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• ■❢ 0 → M ′′ → M → M ′ → 0 ✐s ❛ s❤♦rt ❡①❛❝t s❡q✉❡♥❝❡ ♦❢ ✜♥✐t❡ GK✲♠♦❞✉❧❡s✱
t❤❡♥ χ(M ′′)χ(M ′) = χ(M)✳
• ■❢ (p,#M) = 1✱ t❤❡♥ χ(M) = 1✳
• ▼♦r❡ ❣❡♥❡r❛❧❧②✱ ✐❢ x ∈ oK ✱ ❧❡t ‖x‖K ❜❡ t❤❡ ♥♦r♠❛❧✐③❡❞ ❛❜s♦❧✉t❡ ✈❛❧✉❡ ♦❢ x✱ s♦
t❤❛t

‖x‖K =
1

(oK : xoK)
.

■❢ #M = n✱ t❤❡♥

χ(M) = ‖n‖K = p−[K:Qp] ordp(n).

❙♦♠❡t✐♠❡s✱ ✇❡ ✇✐s❤ t♦ t❛❧❦ ❛❜♦✉t ❊✉❧❡r✲P♦✐♥❝❛ré ❝❤❛r❛❝t❡r✐st✐❝s ✇❤❡♥ t❤❡ GK✲
♠♦❞✉❧❡ ✐s ❛ Qp✲✈❡❝t♦r s♣❛❝❡ ♦r ❢r❡❡ Zp✲♠♦❞✉❧❡✳ ■♥ t❤❛t ❝❛s❡✱ ✐t ✇♦✉❧❞ ♥♦t ♠❛❦❡
s❡♥s❡ t♦ t❛❧❦ ❛❜♦✉t t❤❡ s✐③❡s ♦❢ t❤❡ ❝♦❤♦♠♦❧♦❣② ❣r♦✉♣s✱ ❜✉t ♦♥❧② ❛❜♦✉t t❤❡✐r r❛♥❦s
♦r ❞✐♠❡♥s✐♦♥s✳ ❲❡ ❝❛♥ ♠❛❦❡ s❡♥s❡ ♦❢ t❤✐s ✐♥ t❤❡ ❝❛s❡ ♦❢ ✜♥✐t❡ ♠♦❞✉❧❡s ✐♥st❡❛❞✱ ❜②
t❛❧❦✐♥❣ ♦❢ t❤❡✐r r❛♥❦s ❛s Fp✲✈❡❝t♦r s♣❛❝❡s✳ ▲❡t✬s ✇r✐t❡ h̃

i(K,M) ❢♦r t❤❡ ❞✐♠❡♥s✐♦♥ ♦❢
H i(K,M) ♦✈❡r Fp✱ ❛♥❞ ✇r✐t❡

χ̃(M) = h̃0(K,M)− h̃1(K,M) + h̃2(K,M).

❚❤❡♥ t❤❡ ❛❜♦✈❡ r❡s✉❧t ✐s ❡q✉✐✈❛❧❡♥t t♦

χ̃(M) = −[K : Qp] ordp(n).

■❢ M ✐s ✐♥st❡❛❞ ❛ Qp✲✈❡❝t♦r s♣❛❝❡ ♦r ❛ ❢r❡❡ Zp✲♠♦❞✉❧❡✱ ✇❡✬❧❧ ❧❡t h̃i(K,M) ❜❡ t❤❡
❞✐♠❡♥s✐♦♥ ♦r r❛♥❦ ♦❢ H i(K,M) ❛s ❛ Qp✲✈❡❝t♦r s♣❛❝❡ ♦r Zp✲♠♦❞✉❧❡✱ ❛♥❞ ✇❡✬❧❧ ❞❡✜♥❡
t❤❡ ❊✉❧❡r✲P♦✐♥❝❛ré ❝❤❛r❛❝t❡r✐st✐❝ s✐♠✐❧❛r❧②✳
▲❡t V ♥♦✇ ❜❡ ❛ Qp✲✈❡❝t♦r s♣❛❝❡ ♦❢ ❞✐♠❡♥s✐♦♥ d✳ ❋✐♥❞ ✐♥s✐❞❡ V ❛ GK✲st❛❜❧❡ ❧❛tt✐❝❡

T ✳ ❙✐♥❝❡ T = lim←−T/p
rT ❛♥❞ ❝♦❤♦♠♦❧♦❣② ❝♦♠♠✉t❡s ✇✐t❤ ✐♥✈❡rs❡ ❧✐♠✐ts✱ ✇❡ ❤❛✈❡

H i(K,T ) = lim←−H
i(K,T/prT ) ∼= lim←−H

i(K,Mr),

✇❤❡r❡ Mr ✐s ❛ GK✲♠♦❞✉❧❡ ♦❢ s✐③❡ pdr✳ ❇② t❤❡ ❛❜♦✈❡✱

χ̃(Mr) = −dr[K : Qp].

❚❛❦✐♥❣ ✐♥✈❡rs❡ ❧✐♠✐ts ❣✐✈❡s ✉s

χ̃(T ) = −d[K : Qp].

❚❡♥s♦r✐♥❣ ❞♦❡s♥✬t ❝❤❛♥❣❡ t❤❡ ❞✐♠❡♥s✐♦♥s ♦❢ t❤❡ ❝♦❤♦♠♦❧♦❣② ❣r♦✉♣s✱ s♦ ✇❡ ❛❧s♦ ❤❛✈❡

χ̃(V ) = −d[K : Qp].
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✹✳ ❊①❛♠♣❧❡s ♦❢ ❉❡❢♦r♠❛t✐♦♥ ❘✐♥❣s

■t ❝❛♥ ❜❡ ❤❡❧♣❢✉❧ t♦ ❤❛✈❡ ❛ r♦✉❣❤ ✐❞❡❛ ♦❢ ✇❤❛t ❞❡❢♦r♠❛t✐♦♥ r✐♥❣s ❧♦♦❦ ❧✐❦❡✳ ❲❤❡♥
t❤❡② ❡①✐st✱ t❤❡② t❡♥❞ t♦ ❜❡ q✉♦t✐❡♥ts ♦❢ ♣♦✇❡r s❡r✐❡s r✐♥❣s ♦✈❡r Zp✳ ▲❡t✬s ❧♦♦❦ ❛t s♦♠❡
❡①❛♠♣❧❡s✳

▲❡t S ❜❡ ❛ ✜♥✐t❡ s❡t ♦❢ ♣❧❛❝❡s ♦❢ Q✱ ❛♥❞ ❧❡t ρ : GQ,S → GL2(Fp) ❜❡ ❛ r❡♣r❡s❡♥t❛t✐♦♥✳
▲❡t E ❜❡ t❤❡ ✜①❡❞ ✜❡❧❞ ♦❢ ker(ρ)✱ ❛♥❞ ❧❡t H = Gal(E/Q)✳ ▲❡t

V = coker

(
µp(E)→

⊕

v∈S
µp(Ev)

)
.

❆ k[H]✲♠♦❞✉❧❡ W ✐s s❛✐❞ t♦ ❜❡ ♣r✐♠❡✲t♦✲❛❞❥♦✐♥t ✐❢ t❤❡r❡ ✐s s♦♠❡ s✉❜❣r♦✉♣ A
♦❢ H ♦❢ ♦r❞❡r ♣r✐♠❡ t♦ p s♦ t❤❛t W ❛♥❞ t❤❡ ❛❞❥♦✐♥t k[H]✲♠♦❞✉❧❡ M ❛r❡ r❡❧❛t✐✈❡❧②
♣r✐♠❡ ❛s k[A]✲♠♦❞✉❧❡s ✭s♦ t❤❡② s❤❛r❡ ♥♦ ❝♦♠♠♦♥ ✐r❡❞✉❝✐❜❧❡ s✉❜r❡♣r❡s❡♥t❛t✐♦♥s ❛s
A✲♠♦❞✉❧❡s✮✳

▲❡t ZS ❜❡ t❤❡ s❡t ♦❢ x ∈ Q× s♦ t❤❛t (x) ✐s ❛ pt❤ ♣♦✇❡r✱ ❛♥❞ s♦ t❤❛t x ∈ E×p
v ❢♦r

❡❛❝❤ v ∈ S✳ ❚❤❡♥ E×p ⊂ ZS✳ ▲❡t B = ZS/E
×p ❜❡ t❤❡ q✉♦t✐❡♥t Fp[H]✲♠♦❞✉❧❡✳

❲❡ s❛② ρ ✐s t❛♠❡ ✐❢ t❤❡ s✐③❡ ♦❢ t❤❡ ✐♠❛❣❡ ♦❢ ρ ✐s ♣r✐♠❡ t♦ p✳ ❲❡ s❛② ρ ✐s r❡❣✉❧❛r
✐❢ ✐t ✐s ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡✱ ♦❞❞✱ ❛♥❞ V ❛♥❞ B ❛r❡ ♣r✐♠❡✲t♦✲❛❞❥♦✐♥t✳

❊①❛♠♣❧❡✳ ■❢ ρ ✐s t❛♠❡ ❛♥❞ r❡❣✉❧❛r✱ t❤❡♥ R(ρ) ∼= Zp[[T1, T2, T3]]✳

❋♦r ❛ ❝♦♥❝r❡t❡ ❡①❛♠♣❧❡✱ ❧❡t E ❜❡ t❤❡ s♣❧✐tt✐♥❣ ✜❡❧❞ ♦❢ X3 − X − 1 ♦✈❡r Q✳ ❚❤❡♥
E ✐s ✉♥r❛♠✐✜❡❞ ❛✇❛② ❢r♦♠ ✷✸ ❛♥❞ ∞✳ ❚❤❡ ●❛❧♦✐s ❣r♦✉♣ Gal(E/Q) ∼= S3✳ ❙✐♥❝❡ S3

❤❛s ❛ ❢❛✐t❤❢✉❧ r❡♣r❡s❡♥t❛t✐♦♥ ✐♥ GL2(F23)✱ ✇❡ ❣❡t ❛♥ ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡ r❡s✐❞✉❛❧
r❡♣r❡s❡♥t❛t✐♦♥

ρ : GQ,{23,∞} → GL2(F23).

■ts ✉♥✐✈❡rs❛❧ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣ ✐s ✐s♦♠♦r♣❤✐❝ t♦ Z23[[T1, T2, T3]]✳
■❢ ρ ✐s ✐rr❡❣✉❧❛r✱ t❤❡ s✐t✉❛t✐♦♥ ✐s ❛ ❜✐t ♠♦r❡ ❝♦♠♣❧✐❝❛t❡❞✳
❈♦♥s✐❞❡r t❤❡ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥

ρ : GQ,{3,7,∞} → GL2(F3)

❝♦♠✐♥❣ ❢r♦♠ t❤❡ ❡❧❧✐♣t✐❝ ❝✉r✈❡ X0(49)✳ ❚❤❡♥ t❤❡ ✉♥✐✈❡rs❛❧ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣ ✐s ✐s♦✲
♠♦r♣❤✐❝ t♦ Z3[[T1, T2, T3, T4]]/((1 + T4)

3 − 1)✳

❊①❛♠♣❧❡✳ ▲❡t D ❜❡ ❛♥ ✐♥t❡❣❡r ❝♦♥❣r✉❡♥t t♦ −1 (mod 3) ❛♥❞ ❛❧s♦ ± ❛ ♣♦✇❡r ♦❢ ✷✱
❛♥❞ ❧❡t E/Q ❜❡ t❤❡ ❡❧❧✐♣t✐❝ ❝✉r✈❡ ❞❡✜♥❡❞ ❜② y2 = x(x2 − 4Dx + 2D2)✳ ❚❤❡♥ E ❤❛s
❝♦♠♣❧❡① ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❜② Q(

√
−2)✳ ▲❡t S = {2, 3}✱ ❛♥❞ ❧❡t ρ : GQ,S → GL2(F3) ❜❡

t❤❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛ss♦❝✐❛t❡❞ t♦ E✳ ❚❤❡♥ R(ρ) ∼= Z3[[T1, T2, T3, T4, T5]]/I✱ ✇❤❡r❡ I ✐s
❛♥ ✐❞❡❛❧ t❤❛t t❛❦❡s ❛ ✇❤✐❧❡ t♦ ❞❡✜♥❡✳

❲❡ ❝❛♥ ❣✐✈❡ ❜♦✉♥❞s ♦♥ t❤❡ ♥✉♠❜❡r ♦❢ ✭♣r♦✜♥✐t❡✮ ❣❡♥❡r❛t♦rs ❛♥❞ r❡❧❛t✐♦♥s ✐t t❛❦❡s
t♦ ♣r❡s❡♥t ❛ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣✳ ❙❛♠✐t s❤♦✇❡❞ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥ ❤✐s ❧❡❝t✉r❡ ✐♥ t❤❡ ❢❛❧❧✿
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❚❤❡♦r❡♠ ✸✳ ▲❡t K ❜❡ ❛ p✲❛❞✐❝ ✜❡❧❞✱ ❛♥❞ ❧❡t G = GK ✭❢♦r ❡①❛♠♣❧❡✮✳ ▲❡t r =
dimZ1(G,Ad(ρ)) ❛♥❞ s = dimH2(G,Ad(ρ))✳ ❚❤❡♥ R�(ρ) ❡①✐sts✱ ❛♥❞ ❝❛♥ ❜❡ ♣r❡✲
s❡♥t❡❞ ❛s

R�(ρ) ∼= oK [[T1, . . . , Tr]]/(f1, . . . , fs).

■♥ t❤❡ ✉♥❢r❛♠❡❞ ❝❛s❡✱ ✇❡ ❤❛✈❡ dimR(ρ) ≥ 2− χ̃(G,Ad(ρ))✳
❲❡ ❛❧s♦ ❤❛✈❡

dim(R/pR) ≥ dimH1(G,Ad(ρ))− dimH2(G,Ad(ρ)),

✇❤❡r❡ t❤❡ ❧❡❢t s✐❞❡ ✐s t❤❡ ❑r✉❧❧ ❞✐♠❡♥s✐♦♥✳

✺✳ ❈❤❛r❛❝t❡r✐st✐❝ ③❡r♦ ♣♦✐♥ts ♦❢ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣s

▲❡t S ❜❡ ❛ ✜♥✐t❡ s❡t ♦❢ ♣❧❛❝❡s ♦❢ Q✳ ❋✐① ❛♥ ❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡ r❡s✐❞✉❛❧ r❡♣r❡s❡♥✲
t❛t✐♦♥ ρ : GQ,S → GLN(k)✱ ❛♥❞ ❧❡t ρ : GQ,S → GLN(R) ❜❡ ✐ts ✉♥✐✈❡rs❛❧ ❞❡❢♦r♠❛t✐♦♥✳
❲❡ s❛✇ ❡❛r❧✐❡r t❤❛t R ❧♦♦❦s s♦♠❡t❤✐♥❣ ❧✐❦❡ Zp[[x]]✱ ❜✉t R[1/p] ✐s st✐❧❧ ❢❛r ❢r♦♠ ❜❡✐♥❣
❛ ❧♦❝❛❧ r✐♥❣✿ ✐♥ t❤❡ ❝❛s❡ ♦❢ R = Zp[[x]]✱ R[1/p] = Zp[[x]][1/p] ( Qp[[x]]✱ s✐♥❝❡ t❤❡ ♣♦✇❡r
s❡r✐❡s ♦♥ t❤❡ ❧❡❢t s✐❞❡ ♥❡❡❞ t♦ ❤❛✈❡ ❛s ❞❡♥♦♠✐♥❛t♦rs ❜♦✉♥❞❡❞ ♣♦✇❡rs ♦❢ p✳ ❚❤❡r❡ ❛r❡
♠❛♥② Qp✲❛❧❣❡❜r❛ ❤♦♠♦♠♦r♣❤✐s♠s Zp[[x]][1/p] ։ oK [1/p] ❢♦r ✈❛r✐♦✉s ✜♥✐t❡ ❡①t❡♥s✐♦♥s
K/Qp✱ ✇❤❡r❡ t❤❡ ✜rst ♠❛♣ s❡♥❞s x t♦ ❛ ✉♥✐❢♦r♠✐③❡r ♦❢ K✳ ❚❤✉s✱ R[1/p] ❤❛s ❧♦ts ♦❢
♠❛①✐♠❛❧ ✐❞❡❛❧s✱ ✐♥ t❤✐s ❝❛s❡✳ ❙♦♠❡t❤✐♥❣ s✐♠✐❧❛r ❤♦❧❞s ❢♦r ❣❡♥❡r❛❧ ✉♥✐✈❡rs❛❧ ❞❡❢♦r♠❛✲
t✐♦♥ r✐♥❣s✳ ❚❤❡ ♠❛①✐♠❛❧ ✐❞❡❛❧s ♦❢ R[1/p] ❝♦rr❡s♣♦♥❞ t♦ ❞❡❢♦r♠❛t✐♦♥s ♦❢ ρ ❧❛♥❞✐♥❣ ✐♥
✜♥✐t❡ ❡①t❡♥s✐♦♥s ♦❢ Qp✳
■❢ W ✐s ❛ ❝♦♠♣❧❡t❡ ❉❱❘✱ ❛♥❞ R ✐s ❛ q✉♦t✐❡♥t ♦❢ ❛ ♣♦✇❡r s❡r✐❡s r✐♥❣ ✐♥ s❡✈❡r❛❧

✈❛r✐❛❜❧❡s ♦✈❡r W ✱ ❛♥❞ ̟ ✐s ❛ ✉♥✐❢♦r♠✐③❡r ♦❢ W ✱ t❤❡♥ R[1/̟]/m ✐s ✜♥✐t❡ ♦✈❡r W [1/̟]
❢♦r ❛♥② m ∈ MaxSpec(R[1/̟])✳
❲❡✬❞ ❧✐❦❡ t♦ ✉♥❞❡rst❛♥❞ ✇❤❛tR[1/p] ❧♦♦❦s ❧✐❦❡✳ ▲❡tR = W [[x1, . . . , xn]]/(f1, . . . , fm)✳

❚❤❡♥✱ ❢♦r ❛♥② ✜♥✐t❡ ❡①t❡♥s✐♦♥ A ♦❢ W ✱

Hom(R,A) = Hom(R[1/p], A[1/p] = Frac(A)),

✇❤❡r❡ t❤❡ ✜rst Hom ✐s ✐♥ t❤❡ ❝❛t❡❣♦r② ♦❢ ❧♦❝❛❧ W ✲❛❧❣❡❜r❛s✱ ❛♥❞ t❤❡ s❡❝♦♥❞ ✐s ✐♥ t❤❡
❝❛t❡❣♦r② ♦❢ Frac(W )✲❛❧❣❡❜r❛s✳

Pr♦♣♦s✐t✐♦♥ ✹✳ ■❢ K ′/K ✐s ❛ ✜♥✐t❡ ❡①t❡♥s✐♦♥✱ t❤❡♥ ❛♥② K✲❛❧❣❡❜r❛ ♠❛♣ R[1/p]→ K ′

✐s ❣✐✈❡♥ ❜② s❡♥❞✐♥❣ t❤❡ Xi✬s t♦ ✈❛r✐♦✉s xi ∈ mK′ ⊂ oK′ ⊂ K ′✳ ❍❡♥❝❡ t❤❡ ✐♠❛❣❡ ♦❢ R
❧❛♥❞s ✐♥ t❤❡ ✈❛❧✉❛t✐♦♥ r✐♥❣✳

❋✐① s✉❝❤ ❛ ♠❛♣ x : R[1/p] ։ K ′✳ ▲❡t

ρx : G
ρ→ GLN(R)→ GLN(R[1/p])→ GLN(K

′)

❜❡ t❤❡ ✐♥❞✉❝❡❞ r❡♣r❡s❡♥t❛t✐♦♥✳ ❲❡✬❞ ❧✐❦❡ t♦ ✉♥❞❡rst❛♥❞ dimR[1/p]mx = dimR[1/p]∧mx
✳
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❚❤❡♦r❡♠ ✺✳ ▲❡t ρunivx : G → GLN(R[1/p]
∧
mx
) ❜❡ ✐♥❞✉❝❡❞ ❢r♦♠ ρ ❜② t❤❡ ♥❛t✉r❛❧ ♠❛♣

R→ R[1/p]∧mx
✳ ❚❤❡♥ t❤❡ ❞✐❛❣r❛♠

G
ρunivx//

ρx &&LLLLLLLLLLLL GLN(R[1/p]
∧
mx
)

��
GLN(K

′)

❝♦♠♠✉t❡s✱ ❛♥❞ ρunivx ✐s ✉♥✐✈❡rs❛❧ ❢♦r ❝♦♥t✐♥✉♦✉s ❞❡❢♦r♠❛t✐♦♥s ♦❢ ρx✳

❚❤✐s t❤❡♦r❡♠ ✐s r❡❧❡✈❛♥t ❢♦r ✭❛t ❧❡❛st✮ t✇♦ r❡❛s♦♥s✿

✭✶✮ ❲❡ ❤❛✈❡ R[1/p] ∼= K ′[[T1, . . . , Tn]] ✐❢ ❛♥❞ ♦♥❧② ✐❢ ❡❛❝❤ R[1/p]∧mx
✐s r❡❣✉❧❛r✱

✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ ❞❡❢♦r♠❛t✐♦♥ ❢✉♥❝t♦r ✐s ❢♦r♠❛❧❧② s♠♦♦t❤✱ ✐❢ ❛♥❞ ♦♥❧② ✐❢
H2(G,Ad(ρx)) = 0✳

✭✷✮ ❲❡ ❤❛✈❡ (mx/m
2
x)

∨ ∼= H1
cts(G,Ad(ρx)) ❜② t❤❡ ❝♦♥t✐♥✉✐t② ❝♦♥❞✐t✐♦♥ ♦♥ t❤❡

❞❡❢♦r♠❛t✐♦♥s ✐♥ t❤❡ t❤❡♦r❡♠✳

▲❡t ρ : G = GQ,S → GLn(K) ❢♦r s♦♠❡ p✲❛❞✐❝ ✜❡❧❞ K ❜❡ ❛ r❡♣r❡s❡♥t❛t✐♦♥ ✇✐t❤
❛❜s♦❧✉t❡❧② ✐rr❡❞✉❝✐❜❧❡ r❡❞✉❝t✐♦♥✳ ❚❤❡♥ H1(G,Ad(ρ)) ✐s ❛❧s♦ ❡q✉❛❧ t♦ t❤❡ t❛♥❣❡♥t
s♣❛❝❡ ♦❢ t❤❡ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣ R(ρ) ❛t t❤❡ r❡❞✉❝t✐♦♥ ♦❢ t❤❡ ❝❧♦s❡❞ ♣♦✐♥t ♦❢ R[1/p]
❝♦rr❡s♣♦♥❞✐♥❣ t♦ ρ✳ ❍❡♥❝❡✱ t❤❡ ❝♦♠♣❧❡t✐♦♥ ♦❢ R[1/p] ❛t t❤❛t ♣♦✐♥t ✭✇✐t❤ s❝❛❧❛rs
❡①t❡♥❞❡❞ t♦ K✱ ✐❢ ♥❡❝❡ss❛r②✮✱ ✐s t❤❡ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣ ❢♦r ρ✳

✻✳ ❲✐❧❡s ♣r♦❞✉❝t ❢♦r♠✉❧❛

❘❡❝❛❧❧ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ ✉♥r❛♠✐✜❡❞ ❝♦❤♦♠♦❧♦❣②✳ ▲❡t K ❜❡ ❛ p✲❛❞✐❝ ✜❡❧❞✳ ■❢ M ✐s ❛
K✲♠♦❞✉❧❡✱ t❤❡♥ t❤❡ ✉♥r❛♠✐✜❡❞ ❝♦❤♦♠♦❧♦❣② ✐s

H i
nr(K,M) = H i(Gal(Knr/K),M IK ).

■❢ K ✐s ❛ ❣❧♦❜❛❧ ✜❡❧❞✱ t❤❡♥ ❢♦r ❡✈❡r② ♣❧❛❝❡ v ♦❢ K✱ ✇❡ ❤❛✈❡ ❛ ♠❛♣ GKv →֒ GK ✱
❛♥❞ ✐❢ M ✐s ❛ GK✲♠♦❞✉❧❡✱ ✇❡ ❤❛✈❡ ❛ r❡str✐❝t✐♦♥ ♠❛♣ H i(GK ,M) → H i(GKv ,M)
❢♦r ❡❛❝❤ i✳ ▲❡t L = (Lv) ❜❡ ❛ ❝♦❧❧❡❝t✐♦♥ ♦❢ s✉❜❣r♦✉♣s Lv ⊂ H1(GKv ,M) s♦ t❤❛t
Lv = H1

nr(GKv ,M) ❢♦r ❛❧♠♦st ❛❧❧ v✳ ▲❡t

H1
L(GK ,M) = {c ∈ H1(GK ,M) | resv(c) ∈ Lv ❢♦r ❛❧❧ v}.

▲❡t LD = (LD
v )✱ ✇❤❡r❡ L

D
v ✐s t❤❡ ❛♥♥✐❤✐❧❛t♦r ♦❢ Lv ✉♥❞❡r t❤❡ ❚❛t❡ ❧♦❝❛❧ ♣❛✐r✐♥❣✳ ❲❡

❝❛❧❧ t❤❡ Lv t❤❡ ❧♦❝❛❧ ❝♦♥❞✐t✐♦♥s✳

❚❤❡♦r❡♠ ✻ ✭❲✐❧❡s Pr♦❞✉❝t ❋♦r♠✉❧❛✮✳ ❙✉♣♣♦s❡ M ✐s ❛ ✜♥✐t❡ GK✲♠♦❞✉❧❡✱ M ′ =
Hom(M,µ)✱ ❛♥❞ L ✐s ❛ ❢❛♠✐❧② ♦❢ ❧♦❝❛❧ ❝♦♥❞✐t✐♦♥s✳ ❚❤❡♥

#H1
L(K,M)

#H1
LD(K,M ′)

=
#H0(K,M)

#H0(K,M ′)

∏

v

#Lv

#H0(Kv,M)
.
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❲❡✬❧❧ s♦♦♥ ❣❡t t♦ s✐t✉❛t✐♦♥s ✐♥ ✇❤✐❝❤ t❤❡ ❞❡♥♦♠✐♥❛t♦r ♦♥ t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡
❲✐❧❡s Pr♦❞✉❝t ❋♦r♠✉❧❛ ✐s ✶✳ ❚❤✉s✱ ✇❡✬❧❧ ❤❛✈❡ ❛ ❢♦r♠✉❧❛ ❢♦r t❤❡ s✐③❡ ♦❢ t❤❡ ❣❧♦❜❛❧
H1 ✐♥ t❡r♠s ♦❢ s✐③❡s ♦❢ H0 ❛s ✇❡❧❧ ❛s ❧♦❝❛❧ t❡r♠s✳ ❚❤❡ ❧♦❝❛❧ t❡r♠s ✇❡✬❧❧ ❜❡ ❛❜❧❡ t♦
❝♦♠♣✉t❡ ❜② st✉❞②✐♥❣ ✈❛r✐♦✉s ❧♦❝❛❧ ❞❡❢♦r♠❛t✐♦♥ r✐♥❣s✳

✼✳ ❊①❛♠♣❧❡

◆♦t❡✿ ■ ❞♦♥✬t r❡❛❧❧② ✉♥❞❡rst❛♥❞ t❤✐s ❡①❛♠♣❧❡✳ ■ ♠♦r❡ ♦r ❧❡ss ❝♦♣✐❡❞ ❇r✐❛♥✬s ❡♠❛✐❧✱
❜✉t ■✬♠ ✐♥❝❧✉❞✐♥❣ ✐t ❢♦r ♦t❤❡r ♣❡♦♣❧❡✱ ✇❤♦ ❝❛♥ ♣r♦❜❛❜❧② ✉♥❞❡rst❛♥❞ ✐t✳
▲❡t K ❜❡ ❛ p✲❛❞✐❝ ✜❡❧❞ ✭p ♦❞❞✮✱ ❛♥❞ ❧❡t ω : GK → k× ❜❡ t❤❡ ♠♦❞✲p ❝②❝❧♦t♦♠✐❝

❝❤❛r❛❝t❡r✳ ▲❡t ρ : GK → GL(V ) ❜❡ ❛ r❡s✐❞✉❛❧ r❡♣r❡s❡♥t❛t✐♦♥✱ ✇❤❡r❡ V ✐s ❛ ✷✲
❞✐♠❡♥s✐♦♥❛❧ k✲✈❡❝t♦r s♣❛❝❡✳ ❙✉♣♣♦s❡ t❤❡ ✐♥❡rt✐❛ ❣r♦✉♣ IK ❛❝ts ♥♦♥tr✐✈✐❛❧❧② ♦♥ V ✳
❚❤❡♥ ❧❡t D ❜❡ t❤❡ s✉❜s♣❛❝❡ ✜①❡❞ ❜② IK ✳ ❲✐t❤ r❡s♣❡❝t t♦ ❛ s✉✐t❛❜❧❡ ❜❛s✐s✱ t❤❡♥✱ ✇❡
❤❛✈❡

ρ =

(
θ2 ∗
0 θ1

)
,

✇❤❡r❡ θ1 ❛♥❞ θ2 ❛r❡ ❝❤❛r❛❝t❡rs✳ ❲❡ ❝❛♥ ✇r✐t❡ θ1 ❛♥❞ θ2 ✉♥✐q✉❡❧② ✐♥ t❤❡ ❢♦r♠

θ1 = ωαε1, θ2 = ωβε2,

✇❤❡r❡ α, β ∈ Z/(p − 1)Z✱ ❛♥❞ ε1 ❛♥❞ ε2 ❛r❡ ✉♥r❛♠✐✜❡❞ ❝❤❛r❛❝t❡rs GK → k✳ ❍❡♥❝❡
t❤❡ r❡str✐❝t✐♦♥ ♦❢ ρ t♦ IK ✐s

ρ |IK=
(
ωβ ∗
0 ωα

)
.

❲❡ ❝❛♥ ♥♦r♠❛❧✐③❡ t❤❡ ❡①♣♦♥❡♥ts s♦ t❤❛t 0 ≤ α ≤ p− 2 ❛♥❞ 1 ≤ β ≤ p− 1✳

❉❡✜♥✐t✐♦♥ ✼✳ ■❢ β 6= α+ 1✱ ✇❡ s❛② t❤❛t ρ ✐s ♣❡✉ r❛♠✐✜é✳ ■❢ β = α+ 1✱ ✇❡ s❛② t❤❛t
ρ ✐s très r❛♠✐✜é✳

▲❡t L ❜❡ ❛ ❧✐♥❡ ✐♥ H1(K,ω) ♥♦t ✐♥ t❤❡ ♣❡✉ r❛♠✐✜é ❤②♣❡r♣❧❛♥❡✳ ▲❡t H ❜❡ ✐ts
♦rt❤♦❣♦♥❛❧ ❤②♣❡r♣❧❛♥❡ ✐♥ H1(K, k) ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❚❛t❡ ♣❛✐r✐♥❣✳ ❚❤✉s✱ H ✐s ❛
❤②♣❡r♣❧❛♥❡ ♥♦t ❝♦♥t❛✐♥✐♥❣ t❤❡ ✉♥r❛♠✐✜❡❞ ❧✐♥❡✳ ❲❡ ✇✐s❤ t♦ ✜♥❞ ❛ r❛♠✐✜❡❞ ❝❤❛r❛❝t❡r
ψ : GK → Λ× ♦❢ ✜♥✐t❡ ♦r❞❡r ♦♥ IK t❤❛t ❧✐❢ts t❤❡ tr✐✈✐❛❧ r❡s✐❞✉❛❧ ❝❤❛r❛❝t❡r ❛♥❞ s♦
t❤❛t t❤❡ ✐♠❛❣❡ ♦❢ H1(K, εψ) → H1(K,ω) ❝♦♥t❛✐♥s L✱ ✇❤❡r❡ ε : GK → Z×

p ✐s t❤❡ p✲
❛❞✐❝ ❝②❝❧♦t♦♠✐❝ ❝❤❛r❛❝t❡r✳ ❱❛r②✐♥❣ t❤r♦✉❣❤ ♥♦♥③❡r♦ ♣♦✐♥ts ♦❢ L ❣✐✈❡s ✉s ❛ ❝♦❧❧❡❝t✐♦♥
♦❢ ♥♦♥✲✐s♦♠♦r♣❤✐❝ ♥♦♥✲s♣❧✐t ❡①t❡♥s✐♦♥s ♦❢ ❛ ❝♦♠♠♦♥ r❡❞✉❝✐❜❧❡ ❜✉t ✐♥❞❡❝♦♠♣♦s❛❜❧❡
GK✲♠♦❞✉❧❡✱ s♦ ❣❧✉✐♥❣ t❤❡♠ t♦❣❡t❤❡r ❣✐✈❡s ✉s ❛ ❧✐❢t✐♥❣ r❡s✉❧t ❢♦r ✷✲❞✐♠❡♥s✐♦♥❛❧ ●❛❧♦✐s
r❡♣r❡s❡♥t❛t✐♦♥s✳
ψ ❛❧❧♦✇s ❢♦r ❛ ❧✐❢t ♦❢ L ✐❢ ❛♥❞ ♦♥❧② ✐❢ L ✐s ✐♥ t❤❡ ❦❡r♥❡❧ ♦❢ t❤❡ ❝♦♥♥❡❝t✐♥❣ ♠❛♣ t♦

H2(K, εψ)✳ ▲❡t F ❜❡ t❤❡ ❢r❛❝t✐♦♥ ✜❡❧❞ ♦❢ Λ✱ ❛♥❞ ❧❡t ̟ ❜❡ ❛ ✉♥✐❢♦r♠✐③❡r✳ ❚❤✐s ❤❛♣♣❡♥s
✐❢ ❛♥❞ ♦♥❧② ✐❢ ❝♦♥♥❡❝t✐♥❣ ♠❛♣

H0(K, (F/Λ)(ψ−1))→ H1(K, k)
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❛tt❛❝❤❡❞ t♦ t❤❡ s❡q✉❡♥❝❡

0→ k → (F/Λ)(ψ−1)
̟→ (F/Λ)(ψ)→ 0

❤❛s ✐♠❛❣❡ ❝♦♥t❛✐♥❡❞ ✐♥ H✳ ❙♦✱ ❧❡t✬s ✜❣✉r❡ ♦✉t ❡①❛❝t❧② ✇❤❛t t❤❡ ❝♦♥♥❡❝t✐♥❣ ♠❛♣ ❞♦❡s
✐♥ ♦r❞❡r t♦ s❡❡ ✇❤❛t ✐t ♠❡❛♥s ♦♥ t❤❡ r❛♠✐✜❡❞ ❝❤❛r❛❝t❡r ψ−1 ♦❢ ✜♥✐t❡ ♦r❞❡r ♦♥ IK t❤❛t
t❤❡ ✐♠❛❣❡ ✐s ❝♦♥t❛✐♥❡❞ ✐♥ s♦♠❡ ❤②♣❡r♣❧❛♥❡ ♥♦t ❝♦♥t❛✐♥✐♥❣ t❤❡ ✉♥r❛♠✐✜❡❞ ❧✐♥❡✳
■❢ x = u̟−n ❢♦r n > 0 ❛♥❞ u ∈ Λ∗✱ ✇❡ ❤❛✈❡ x ∈ H0(K, (F/Λ)(ψ−1)) ✐❢ ❛♥❞ ♦♥❧② ✐❢

ψ−1 ≡ 1 (mod ̟n)✳ ❙✐♥❝❡ ψ ✭❛♥❞ ❤❡♥❝❡ ψ−1✮ ✐s ♥♦♥tr✐✈✐❛❧✱ t❤✐s ♦♥❧② ✇♦r❦s ❢♦r ✜♥✐t❡❧②
♠❛♥② ✈❛❧✉❡s ♦❢ n✱ ❜✉t ✐♥❝❧✉❞✐♥❣ n = 1✳ ❚❤❡ ✐♠❛❣❡ ♦❢ x ✉♥❞❡r t❤✐s ❝♦♥♥❡❝t✐♥❣ ♠❛♣ ✐s
t❤❡ k✲t♦rs♦r ♦❢ ♣♦✐♥ts

(u̟−n)(̟−1 + Λ) mod Λ,

❛♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❝❤❛r❛❝t❡r GK → k = ̟−1Λ/Λ ✐s

φn : g 7→ (̟−1 + Λ)((ψ−1(g)− 1)̟−n) mod Λ = (ψ−1(g)− 1)̟−n−1 mod Λ.

◆♦t❡ t❤❛t (ψ−1(g)−1)̟−n ∈ Λ✱ ❛♥❞ ✐❢ n ✐s ♥♦t ♠❛①✐♠❛❧ ✇✐t❤ r❡s♣❡❝t t♦ t❤✐s ♣r♦♣❡rt②✱
t❤❡♥ φn = 0✳ ■❢ ✇❡ ✇r✐t❡

ψ−1 = 1 +̟nχ

❛♥❞ χ0 = χ mod ̟✱ t❤❡♥ χ0 ✐s ❛ ♥♦♥tr✐✈✐❛❧ ❝❤❛r❛❝t❡r GK → k✱ ❛♥❞ 1+̟nχ r❡str✐❝t❡❞
t♦ IK ✐s ✈❛❧✉❡❞ ✐♥ t❤❡ pt❤ ♣♦✇❡r r♦♦ts ♦❢ ✉♥✐t② ✐♥ Λ×✳ ❚❤❡ ❝♦♥❞✐t✐♦♥ ♦♥ ψ−1 ✐s t❤❛t
χ0 ✐s ❝♦♥t❛✐♥❡❞ ✐♥ H ⊂ H1(K, k)✳
▼♦r❡ ❝♦♥❝r❡t❡❧②✱ t❤✐s ✐s ❡q✉✐✈❛❧❡♥t t♦ t❤❡ ❢♦❧❧♦✇✐♥❣✳ ▲❡t H ❜❡ ❛ ❤②♣❡r♣❧❛♥❡ ✐♥

H1(K, k) ♥♦t ❝♦♥t❛✐♥✐♥❣ t❤❡ ✉♥r❛♠✐✜❡❞ ❧✐♥❡✳ ❲❡ s❡❡❦ ❛ ❝♦♥t✐♥✉♦✉s ❝❤❛r❛❝t❡r ξ :
GK → 1 + mΛ ✇✐t❤ ✜♥✐t❡ ♦r❞❡r ♦♥ IK ❛♥❞ ❝♦♥❞✉❝t♦r n > 0 s♦ t❤❛t t❤❡ ♥♦♥③❡r♦
❛❞❞✐t✐✈❡ ❝❤❛r❛❝t❡r (ξ − 1)̟−n : GK → k ❧✐❡s ✐♥ H✳ ❚❤✐s ❝❤❛r❛❝t❡r ♠✉st ❜❡ r❛♠✐✜❡❞✳
❲❡ ❝♦✉❧❞ ❤❛✈❡ r❡♣❧❛❝❡❞ ̟n ✇✐t❤ u̟n ❢♦r ❛♥② u ∈ Λ×✳
■♥ ♦r❞❡r t♦ ♠❛❦❡ t❤❡ ❝♦♥str✉❝t✐♦♥✱ ✇❡ ♥❡❡❞ t♦ st❛rt ✇✐t❤ ❛ Λ ❝♦♥t❛✐♥✐♥❣ ❛ ♣r✐♠✐t✐✈❡

pt❤ r♦♦t ♦❢ ✉♥✐t② ζ✳ ▲❡t n = e/(p − 1)✱ ✇❤❡r❡ e = e(Λ)✱ s♦ t❤❛t ζ − 1 = ̟n✳ ❋✐① ❛
♥♦♥tr✐✈✐❛❧ ❝❤❛r❛❝t❡r ξ : o×K → µp✱ ❛♥❞ ❡①t❡♥❞ ✐t t♦ ❛♥ ♦r❞❡r p ❝❤❛r❛❝t❡r φ ♦♥ GK ❜②
❝❧❛ss ✜❡❧❞ t❤❡♦r②✱ s♦ t❤❛t φ ≡ 1 mod mn

A✳ ❚❤❡ ❢✉♥❝t✐♦♥

χ =
φ− 1

ζ − 1
: GK → k

✐s ❛♥ ❛❞❞✐t✐✈❡ ❝❤❛r❛❝t❡r t❤❛t ✐s ♥♦t ✐❞❡♥t✐❝❛❧❧② ③❡r♦✱ ❛♥❞ ✐t ✐s r❛♠✐✜❡❞✿ t❤❡r❡ ✐s ❛♥
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Calculating deformation rings

Rebecca Bellovin

1 Introduction

We are interested in computing local deformation rings away from p. That
is, if L is a finite extension of Qℓ and V is a 2-dimensional representation
of GL over F, where F is a finite extension of Fp, ℓ 6= p, we wish to study

the deformation rings R�
V and Rψ,�

V . Here ψ : GL → O× is a continuous
unramified character, O is the ring of integers of a finite extension E of Qp

which has residue field F, and Rψ,�
VF

is the quotient of R�
VF

corresponding to
deformations with determinant ψχ, where χ : GL → Z×

p is the cyclotomic
character.

Note that Rψ,�
VF

exists: There is a natural determinant map from the uni-
versal 2-dimensional (framed) representation to the universal 1-dimensional
(framed) representation, and we take the fiber over the closed point corre-
sponding to χψ.

We define the following two deformation problems:

• Dur,ψ,�
V is the deformation functor which spits out unramified framed

deformations with determinant ψχ

• Lχ,�V is the deformation functor which spits out pairs (VA, LA) of framed
deformations with determinant χ, together with aGL-stableA-line with
GL acting via χ on LA. That is, LA is a projective rank 1 A-module
such that VA/LA is a projective A-module with trivial GL-action.

Most of this talk will be about the structure of the ring representing the
second functor.
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2 Lies I will tell, and auxiliary categories of

rings

The minor lie I will tell is that I will entirely suppress the language of cate-
gories fibered in groupoids, and pretend we are working with functors. This
will allow me to avoid 2-categorical language. But to make what I say lit-
erally true, one has to handle non-trivial isomorphisms of deformations via
the language of groupoids.

The more major lie I will tell is that after I finish this section, I will try to
avoid talking about the various categories of algebras that are involved.

The basic set-up is representing certain deformations of a fixed residual rep-
resentation (in characteristic p). The deformations are a priori to finite local
artinian rings with fixed residue field. But we want to be able to take generic
fibers of our representing objects in a sensible way, so we need techniques for
passing to characteristic 0 points.

To do this, we need a variety of confusing auxiliary categories of algebras.
To demonstrate, let E/Qp be a finite extension with residue field containing
F, let O ⊂ OE be a discrete valuation ring finite over W (F), and let D be a
deformation functor on the category AAO of finite local artinian O-algebras
with residue field O/mO, and let E/Qp be a finite extension with residue
field containing F. We will be interested in the category ARE of finite local
W (F)[1/p]-algebras with residue field E. We also introduce the following
categories:

ÂRO: ÂRO is the category of complete local noetherian O-algebras with
residue field O/mO.

ÂRO,(OE): ÂRO,(OE) is the category of O-algebras A in ÂRO equipped with a map
of O-algebras A→ OE .

IntB: Given B ∈ ARE , IntB is the category of finite OE-subalgebras A ⊂ B
such that A⊗OE

E = B.

Note that IntB is a subcategory of ÂRO,(OE) (A obviously has a map to E,
and by finiteness or the same sort of arguments as in Brian’s talk, it actually
lands in OE), and there is a natural functor ÂRO,(OE) → ÂRO.
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Also note that we can canonically extend D to a groupoid on ÂRO, by setting
D(lim←−R/m

n+1
R ) = lim←−D(R/mn+1

R ).

Now fix some ξ ∈ D(OE), which makes sense by the preceding comment. We

define a groupoid D(ξ) on ÂRO,(OE) by setting D(ξ) to be the fiber over ξ.
More precisely, D(ξ)(A) consists of objects of D(A) together with morphisms
(in D) covering the given map A→ OE .
Finally, we can extend D(ξ) to ARE . We note that B ∈ ARE can be ex-
hausted by objects in IntB, so we set D(ξ)(B) = lim−→A∈IntBD(ξ)(A).

Now Kisin proves two crucial lemmas about these groupoids (which he calls a
lemma and a proposition). The first tells us how to get universal deformation
rings for the groupoids on ARE , and the second relates those groupoids to
the ones we would naively expect (for some deformation problems we already
care about):

Lemma 2.1. If D is pro-represented by a complete local O-algebra R, then
D(ξ) is pro-represented (on ARE) by the complete local O[1/p]-algebra R̂ξ

obtained by completing R⊗O E along the kernel Iξ of the map R⊗O E → E
induced by ξ.

Lemma 2.2. Fix a residual representation V over F, and carry out the above
program for DV and D�

V . Then there are natural isomorphisms of groupoids

DV,(ξ)→̃DVξ and D�
V,(ξ)→̃D�

Vξ

3 Main result

The main result we will prove is the following:

Theorem 3.1. Let V be any 2-dimensional representation of GL (over F).
Fix a continuous unramified character ψ : GL → O× and consider Rψ,�

V ,
the quotient of R�

V corresponding to deformations of V with determinant ψχ.
Then SpecRψ,�

V [1/p] is 3-dimensional, and it is the scheme-theoretic union
of formally smooth components.

There are several claims implicit in this theorem, namely the existence,
smoothness, connectedness, and dimension of Rur,ψ,�

V and Rχγ,γ,�
V , as well

as the connectedness of Rψ,�
V . We assume these for the moment and go on

with the proof.
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Proof. Let E ′/E be a finite extension, let x : Rψ,�
V [1/p] → E ′ be a point of

SpecRψ,�
V [1/p] with residue field E ′ (so that it is actually an E ′-point), and

let Vx be the induced representation with coefficients in E ′. We know (from
Brian’s talk on characteristic 0 points of deformation rings) that the comple-
tion of Rψ,�

V [1/p] at the maximal ideal mx = ker x represents deformations
of Vx. The tangent space at x is H1(GL, ad

0 Vx). Obstructions to deforming
representations live in H2 groups, so Rψ,�

V [1/p] at x will be formally smooth
at any point x where H2(GL, ad

0 Vx) vanishes.

Given any framed deformation problem D� (with coefficients in some un-
specified field H), there is a natural morphism D� → D to the unframed
problem given by “forgetting the basis”. This morphism is formally smooth
in the sense that artinian points of D can be lifted.

Furthermore, the fibers of the morphism of tangent spaces D�(H [ε]) →
D(H [ε]) are principal homogeneous spaces under ad / adGL. Specifically,
given a residual representation VH and a choice of (unframed) deformation
VH[ε], ker(GL2(H [ε])→ GL2(H)) = 1+ εM2(H [ε]) ∼= EndH VH acts (via con-
jugation) on the fiber over VH[ε]. Then it is easy to check that 1 + εM acts
trivially on the fiber if and only if M is in ad0 VH .

Counting dimensions,

dimF D
�(F[ε]) = dimF D(F[ε]) + dimF ad− dimF H

0(GL, ad) (3.1)

Using this formula, we see that the tangent space to SpecRψ,�
V [1/p] at x has

E ′-dimension

dimE′H1(GL, ad
0 Vx) + dimE′ adVx − dimE′ H0(GL, adVx)

= dimE′ H1(GL, ad
0 Vx) + dimE′ adVx − (dimE′ H0(GL, ad

0 Vx)− 1)

= −
(
dimE′ H2(GL, ad

0 Vx)− dimE′ H1(GL, ad
0 Vx) + dimE′ H0(GL, ad

0 Vx)
)

+ dimE′ H2(GL, ad
0 Vx) + dimE′ adVx − 1

= dimE′ H2(GL, ad
0 Vx) + 3

the last step following by the Euler characteristic formula for p-adic coeffi-
cients. Thus, if H2(GL, ad

0 Vx) = 0, x will be a formally smooth point of
SpecRψ,�

V [1/p] with a 3-dimensional tangent space.

Now suppose H2(GL, ad
0 Vx) 6= 0. By the p-adic version of Tate local duality,

dimE′ H2(GL, ad
0 Vx) = dimE′ H0(GL, (ad

0 Vx)
∗), which is dimE′ H0(GL, ad

0 Vx(1))
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(because ad0 is self-dual). Now we have the split exact sequence of GL-
modules

0→ ad0 Vx(1)→ adVx(1)→ E ′(1)→ 0

which gives us an exact sequence in cohomology:

0→ H0(GL, ad
0 Vx(1))→ H0(GL, adVx(1))→ H0(GL, E

′(1))

But H0(GL, E
′(1)) = 0 so

H0(GL, ad
0 Vx(1) = H0(GL, adVx(1)) = H0(GL,Hom(Vx, Vx(1)))

In particular, if H2(GL, ad
0 Vx) 6= 0, there is a non-zero homomorphism

(of GL-modules) Vx → Vx(1). It has 1-dimensional (GL-stable) image and
kernel, so there is some character γ such that 0 → γ → Vx → γ(1) →
0 is exact. But such extensions are classified by H1(GL, E

′(−1)), which
is 0: the Euler characteristic formula says that dimE′ H0(GL, E

′(−1)) −
dimE′ H1(GL, E

′(−1)) + dimE′ H2(GL, E
′(−1)) = 0, but H0(GL, E

′(−1)) is
clearly zero, and H2(GL, E

′(−1)) is dual to H0(GL, E
′(2)), which is zero, so

H1(GL, E
′(−1)) is zero as well. So this extension splits.

We have shown that if H2(GL, ad
0 Vx) 6= 0, then Vx = γ ⊕ γχ for some

character γ : GL → E ′×. If γ is unramified, then this implies that x is in the

image of both Rur,γ2,�
V and Rχγ,γ,�

V .

So the only singular points of SpecRψ,�
V [1/p] lie in the intersection of two

formally smooth components.

The definition of formal smoothness requires us to be able to lift through
any square-zero thickening, but we only looked at what happens at artinian
points of SpecRψ,�

V [1/p]; the commutative algebra necessary to justify this
is discussed in Brian’s notes on ℓ = p.

4 Unramified deformations

We’ve seen previously that for the unframed case, the tangent space at x for
unramified deformations with fixed determinant is H1(GL/IL, (ad

0 Vx)
IL),
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and the obstruction space should be H2(GL/IL, (ad
0 Vx)

IL) = 0. We have
the exact sequence

0→ (ad0 Vx)
GL → (ad0 Vx)

IL Frob− id−→ (ad0 Vx)
IL → (ad0 Vx)

IL/(Frob− id)(ad0 Vx)
IL → 0

This implies that dimE′ H0(GL, ad
0 Vx) = dimE′ H1(GL/IL, (ad

0 Vx)
IL). And

since the tangent space for the framed case has dimension dimE′ H1(GL/IL, (ad
0 Vx)

IL)+
dimE′ ad0 Vx−dimE′ H0(GL, ad

0 Vx) by the discussion in the previous section,
this implies that the tangent space of Rur,ψ,�

V has dimension dimE′ ad0 Vx = 3.

So granting existence, Rur,ψ,�
V is formally smooth and 3-dimensional.

5 Rχγ,γ,�

We begin this section with a general lemma.

Lemma 5.1. Let O be a local W (k)-algebra with residue field k, with K the
fraction field of W (k), and let X be a proper residually reduced O-scheme.
Then the components of the fiber of X over the closed point of O are in
bijection with the components of X [1/p].

Proof. Consider a connected component of X [1/p] = X ⊗W (k) K and let e
be the idempotent which is 1 on this component and 0 on the others. Then
if ̟ is a uniformizer of W (k), there is some n such that ̟ne extends to a
global section of X . But (̟ne)2 = ̟n(̟ne), so if n > 0, as a function on
the special fiber X ⊗O k, ̟ne is nilpotent. This contradicts our reducedness
hypothesis, so n = 0 and e is already a global section of X .

So we know that the components of X⊗W (k)K are in bijection with the com-
ponents of X itself. But if X∧ is the completion of X along its special fiber,
the components of the special fiber X ⊗O k are in bijection with the compo-
nents of X∧ (because they have the same underlying topological space), and
formal GAGA implies that the components of X∧ are in bijection with the
components of X (X is proper over O, so we can apply formal GAGA to see
that the global idempotent functions on X and X∧ are in bijection).
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5.1 Representability

Proposition 5.2. The morphism |Lχ,�V | → |Dχ,�
V | is represented by a projec-

tive morphism ΘV : Lχ,�V → Rχ,�
V .

Proof. Given an A-point of Rχ,�
V , the A-points of Lχ,�V should be certain line

bundles on SpecA, so we will cut Lχ,�V out of P1

Rχ,�
V

.

Consider P, the projectivization of the universal rank 2 Rχ,�
V -module. That

is, if VR is the universal rank 2 Rχ,�
V -module (equipped with a representation

of GL), then P := Proj SymVR ∼= ProjRχ,�
V [x0, x1].

If A is an an Rχ,�
V -algebra with residue field F, a morphism SpecA → P

(over Rχ,�
V ) is the same as a surjection (of sheaves) A2 → L→ 0.

Given a morphism f : SpecA → P, there is a natural GL-action on the
quotient L if and only if g∗f = f for all g ∈ GL. The g∗-fixed locus of P is
Hg defined by the Cartesian square

Hg −−−→ Py
y(id,g∗)

P
∆−−−→ P×

Rχ,�
V

P

Since P is separated, Hg is a closed subscheme of P. Thus, the intersec-
tion H := ∩g∈GHg is a closed subscheme of P parametrizing GL-equivariant
quotients A2 → L→ 0.

Now if A is a complete localW (F)-algebra, there is a natural map from H to
the universal deformation of the residually trivial 1-dimensional representa-
tion, given (in the language of the functor of points) by sending A2 → L → 0
to L. Then we can take the fiber over the (closed) point corresponding to
the trivial representation to get a closed subscheme of P representing Lχ,�V
on ARW (F).

Now take limits to get representability of Lχ,�V on AugW (F).

5.2 Smoothness and connectedness

Next we want to study smoothness and connectedness.
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Proposition 5.3. Lχ,�V is formally smooth over W (F). Furthermore, the
W (F)[1/p]-scheme Lχ,�V ⊗W (F) W (F)[1/p] is connected.

Proof. First, we will show that for any finite group M of p-power order, the
natural map H1(GL,Zp(1)) ⊗Zp M → H1(GL,Zp(1) ⊗Zp M) is an isomor-
phism. It suffices to consider the case M = Z/pnZ. In that case, we have
the exact sequence

0→ Zp(1)
·pn−→ Zp(1)→ M → 0

Then the long exact sequence in group cohomology shows that

0→ H1(GL,Zp(1))/p
nH1(GL,Zp(1))→ H1(GL,M)→ H2(GL,Zp(1))[p

n]

is exact. The middle arrow is the natural map we started with, so we wish
to show that H2(GL,Zp(1))[p

n] is 0. But by Tate local duality (as in Simon’s
talk), H2(GL,Zp(1)) is Pontryagin dual to Qp/Zp, so has no pn-torsion.

Thus, for any artinian algebra A, the composition

Ext1Zp[GL]
(Zp,Zp(1))⊗ZpA→ H1(GL,Zp(1))⊗ZpA→ H1(GL,Zp(1)⊗ZpA)→ Ext1Zp[GL]

(A,A(1))

is an isomorphism.

To prove smoothness, it suffices to show that for any surjection of artinian
rings A→ A′, the map |Lχ,�V |(A)→ |Lχ,�V |(A′) is a surjection. Now consider a
pair (VA′ , LA′) in |Lχ,�V |(A′). It corresponds to an element of Ext1Zp[GL]

(A,A(1)),
so by the isomorphism we just proved, it corresponds to an element of
Ext1Zp[GL]

(Zp,Zp(1))⊗Zp A
′. But such an element clearly lifts to an element

of Ext1Zp[GL]
(Zp,Zp(1))⊗Zp A, which is to say, an element of |Lχ,�V |(A).

Now we wish to prove connectedness after inverting p, and for this we use
the lemma on connected components. Specifically, since Lχ,�V is smooth, its
special fiber Lχ,�V ⊗W (F) F is reduced, so to show Lχ,�V [1/p] is connected, it
suffices to show that the special fiber L ⊗

Rχ,�
V

F is connected.

But the special fiber is simply the fiber over the residual representation. If
F ∼= F(1) and the representation is split (i.e., the residual representation is
trivial), any line in F2 is GL-stable with GL-acting by χ = id, so the fiber is
a full P1

F. Otherwise, there is at most one GL-line with GL acting via χ, and
this is true for any A-point of the fiber, so it is either empty or it consists of
a single reduced point. So the special fiber is connected.
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The next proposition will show that Lχ,�V [1/p]→ SpecRχ,�
V [1/p] is a monomor-

phism. More precisely, it shows that this morphism is injective on artinian
points, but, as before, Brian’s notes on ℓ = p explain why this is sufficient to
let us conclude that it is actually a monomorphism.

Proposition 5.4. Let E/Qp be a finite extension, and let ξ refer to both an
OE-valued point of Rχ,�

V and an OE-valued point in the fiber of Lχ,�V above
it. Then the morphism of groupoids (functors) on ARE Lχ,�Vξ → Dχ,�

Vξ
is fully

faithful. If the representation over E Vξ corresponding to ξ is indecomposable,
then this is an equivalence.

Proof. Let B be an object of ARE , and let VB be an object of Dχ,�
Vξ

(B).
To prove the first assertion, we need to show that VB admits at most one
GL-stable B-line LB ⊂ VB such that GL acts trivially on VB/LB. But
HomB[GL](B(1), VB/LB) = {0} because the GL-action on the target is trivial,
so HomB[GL](B(1), VB) = HomB[GL](B(1), LB) and LB is unique.

Now suppose Vξ is indecomposable; we wish to show that VB actually does
admit a suitable B-line. We will do this by showing that VB is isomorphic
to the trivial deformation Vξ ⊗E B. Note that by Tate local duality

dimE H
1(GL, ad

0 Vξ) = dimE H
0(GL, ad

0 Vξ) + dimE H
0(GL, ad

0 Vξ(1)) = 0

the last equality following from indecomposability of Vξ. The result then
follows by induction on the length of B, since this calculation holds for any
indecomposable extension of A(1) by A.

But since we have a proper monomorphism of schemes Lχ,�V [1/p]→ SpecRχ,�
V [1/p],

it is a closed immersion.

Now we can prove the following proposition and corollary.

Proposition 5.5. Let SpecRχ,1,�
V be the scheme-theoretic image of the mor-

phism Lχ,�V → SpecRχ,�
V . Then

1. Rχ,1,�
V is a domain of dimension 4 and Rχ,1,�

V is formally smooth over
W (F).

2. If E/Qp is a finite extension, then a morphism ξ : Rχ,�
V → E factors

through Rχ,1,�
V if and only if the corresponding two-dimensional repre-

sentation Vξ is an extension of E by E(1).
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Proof. Since Rχ,1,�
V is smooth and connected, it is a domain. We will find

its dimension via a tangent space calculation. Suppose Vξ is indecomposable
(which we may assume, since most points on Rχ,1,�

V are indecomposable).
Then the dimension of Rχ,1,�

V [1/p] is

dimE |Dχ,�
Vξ
|(E[ε]) = dimE |Dχ

Vξ
|(E[ε]) + 4− dimE(adVξ)

GL

= dimE H
1(GL, ad

0 Vξ) + 3 = 3

So Rχ,1,�
V itself is 4-dimensional, and we have proven the first part.

The second part follows from the definition of Lχ,�V and Rχ,1,�
V .

Corollary 5.6. Let O be the ring of integers in a finite extension ofW (F)[1/p],
and γ : GL → O× a continuous unramified character. Write R�

V,O =

R�
V ⊗W (F) O. Then there exists a quotient Rχγ,γ,�

V,O such that

• Rχγ,γ,�
V,O is a domain of dimension 4 and Rχγ,γ,�

V,O [1/p] is formally smooth
over O.

• If E/O[1/p] is a finite extension, then a map ξ : R�
V,O → E factors

through Rχγ,γ,�
V,O if and only if Vξ is an extension of γ by γ(1).

Proof. This basically follows because universal deformation rings behave rea-
sonably well with respect to twisting by fixed characters, at least once the
question makes sense.

More precisely, we may replace F by the residue field of O (corresponding
to tensoring R�

V with O). Then twisting by γ−1 induces an isomorphism
R�
V,O→̃R�

V×γ−1,O (because twisting the residual representation by γ−1 doesn’t
change this deformation problem (except to multiply the determinant by
γ2), and the quotient Rχγ,γ,�

V,O corresponds to Rχ,1,�
V⊗γ−1 ⊗W (F) O under this

isomorphism.
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Lecture 21: Structure of ordinary-crystalline deformation ring for ℓ = p

1. Basic problem

Let Λ be a complete discrete valuation ring with fraction field E of characteristic 0,
maximal ideal m = (π), and residue field k of characteristic p > 0; we will ultimately be
interested in the case when k is finite (and in particular, perfect). Consider a complete local
noetherian Λ-algebra R with residue field k, so

R = Λ[[x1, . . . , xm]]/(f1, . . . , fs),

and suppose there is given a continuous representation

ρ : GK → GLn(R)

for a p-adic field K (i.e., K is a finite extension of Qp). Note that R[1/p] = R[1/π] = R⊗ΛE;
we call this the “generic fiber” of R over Λ, but beware that as an E-algebra this is typically
very far from being finitely generated. For shorthand, we write RE to denote this generic
fiber.

We are going to be interested in certain subsets of MaxSpec(RE). Recall from the lecture in
the fall on generic fibers of deformation rings that the maximal ideals of RE are precisely the
kernels of E-algebra homomorphisms RE → E ′ into finite extensions E ′/E, or equivalently
Λ-algebra homomorphisms R→ E ′, and that such maps are necessarily given by

h(x1, . . . , xm) 7→ h(a1, . . . , am)

for ai in the maximal ideal of the valuation ring Λ′ of E ′. In more geometric terms,
MaxSpec(RE) is identified with the zero locus

{(a1, . . . , am) ∈ Em | |ai| < 1, fj(a1, . . . , am) = 0 for all j}
taken up to the natural action by Gal(E/E) on this locus.

Remark 1.1. Loosely speaking, we view RE as an “algebraist’s substitute” for working di-
rectly with the rigid-analytic space {f1 = · · · = fs = 0} inside of the open unit polydisk over
E. There is a way to make this link more precise, by relating RE to the algebra of bounded
analytic functions on this analytic space, but we do not need such a result so we will pass
over it in silence; nonetheless, trying to visualize MaxSpec(RE) in terms of this analytic zero
locus is a good source of intuition.

In the fall lecture on generic fibers of deformation rings, we recorded a few basic algebraic
properties of RE and we recall them now. First, RE is noetherian and Jacobson; the latter
means that every prime ideal is the intersection of the maximals over it, or equivalently the
radical of any ideal is the intersection of the maximals over it. This ensures that focusing on
MaxSpec does not lose a lot of information, much like algebras of finite type over a field (the
classic example of a Jacobson ring). In contrast, a local ring of positive dimension (e.g., a
discrete valuation ring, or R as above when not artinian!) is never Jacobson! An additional
important property, already implicit in the preceding discussion, is that if x ∈ MaxSpec(RE)

1
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then the corresponding residue field E(x) = RE/mx is finite over E. It then makes sense to
consider the specialization of ρ at x:

ρx : GK
ρE→ GLn(RE)→ GLn(E(x)).

Especially when E is finite over Qp, we visualize ρ as a “family” of p-adic representations
{ρx} with varying coefficient fields E(x) of finite degree over E.

Remark 1.2. Note that each such ρx is continuous (and so is a p-adic representation of GK)
since x carries R into the valuation ring of E(x) via a local map and ρ is continuous when
R is given its local (i.e., max-adic) topology.

For a property P of (isomorphism classes of) GK-representations over finite extensions of
E and for any x ∈ MaxSpec(RE), let P(x) denote the condition that ρx satisfies property
P. (In practice, P is always insensitive to finite scalar extension on the coefficient field over
E.) It is useful to consider whether or not the locus

P(RE) = {x ∈ MaxSpec(RE) |P(x) holds}
is “analytic” in the sense that it is cut out by an ideal J of RE. That is, for a Λ-algebra map
x : R → E ′ to a finite extension E ′/E, does ρx satisfy P if and only if x(J) = 0? A given
ideal J in RE satisfies this condition if and only if its radical does (since E ′ is reduced), so
we may as well restrict attention to radical J . But since RE is Jacobson, a radical ideal
J in RE is the intersection of the maximals over it, so in other words there is exactly one
possibility for a radical J :

JP :=
⋂

P(x) holds

mx

where mx = ker(x : RE → E(x)). Note that if P(x) fails for all x ∈ MaxSpec(RE) then
JP = (1) (either by logic, convention, or the utiliarian reason that it is consistent with what
follows).
Turning this reasoning around, we take the above expression for JP as a definition, so

V (JP) := Spec(RE/JP) is the Zariski closure of the locus of x ∈ MaxSpec(RE) such that
P(x) holds. The analyticity question for P then amounts to the following question: does
every closed point of V (JP) satisfy P? It is by no means clear how one could answer this
question, and in the early days of modularity lifting theorems this was a serious problem
which had to be treated by ad hoc methods depending on the specific P.
One of the big achievements of Kisin’s introduction of integral p-adic Hodge theory into

Galois deformation theory is to provide systematic techniques for proving an affirmative
answer to this question for many interesting P involving conditions related to p-adic Hodge
theory (e.g., crystalline with Hodge-Tate weights in the interval [−2, 5]). In any situation for
which the P-analyticity question has an affirmative answer, to exploit it one needs to answer
a deeper question: how can we analyze properties of RE/JP, such as regularity, dimension,
connectedness of spectrum, etc.? Kisin’s methods also gave a way to address this question.
We will develop this for a special P that can be studied without the full force of p-adic Hodge
theory: the “ordinary crystalline” deformation problem, to be defined later.
A key insight that underlies Kisin’s strategy for answering both of these questions is to

use P to define a new moduli problem on arbitrary R-algebras (forgetting the topological



3

structure of R) which is shown to be represented by a proper (even projective) R-scheme
Θ : XP → SpecR such that:

(1) the map ΘE : XP,E → Spec(RE) obtained by inverting p (equivalently, localizing by
Λ→ E) is a closed immersion whose image has as its closed points precisely the ones
which satisfy P (so this closed subscheme, after killing nilpotents, recovers JP and
provides an affirmative answer to the P-analyticity question),

(2) the Λ-scheme XP is “formally smooth” in a sense we will make precise later. (In
practice XP is very far from being finite type over Λ, just like R itself, so we cannot
naively carry over the notion of smooth morphism from algebraic geometry in terms
of a Jacobian criterion.)

An important consequence of condition (2) is that the generic fiber XP,E is “formally
smooth” over E, which is to say that it is regular and hence reduced. (In geometric language,
this says that the rigid-analytic space over E arising from RE/JP in the open unit polydisc
is smooth.) In particular, XP,E = V (RE/JP) (affine!), so the E-algebra RE/JP that we wish
to understand is the coordinate ring of the affine generic fiber XP,E of the (typically non-
affine!) moduli scheme XP over R which we can try to study by moduli-theoretic reasoning.
In fact, we will study the structure of the generic fiber over E by using moduli-theoretic
considerations with the schemes XP mod πR and XP mod mR which live in characteristic p!
Letting IP = ker(R → RE/JP) be the ideal of the Zariski closure in SpecR of the P-

locus in SpecRE, the quotient R/IP is reduced with generic RE/JP. In practice we will
think of R/IP as an “integral parameter space for the property P”. In particular, the formal
smoothness over Λ in (2) justifies viewing XP as a “resolution of singularities” of Spec(R/IP)
(for which it has the same E-fiber).

2. Some commutative algebra and algebraic geometry

Before we launch into the definition and study of Kisin’s moduli problems on R-algebras
and their applications to the study of the P-locus in MaxSpec(RE), we digress to explain
some general considerations in commutative algebra and algebraic geometry which will be
used throughout his method. It will be clearer to carry out these general considerations now
so that we will be ready for their applications later.
We consider the following general setup. Let (Λ, E, π, k, R) be as above, and let f : X →

SpecR be a proper R-scheme. There are two “reductions” of f that will be of interest: the
reductions

f : X := X mod π → Spec(R/πR), f0 : X0 := X mod mR → Spec k

modulo πR and modulo mR respectively. In particular, X0 is a proper (hence finite type)
scheme over the residue field k. The quotient R/πR is naturally a k-algebra (since k =
Λ/(π)), but X is typically “huge” (not finite type) when thereby viewed as a k-scheme.
Since f is proper, it carries closed points of X into closed points of SpecR. But there is

only one closed point of the local SpecR, and X0 is closed in X, so we conclude that the
closed points of X coincide with those of X0. Moreover, if x0 ∈ X is a closed point then
since it is closed in the scheme X0 of finite type over k we see that the residue field κ(x0) of
X at x0 (or equivalently, of X0 at x0) is of finite degree over k,
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Now assume that k is perfect (e.g., finite). Consider a closed point x0 ∈ X, so κ(x0)/k
is a finite separable extension. Let Λ(x0) be the unique (up to unique isomorphism) finite
unramified extension of Λ with residue field κ(x0)/k. The completed local ring O∧

X,x0
is a

Λ-algebra with residue field κ(x0)/k, so by Hensel’s Lemma it admits a unique structure of
Λ(x0)-algebra over its Λ-algebra structure. (This application of Hensel’s Lemma crucially
uses that we are working with the completed local ring and not the usual algebraic local ring
OX,x0 ; this latter Λ-algebra is typically not a Λ(x0)-algebra in a compatible manner.)

Hypothesis (∗): assume that O∧
X,x0
≃ Λ(x0)[[T1, . . . , Tn]] as Λ(x0)-algebras, for all closed

points x0 ∈ X0.

This hypothesis can be checked by means of functorial criteria, and that is how it will be
verified in later examples of interest. It follows from (∗) that the completion O∧

X,x0
is regular,

Λ-flat, and reduced modulo π for all x0. These are the properties we will use to prove:

Proposition 2.1. Under hypothesis (∗), the base change X over R/(π) is reduced and the
total space X is regular and Λ-flat.

Proof. We first handle the Λ-flatness, and then turn to the claims concerning reducedness
modulo π and regularity. The π-power torsion in OX is a coherent ideal whose formation
commutes with passage to stalks and completions thereof (by flatness of completion). For
all closed points x0, the completion of OX,x0 is Λ-flat by inspection of its assumed structure.
Hence, the π-power torsion ideal has vanishing stalks at all closed points, so it vanishes on
an open subset of X which contains all closed points. Such an open subset must be the
entire space, so X is Λ-flat.
By hypothesis (∗), each quotient O∧

X,x0
= O∧

X,x0
mod π is reduced, so the proper scheme

X over the complete local noetherian ring R = R/(π) has reduced local rings at the closed
points. Thus, the coherent radical of the structure sheaf of OX has vanishing stalks at all
closed points, so exactly as for the Λ-flatness above we conclude that X is reduced.
If the non-regular locus on X is closed then since the local rings on X at all closed points

are regular (by inspection of their completions) it would follow that the non-regular locus
is empty. That is, X is regular if the non-regular locus is closed. It remains to prove that
the non-regular locus in X is Zariski-closed. The closedness of this locus in general locally
noetherian schemes (and likewise for other properties defined by homological conditions) is a
deep problem which was first systematically investigated by Grothendieck. His big discovery
was that for a class of schemes called excellent the closedness always holds. He also proved
that “most” noetherian rings which arise in practice are excellent.
We refer the reader to [4, Ch. 13] for an elegant development of the basic properties

of excellence (including the definition!), and here we just record the main relevant points:
excellence is a Zariski-local property, it is inherited through locally finite type maps, and
every complete local noetherian ring (e.g., every field, as well as R above) is excellent. Hence,
the scheme X is excellent, so its non-regular locus is Zariski closed. �

Now we come to a very useful result which can be applied under the conclusions of the
preceding proposition.
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Lemma 2.2 (Reduced fiber trick). Let X be a Λ-flat R-scheme which is proper and for
which X = X mod π is reduced. If X is connected and non-empty then X0 = X mod mR

and the generic fiber XE = X ⊗Λ E are both connected and non-empty.
In general (without connectedness hypotheses), there is a natural bijective correspondence

between connected components C0 of X0 and CE of XE by the requirement that CE is the
E-fiber of the unique connected component of X with mod-mR fiber C0.

Proof. Since X is non-empty and Λ-flat, XE is non-empty. The theorem on formal functions,
applied to the proper X over the complete local noetherian ring R, identifies the idempotents
on X with those on X0. In particular, X0 is non-empty, and each connected component of
X0 uniquely lifts to a connected component of X. Hence, by passing to the connected
components of X it suffices to prove that if X is connected then so is XE.
The Λ-flatness of X implies that the ring O(X) of global functions on X injects into its

localization O(X)[1/π] = O(X)E = O(XE) which is the ring of global functions on XE. We
assume that the latter contains an idempotent e and seek to prove e = 0 or e = 1. We can
write e = e′/πn for a minimal n ≥ 0 and a global function e′ on X. If n = 0 then e′ is
idempotent on X and hence e = e′ ∈ {0, 1} since X is connected. Thus, we assume n ≥ 1
and seek a contradiction to the minimality of n.
Since e2 = e on XE, we can clear denominators (via Λ-flatness) to get e′2 = πne′ on X.

Thus, for e′ = e′ mod π we have e′2 = 0 on X. But X is reduced, so e′ = 0 on X. This says
that e′ is divisible by π locally on X. Since X is Λ-flat, the local π-multiplier to get e′ is
unique and hence globalizes. That is, e′ = πe′′ for some e′′ ∈ O(X). It follows that on XE

we have

e =
e′

πn
=

e′′

πn−1
,

contrary to the minimality of n. �
Inspired by the two preceding results, we are led to wonder: how can we ever verify

Hypothesis (∗)? We now present a functorial criterion.

Proposition 2.3. Hypothesis (∗) holds if and only if for every artin local finite Λ-algebra
B, X(B)→ X(B/J) is surjective.

Proof. Fix a closed point x0 ∈ X and let k′/k be a finite Galois extension which splits
k0 := κ(x0). Let Λ0 = Λ(x0), and let Λ′ be the finite unramified extension of Λ corresponding
to k′/k. Thus,

(2.1) Λ′ ⊗Λ Λ0 ≃
∏

j:k0→k′

Λ′
j

where Λ′
j denotes Λ

′ viewed as a Λ(x0)-algebra via the unique Λ-embedding Λ0 → Λ′ lifting
the k-embedding j : k0 → k′.
Recall from above that O∧

X,x0
is canonically a Λ0-algebra. Let B be an artin local finite

Λ0-algebra. A complete local noetherian Λ0-algebra with residue field k0 is a formal power
series ring over Λ0 if and only if it is Λ0-flat with residue field k0 and is regular modulo π.
These properties hold if and only if the finite étale scalar extension by Λ0 → Λ′ yields the
analogous properties using the residue field k′, so it is equivalent to prove that this scalar
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extension is a formal power series ring over Λ′. In particular, the functorial criterion for the
latter condition is precisely that the natural map of sets

(2.2) HomΛ0(O
∧
X,x0

, B)→ HomΛ0(O
∧
X,x0

, B/J)

is surjective for any artin local finite Λ′-algebra B with residue field of finite degree over k0
and any square-zero ideal J in B.
We will reformulate this surjectivity in terms which are more easily related to the functor

of points of X as we vary (B, J) with B an artin local finite Λ′-algebra. Since B is artin
local and Λ-finite, the natural restriction map

HomΛ(O
∧
X,x0

, B)→ HomΛ(OX,x0 , B) = Xx0(B)

is bijective, where Xx0(B) denotes the set of Λ-maps SpecB → X whose image is x0. Using
the Λ′-algebra structure on B and the canonical Λ′-algebra structure on O∧

X,x0
, we also have

the alternative description

HomΛ(O
∧
X,x0

, B) = HomΛ′(Λ′ ⊗Λ O∧
X,x0

, B) = HomΛ′((Λ′ ⊗Λ Λ0)⊗Λ0 O∧
X,x0

, B).

Using (2.1), this is identified with the disjoint union
∐

j:k0→k′

HomΛ′(Λ′ ⊗j,Λ0 O∧
X,x0

, B) =
∐

j:k0→k′

HomΛ0(O
∧
X,x0

, Bj)

where Bj denotes B viewed as a Λ′-algebra via any g ∈ Gal(k′/k) lifting j on k0.
The preceding identifications of Hom-sets are all functorial in B. In the final disjoint union

above, as we vary through all pairs (B, J) with B an artin local finite Λ′-algebra and J a
square-zero ideal in B, the simultaneous surjectivity of (2.2) for all pairs (Bj, Jj)’s is thereby
identified with the surjectivity of the natural map

Xx0(B)→ Xx0(B/J)

as B varies through artin local finite Λ′-algebras. Recall that k′/k is an arbitrary but fixed
finite Galois extension which splits k0 = κ(x0). Thus, if X(B) → X(B/J) is surjective for
all artin local finite Λ-algebras B and square-zero ideals J ⊂ B then Hypothesis (∗) holds.
Conversely, if (∗) holds then for any such (B, J) we claim that X(B) → X(B/J) is

surjective. Pick a point in X(B/J). As a Λ-map Spec(B/J) → X we claim that it hits
a closed point x0. Since B/J has residue field of finite degree over k, it suffices to show
that this map lands in X0 (as X0 is a finite type k-scheme). Since the composite map
Spec(B/J) → Spec(R) over Λ lifts a point of R valued in a finite extension of k, it suffices
to check that the only such point is the evident one which kills mR. Expressing R/(π) as the
quotient of a power series ring over Λ, it suffices to prove that the only local k-algebra map
from k[[x1, . . . , xm]] into a finite extension of k is “evaluation at the origin”. This is verified
by restriction to the k-subalgebras k[[xi]] for i = 1, . . . ,m.
The chosen point in X(B/J) identifies the residue field κ of B/J as a finite extension of

the residue field k0 at x0, so B/J and hence B is thereby equipped with a natural structure
of Λ0-algebra over its Λ-algebra structure. The chosen point in X(B/J) is thereby identified
with a Λ-algebra map Spec(B/J)→ X hitting x0 and lifting the specified extension structure
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κ/k0. This map corresponds to a local Λ-algebra map OX,x0 → B/J lifting k0 → κ, which
in turn uniquely factors through such a local Λ-map

O∧
X,x0
→ B/J.

This latter map is a Λ0-algebra map (as may be checked on residue fields). By (∗), the
completion O∧

X,x0
is a formal power series ring over Λ0, so its map to B/J lifts to a Λ0-

algebra map O∧
X,x0
→ B. Running the procedure in reverse, this gives a Λ-map SpecB → X

which lifts the chosen point in X(B/J). �
Remark 2.4. The criterion in Proposition 2.3 is what was used in the verification of power
series properties in the preceding lecture on the case ℓ 6= p. In Kisin’s papers, he expresses
things in terms of a much more general theory of formal smoothness for maps of topological
rings, and he thereby invokes some very deep results of Grothendieck in this theory.
For example, a noetherian algebra over a field of characteristic 0 is formally smooth (for

the discrete topology) over that field if and only if it is regular. We will speak in the language
of regularity and avoid any need for the theory of formal smoothness because we will appeal
to general results in the theory of excellence (as was done in the proof of Proposition 2.1).
The reader who is interested in reading up on the general theory of formal smoothness

(such as its flatness aspects) should look at [5, Ch. 28], §17.5 in EGA IV4, and §19–22
(esp. 19.7.1 and 22.1.4) in Chapter 0IV of EGA. Certainly if one goes deeper into Kisin’s
techniques (beyond the “ordinary crystalline” deformation condition to be considered below)
then it becomes important to use formal smoothness techniques in the generality considered
by Kisin.

The final topic we take up in this section is the algebro-geometric problem of giving a
convenient criterion to prove that the proper map

fE : XE → Spec(RE)

is a closed immersion. More specifically, we want to give a criterion involving points valued
in finite E-algebras C. Keep in mind that even though RE is a gigantic E-algebra in general,
it is Jacobson and its maximal ideals have residue field of finite E-degree. In particular, the
artinian quotients of RE at its maximal ideals are examples of such E-algebras C. The same
goes for the RE-proper XE at its closed points (which lie over MaxSpec(RE), due to the
properness of fE).

Proposition 2.5. If fE is injective on C-valued points for all E-finite C then fE is a closed
immersion.

Proof. We will first prove that fE is a finite map (i.e., XE is the spectrum of a finite RE-
algebra), so then we can use Nakayama’s Lemma to check the closed immersion property.
Since fE is proper, it suffices to prove that it is quasi-finite. For any map of finite type
between noetherian schemes, the locus of points on the source which are isolated in their
fibers (i.e., the “quasi-finite locus”) is an open set: this is a special case of semi-continuity
of fiber dimension. Thus, if fE has finite fibers over MaxSpec(RE) then the open quasi-
finite locus of fE contains all closed points of XE (as these are precisely the points over
MaxSpec(RE), due to properness of fE). But XE is a Jacobson scheme since it is finite type
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over the Jacobson ring RE, and (as for any noetherian topological space) the only open set
in XE which contains all closed points is the entire space. Hence, if fE has finite fibers over
MaxSpec(RE) then fE is a quasi-finite and therefore finite map.
Letting C vary through the finite extension fields E ′/E, the injectivity of fE on E ′-valued

points implies that the fiber of fE over each y ∈ MaxSpec(RE) has only finitely many closed
points. (Here we use that f−1

E (y) is closed in XE and is of finite type over E(y), with E(y)
finite over E.) But a scheme of finite type over a field has finitely many closed points if
and only if it is finite. Thus, fE indeed has finite fibers over MaxSpec(RE). This argument
even shows that such fibers have at most one physical point (since if a fiber contains two
distinct points x′ 6= x then using E ′ containing E(x) and E(x′) makes fE fail to be injective
on E ′-valued points).

Now consider the finite map fE : XE → SpecRE. To prove that the corresponding
module-finite map of coordinate rings is surjective (so fE is a closed immersion), it suffices
to check surjectivity after localizing at maximal ideals of RE. By Nakayama’s Lemma, it
is equivalent to check that the scheme-theoretic fiber SpecC → SpecE(y) of fE over each
y ∈ MaxSpec(RE) satisfies C = 0 or C = E(y). The two composite maps

Spec(C ⊗E(y) C)⇒ SpecC → SpecE(y)

coincide, so for the E-finite algebra C ′ = C ⊗E(y) C we see that the composites

Spec(C ′)⇒ SpecC = XE ×Spec(RE) Spec(E(y)) →֒ XE

have the same composition with fE : XE → Spec(RE). By hypothesis, fE is injective on
C ′-valued points! Hence, the projections Spec(C ′)⇒ Spec(C) coincide, which is to say that
the two inclusions C ⇒ C ′ = C ⊗E(y) C coincide. This easily forces C = E(y) if C 6= 0 (by
consideration of an E(y)-basis of C containing 1). �

3. The ordinary crystalline deformation problem

Now assume that k is finite! Let E ′/E be a finite extension and Λ′ its valuation ring. Fix
a continuous representation ρ : GK → GL2(E

′) with cyclotomic determinant χ. We already
know what it means to say that ρ is ordinary: this means that there is a GK-equivariant
quotient line with action by an unramified character η. Such a quotient line is unique, as the
Λ×-valued det ρ = χ is ramified, so it is equivalent to say that ρ admits an IK-equivariant
quotient line with trivial IK-action. This notion of ordinarity can be expressed in terms of
a GL2(Λ

′)-valued conjugate of ρ by using saturated Λ′-lines.
In terms of a GK-stable Λ′-lattice, we get an upper-triangular form for ρ, or equivalently

for ρ|IK , and this extension structure identifies ρ|IK with a class in

H1(IK ,Λ
′(1)) = lim←−H1(IK , (Λ

′/(pn))(1))

with Λ′/(pn) a finite free Z/(pn)-module since [k : Fp] is now assumed to be finite. This rank
is equal to the Zp-rank of the finite free Zp-module Λ′. By computing with a Zp-basis of Λ

′,
the natural map

Λ′ ⊗Zp H
1(IK , µpn)→ H1(IK , (Λ

′/(pn))(1))

is an isomorphism, and we can pass this tensor product through an inverse limit to get

H1(IK ,Λ
′(1)) = Λ′ ⊗Zp H

1(IK ,Zp(1)).
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The “crystalline” property of ρ is now going to be defined in terms of a description of
H1(IK ,Zp(1)) and the identification of ρ|IK as a class in Λ′⊗Zp H

1(IK ,Zp(1)). (After making
the definition, we will make it more concrete in terms of matrices.) We note at the outset
that the definition we will give is in fact equivalent to a special case of a general notion of
“crystalline” defined in p-adic Hodge theory, but we have avoided any discussions of p-adic
Hodge theory and so will likewise have no need to delve further into the justification for our
choice of terminology. A reader who pursues the subject in greater depth will eventually
meet the general concept of “crystalline”, but it is logically unnecessary for our purposes.
Let K ′ denote the completion of the maximal unramified extension Kun, so

K ′ = W (F)⊗W (F) K

where F is the finite residue field of K. Thus, IK = GK′ and OK′ is a complete discrete
valuation ring with uniformizer given by one for OK . In particular, 1 + mK′ is p-adically
separated and complete as a multiplicative Zp-module. By Kummer theory,

(3.1) H1(GK′ ,Zp(1)) = lim←−K
′×/Kun×pn = Zp × (1 +mK′)

where the Zp-factor corresponds to powers of a fixed uniformizer of K (or K ′). This direct
product decomposition is not canonical: the direct factor of Zp depends on a choice of
uniformizer. However, the “Zp-hyperplane” of 1-units 1 +mK′ (a multiplicative Zp-module)
is canonical.

Definition 3.1. The ordinary representation ρ : GK → GL2(Λ
′) is crystalline if its class in

H1(IK ,Λ
′(1)) lies in the Λ′-hyperplane

(1 +mK′)⊗Zp Λ
′.

Equivalently, ρ : GK → GL2(E
′) corresponds to a class in H1(IK , E

′(1)) lying in the E ′-
hyperplane (1 +mK′)⊗Zp E

′.

In view of the formulation over E ′, the crystalline condition is intrinsic to the E ′-linear
representation space forGK , so it does not depend on a specific choice ofGK-stable Λ

′-lattice.

Example 3.2. The concrete meaning of the crystalline condition is as follows. In terms
of a choice of GK-stable Λ′-lattice, consider ρ|IK mod pn for each n ≥ 1. This is upper
triangular unipotent, with upper-right entry given by a Λ′-linear combination of 1-cocycles
g 7→ g(u1/p

n
)/u1/p

n
on IK , with u ∈ O×

K′ . Loosely speaking, Kummer theory shows that
ρ|IK is given by a Tate-curve type of construction with Λ′-coefficients, and the crystalline
condition is that the “q-parameter” can be chosen to be a unit (or equivalent a 1-unit, since

F
×
is uniquely p-divisible).

Now we fix a residual representation ρ0 : GK → GL2(k) with cyclotomic determinant, and
we seek to study its ordinary crystalline deformations with coefficients in p-adic fields or
valuation rings thereof. In order to make good sense of these notions in deformation theory,
we need to generalize the definition of “ordinary crystalline” to the case of more general
coefficients.

Remark 3.3. We will later need to consider coefficients in rings like R[T ] that are not mR-
adically separated and complete, so this will create some delicate problems when we work
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with finite type R-schemes such as P1
R that we want to use in the construction of a moduli

scheme for an “ordinary crystalline” deformation problem. The creative use of proper (gener-
ally non-finite) R-schemes in Galois deformation theory is one of the innovations introduced
by Kisin’s work.

Consider the universal deformation ρ : GK → GL2(R) or universal framed deformation
ρ� : GK → GL2(R

�) of ρ0 with cyclotomic determinant. We want to study the locus of
“ordinary crystalline points” in MaxSpec(RE). The formalism for this study will not really
use the universality at all, so to keep the picture clear we now consider any continuous
ρ : GK → GL2(R) as at the outset such that det ρ is cyclotomic, and we continue to assume
that the residue field k of R is finite. For any R-algebra A, let

ρA : GK → GL2(A)

denote the composition of ρ with R→ A on matrix entries. Note that there is no meaningful
continuity condition for ρA for general A, since we are not assuming that A carries an
interesting topology compatible with the one on R.
In the special case that A is an R/mn

R-algebra, ρA is continuous for the discrete topology on
A (and the Krull topology on GK) since ρ mod mn

R is continuous for the discrete topology on
R/mn

R. Beware that if we take A = R/(pn) with the discrete topology then ρA is typically not
continuous. It will therefore be important that we can work modulo powers of the maximal
ideal of R and bootstrap back up to geometric objects over R via limit procedures.

Example 3.4. Our work with ρA for R/mn
R-algebras A will involve some Galois cohomology

with A-coefficients viewed discretely, so we record here the useful fact that for any Z/(pn)-
module M viewed discretely (such as M = A) the natural map

M ⊗Zp H
1(IK ,Zp(1))→ H1(IK ,M(1))

is an isomorphism.
To prove this, we can use direct limits in M to reduce to the case when M is a finitely

generated Zp-module. Hence, M is a finite direct sum of modules of the form Z/(pr) with
r ≤ n, so it suffices to treat the case M = Z/(pr). Then the assertion is that the natural
map

H1(IK ,Zp(1))/(p
r)→ H1(IK , µpr)

is an isomorphism for all r ≥ 1. For K ′ denoting the discretely-valued completion of Kun

we have IK = GK′ and 1 + mK′ is p-adically separated and complete (as a multiplicative
Zp-module), so Kummer theory and the description of H1(IK ,Zp(1)) in (3.1) yields the result.

In the special case that A is the valuation ring of a finite extension of E, we have defined
what it means to say that ρA is ordinary crystalline (in Definition 3.1). That definition
involved the p-adic topology of the valuation ring. We wish to define this concept for R/mn

R-
algebras A, avoiding any use of nontrivial topologies on rings.

Definition 3.5. Let A be an R-algebra killed by mn
R for some n ≥ 1. The representation

ρA of GK on VA := A2 is ordinary crystalline if there is a GK-stable A-submodule LA ⊂ VA
such that LA and VA/LA are locally free of rank 1 (equivalently, projective of rank 1) and:
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(1) the IK-action on VA/LA is trivial, or equivalently the continuous action of GK on
VA/LA is through an unramified character η : GK → A× and on LA is through χη−1;

(2) under the “valuation” map Kun× ։ Z, the class in

H1(IK , A(1)) = H1(IK ,Zp(1))⊗Zp A = (Kun×/(Kun×)p
n

)⊗Z/(pn) A

describing ρA|IK is carried to 0 ∈ A (i.e., the class arises from integral units of Kun).

We call the A-line LA ⊂ VA an ordinary crystalline structure on ρA.

Remark 3.6. In the “crystalline” condition (2) in this definition, we have invoked the coho-
mology computation in Example 3.4. Also, in general there may be more than one choice of
LA (if any exist at all!). For example, if A = k and ρk has trivial GK-action (in particular,
the mod-p cyclotomic character is trivial) then every line in Vk = k2 is an ordinary crystalline
structure on ρk.
A fundamental insight of Kisin is that rather than trying to parameterize deformations

which admit an additional structure (such as an ordinary crystalline structure) that may
not be unique, it is better to parameterize the space of pairs consisting of a deformation
equipped with such an additional structure. To make reasonable sense of a parameter space
for such enhanced objects, we will have to leave the framework of complete local noetherian
rings and instead work with certain proper schemes over such rings.

The property in (2) in the preceding definition makes sense as a condition on classes in
H1(IK ,M(χ)) for any discrete Z/(pn)-module M for any n ≥ 1. (Note that M(χ) is a
discrete IK-module, and even a discrete GK-module.)

Definition 3.7. For any discrete Z/(pn)-module M equipped with a continuous unramified
GK-action (not necessarily trivial), the subgroup

H1
crys(K,M(χ)) ⊂ H1(K,M(χ))

consists of classes whose restriction to H1(IK ,M(χ)) =M ⊗Zp H
1(IK ,Zp(1)) is killed by the

“valuation” mapping H1(IK ,Zp(1)) → Zp defined by Kummer theory. (In other words, the
IK-restriction is an M -linear combination of classes in H1(IK ,Zp(1)) arising from integral
units of the completion of Kun.)

It is immediate from the definition that ifM = lim−→Mi for a directed system of unramified
discrete (Z/(pn))[GK ]-modules Mi then the equality

lim−→H1(K,Mi(χ)) = H1(K,M(χ))

carries lim−→H1
crys(K,Mi(χ)) isomorphically onto H1

crys(K,M(χ)). In other words, the forma-

tion of H1
crys(K,M(χ)) is compatible with direct limits in M . This will be very useful for

reducing some general assertions to the special case of M which are Zp-finite (whereas in
applications we will need to work with M which are not Zp-finite, such as (R/mn

R)[t]).

Example 3.8. Isomorphism classes of pairs (ρA, LA) as in Definition 3.5 correspond to ele-
ments in H1

crys(K,A(1)).
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Example 3.9. It is important to link Definition 3.5 and Definition 3.1. For ρ : GK → GL2(Λ
′)

as in Definition 3.1 we claim that it is ordinary crystalline in that initial sense (which can
be checked over the fraction field E ′ of Λ′) if and only if the artinian quotients ρ mod πnΛ′

of ρ are ordinary crystalline in the sense of Definition 3.5 with R = Λ′ (i.e., each ρ mod πnΛ′

admits an ordinary crystalline structure).
It is obvious that if ρ is ordinary crystalline in the initial sense then each artinian quotient

ρ mod πnΛ′ admits an ordinary crystalline structure. To go in reverse, suppose that every
such artinian quotient admits an ordinary crystalline structure. Such structures are not
unique in general, but since k is finite there are only finitely many such structures for each
n ≥ 1. These finite non-empty sets form an inverse system in an evident manner, and so the
inverse limit is non-empty. (This is an elementary fact since the inverse system is indexed
by positive integers and not a general index set.)
An element of the inverse limit is precisely the data of a saturated GK-stable Λ′-line L in

ρ such that (i) ρ mod L has trivial IK-action (as may be checked modulo πn for all n ≥ 1),
and (ii) the class in H1(IK ,Λ

′(1)) = Λ′ ⊗Zp H1(IK ,Zp(1)) corresponding to (ρ|IK , L) has
image under the “valuation mapping” H1(IK ,Λ

′(1)) → Λ′ which vanishes (as this can also
be checked modulo πn for all n ≥ 1). The conditions (i) and (ii) say exactly that ρ is ordinary
crystalline in the sense of Definition 3.1.

The proof of a later “formal smoothness” result over Λ will rest on:

Lemma 3.10. For any n ≥ 1, the functor M  H1
crys(K,M(χ)) on discrete unramified

(Z/(pn))[GK ]-modules is right-exact.

This is analogous to the fact that H1(IK ,M(χ)) =M⊗Zp H
1(IK ,Zp(1)) (see Example 3.4)

is right-exact in discrete pn-torsion abelian groups M with trivial IK-action.

Proof. By discreteness we can express any M as a direct limit of Zp-finite GK-submodules,
so any right exact sequence in M ’s is obtained as a direct limit of right-exact sequences of
Zp-finite object. Thus, the compatibility with direct limits in M reduces the problem to
right-exactness for M which are finite abelian p-groups.
There are two ways to settle the finite case. In [3, 2.4.2], Kisin does some work with

cocycles to derive an explicit description of H1
crys(K,M(χ)) which makes the right-exactness

evident by inspection. This is definitely the most elementary way to proceed.
For the reader who doesn’t like cocycle arguments and is familiar with the fppf topology,

here is an alternative explanation in such terms. This explanation is longer, but may be seen
as more conceptual (and clarifies the role of finiteness of the residue field).
The finite discrete GK-module M(χ) has unramified Cartier dual, so it is the generic

fiber of a unique finite flat OK-group scheme M(χ)′ with étale Cartier dual, and M(χ)′ is
functorial in M . If

0→M1 →M2 →M3 → 0

is an exact sequence of such unramified GK-modules then the complex of finite flat OK-group
schemes

0→M1(χ)
′ →M2(χ)

′ →M3(χ)
′ → 0

is short exact (in particular, short exact as abelian sheaves for the fppf topology over OK),
as may be checked using the finite étale Cartier duals.
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It can be shown by a Kummer-theoretic argument in the fppf topology that

H1
crys(K,M(χ)) = H1

fppf(OK ,M(χ)′),

so it suffices to show that H1
fppf(OK ,M(χ)′) is right exact in M . Equivalently, a short exact

sequence in M induces a right-exact sequence in H1
fppf(OK ,M(χ)′). The long-exactness of

fppf cohomology then does the job provided that H2
fppf(OK ,M(χ)′) = 0 for any finite abelian

p-group M equipped with an unramified continuous GK-action.
The filtration by {pmM} reduces us to the case when M is p-torsion. If r = dimFp M and

k′/k is a finite Galois extension which splits M then for the corresponding finite unramified
extension K ′/K we have that M(χ)′OK′ = µrp. Thus, we have an OK-subgroup inclusion

M(χ)′ →֒ ResOK′/OK
(M(χ)′OK′ ) = ResOK′/OK

(µrp),

where ResOK′/OK
denotes Weil restriction of scalars. This latter operation represented push-

forward at the level of fppf sheaves, and it is an exact functor because OK → OK′ is finite
étale (and hence a split covering étale-locally over Spec(OK)).
We conclude that M(χ)′ is contained in the OK-group scheme T ′ = ResOK′/OK

(Gr
m)

which is an OK-torus (as we see by working étale-locally to split the covering Spec(OK′)→
Spec(OK)). Hence, we have a short exact sequence

1→M(χ)′ → T ′ → T ′′ → 1

where T ′′ := T ′/M(χ)′ is another OK-torus. Thus, using the resulting long exact sequence
in fppf cohomology, to prove H2

fppf(OK ,M(χ)′) = 0 it suffices to prove that H2
fppf(OK , T

′)
vanishes and that any OK-torus (such as T ′′) has vanishing degree-1 cohomology. For the
latter, first recall that degree-1 cohomology with affine coefficients classifies fppf torsors, so
the degree-1 vanishing amounts to the triviality of such torsors when the coefficients are
smooth and affine with connected fibers (such as a torus). To build a section splitting such
a torsor over OK it suffices (by smoothness of the coefficients, and the henselian property for
OK) to find a section over the residue field. That is, we are reduced to proving the vanishing
of degree-1 cohomology over k with coefficients in a smooth connected affine group (such as
a torus). This is Lang’s theorem, since k is finite.
Finally, to prove that H2

fppf(OK , T
′) is trivial, by using the definition of T ′ this amounts

to vanishing of

H2
fppf(OK ,ResOK′/OK

(Gm)).

The exactness of the Weil restriction functor in this case implies (by a δ-functor argument)
that

Hj
fppf(OK ,ResOK′/OK

(·)) ≃ Hj
fppf(OK′ , ·)

for all j ≥ 0. Hence, we just have to check the vanishing of H2
fppf(OK′ ,Gm) By Grothedieck’s

work on Brauer groups, this is identified with Br(OK′), and since OK′ is henselian this in
turn is identified with Br(k′). But k′ is finite, so its Brauer group vanishes. �

Now we can prove the main existence result for a proper (even projective) R-scheme that
“classifies” ordinary-crystalline pushforwards of ρ.



14

Theorem 3.11. For each n ≥ 1, the functor on R/mn
R-algebras given by

A {LA ⊂ VA |LA is an ordinary crystalline structure on ρA}
is represented by a closed subscheme Xn ⊆ P1

R/mn
R
.

There is a unique closed subscheme X ⊆ P1
R such that X mod mn

R = Xn for all n ≥ 1.

Proof. By the universal property of the projective line, Pn := P1
R/mn

R
represents the functor

carrying any R/mn
R-algebra A to the set of locally free A-submodules LA ⊂ VA = A2 of rank

1 such that VA/LA is also locally free of rank 1. Over Pn, consider the GK-action on O2
Pn

defined by ρ mod mn
R and the R/mn

R-algebra structure on OPn .
For each g ∈ GK and any A-point of Pn, the condition that A-pullback of the g-action

on O2
Pn

preserves the corresponding A-line in A2 is represented by a closed subscheme Zg of
Pn. To prove this, we may work Zariski-locally on Pn so that the universal line subbundle
is free and extends to a basis of O2. Then the vanishing of the resulting “lower left matrix
entry” function over the open in the base is what cuts out the g-stability condition over
such an open locus in Pn. These closed loci agree on overlaps and glue to the desired closed
subscheme Zg of Pn attached to g. Thus, the closed subscheme Zn = ∩gZg ⊆ Pn representing
the condition of GK preserving the universal line subbundle of O2.

Consider the character ηn : GK → O(Zn)
× describing the GK-action on the universal

line subbundle over Zn. The Zariski-closed conditions ηn(g) = 1 for all g ∈ IK cut out
a closed subscheme Z ′

n ⊆ Zn which represents the additional condition that the universal
line subbundle is not only GK-stable but has unramified GK-action. In other words, Z ′

n

represents the functor of “ordinary structures” on ρn.
Over Z ′

n, consider the further condition that the ordinary structure is crystalline. That
is, for an A-point of Z ′

n, we consider the property that the resulting A-line LA in ρA is an
ordinary crystalline structure. The map

H1(IK , A(1))→ A

defined by the valuation Kun× → Z carries the class of (ρA, LA) to an element a ∈ A, and
this construction is functorial in A. Hence, by (the proof of) Yoneda’s Lemma it defines a
global function hn on Z ′

n. The zero scheme of hn on Z ′
n is clearly the desired Xn.

Having constructed Xn ⊂ Pn for each n ≥ 1, the behavior of moduli schemes with respect
to base change implies that the isomorphism

Pn ≃ Pn+1 ⊗R/mn+1
R

(R/mn
R)

carries Xn over to Xn+1 mod mn
R. In other words, {Xn} is a system of compatible closed

subschemes of the system {Pn} of infinitesimal fibers of the proper morphism P1
R → SpecR

over the complete local noetherian ring R. Now comes the deepest step: by Grothendieck’s
“formal GAGA” (EGA III1, §5), if R is any complete local noetherian ring and P is any
proper R-scheme, then the functor

Z  {Z mod mn
R}

from closed subschemes of P to systems of compatible closed subschemes of the infinitesimal
fibers of P over SpecR is a bijection. (Even for P = P1

R this is not obvious, and it fails
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miserably if we consider the affine line instead of the projective line.) Thus, we get the
existence and uniqueness of the desired X. �

Remark 3.12. Although each infinitesimal fiber Xn of X over SpecR has moduli-theoretic
meaning for points valued in arbitrary R/mn

R-algebras, we do not claim that X has a conve-
nient moduli-theoretic meaning for its points valued in arbitrary R-algebras. In particular,
XE = X ⊗R RE has no easy interpretation.
Nonetheless, it is XE which will be of most interest to us. Thus, to work with XE we need

a way to understand its properties by studying the Xn’s. This problem will be taken up in
the next section.

4. Properties and applications of the ordinary crystalline moduli scheme

The construction of the proper R-scheme f : X → SpecR is indirect, as formal GAGA is
very abstract, but we can artfully use the construction to infer global properties of X which
will be especially useful for the study of XE. Our analysis rests on the following hypothesis
which is in force throughout this section (unless we say otherwise):

Assume that det ρ : GK → R× is cyclotomic and that ρ is the universal framed cyclotomic-
determinant deformation ring of its reduction ρk. If ρk has only scalar endomorphisms, we
also allow that (ρ,R) is the universal deformation of ρk with cyclotomic determinant.

Proposition 4.1. The Λ-scheme X is regular and flat, and X mod π is reduced.

Proof. By Proposition 2.1, Lemma 2.2, and Proposition 2.3, it suffices to prove thatX(B)→
X(B/J) is surjective for every artin local finite Λ-algebra B. Choose such a B, and let k′

be its residue field, so B is canonically an algebra over Λ′ = W (k′) ⊗W (k) Λ. It is harmless
to make the finite étale scalar extension by Λ→ Λ′ throughout (this is compatible with the
formation of X) to reduce to the case k′ = k.
The maximal ideal of B is nilpotent, say with vanishing nth power for some n ≥ 1, so

the map of interest on points of X coincides with the analogue for Xn. Thus, the task is to
show that if L is an ordinary crystalline structure on ρB/J then it lifts to one on ρB. Let

x0 ∈ X be the closed k-point corresponding to the specialization (ρk, Lk) of (ρB/J , L) over
the residue field k of B. Our problem is equivalent to showing that any local Λ-algebra
map O∧

X,x0
→ B/J lifts to B. Thus, it is sufficient (and even necessary) to prove that O∧

X,x0
is a formal power series ring over Λ. To do this, we need to give a deformation-theoretic
interpretation of this completion.
Since x0 is a closed point, R→ O∧

X,x0
is a local map and its reduction modulo mn

R recovers
O∧
Xn,x0

due to the relationship between X and the Xn’s. But Xn is an actual moduli scheme
over the ring R/mn

R (unlike X over R). In view of the assumed universal property of (ρ,R),
it follows that O∧

Xn,x0
is the deformation ring for ordinary crystalline structures lifting Lk

on cyclotomic-determinant deformations of ρk (possibly with framing) having coefficients in
Λ-finite artin local rings whose nth power vanishes. Hence, O∧

X,x0
is the analogous formal

deformation ring for arbitrary Λ-finite artin local coefficients (without restriction on the
nilpotence order of the maximal ideal).
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Our problem is therefore to prove that there is no obstruction to infinitesimal deformation
of (ρk, Lk) as ordinary crystalline structures with cyclotomic determinant. (There is no ob-
struction when we impose the additional data of a framing, as that amounts to simply lifting
some bases through a surjection of finite free modules.) That is, given such a representation
over B/J we wish to lift it to one over B. The given representation with ordinary crys-
talline structure over B/J has diagonal characters {χη−1, η} for some unramified continuous

η : GK → (B/J)×. Since GK/IK = Gk = Ẑ, we can lift η to an unramified continuous
η̃ : GK → B× (choose an arbitrary lift of η(Frobk) ∈ (B/J)×). We claim that this lifts to an
ordinary crystalline deformation to B with diagonal characters {χη̃−1, η̃}.

Thinking in terms of “upper-right matrix entries”, we have to prove the surjectivity of the
natural map

H1
crys(K,B(χη̃−2))→ H1

crys(K, (B/J)(χη
−2)).

For M = B(η̃−2) we have M/JM = B(η−2), and these are unramified discrete GK-modules
killed by a power of p. By Lemma 3.10, the natural map

H1
crys(K,M(χ))→ H1

crys(K, (M/JM)(χ))

is surjective, so we are done. �

Proposition 4.2. The natural map fE : XE → Spec(RE) is a closed immersion, and
this regular closed subscheme meets MaxSpec(RE) in precisely the set of closed points x ∈
MaxSpec(RE) such that ρx : GK → GL2(E(x)) is ordinary crystalline in the sense of Defi-
nition 3.1. In particular, the locus of ordinary crystalline points in MaxSpec(RE) is Zariski-
closed.

Proof. By Proposition 2.5, it suffices to prove that fE is injective on C-valued points for
all E-finite C. We may assume C is local, so its residue field E ′ is E-finite. By Hensel’s
Lemma and the separability of E ′/E, the E-algebra structure on C uniquely extends to an
E ′-algebra structure lifting the residue field. Thus, C = E ′ ⊕ I for the nilradical I of C. In
particular, if Λ′ denotes the valuation ring of E ′ then Λ′ ⊕ I is a local Λ′-subalgebra of C,
though it is generally not Λ′-finite since the E ′-vector space I is generally nonzero.

To prove that the map X(C) → (SpecR)(C) between sets of C-valued points over Λ is
injective, we can first replace f : X → SpecR with its scalar extension by Λ → Λ′. This
scalar extension is compatible with the formation of X (as may be checked on infinitesimal
fibers over SpecR), so we may assume E ′ = E.
We fix a map φ : SpecC → SpecR over Λ and seek to prove that it has at most one lift

to a map φ : SpecC → X. Consider the Λ-algebra map

Λ[[x1, . . . , xm]]/(f1, . . . , fs) = R→ C = E ⊕ I
corresponding to φ. Passing to the quotient C/I = E, this map carries each xj to (cj, yj) for
some yj ∈ I and cj ∈ (π). Thus, we can make the formal change of parameters xj 7→ xj − cj
to get to the case when xj 7→ yj ∈ I for all j. Since IN = 0 for some large N , any monomial
in the x’s with large enough degree maps to 0 in C. Hence, the image of R in C is contained

in C̃ := Λ ⊕ J for a finite Λ-submodule J ⊂ I, and we can increase J so that C̃ is a local

finite flat Λ-subalgebra of C. Note that C̃E = C.
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Now consider any φ lifting φ. The restriction of φ to the closed point of SpecC is a map
φ0 : SpecE → X over the specialization φ0 : SpecE → R over Λ. This latter specialization
is a Λ-algebra map R → E and hence lands in Λ. This resulting Λ-valued point of SpecR
uniquely lifts to a Λ-valued point of the R-proper X extending φ0, due to the valuative
criterion for properness. Consider an open affine SpecA in X around the image of the Λ-
valued point of X extending φ0. This open affine contains the image of φ since E = C/I
with I nilpotent. The resulting Λ-algebra map

A→ C = E ⊕ I
with A a finite type R-algebra lands in Λ ⊕ I by the choice of A, and so lands in C̃ upon
taking J big enough.

We have now constructed an R-map Spec C̃ → X that serves as an “integral model” (over
Λ) for φ. The choice of J can always be increased even further, so to prove the uniqueness

of φ (if one exists) it suffices to consider a pair of R-maps Spec C̃ ⇒ X over a common

local Λ-map Spec C̃ → R, and to show that the resulting “generic fiber” maps SpecC ⇒ X
coincide.
By locality of the Λ-map R → C̃ to the Λ-finite C̃, a cofinal system of open ideals in C̃

is given by the mn
RC̃. Using the formal GAGA construction of X from the Xn’s, it follows

that the pair of maps Spec C̃ ⇒ X corresponds to a pair of ordinary crystalline structures

on ρ eC (i.e., compatible such structures over each artinian quotient of C̃). These coincide

provided that the resulting pair of filtrations on ρC coincide, since a C̃-line in C̃2 is uniquely
determined by the associated C-line in C2 (via saturation of Λ-finite submodules in finite-

dimensional E-vector spaces, as C̃ is finite flat over Λ and C̃E = C).
Thus, the injectivity of fE on C-points is reduced to proving that if GK → GL2(C) is a

homomorphism admitting an upper triangular form
(
χη−1 ∗
0 η

)

relative to some C-basis with η : GK → C× unramified then the χη−1-line is uniquely
determined. This C-line is precisely the locus of vectors on which IK acts through χ. Indeed,
to prove this it suffices to check that in the quotient C-line η the space of χ-isotypic vectors
for the IK-action vanishes. Since χ is valued in E× and C has an E-linear filtration by
ideals with successive codimension 1 over E, we just need to observe that χ 6= 1 in E× since
char(E) = 0. (In more sophisticated p-adic Hodge theory settings, the analogue of this step
requires results such as Tate’s isogeny theorem for p-divisible groups over Λ: uniqueness
results for integral structures in case of generic characteristic 0.)
To identify the closed points of XE within MaxSpec(RE), we will use Example 3.9. Closed

points of XE are obtained from E ′-valued points for finite extension fields E ′/E; let Λ′ be
the valuation ring of E ′. The preceding argument with the valuative criterion for properness
shows that any E ′-valued point of XE uniquely extends to a Λ′-valued point of X over
SpecR, and such a point corresponds precisely to a filtration on ρE′ as in Definition 3.1, due
to Example 3.9. This proves that the closed points of XE are the ordinary crystalline points
of MaxSpec(RE). �
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Corollary 4.3. Let ρ0 : GK → GL2(k) be an ordinary crystalline representation with cy-
clotomic determinant. Let ρ : GK → GL2(R) be the universal framed deformation with
cyclotomic determinant; if ρ0 has only scalar endomorphisms we allow alternatively that
(ρ,R) is the universal deformation of ρ0 with cyclotomic determinant.
The locus of ordinary crystalline points in MaxSpec(RE) is Zariski-closed, and if

Spec(Rord)

denotes the Zariski closure in Spec(R) of this locus in Spec(RE) then R
ord
E is regular, and it

is a domain except precisely when (ρ0)k = ψ1 ⊕ ψ2 with ψ1 6= ψ2 and each ψi an unramified

k
×
-valued twist of ω := χ mod p.

Note that the exceptional cases at the end of the corollary do not include the case when
ρ0 makes GK act trivially. This is really useful: we will apply this corollary later for the
universal framed deformation ring of a 2-dimensional trivial residual representation (after
making a preliminary finite extension on K).

Proof. Apply the preceding theory to ρ, so we get the “moduli scheme” f : X → SpecR
that is regular and induces a closed immersion fE over E whose image on closed points is
the set of ordinary crystalline points of MaxSpec(RE). This gives the Zariski-closedness and
regularity claims, so the domain property amounts to the assertion thatXE is connected. We
saw above that X mod π is reduced, so by Lemma 2.2 the connectedness of XE is equivalent
to the connectedness of the proper special fiber f0 : X0 → Spec k (since X0 is certainly
non-empty, due to its moduli-theoretic meaning and the fact that the ordinary crystalline
hypothesis on ρ0 provides a k-point of X0).
Loosely speaking, X0 is the moduli scheme of ordinary crystalline structures on ρk. That

is, it parameterizes all GK-stable lines in ρ0 on which IK acts by χ. By construction, the non-
empty X0 is a closed subscheme of P1

k, so it is connected except precisely when it is not the
entire projective line nor is a single geometric point (as we know X0(k) 6= ∅). The condition
X0 = P1

k says that every line in (ρ0)k is GK-stable and has IK-action by ω. In other words,
ρ0 is a scalar representation via an unramified twist of ω. Thus, the disconnectedness case
is when (ρ0)k has more than one – but only finitely many! – GK-stable line with action by
an unramified twist of ω. The number of such lines is therefore exactly two, by the Jordan-

Hölder theorem. Such cases are precisely when (ρ0)k is a direct sum of distinct k
×
-valued

characters of GK which are each an unramified twist of ω. �

Remark 4.4. There is a variant of the preceding considerations which is useful in practice:
require the determinant of ρ0 and its deformations to be χψ for a fixed unramified (possibly
nontrivial) continuous character ψ : GK → Λ×.

In such cases the conclusions of Corollary 4.3 hold, by essentially the same proof. The
point is that to prove these claims we can first make a scalar extension from Λ to the valuation
ring of a finite extension of E, so we can arrange that the unramified ψ : GK → Λ× admits
a square root. It is then harmless in the Galois deformation theory to twist everything by
the reciprocal of this square root, so we are thereby reduced back to the case ψ = 1 which
was treated above.
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The final application we take up is the determination of the dimension of the regular
Zariski closure XE of the locus of ordinary crystalline points in Spec(RE) for a framed
deformation ring R�,det=χψ

ρ0
. In some cases this Zariski closure is disconnected, but we claim

that its connected components are always of the same pure dimension:

Proposition 4.5. The E-fiber of the ordinary crystalline framed deformation ring

R�,ord,det=χψ
ρ0

has dimension 3 + [K : Qp] at all closed points.

Proof. As above, we may reduce to the case ψ = 1 by making a suitable finite extension on
E (which is harmless for our purposes). In view of the regularity, we just have to compute
the dimension of the tangent space at each closed point in characteristic 0. This will be a
Galois H1 with coefficients in a p-adic field.

By the proof of Proposition 4.2 (relating C-valued points and C̃-valued points) and the
lecture in the fall on charateristic-0 deformation rings, if we identify a closed point x ∈ XE

with an ordinary crystalline representation ρx : GK → GL2(E(x)) then the (regular) com-
pleted local ring of XE at x is the deformation ring of ρx relative to the conditions of having
determinant χ and being ordinary crystalline (in the sense of Definition 3.1, generalized in
the evident manner to allow coefficients in any finite E-algebra, not just finite extension
fields of E).
The method of the proof of the Corollary in §1 of Samit’s lecture in the fall shows (OK,

this should be revised for clarity!) carries over to characteristic-zero deformation theory, so
the dimension of the tangent space to the cyclotomic-determinant framed deformation func-
tor exceeds the dimension of the tangent space to the cyclotomic-determinant deformation
functor by dimPGL2+h0(ad0(ρx)) = 3+h0(ad0(ρx)). Thus, the problem is to prove that in
the tangent space H1(K, ad0(ρx)) to the cyclotomic-determinant deformation ring of ρx, the
space of first-order deformations which are ordinary crystalline has E(x)-dimension [K : Qp]
if the reducible ρx has only scalar endomorphisms and 1+ [K : Qp] otherwise (the case when
ρx is a direct sum of characters, necessarily distinct due to ramification considerations). The
representation ρx has the form

ρx ≃
(
χη−1 ∗
0 η

)

for some unramified η : GK → O×
E(x), and upon restriction to IK (which kills η and η−1)

the resulting class in H1(IK ,Zp(1)) arises from units in O∧
Kun via Kummer theory (i.e., it is

killed by the natural map H1(IK ,Zp(1))→ Zp defined by the valuation map Kun× → Z and
Kummer theory). It is harmless to rename E(x) as E, so this is now a very concrete problem
in Galois cohomology and Kummer theory using the “explicit” upper-triangular description
of ρx.
The only method we know to carry out the dimension calculation in the general case is

to bring in deeper methods related to p-adic Hodge theory or p-divisible groups over very
ramified p-adic discrete valuation rings. But we will only apply the Proposition in the special
case that ρ0 is the trivial 2-dimensional residual representation. So now we will give a proof
only in this case. Note that the residual triviality forces the mod-p cyclotomic character ofGK

to be trivial, so there is a distinguished ordinary crystalline lift with cyclotomic determinant:
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ρχ := E(χ)⊕E. We have seen that for our ρ0, the ord-crystalline framed deformation ring R
with determinant χ has the property that RE is regular with connected spectrum. Provided
that the E(x)-dimension of its tangent space at any closed point x ∈ MaxSpec(RE) is
independent of x, it would suffice to carry out the dimension computation at a single x. For
example, we would be reduced to computing the E-dimension of the ord-crystalline subspace
of

H1(K, ad0(ρχ)) = Ext1K(ρχ, ρχ)
det=χ.

The equidimensionality of the tangent spaces on MaxSpec(RE) is a special case of:

Lemma 4.6. Let R be a quotient of a formal power series ring over Λ, and assume that RE

is normal with connected spectrum. Then all maximal ideals of RE have the same height.

Proof. Replacing R with the quotient by its nilradical has no effect on RE, so we can assume
that R is reduced. Likewise we can assume it has vanishing π-power torsion, so R is Λ-
flat. Hence, R is a domain (as RE is a domain, due to regularity and connectedness of its
spectrum). But R is excellent, so the normalization map R → R′ is module-finite. The
residue field may increase in the normalization process, so R′ is a quotient of a formal
power series ring over the valuation ring of some finite unramified extension E ′ of E. Then
RE = R′

E = R′
E′ , so we can replace (R,E) with (R′, E ′) to reduce to the case when R is a

normal domain.
There are now two ways to proceed: commutative algebra, or rigid-analytic geometry. For

the commutative algebra method, let p be a maximal ideal of RE = R[1/p]. The complete
local noetherian domain R is catenary ([5, 31.6(iv)]; in general, the catenary property is also
part of the definition of excellence), so dimRP +dim(R/P ) = dim(R) for any prime ideal P
of R. Taking P corresponding to p, we get

dim(RE)p = dim(RP ) = dim(R)− dim(R/P ),

so it suffices to prove that dim(R/P ) = 1 for all such P . The quotient R/P is a Λ-flat
quotient of a formal power series ring over Λ such that its generic fiber ring is RE/p, which
is a field of finite degree over E. Hence, the subring R/P lies in the valuation ring of this
finite extension of E, whence R/P is module-finite over Λ and so is of dimension 1. This
completes the commutative algebra proof.

We merely sketch the rigid-analytic method, which provides nice geometric intuition (and
can be made rigorous). By choosing a presentation

R ≃ Λ[[t1, . . . , tm]]/(f1, . . . , fs),

it is natural to associate to R the rigid-analytic spaceM over E defined by f1 = · · · = fs = 0
in the open unit m-disc over E. This construction is given in more intrinsic terms in [1,
7.1]. That exposition proves some very useful related facts: there is a natural bijective
correspondence between MaxSpec(RE) and the underlying set ofM such that the completed
local rings at corresponding points are naturally E-isomorphic [1, 7.1.9], and RE is identified
with the ring of bounded global analytic functions on M (here we use the normality of R)
[1, 7.3.6]. Thus, the completed local rings on M are normal (as the excellent RE is normal,
by hypothesis, so its completed local rings are normal). But it is elementary to check that
a noetherian local ring is a normal domain if its completion is, so the analytic local rings
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on M are normal and the affinoid opens in M have normal coordinate ring. Moreover, M is
connected for the Tate topology since idempotents are bounded analytic functions and RE

is a domain (due to normality and connectedness of its spectrum).
Since the completed local rings of RE at its maximal ideals coincide with the completed

local rings on M , and completion preserves dimension for local noetherian rings, to prove
that all maximal ideals of RE have the same height it suffices to prove that all local rings on
M have the same dimension. More generally, any normal rigid-analytic space has pointwise
dimension that is locally constant for the Tate topology (and hence globally constant in the
connected case): this comes down to the fact that an affinoid space associated to a domain
has constant pointwise dimension, which is [2, Lemma 2.1.5].
As an alternative argument in the rigid-analytic case if we assume RE is regular (as

holds in the cases we need), regularity of M implies smoothness of M since char(E) =
0, so the coherent sheaf Ω1

M/E is locally free on M with rank dimm(M) at any m ∈ M .
But connectedness of M forces this rank to be globally constant, whence M has constant
pointwise dimension as desired. �
Returning to the proof of Proposition 4.5, we just have to prove that the ordinary crys-

talline subspace of Ext1K(ρχ, ρχ)
det=χ has E-dimension equal to [K : Qp]. Since ρχ =

E(χ)⊕ E, we have an equality of E-vector spaces

(4.1) Ext1K(ρχ, ρχ) = Ext1K(E(χ), E(χ))⊕ Ext1K(E(χ), E)⊕ Ext1(E,E(χ))⊕ Ext1K(E,E).

The condition that an E[ǫ]-deformation of ρχ has cyclotomic determinant amounts to the
condition that its Ext-class ξ on the left side of (4.1) has components in outer terms that
are Cartier dual to each other (as one checks with a direct 4× 4 matrix calculation). The
ordinarity condition likewise amounts to the vanishing of the Ext1K(E(χ), E) component.
The crystalline condition then says that the component in Ext1K(E,E) = H1(K,E) is un-
ramified (a 1-dimensional subspace) and the component in Ext1K(E,E(χ)) = H1(K,E(1)) is
crystalline.
Since ρχ = E(χ) ⊕ E has non-scalar endomorphisms, our problem is to prove that the

ordinary-crystalline Ext-space with cyclotomic determinant inside of the left side of (4.1)
has E-dimension 1+ [K : Qp]. We have already accounted for one dimension, and it remains
to prove that H1

crys(K,E(1)) = H1
crys(K,Zp(1)) ⊗Zp E has E-dimension [K : Qp]. But

H1
crys(K,Zp(1)) is the multiplicative p-adic completion of O×

K = k× × (1 + mK), which is
1 +mK . Via the logarithm, its Zp-rank as a multiplicative Zp-module is [K : Qp]. �
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LOCAL PROPERTIES OF MODULAR GALOIS REPRESENTATIONS

ANDREW SNOWDEN

1. Introduction

Let f be a cuspidal eigenform of weight 2 and level Γ0(N). Let p be a prime, which we assume does not
divide N . We have stated (though have not proved) that there exists a Galois representation ρ : GQ,S →
GL2(Qp), where S is the set of primes dividing pN , which satisfies and is characterized by the following two
properties: (1) the determinant of ρ is the cyclotomic character χ = χp; and (2) for a prime ℓ ∤ pN the trace
of ρ(Frobℓ) is equal to the eigenvalue of the Hecke operator Tℓ acting on f . We have also stated (and not
proved) that for ℓ | N the representation ρ|GQℓ

corresponds under local Langlands to the local component

of the automorphic representation of f at ℓ. We have not yet examined the local representation ρ|GQp
. For

the purposes of this seminar, we will need only one result: if f is ordinary (in the sense of modular forms)
then ρ|GQp

is crystalline and ordinary (in the sense of Galois representations). The definitions of ordinary
are recalled below.

The purpose of this lecture is to sketch the construction of ρ and the proofs that it satisfies the above
local conditions, at least for ℓ ∤ N . The representation ρ is found as a quotient of the Jacobian J0(N) of the
modular curve X0(N), and is not difficult to construct. To establish the properties of ρ at the unramified
places and at p, we use the Eichler-Shimura relation. To formulate and prove this identity, we use the
reduction of X0(N) modulo p. This requires us to introduce some of the theory of moduli of elliptic curves
over integers; fortunately, we are in a rather easy situation. At the end of these notes, we explain a bit
about what happens in the Hilbert modular case.

I should say here that I am not extremely familiar with this material. I believe I have the main points
correct, but I might have some details wrong. Certainly, some details have been omitted. For certain topics,
more complete treatments can be found in the references.

2. Moduli of elliptic curves

In this section we define moduli spaces of elliptic curves and establish some of their basic properties.

2.1. The moduli space. Let S be a scheme. An elliptic curve over S is a smooth proper group scheme
E → S whose geometric fibers are connected genus 1 curves. Let Y be the functor which assigns to a scheme
S the groupoid Y (S) of elliptic curves over S; that is, Y (S) is the category whose objects are elliptic curves
over S and where morphisms are isomorphisms of group schemes over S. We call Y the moduli space of
elliptic curves.

Proposition 1. The functor Y is a stack.

Proof. Let E/S be an elliptic curve. The zero section 0 : S → E defines an ample divisor D on E (in the
relative sense) and 3D is very ample. Let AE be the projective coordinate ring of E in this embedding,
that is, AE is

⊕
n≥0 f∗(O(3nD)) where f : E → S is the structure map. Then AE is a quasi-coherent

sheaf of graded rings on S and E is identified with Proj(AE). The functor E 7→ AE identifies Y (S) with
a subcategory of the category of quasi-coherent graded algebras on S. The latter forms a stack in the fppf
topology by Grothendieck’s theory of flat descent. It is easy to conclude from this that Y itself forms a
stack. More precisely, let Ei be elliptic curves on a cover Ui of a scheme S and let fij be an isomorphism
of Ei and Ej on Uij satisfying the 1-cocycle condition. Then AEi

and Afij define descent data for algebras
on S. By flat descent, one obtains a quasi-coherent graded algebra A on S. Put E = Proj(S). One has a
canonical identification E|Ui = Ei, which allows one to establish the geometric properties required of E, as
these properties are fppf local. (One must say a bit more along the same lines to get the zero section and
group law on E.) �
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2 ANDREW SNOWDEN

Proposition 2. The functor Y is formally smooth (over Z).

Proof. Let S be an affine scheme and let S0 be a closed subscheme defined by a square zero ideal I. Let
E0 be an elliptic curve over S0. We must extend E0 to an elliptic curve over S. Note that any such curve
will have the same underlying topological space as E, just a different structure sheaf. Let U0,i be an open
affine cover of E0. Since smooth affine schemes always lift, we can find a smooth affine Ui over S extending
U0,i. We have thus extended OE0 to an OS-algebra on an open cover. These bigger algebras may not patch
together, but we can try to modify them so that they do. There is an obstruction class in H2(E0, TE0

)
measuring if such a modification is possible; here TE0

is the tangent sheaf of E0. Now, since S0 is affine,
this cohomology group is equal to H0(S0, R

2f∗TE0
), where f : E0 → S0 is the structure map. As E0 → S0

is a curve, R2f∗ vanishes. This shows that H2(E0, TE0) vanishes as well, and thus there is no obstruction
to the modification procedure. We have thus found a smooth scheme E over S such that ES0 is canonically
identified with E0. One then needs to extend the zero section from S0 to S; we leave this to the reader. �
2.2. Level structure in good characteristic. Let N be an integer. For an elliptic curve E/S we write
E[N ] for the N -torsion of E. It is a finite flat group scheme over S. If N is invertible on S then E[N ] is
a finite étale group scheme over S. We define three additional moduli spaces Y (N), Y1(N) and Y0(N) over
Z[1/N ], as follows:

• Y (N)(S) is the category of tuples (E,P,Q) where E/S is an elliptic curve P,Q ∈ E[N ] form a basis
of E[N ], i.e., the map ((Z/NZ)2)S → E[N ] defined by (P,Q) is an isomorphism of sheaves.

• Y1(N)(S) is the category of pairs (E,P ) where E/S is an elliptic curve and P ∈ E[N ] is a point of
exact order N , i.e., the map (Z/NZ)S → E defined by P is an injection of sheaves.

• Y0(N)(S) is the category of pairs (E,G) where E/S is an elliptic curve and G ⊂ E[N ] is a subgroup
scheme which is fppf locally isomorphic to (Z/NZ)S .

For N ≥ 3 the category Y (N) is discrete; the same holds for Y1(N) and Y0(N) for N large enough. We
assume from now on that N is sufficiently large for this to be the case. We now have the following result:

Proposition 3. Each of Y (N), Y1(N) and Y0(N) is a smooth affine curve over Z[1/N ]. The natural map
from each to Y is finite and étale.

Proof. We consider only Y (N), leaving the others to the reader. First, it follows easily from Proposition 1
that Y (N) is itself a stack; it is therefore a sheaf of sets since it is discrete. We now show that Y (N) → Y
is relatively representable, finite and étale. Let S → Y be a map, corresponding to an elliptic curve E/S.
The fiber product Y (N)×Y S is then identified with the subsheaf of E[N ]×E[N ] consisting of those pairs
of sections which form a basis. This is clearly a finite étale scheme over S. This establishes the claim. The
formal smoothness of Y (N) now follows from Proposition 2.

Here is the main idea of one approach to get representability. The group G = GL(2,Z/3Z) acts on Y (3).
One can write down explicit equations for Y (3) demonstrating that it is a smooth affine curve over Z[1/3].
One can also show that G acts freely on Y (N)×Y Y (3) and that the quotient is identified with Y (N). Since
Y (N) is relatively representable and finite étale, the product Y (N) ×Y Y (3) is a smooth affine curve over
Z[1/3N ]. It follows that the same holds for the quotient by G, which establishes the required properties
of Y (N), at least over Z[1/3N ]. There is another explicit moduli problem and finite group one can use to
obtain the required properties over Z[1/2N ]. This implies the results over Z[1/N ]. (One can probably avoid
the use of Y (3) by appealing to more general results, such as Artin’s representability theorem.) �
Remark 4. The finite étale covers of Y provided by Y (N) show that Y is a Deligne-Mumford stack. The
same is true for Y (N), Y0(N) and Y1(N) when N is small.

2.3. Compactification. The modular curve Y constructed in the previous section is affine. We would now
like to compactify it. To do this we must add a few points to it. These points correspond to curves which are
limits of elliptic curves. To see what a “limit of an elliptic curve” is, it is useful to think about the situation
over the complex numbers: to degenerate an elliptic curve, one can take a few cycles on it and pinch them
each to a point. The result is a bunch of P1s glued together. This motivates the formal definitions which
follow.

Let n be an integer. Let C be the scheme obtained by taking P1 × Z/nZ and identifying the point 0 in
the ith P1 with the point ∞ in the (i+ 1)st P1. We call C an n-gon. We let C◦ denote the smooth part of
C. The space C◦ is identified with Gm ×Z/nZ, and is thus naturally a group. Furthermore, the group law
on C◦ extends to an action on all of C.
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A generalized elliptic curve over a scheme S is a proper flat curve E → S together with a multiplication
map E◦ × E → E which gives E◦ the structure of a group scheme, in such a way that the fibers of E are
elliptic curves or polygons (respecting the obvious structure). Here E◦ denotes the open subset of E where
the fibers are smooth. We define X(S) to be the groupoid of generalized elliptic curves E/S whose fibers
are all irreducible, i.e., elliptic curves or 1-gons.

Proposition 5. The functor X is a proper smooth Deligne-Mumford stack over Z.

Proof. This is proved in [DR] using Artin’s representability theorem. I imagine one could give an argument
similar to the one we gave for Y . Properness can be seen from the valuative criterion. Let A be a valuation
ring with fraction field K and let E/K be an elliptic curve. The semi-stable reduction theorem implies that
there is a finite extension K ′/K such that the base change E′ of E to K ′ has good or multiplicative reduction
— that is, its minimal Weierstrass equation defines a scheme over A′ having semi-stable reduction. This
shows that the point of X(K) coming from E, when mapping into X(K ′), comes from an element of X(A′).
Thus X satisfies the valuative criterion for properness. (Note that this criterion is a little bit different than
the one for schemes: we are allowed to extend the field K.) �

We can also compactify the spaces Y (N), Y0(N) and Y1(N) over Z[1/N ]. To do this, we need to define
the notion of a level structure on a generalized elliptic curve. Thus let E/S be a generalized elliptic curve.
We let E[N ] be the N -torsion of the group E◦. The only subtlety concerning level structures is that we
require them to be ample, which amounts to them meeting every irreducible component of the fibers of E.
Thus a Γ0(N) structure is a subgroup G ⊂ E[N ] which is locally isomorphic to Z/NZ and such that G
meets each irreducible component of the fibers of E. Note that this imposes a restriction on what the fibers
can be: their component group must be a quotient of Z/NZ. We define X0(N) to be pairs (E,G) where E
is a generalized elliptic curve whose fibers are elliptic curves or N -gons and G ⊂ E[N ] is a Γ0(N) structure,
as defined above. The spaces X(N) and X1(N) are defined similarly.

Proposition 6. The functors X(N), X0(N) and X1(N) are smooth proper schemes over Z[1/N ] (assuming
N large enough).

2.4. The space X0(p) over Z. The compactified space X0(N) — and indeed, even the open curve Y0(N)
— has only been defined over Z[1/N ]. It is a bit tricky to formulate what these spaces should be over Z
since one has to specify what it means for a (non étale) group scheme to be cyclic. However, when N is a
prime, this is not hard: every group of order p should be considered cyclic! We thus define Y0(p)(S) (resp.
X0(p)(S)) to be the groupoid of pairs (E,G) where E is an elliptic curve (resp. generalized elliptic curve)
over S and G ⊂ E[p] is a finite flat subgroup scheme of order p which is ample (this condition is only relevant
for X0(p)). We then have the following result:

Proposition 7. The functor X0(p) is a proper flat curve over Z (for p large).

We will actually need to extend this a bit for our application. Let N be an integer prime to p. A cyclic
group of order Np decomposes canonically as a product of a cyclic group of order N and one of order p. We
thus have X0(Np) = X(N)×X X(p) over Z[1/Np]. We take this formula as the definition of X0(Np) over
Z[1/N ]. That is, X0(Np) consists of tuples (E,G,H) where E/S is a generalized elliptic curve whose fibers
are elliptic curves or pN -gons, G ⊂ E[N ] is a group locally isomorphic to Z/NZ and H ⊂ E[p] is a finite
flat subgroup such that GH meets every irreducible component of the fibers of E. We then have:

Proposition 8. The functor X0(pN) is a proper flat curve over Z[1/N ] (for Np large).

3. Elliptic curves in characteristic p

We now examine elliptic curves in characteristic p and their moduli. We establish the Eichler-Shimura
relation.

3.1. Group schemes. Let k be a finite field. Let G/k be a finite commutative group scheme. We say that
G is local if it is connected. There is a canonical exact sequence

1 → G◦ → G → Get → 1

where G◦ is local and Get is étale. If the order of G is prime to p then G is automatically étale.
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Define a functor G∨ by G∨(T ) = Hom(GT , (Gm)T ). Then G∨ is again a finite group scheme over k. We
call G∨ the Cartier dual of G. Cartier duality is an anti-equivalence of categories. The properties “local”
and “étale” interact in an interesting manner with Cartier duality. First of all, if G has order prime to p
then G∨ does as well and both are étale. However, the dual of p-power étale group is never étale, and is
always connected: for example, (Z/pZ)∨ = µp. The converse to this is not true: for example, if αp is the
kernel of Frobenius on Ga, i.e., Spec(k[x]/x

p), then αp is connected and self-dual. We thus find that we can
define four classes of groups: étale-étale, étale-local, local-étale and local-local depending on the properties
of G and G∨. Here are examples from the respective classes: Z/NZ with N prime to p, Z/pZ, µp and αp.
Every group canonically decomposes as a sum of four groups of these types, so in many circumstances, it
suffices to consider groups of only one type. Each type of group forms an abelian category, and with the
exception of the étale-étale case, each has only one simple object over k (the examples we have listed).

Let G/k be a group scheme. We then have the relative Frobenius map F : GF → G, which is a map
of groups. Here GF is the Frobenius twist of G; note that (GF )∨ = (G∨)F . The Cartier dual of the
relative Frobenius map is a map G∨ → (G∨)F . This is not the Frobenius map on G∨ (it goes in the wrong
direction), but a new map, called Verschebung, and denoted V . Precisely, this is the Verschebung for G∨.
The Verschebung for G is defined by taking the Cartier dual of the Frobenius map on G∨; it is a map
V : G → GF . Here are some examples, with k = Fp (note then that GF = G for any G). On Z/pZ the
Frobenius is the identity. On µp and αp the Frobenius is the zero map; these groups are by definition the
kernel of Frobenius on Gm and Ga. Since Z/pZ and µp are Cartier dual, it follows that V = 0 on Z/pZ
while V is the identity on µp. As αp is self-dual, V = 0 on it. Clearly, on the étale-étale groups, F and V
are both the identity.

The Frobenius and Vershebung maps in fact allows us to determine which of the four types G is. For
instance, G is local if and only if F is nilpotent (meaning Fn : GFn → G is zero for n ≫ 0) and étale if and
only if F is an isomorphism. Thus G∨ is local is and only if V is nilpotent on G and étale if and only if V
is an isomorphism on G.

Let A be an abelian variety over k. Then the p-torsion A[p] is an example of a finite group. The
Frobenius map on A[p] is nothing other than the Frobenius map on A restricted to A[p]. This Frobenius
map F : AF → A is an isogeny, and thus has a dual V : A∨ → (AF )∨. We can thus define a map V : A → AF

by taking the dual to Frobenius on A∨. The map induced on A∨[p] by V is in fact the dual of the Frobenius
map on A[p] since Cartier duality and abelian variety duality interact nicely. This is useful when dealing
with the torsion groups of abelian varieties, as we will below.

3.2. Elliptic curves. Let E be an elliptic curve over k. The group scheme E[p] is finite of order p2. The
Weil pairing

E[p]× E[p] → µp ⊂ Gm

implies that E[p] is its own Cartier dual. This implies that there are two possibilities for E: either it is
a sum of a local-étale group and an étale-local group each of order p and dual to each other, or else it is
local-local. In the first case, E[p] has k points while in the second case it does not. We call E ordinary in
the first case and supersingular in the second.

The group scheme E[p] can be exactly determined over k. In the ordinary case, the étale quotient of
E[p] is isomorphic to Z/pZ and so the local part, its dual, must be µp. Thus E[p] = µp ⊕ Z/pZ. In the
supersingular case, E[p] is local-local, and so it is an extension

0 → αp → E[p] → αp → 0.

There are four such (total spaces of) extensions up to isomorphism: the direct sum (on which F = 0 and
V = 0), the kernel of Frobenius on the Witt scheme W2 (on which F = 0 and V 6= 0), the kernel of the
square of Frobenius on Ga, namely αp2 (on which F 6= 0 and V = 0; it is Cariter dual to W2), and one other
(which can be described as the Yoneda sum of the other two non-trivial extensions and on which F and V
are each non-zero). The group E[p] is the last one: since F and V on E[p] are the restriction of degree p
isogenies on E, their kernels must be order p and therefore cannot be all of E[p]; thus F and V are each
non-zero on E[p].

3.3. The space X0(p). We now consider X0(p) over k. This is the space of generalized elliptic curves
together with a subgroup of order p (satisfying some condition in the generalized case, which we will ignore).
Let E/k be an elliptic curve. How many subgroups of order p does it have? If E is ordinary, then it has
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two: the local one and the étale one. It cannot have more than these two, because they are distinct simple
objects. If E is supersingular, then it has at most one subgroup of order p, since over k it is a non-trivial
extension of two simples.

The above discussion shows that we can define two maps i1, i2 : X → X0(p), by letting i1(E) be
(EF , kerF ) and i2(E) be (E, kerV ). It is clear that each map is injective; in fact, each is a closed im-
mersion. Furthermore, the previous discussion shows that they are jointly surjective. To be clear, say that
(E,G) is a point of X0(p). If E is supersingular, then G must coincide with kerV , since there is only one
subgroup of order p, and so (E,G) = i2(E). If E is ordinary and G is étale, then (E,G) = i2(E), while if E
is ordinary and G is local then (E,G) = i1(E

′), where E′ is such that (E′)F = E. Note that if E is ordinary
then i1(E) and i2(E) are unequal, since in i1(E) the level structure is étale while in i2(E) it is local. If
E is supersingular so is EF and thus i1(E) = i2(E

F ). We therefore find that X0(p) can be described as
two copies of X glued along their supersingular loci identified via (−)F (at the supersingular points there
are nodal singularities). The same discussion applies to X0(Np): it is two copies of X0(N) glued along
supersingular points by (−)F .

As a side comment, we note that this result shows that the genus of X0(p) is one less than the number
of supersingular curves.

3.4. Correspondences. We quickly review the basics of correspondences on curves. Let X be a regular
curve over a field k. A correspondence on X is a pair f = (f1, f2) where f1 and f2 are maps from some
reduced curve C (the total space) to X such that f1 is finite. Given two correspondences f and f ′ with total
spaces C and C ′ we define their sum, denoted f + f ′, to be the natural correspondence with total space

C ∐ C ′. Given a correspondence f with total space C, we get a natural correspondence f̃ with total space

C̃, the normalization of C̃, coming from the finite map C̃ → C. We consider f and f̃ to be equivalent; note

that C̃ is always regular.
Let f : X → Y be a map of regular curves over k. We then have a map f∗ : Div(X) → Div(Y ). This

map is characterized by the following two properties: deg f∗(D) = degD and sup f∗(D) = f∗(sup(D)). If
k is algebraically closed, so that divisors correspond to points, then f∗([x]) is just [f(x)]. Now assume that
f is a finite map. Then we have a map f∗ : Div(Y ) → Div(X), (almost) characterized by two properties:
deg(f∗(D)) = deg(f) deg(D) and sup(f∗(D)) = f−1(sup(D)). (Here f−1 is just taken at the topological
level.) If k is algebraically closed, then for y ∈ Y (k) we have

f∗([y]) =
∑

x∈X(k)

lenx(Xy)[x]

where here Xy = X ×Y y. Note that Xy is a finite subscheme of X, but may not be reduced.
Now let f = (f1, f2) be a correspondence ofX with total space C. We define a map f∗ : Div(X) → Div(X)

by (f2)∗f∗
1 . (If C is not regular, use f̃ .) This map carries principal divisors into principal divisors and

therefore induces a map f∗ : Pic(X) → Pic(X), and a map f∗ : Jac(X) → Jac(X). (We have only defined
these maps on field points, but they exist as maps of schemes.) Let g : X → X be a finite map of curves.
The f = (id, g) and f ′ = (g, id) are correspondences of X. The map f∗ of Jac(X) coincides with the map
g∗, while the map (f ′)∗ is the dual to g∗.

3.5. The Eichler-Shimura identity. There are two natural maps p1, p2 : X0(Np) → X0(N), taking
(E,G) to E or E/G, where here G is a subgroup of order p and the level N structure is implicit. These
two maps define a correspondence from X0(N) to itself over Z[1/N ], called the Hecke correspondence, and
denoted Tp. The Eichler–Shimura identity computes this correspondence in characteristic p:

Proposition 9. We have Tp = (F, 1) + (1, F ) as correspondences on X0(N). Thus (Tp)∗ = F + V as
endomorphisms of J0(N). (All of this takes place over Fp.)

Proof. Recall that we have defined maps i1, i2 : X0(N) → X0(pN) and that the map

i1 ∐ i2 : X0(N)∐X0(N) → X0(pN)

is the normalization of X0(pN). Thus, since we are allowed to replace the total space of a correspondence
with its normalization, the correspondence Tp is just the sum of the correspondences (p1 ◦ i1, p2 ◦ i1) and
(p1 ◦ i2, p2 ◦ i2), each with total space X0(N). Some short computations show that

p1 ◦ i1 = F, p1 ◦ i2 = id, p2 ◦ i1 = id, p2 ◦ i2 = F.
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Thus Tp = (F, 1) + (1, F ), as claimed. The correspondence (1, F ) induces the map F on the Jacobian while
the correspondence (F, 1) induces the dual map V . This completes the proof. �

4. Applications to modular Galois representations

We have defined correspondences Tp on X0(N) for all primes p not dividing N . These correspondences
induce endomorphisms of the abelian variety J0(N) and generate a commutative subalgebraT of End(J0(N))
which is finite over Z. Let f be a cuspidal weight 2 newform of level N . Let Kf ⊂ C be the coefficient field
of f . The action of T on f determines a homomorphism λ : T → Kf . Let a be the kernel of λ, an ideal of
T, and let Af be the quotient of J0(N) by aJ0(N). We wish to understand Af as best we can. We begin
by computing its dimension:

Proposition 10. The dimension of Af is the degree of Kf .

Proof. The dimension of Af is the dimension of the space of global 1-forms on it. Global 1-forms on Af

correspond to global 1-forms on J0(N) which are killed by a. The latter space is precisely the space of
modular forms with eigenvalue some Aut(C) conjugate of λ. Thus the dimension of this space is the number
of conjugates of λ, which is equal to the degree of Kf . �

The abelian variety Af actually has an action of Kf by isogenies, that is, there is a canonical map
Kf → End(Af ) ⊗Q. We can therefore regard the Tate module Tℓ(Af ) as a two dimensional vector space
over Kf ⊗Qℓ. The following proposition (combined with Faltings’ theorem on isogenies of abelian varieties)
determines Af up to isogeny.

Proposition 11. Let p be a prime not dividing N . Then Af has good reduction at p and the trace of Frobp
on any Tate module TℓAf with ℓ 6= p is equal to ap, the eigenvalue of Tp on f .

Proof. We consider only the case K = Q for simplicity. The abelian variety J0(N) has good reduction at p
since X0(N) is a smooth proper curve over Z[1/N ], from which it follows that the quotient Af does as well.
Working modulo p, we have Tp = F + V on J0(N), which implies the same on the quotient Af . On this
quotient, Tp acts by multiplication by the integer ap = λ(Tp). We thus find that F 2 − apF + p = 0 on Af ,
which shows that ap is the trace of F on TℓAf . (There is a slight gap in this proof. In this section, we have
simply stated that T acts on J0(N) without explaining how. To prove the Eichler–Shimura correspondence,
we used a precise definition of the action of Tp on J0(N), and equated it with the action of the correspondence
gotten by passing to the normalization of the total space. One must show that these two actions of Tp on
J0(N) coincide to have a complete proof. We leave these details to the reader.) �

We now turn to ordinarity. We say that f is ordinary at p if its Tp eigenvalue is a p-adic unit. We say
that a Galois representation ρ : GQ → GL2(Qp) is ordinary at p if on inertia it is an extension of 1 by χp.
Furthermore, we say that ρ is ordinary crystalline if this extension class is represented by a unit in Kummer
theory. We now have the following result:

Proposition 12. If f is ordinary at p ∤ N then TpAf is ordinary crystalline.

Proof. We again assumeK = Q. As in the previous proposition, Af has good reduction at p and F 2−apF+p

holds as an endomorphism of Af , the reduction of Af modulo p. Assume for the moment that Af were

supersingular. Then we would have F 2 = 0 on Af [p] (since F = V in the supersingular case and FV = p),

and so apF would be zero on Af [p]. Since ap is a p-adic unit, and integer, this would imply that F vanishes

on Af [p]. This is impossible since the kernel of F has order p. Thus Af is ordinary. The result now follows
from the following proposition. �

Proposition 13. Let E/Zp be an elliptic curve with ordinary reduction. Then TpE is crystalline ordinary.

Proof. It is not difficult to see that E[p] is an extension of Z/p by µp over Zun
p . In fact, we have an extension

0 → µpn → E[pn] → Z/pn → 0

over Zun
p . This shows that TpE is an extension of 1 by χp, and thus ordinary. To see that it is crystalline,

note that the above extension, regarded simply as an extension of sheaves of groups on the fppf site of Zun
p ,
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defines an element of H1
f (Z

un
p , µpn). Here Hf is cohomology in the fppf site. We can compute this group via

Kummer theory. Since H1
f (Z

un
p ,Gm) = 0, we have

H1
f (Z

un
p , µpn) = (Zun

p )×/((Zun
p )×)p

n

.

This isomorphism is compatible with Kummer theory over Qun
p , which shows that the extension class for

TpE is represented by a p-adic unit. �

5. Galois representations coming from Hilbert modular forms

Let f be a Hilbert cuspidal eigenform of parallel weight 2 for a totally real field F . We know that one
can associate a Galois representation to f , and that its local properties are determined by those of f . Can
this be proved in the same manner as the classical modular case?

If F has odd degree over Q or f is square-integrable at some finite place, then the Jacquet-Langlands
correspondence shows that f can be transferred to a Shimura curve X. The curve part is the key point.
One can then construct a quotient of the Jacobian of X, as we did for the Jacobian of J0(N), and obtain an
abelian variety Af . Everything goes through as before. (Some points may even be more simple, as Shimura
curves are naturally compact — that is, there is no need to add cusps.)

When F has even degree over Q and f is principal series at all finite places, this procedure does not
work. In fact, it is not known if the Galois representation associated to f appears as the Tate modular of an
abelian variety, though I imagine this is expected. However, the Galois representation has been constructed
and its local properties established, by more indirect means. If f is ordinary, then it can be put into a
p-adic family. Other members of this family have Galois representations which are easier to construct, and
the representation for f can be constructed as a limit. If f is not ordinary, this approach is not feasible.
However, one can find enough congruences between f and forms for which the Galois representation is known
to exist to construct the Galois representation of f . This was Richard Taylor’s thesis.
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Existence of Taylor-Wiles Primes

Michael Lipnowski

Introduction

Let F be a totally real number field, ρ = ρf : GF → GL2(k) be an odd residually modular

representation (odd meaning that complex conjugation acts as

(
−1 0
0 1

)
for every archimedean

place).
Let St be the set of places where ρf is Steinberg, Sp is the set of places over p, S∞ the set of
archimedean places of F, , and assume it is unramified everywhere else. For the purposes of this
write up, all that matters is that St ∪ Sp is a finite set of finite places.
Our is to construct certain auxillary sets of places Q of F which have associated deformation rings
RQ. Q will consist of so called Taylor-Wiles Places.

Definition. A place v of F is a Taylor-Wiles place if it satisfies the following conditions.

• v /∈ S ∪ Sp.

• Nv ≡ 1 (p).

• The eigenvalues of ρ(Frobv) are distinct and belong to k.

Let R�,χ
Q∪St∪Sp

be the universal framed deformation ring unramified outside of Q ∪ St ∪ Sp with
fixed determinant χ = χp, the p-adic cyclotomic character.
Let L� be the completed tensor product of the universal framed local deformation rings at
v ∈ St ∪ Sp of fixed determinant ψv and B

� the completed universal product of their Steinberg
quotients (for v ∈ St,) and their ordinary-crystalline quotients for v ∈ Sp.

Let R�
Q = R�,χ

Q∪St∪Sp
⊗L� B�. This represents the universal framed deformation ρ : GF → GL2(RQ)

of ρ unramified outisde of Q ∪ St ∪ Sp which is Steinberg at St and ordinary-crystalline at Sp.

Although we do allow ramification at Q, the Taylor-Wiles conditions control it tightly.
Let v be a Taylor-Wiles place and consider ρ|GFv

.
ρ is unramified at v. So, ρ(Iv) lands inside the 1-units of GL2(RQ), which is a pro-p group. But
the wild inertia group Wv ⊂ Iv is a pro-v group and so it gets killed. Thus, the reduction is
tamely ramified at v. Even better,

Lemma. ρ|GFv
is a sum of two (tamely ramified) characters η1 ⊕ η2.

Proof. The tame galois group is generated by σ = Frobv and the group Iv. For every τ ∈ Iv, we
have the relation

στσ−1 = τNv. (∗)
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By the Taylor-Wiles assumption on Frobenii, ρ(σ) has distinct eigenvalues. By Hensel’s lemma,

we may lift ρ(σ) so that ρ(σ) is diagonal, say

(
α 0
0 β

)
,

with respect to some (possibly different) basis. With respect to this basis, express

ρ(τ) = 1 +

(
a b
c d

)

For some a, b, c, d ∈ mQ. Apply ρ to (∗) and expand to get

1 +

(
a bαβ−1

cβα−1 d

)
=

Nv∑

k=0

(
Nv

k

)(
a b
c d

)k

.

Note that for k ≥ 2, the top right and bottom left entries of the right side summands lie in
mQ(b, c). Thus comparing with these entries on the left side,

b(αβ−1 −Nv), c(βα−1 −Nv) ∈ mQ(b, c).

But α and β are residually distinct, by assumption. Then by the congruence property of TW
places

αβ−1 −Nv, βα−1 −Nv 6= 0 (p)

implying that both terms are units in RQ. Thus, (b, c) ⊂ mQ(b, c). By Nakayama’s Lemma, this
implies that b = c = 0. Since τ was aribitrary, the claim follows.

O[∆Q] Structure on R�
Q

We have just shown that ρ|GFv
is a sum of two (tamely ramified) characters η1 ⊕ η2. Choose one,

say η.
We know that η|Iv has pro-p image. Also by class field theory, it determines a character
η′ : O×

v → R�×
Q . As the 1-units are pro-v, this is really a map η′ : (Ov/v)

× → R�×
Q which factors

through the maximal p-power quotient of (Ov/v)
×. Call this maximal p-power quotient ∆v. Let

∆Q =
∏

v∈Q∆v. Our choice of η defines an action of ∆Q on RQ, thus giving RQ the structure of an
O[∆Q]-module.

We still haven’t constructed the set of primes Q. Actually, we want to construct a family of such
Q = Qn of the following sort:
For fixed positive integers g, h satisfying dimB� = 1 + h+ l− g (remember that B� is the framed
ring of Steinberg and ord-cryst conditions),

• |Qn| = h

• Nv = 1 (pn)

• R�
Qn

is topological generated by g elements over B�.
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Note that the congruence condition Nv = 1 (pn) means that ∆v is p−power cyclic of order
divisible by pn. Thus, after a choice of generators for these cyclic groups, the O[∆Q]-module
structure on R�

Q is equivalently an O[[T1, ..., Th]]/((T1 + 1)p
a1 − 1, ..., (Th + 1)p

ah − 1)-module
structure, where all ai ≥ n.
There are no obvious maps between the RQn . But by the magic of the patching, we will find a
subset of the RQn which form a kind of inverse system with limit R�

∞. We dream that by “letting
n→ ∞”, we’ll give R�

∞ the structure of a free O[[T1, ..., Th]]-module.
A couple remarks about these conditions:

1) The explicit values

h = dimH1(GF,St∪Sp , ad
0ρ(1))

g = h− [F : Q] + |St|+ |Sp| − 1

will suffice.

2) Our stipulation that dimB� = 1 + h+ l − g will only appear natural once we dive into the
patching argument.

3) The g we will construct is actually the relative topological dimension of R�
Qn

over L�, which
will certainly suffice.

Construction of the TW Sets

From now on, we will assume that

ρ|GF (ζp)
is absolutely irreducible.

This cheaply implies the following apparently much stronger fact.

Lemma. ρ|GF (ζpn )
is absolutely irreducible.

Proof. Our standing assumption is that ρ|GF (ζp)
is absolutely irreducible.

Note that H = GF (ζpn ) is a normal subgroup of G = GF (ζp). Thus, the restriction ρ|H is
semisimple. Indeed, if W is an invariant subspace, then

⊕

G/H−1.H

gW

is an invariant complement.
Suppose ρ|H is not irreducible. Then it is the direct sum of two characters. Since V, as a
G-module, is absolutely irreducible, G/H must permute these characters transitively. But G/H is
a p-group, and so it cannot act transitively on a 2 element set (for any p > 2, which we have
assumed). Thus, the two characters are the same.
This implies that every line in V is stabilized by H. But there are |P(V )(k)| = |k|+ 1 of them. So
the number of them is prime to p. Hence, some orbit of G/H on the set of k-lines in V has size
prime to p. But the size of the orbit must also divide |G/H|, which is p-power. Hence, this orbit
has size 1, i.e. there is an H-stable line which is G/H-stable. This line is then G-stable,
contradicting the irreducibility of V.
The same argument carries out mutatis mutandis after first making a finite extension of the
ground field k of V. Thus, ρ|H is indeed absolutely irreducible.
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We’ll now prove our main lemma of interest.

Theorem (DDT, Lemma 2.49). Let h = dimH1(GF,St∪Sp , ad
0(ρ(1))). For every n, we can

construct a set Qn of Taylor-Wiles places, i.e.

(1) For each v ∈ Qn, Nv = 1 (pn).

(2) For each v ∈ Qn, ρ(Frobv) has distinct k-rational eigenvalues.

(3) |Qn| = h.

Proof. An easy calculation shows that if ρ(Frobv) is a Taylor-Wiles place, then
dimH1(kv, ad

0(ρ)(1)) = 1.
Indeed, for any σ in GF,St∪Sp , if σ has (generalized) eigenvalues α, β then ad0(ρ)(σ) has
(generalized) eigenvalues 1, αβ−1, βα−1. Thus, if ρ(Frobv) has distinct eigenvalues, the space
ad0(V )/(Frobv − 1)ad0(V ) is one dimensional. Since a v-unramified cocycle is uniquely
determined by its value on Frobv, we get that dimH1(kv, ad

0(ρ)(1)) = 1.
Thus, it suffices to show that the restriction map

H1(GF,St∪Sp , ad
0(ρ)(1)) → ⊕v∈QnH

1(kv, ad
0(ρ)(1))

is an isomorphism. Then equating dimensions shows that condition (3) is fulfilled.
To do this, it suffices to show that for any global cocycle ψ there exists a v = vψ satisfying (1) and
(2) such that resv(ψ) 6= 0. For then we could apply this to the elements of a basis (of size h) for
the left side, and the corresponding set of places {vψ} would consistute a TW set.
Instead we’ll show that we can find σ ∈ GF,St∪Sp satisfying the following:

(1’) σ|GF (ζp)
= 1.

(2’) ad0ρ(σ) has an eigenvalue other than 1.

(3’) ψ(σ) /∈ (σ − 1)ad0ρ(1).

Indeed, all three of the above conditions are open conditions in GF,St∪Sp . But by the Chebotarev
density theorem, we any non-empty open set contains some Frobv. This v will do.

Let F0 be the fixed field of the kernel of ad0ρ and let Fm = F0(ζpm).

Claim. ψ(GFn) is non-zero.

Later, we’ll even show that its k-span is a non-zero Gal(Fn/F (ζpn))-submodule of ad0ρ. From this,
we can leverage information from the irreducibility of ρ|GF (ζpn )

just proven.

Proof. In this claim and what follows, assume n > 0 so that the cyclotomic character is trivial
when restricted to GFn . There is an inflation-restriction sequence

0 → H1(GFn/F , ad
0ρ(1))

inf−−→ H1(GF , ad
0ρ(1))

res−→ H1(GFn , ad
0ρ(1)).

Thus, it suffices to prove that the leftmost term is zero. For then, ψ|GFn
is a non-zero cohomology

class, and so is certainly not identically 0.
We can sandwich the left most term in another inflation-restriction sequence:

0 → H1(GF0/F , (ad
0ρ(1))GF0 )

inf−−→ H1(GFn/F , ad
0ρ(1))

res−→ H1(GFn/F0 , ad
0ρ(1))GF0/F . (∗)

where the action of g ∈ GF0/F on the third term is given by η 7→ (h 7→ g−1η(ghg−1)).
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• Third term of (*)
There is a restriction-corestriction sequence

H1(GFn/F0 , ad
0ρ(1))

res−→ H1(GFn/F1 , ad
0ρ(1))

cores−−−→ H1(GFn/F0 , ad
0ρ(1))

and the composition is multiplication by |GF1/F0|. This number is ≤ p− 1 and so is prime to
p. Hence, res is injective. It also sends GF0/F -invariants to GF0/F -invariants. Thus, it suffices
to show that H1(GFn/F1 , ad

0ρ(1))GF0/F is zero.

– GFn/F1 is naturally a subgroup of the commutative quotient GF (ζpn )/F of GF (given just
by restricting automorphisms to F (ζpn)). The conjugation action is compatible with
this restriction. Thus the conjugation action on GFn/F1 is trivial since the latter
quotient of GF is abelian.
Note that GFn/F1 acts trivially on ad0ρ(1). Hence,

H1(GFn/F1 , ad
0ρ(1))GF0/F = Hom(GFn/F1 , ad

0ρ(1))GF0/F = Hom(GFn/F1 , ad
0ρ(1)GF0/F ).

But ad0ρ(1)GF0/F = 0.
Indeed, any GF (ζpn )-invariant element of ad0ρ(1) is equivalently a trace 0 intertwining
operator V → V (1) (V the underlying vector space of ad0). But n > 0, so the action of
the cyclotomic character is trivial. So this is actually an intertwining operator V → V.
But V is an irreducible GF (ζpn )-module, and so any self-intertwining operator is scalar
and so must be 0 by our trace 0 assumption (p > 3 by our standing assumptions).

Hence, the third term of (∗) is 0.

• First term of (*)

– (ad0ρ(1))GF0/F is trivial unless F0 ⊃ F (ζp). This is because for any place v with
Nv 6= 1 (p), ad0ρ(Frobv) fixes something but χp(Frobv) 6= 1. So, we assume that

GF0/F → GF (ζp)/F → 0.

In particular, GF0/F has a non-trivial quotient and so is not a non-abelian simple group.

– Since (ad0ρ(1))GF0/F has p-power order, we also have an injection

0 → H1(GF0/F , (ad
0ρ(1))GF0 )

res−→ H1(P, (ad0ρ(1))GF0 ),

where P is the Sylow p-subgroup of GF0/F . Thus, we can assume that P is non-trivial,
i.e. that p divides |GF0/F |.

– Finally, since F0 is the field cut out by ad0ρ,GF0/F is isomorphic to the projective
image of ρ.

We can put these facts to good use in conjunction with an explicit characterization of finite
subgroups of PGL2(Fp).

List of Finite Subgroups H of PGL2(Fp) [ EG, II.8.27 ]
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– H is conjugate to a subgroup of the upper triangular matrices.

– H is conjugate to PGL2(Fpr) or PSL2(Fpr) for some r ≥ 1.

– H is isomorphic to A4, A5, S4, or D2r, p ∤ r for r ≥ 2. Furthermore, if H is isomorphic to
D2r = 〈s, t|s2 = tr = 1, sts = t−1〉 , then it is conjugate to the image of

s 7→
(

0 1
1 0

)
t 7→

(
ζ 0
0 1

)
,

where ζ is a primitive rth root of unity.

We can eliminate all of these possibilities, one by one.

– The projective image H cannot be conjugate to a subgroup of the upper triangular
matrices, for then ρ|GF (ζp)

would not be absolutely irreducible.

– Our assumptions p > 5 and p divides |GF0/F | preclude the possibilities
H ∼= A4, A5, S4, D2r, p ∤ r.

– PSL2(Fpr) is simple for p > 5. Thus, it cannot have a quotient, namely GF (ζp)/F , which
is non-trivial.

– Suppose H = im(ρ) ∼= PGL2(Fpr). The only non-trivial quotient of PGL2(Fpr) is order
2. But GF0/F cannot have a quotient of order 2.
If it did, there would be an exact sequence

1 → Z → im(ρ) → im(ad0(ρ)) → 1,

with Z a central subgroup of GL2(k) and im(ad0(ρ)) either order 1 or 2. But then any
pre-image A of the non-trivial element of im(ad0(ρ)) and Z generate im(ρ). But A has
an invariant subspace (possibly after a quadratic extension). So that means im(ρ) does
too, contradicting the absolute irreducibility of ρ.

Since none of these are possible, we must have the first term of (∗) being 0 after all.

We conclude that the second term of (∗) is 0 as well, which is what we wanted; this proves that
ψ(GFn) is indeed non-zero.

We can say more. For τ, τ ′ ∈ GFn , σ ∈ GF (ζpn ), repeated use of the cocycle relation gives

ψ(στσ−1) = ψ(σ) + ψ(τσ−1)

= ψ(σ) + σψ(τ) + στψ(σ−1)

= ψ(σ) + σψ(τ) + σψ(σ−1) = σψ(τ).

Note: the second last equality holds because τ acts trivially on ad0ρ(GFn). Also,

ψ(τ) + ψ(τ ′) = τ ′ψ(τ) + ψ(τ ′) = ψ(ττ ′).

Thus, the k-span of ψ(GFn) is in fact a non-zero GFn/F (ζpn )-submodule of ad0ρ.

Next, we’ll find an element g ∈ GFn/F (ζpn ) such that ρ(g) has distinct eigenvalues and which fixes
an element of k.ψ(GFn). We do this by the explicit classification of possible projective images, i.e.
we’ll show that for any subgroup H which could possibly be the projective image of ρ, there is an
element of H with distinct eigenvalues which fixes an element of k.ψ(GFn).
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• Note first that if we can prove the result for some subgroup H ⊂ H ′, then it true for
putative projective image H ′ as well. Also, the “exceptional” cases A4, S4, and A5 all
contain D4 and the projective image cannot be contained in an upper triangular subgroup
(due to the absolute irreducibility of ρ|GF (ζpn )

. Thus, in view of the preceding classification of

finite subgroups of PGL2(Fp), it suffices to check the following cases:

• PSL2(Fpr)
ad0 is simple under the action of PSL2(Fpr). Thus, k.ψ(GFn) = ad0 and
(
α 0
0 α−1

)
fixes

(
−1 0
0 1

)
∈ ad0 = k.ψ(GFn). Since p > 5, we can certainly find α 6= α−1.

• D4

ad0 decomposes as V1 ⊕ V2 ⊕ V3, where

V1 =

〈(
0 1
1 0

)〉
, V2 =

〈(
0 −1
1 0

)〉
, V3 =

〈(
1 0
0 −1

)〉
.

D4 acts as ±1 on each Vi. Furthermore, by our explicit description of the image of dihedral
groups, each non-trivial element has distinct eigenvalues (of ±1). Since the only possible
invariant subspaces of ad0 are then ⊕i∈IVi for some I ⊂ {1, 2, 3}, it follows that some
element h ∈ D4 with distinct eigenvalues fixes an element of k.ψ(GFn).

• D2r, r odd
ad0 decomposes as W1 ⊕W2 where

W1 =

〈(
1 0
0 −1

)〉
,W2 =

〈(
0 1
0 0

)
,

(
0 0
1 0

)〉
.

W1 is fixed by

(
1 0
0 ζ

)
and

(
0 1
1 0

)
fixes

(
0 1
1 0

)
.

Since ad0 = Wi or W1 ⊕W2, it follows again that some h ∈ D2r with distinct eigenvalues
fixes an element of k.ψ(GFn).

Having found such a g, it must certainly fix a non-zero element of ψ(GFn) itself, say ψ(τ0).

• Indeed, as an Fp-vector space, the k.ψ(GFn) is isomorphic to k ⊗Fp ψ(GFn). But then if
k1, ..., km forms a basis for k over Fp, we can express the fixed element m of k.ψ(GFn) as
m = k1ψ(τ1) + ...+ knψ(τn), where at least one ψ(τi) 6= 0. If m is fixed by g, then

k1((g − 1)ψ(τ1)) + ...+ kn((g − 1)ψ(τn)) = 0.

But linear independence implies that (g − 1)ψ(τi) = 0, which is what we wanted.

Choose a lift σ0 of g to the absolute Galois group.
For τ ∈ GFn , we have

ψ(τσ0) = τψ(σ0) + ψ(τ) = ψ(σ0) + ψ(τ).
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• If ψ(σ0) /∈ (σ0 − 1)(ad0ρ(1)), then take τ = 1.

• Otherwise, choose τ = τ0. For this choice, ψ(τ0) /∈ (σ0 − 1)ad0ρ(1). For suppose
(σ0 − 1)x = ψ(τ0) 6= 0. Applying σ0 − 1 to both sides, our construction of τ0 gives

(σ0 − 1)2x = (σ0 − 1)ψ(τ0) = 0.

But σ0 acting on ad0 is semisimple and has eigenvalue 1 with multiplicity 1 (since ρ(σ0) has
distinct eigenvalues) . Thus, (σ0 − 1)x = 0, implying that ψ(τ0) = 0, contrary to our
construction.

Thus, in both cases
ψ(τσ0) /∈ (σ0 − 1)ad0ρ(1) = (τσ0 − 1)ad0ρ(1).

So we’ve finally constructed the element σ = τσ0 that we sought in the first place.

Number of Topological Generators for R�,χ
Qn∪St∪Sp over L�

We now have all of the pieces in place to compute the relative tangent space dimension of
R�,χ
Qn∪St∪Sp

over L�, both defined as in the introduction.

Lemma (FFGS, 3.2.2). Let h1(GF,St∪Sp∪S∞ , ad
0(V )) denote the k-dimension of

ker(H1(GF,St∪Sp∪S∞ , ad
0(V )) →

∏

v∈St∪Sp

H1(GFv , ad
0(V ))).

For v ∈ St ∪ Sp, let δv = dimkH
0(GF,St∪Sp∪S∞ , adV ) and δF = dimkH

0(GF,St∪Sp∪S∞ , adV ).

Then R�,χ
F,St∪Sp∪S∞ is the quotient of a power series ring over L� in

g = h1(GF,St∪Sp∪S∞ , ad
0(V )) +

∑

v∈St∪Sp

δv − δF .

variables.

Proof. Let our vector space V have fixed basis β.
An element of the relative tangent space corresponds to a deformation of V to a finite free
k[ǫ]-module Ṽ together with a choice of bases β̃v lifting β such that for each v ∈ St ∪ Sp, the pair
(Ṽ |GFv

, βv) is isomorphic to (V ⊗k k[ǫ], β ⊗k 1).
For fixed choices of bases, the space of such deformations is given by

ker(H1(GF,St∪Sp∪S∞ , ad
0(V )) →

∏

v∈St∪Sp

H1(GFv , ad
0(V ))).

Given such a deformation, Ṽ , the space of possible choices for a bases is the space of GFv

automorphisms of (V ⊗k k[ǫ], β ⊗k 1); such an automorphism reduces to 1 mod (ǫ) and so is of the
form 1 + ǫM for some GFv -equivariant M ∈ ad(V ), i.e. M ∈ H0(GFv , adV ).
The same reasoning shows that two collections {βv}v∈St∪Sp and {β′

v}v∈St∪Sp determine the same
framed deformation if they differ by an element of H0(GF,St∪Sp∪S∞ , adV ). The lemma follows.
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Now we compute this h1, the dimension of a Selmer group, via the Wiles Product formula.

Lemma (FFGS, 3.2.5). Set g = dimkH
1(GF,Sp∪St, ad

0ρ(1)), ad0ρ(1))− [F : Q] + |St|+ |Sp| − 1.
For each positive integer n, there is a finite set of primes Qn of F which is disjoint from St ∪ Sp
and such that

(1) If v ∈ Qn, then Nv = 1 (pn) and ρ(Frobv) has distinct eigenvalues.

(2) |Qn| = dimkH
1(GF,Sp∪St, ad

0ρ(1)). Also, R�
Qn

is topolgoically generated by g elements as a

B�-algebra.

Proof. We define a set of local conditions to compute this relative dimension, the dimension of a
Selmer group. Namely, let

H1
Lv

=

{
0 if v ∈ St ∪ Sp
H1(GFv , ad

0ρ) otherwise.

Write H1
LQn

(resp. H1
L⊥
Qn

) for the set of classes which restrict to H1
Lv

(resp. H1
L⊥
v
) for each

v ∈ St ∪ Sp ∪Qn. (“⊥” denoting the annihilator under Tate local duality).
The main result from the previous section shows that we can find a set of primes Qn satisfying
condition (1) and the first part of condition (2). Furthermore, any class in H1

L⊥
Qn

restricts to 0 in

H1(GFv , ad
0ρ(1)). By our choice of primes, this implies that H1

L⊥
Qn

= 0.

By the Wiles Product Formula, we get

|H1
LQn

| = H0(GF,St∪Sp∪S∞ , ad
0ρ)

H0(GF,St∪Sp∪S∞ , ad
0ρ(1))

∏

v∈St∪Sp∪S∞

H1
Lv

H0(GFv , ad
0ρ)

.

• Global terms
An element of H0(GF,St∪Sp∪S∞ , ad

0ρ) corresponds to a trace 0 self-intertwining operator of V.
Since ρ|GF (ζp)

is absolutely irreducible, any self-intertwining operators are scalars. But the

only trace 0 scalar matrix is 0 (for p > 2).
Similarly, an element of H0(GF,St∪Sp∪S∞ , ad

0ρ(1)) corresponds to an intertwining operator
V → V (1) between irreducible GF (ζp)-modules. Either they are not isomorphic, in which
case only the 0 operator can intertwine them, or they are isomorphic, in which case the
above paragraph applies.

• v ∈ St ∪ Sp
ad0(V ) is a summand of ad(V ) for p > 2. So, the terms in the product corresponding to
v ∈ St ∪ Sp in the product formula contribute |k|1−δv .

• v ∈ S∞

• v ∈ Qn

H1(GFv , ad
0ρ)

H0(GFv , ad
0ρ)

= H2((GFv , ad
0ρ))× local Euler characteristic−1.

The H2 term equals H0(GFv , ad
0ρ(1)) by Tate local duality. The local Euler characteristic,

which equals [Ov : |ad0(V )|Ov]
−1 by the local Euler characteristic formula, is 1 since |ad0(V )|

is prime to v ∈ Qn. Hence, the product formula terms for v ∈ Qn equal H0(GFv , ad
0ρ(1)).
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Since ρ(Frobv) had distinct eigenvalues, there is a 1-dimensional subspace of ad0(V ) fixed by
ad0ρ(Frobv). Since ρ|GFv

is unramified, H0(GFv , ad
0ρ(1)) is 1-dimensional.

• S∞

By one of our standing assumptions, ρ is odd, i.e. for archimedean places v, ρ(c) can

represented as a matrix

(
1 0
0 −1

)
with respect to some basis. Hence, ad0ρ(c) is can be

diagonalized to




−1 0 0
0 1 0
0 0 −1


 . But GFv is cyclic of order 2, generated by c. Hence, the

space of cocycles is just ker(ad0ρ(c) + 1), which is 2-dimensional, and the space of
coboundaries is im(ad0ρ(c)− 1), which is 2-dimensional. Hence H1(GFv , ad

0ρ) = 0.
Also, H0(GFv , ad

0ρ) is the 1-eigenspace of ad0ρ(c), and so is 1-dimensional.

Adding everything together, we get

h1(GF,St∪Sp∪S∞ , ad
0(V )) = dimkH

1
LQn

= 0 +
∑

v∈St∪Sp

(1− δv) +
∑

v∈Qn

1 +
∑

v∈S∞

−1

= |St|+ |Sp| −
∑

v∈St∪Sp

δv + |Qn|+ [F : Q]

= |St|+ |Sp| −
∑

v∈St∪Sp

δv + dimkH
1(GF,St∪Sp , ad

0ρ(1)) + [F : Q]

Combining with the previous lemma gives that

g = dimkH
1(GF,St∪Sp , ad

0ρ(1)) + |St|+ |Sp|+ [F : Q]− 1,

as desired.

We can conclude that R�
Q is generated by g elements as a B� algebra as well. Thus, we are finally

done our construction of TW primes.
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Construction and properties of the modules for patching
(Modularity 5.20.10)

Sam Lichtenstein

July 1, 2010

1 Introduction/Motivation

Recall that our ultimate goal is to prove a modularity lifting theorem (stated in Andrew’s
talk “Overview of the Taylor-Wiles method”), which we have reduced to showing an R = T
theorem. That is, we have a surjection from a deformation ring R ′ to a Hecke algebra Tm,
and we want to prove it is an isomorphism.

Brandon will prove this next time. The idea of the proof – the patching argument – is
to use framed versions R�

n of the rings RQn . Here the Qn form a Taylor-Wiles system; Mike
established the existence of such last time. These each live over R�

0 (which is very close to
the R ′ we care about):

R�
n ։ R�

0 .

On the T side we will have certain modified Hecke algebras T�
n which I will describe later.

We’ll construct maps R�
n ։ T�

n lifting R�
0 → T�

0 , and certain R�
n-modules M�

n. By a
pigeonhole principle sort of thing, we’ll be able to pass to an inverse limit

R�
∞ ։ T�

∞.

We’ll have an inverse limit M�
∞ . We’ll be able to show that M�

∞[ 1
p
] is a faithful R�

∞[ 1
p
]-

module, and some other nice things. Then we’ll deduce that this faithfulness must have
been true at level 0, where the R�

0 [
1
p
]-action was through (a framed version of) our map

R ′ → Tm, which we can therefore conclude is injective, hence an isomorphism.
Phew! This argument is clearly a technological marvel on par with my iPhone. For such

a thing to work, we need precise control over what happens on each level n as we go up the
tower. Specifically, Brandon will need to show that a certain collection of rings and moduled
cooked up from the R�

n and M�
n form a “patching datum”, meaning that they satisfy a

collection of technical axioms that make the patching argument go through.
The goal of this talk is two-fold. One thing I need to do is define the relevant Hecke

algebras T�
n and modules M�

n. To ruin the surprise, the module M�
n will arise from a space

of modular forms (which remember, are just functions on a finite set because we cleverly
set things up that way) of suitable level, depending on the Taylow-Wiles set of primes Qn.
The other thing I need to do is show that the modules M�

n satisfy nice properties, so that
Brandon can show that this his patching data are actually patching data. So this is all really
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an expansion of section 4 of the notes from Andrew’s overview talk, if you’re following along
at home.

Remark 1.0.1. Although ultimately we’ll use framed stuff for patching, mostly we’ll deal
with unframed stuff in this talk.

2 Setup and statment of what we’re going prove

Throughout, O is the ring of integers of a p-adic field with residue field k (where ρ lives).
Recall that the quaternion algebra D is ramified exactly at the places St and all the

archimedean places. Let’s fix some notation. For a compact open subgroup U ⊂ (D⊗FA
f
F)

×

set
X(U) = D×\(D⊗FA

f
F)

×/(U · (Af
F)

×).

Let
S(U) = Functions(X(U),O).

This is the space of automorphic forms on D× of weight 2 and level U. Let the bad primes
for U be

Σ(U) = Sp ∪ St ∪ {v|∞} ∪ {v : Uv is non-maximal},

and define the Hecke algebra T(U) to be the O-subalgebra of End(S(U)) generated by the
Tv for v 6∈ Σ(U). (It comes from the double coset Uv

(
1 0
0 v̟

)
Uv.)

Now let’s fix the “ground level” U◦ ⊂ (Af
F ⊗ D)× [a compact open subgroup] for the

construction. Picking up on a technical point Andrew mentioned, which will be relevant
today, we need to choose a huge prime vaux which has nothing to do with anything. In other
words it should be outside of St ∪ Sp ∪ {v|∞} ∪ ⋃

n≥1Qn. We can certainly arrange this
because, for example, all the primes in the Qns satisfy Nv ≡ 1mod p. Now take U◦ to be
the maximal compact for all places v 6= vaux; we will specify U◦

vaux
later.

Let T = T(U◦)
Recall that we have a modular lift ρf of our residual representation ρ which satisfies a

bunch of nice properties. Via Jacquet-Langlands and our assumptions on ρf, the Hilbert
modular form f gives rise to an element of S(U◦) which is an eigenform for T, and hence we
get a map T → O. Set m to be the unique maximal ideal of T containing the kernel of this
map.

Now let Q be a Taylor-Wiles set of primes (disjoint from vaux). Let RQ be what it was
in Mike’s talk, with the additional caveat that we permit ramification at vaux. Thus

RQ = R̃⊗B0
B

where R̃ is the universal global deformation ring of ρ with determinant χp, unramified outside
St∪ Sp∪Q∪ {vaux}; the ring B0 is the product of the universal local deformation rings with
the right determinant, at the places in St ∪ Sp; the modification B is the product of the
universal Steinberg deformation rings at places in St, and “suitably modified” universal
ord-cryst deformation rings at places in Sp.

Recall that the universal deformation

ρQ : GF → GL2(RQ)
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when restricted to GFw for w ∈ Q, has the form

(
η1 0
0 η2

)

for tamely ramified characters ηi. As Mike discussed, via class field theory, this endows RQ

with the structure of an O[∆Q]-algebra; here ∆Q is the product (over the primes v ∈ Q) of
the maximal p-power quotients of the cyclic groups (OFv/pv)

×. So

O[∆Q] ≈
O[[y1, . . . , yh]]

((y1+ 1)p
a1 − 1, . . . , (yh+ 1)p

ah − 1)
,

where h = #Q and the ai are integers ≥ 1, and in fact ≥ n if Q = Qn is part of a Taylor-
Wiles system. Note that O[∆Q] is a local ring, with maximal ideal 〈p, y1, . . . , yh〉, because
all the y1+ 1 have p-power order, i.e. because ∆Q is a p-group. We’ll use this fact later.

Moreover this O[∆Q]-algebra structure on RQ is essentially canonically determined by Q,
as long as we include in the data of Q a choice of one of the two distinct eigenvalues of
ρ(Frobv) for each v ∈ Q; this lets us pick out one of the characters ηi comprising GF →
GL2(RQ) to be “η1”, to which we can then apply class field theory and get the map ∆Q → R×

Q

as Mike explained. Call this distinguished eigenvalue αv ∈ k.
We let aQ ⊳ O[∆Q] be the augmentation ideal – recall that in any group ring A[G],

this is the kernel of the map A[G] → A which sends each g ∈ G to 1. This ideal will show up
later, in relating the modules M�

n to M�
0 . In the presentation above, it is generated by the

yis, one for each element of the TW set Q. For now, let’s see how RQ is related to R∅ = R ′.

Lemma 2.0.2. The canonical map RQ → R∅ is surjective with kernel aQRQ.

Proof. We show that GF → GL2(RQ) → GL2(RQ/aQ) is universal for the appropriate defor-
mation problem. Fix a deformation ρA : GF → GL2(A) of ρ, which is ordinary-crystalline
at places over p, Steinberg at places in St, and ramified only in St ∪ Sp ∪ {vaux}. Then we
certainly get a map ϕA : RQ → A such that ϕA ◦ ρQ = ρA. But since ρA is unramified at
any w ∈ Q, when composed with ϕA the distinguished character η1,w is trivial on inertia.
Thus if ∆w is the maximal p-power quotient of (OFw/pw)

× and δ : ∆Q → R×
Q the map Mike

discussed, we have ϕA ◦ δ(σ) = 1 for all σ ∈ ∆w. This holds for all w ∈ Q, so the ele-
ments 1− δ(σ) for σ ∈ ∆Q are all killed by ϕA. These elements generate the augmentation
ideal aQ, so ϕA factors through RQ/aQRQ. But if ϕ : RQ/aQRQ → A were another map
lifting ρA, then the composition of ϕ with the projection from RQ would have to agree with
ϕA by universality of RQ. Since said projection is, of course, surjective, this shows that
(RQ/aQRQ, ρQmod aQ) is universal for the type of deformations we want.

The lemma shows that we know exactly how to relate RQ to its level zero version R∅.
For patching, we now want to set certain RQ-modules MQ of automorphic forms, which will
be free over O[∆Q] and related to M∅ in the same manner as the lemma.

For this we need to specify some new compact open subgroups UQ ⊂ VQ ⊂ U◦, by
shrinking (physically speaking) the level at w ∈ Q. These will all agree except for those
w ∈ Q. For w ∈ Q set VQ,w to be the Iwahori Iw:

VQ,w = Iw = {( a b
c d) ∈ GL2(OFw) : c ∈ pw} .
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Set
UQ,w =

{
( a b
c d) ∈ GL2(OFw) : c ∈ pw, d = a−1 ∈ ∆w

}
,

i.e. the image of ad−1mod pw should map to 1 in the maximal p-power quotient, for all
w ∈ Q.

The following is clear.

Lemma 2.0.3. UQ is normal in VQ, and VQ/UQ = ∆Q.

This means that the induced map of sets X(UQ) → X(VQ) “wants to be” a ∆Q-torsor.
The role of the auxiliary prime vaux will be to ensure that this is the case, as will be discussed
below. This Galois property of the aforementioned cover will then be used to show that the
module MQ we shall define next, is actually O[∆Q]-free.

Now we have Hecke algebras T(VQ) and T(UQ), which, as we have defined them, contain
only T -operators for places away from St∪Sp∪ {v|∞}∪Q∪ {vaux} and nothing else. We also
want some U-operators for places in Q. So set

T(UQ)
+ = 〈T(UQ), {Uw : w ∈ Q}〉 ⊂ End(S(UQ)),

T(VQ)
+ = 〈T(VQ), {Uw : w ∈ Q}〉 ⊂ End(S(VQ)).

(Note that we’ve avoided notational ambiguity, since theUw is distinct from thew-component
of the level zero compact open subgroup U◦

w. Still, I’m sorry that they look so similar.)
I’ll remind you that the Uw operator is given by the Iwahori-double coset

Iw
(
̟w 0
0 1

)
Iw.

Now let us define some ideals in Hecke algebras. As before we set m[= m∅ = m◦] to
be the maximal ideal of T = T(U◦) containing the kernel of the eigenvalue map for the
automorphic form on (D ⊗Af

F)
× corresponding to our modular form f. There is a natural

map T(VQ) → T sending the T -operators to themselves; set mQ to be the contraction of m
along this homomorphism. This is a maximal ideal of T(VQ). Now set nQ to be the ideal
of T(VQ)

+ generated by mQ plus Uw− α̃w for all w ∈ Q, where α̃w is any lift of αw ∈ k to
O ⊂ T(VQ)

+. Similarly we have a map T(UQ)
+ → T(VQ)

+. So we can contract nQ to get
an ideal m+

Q of T(UQ)
+.

Here is the picture:

mQ ⊳ T(VQ)

uullllllllllllll

((QQQQQQQQQQQQQ
m+

Q ⊳ T(UQ)
+

vvlllllllllllll

m∅ ⊳ T(V∅) = T nQ ⊳ T(VQ)
+

Now nQ is clearly maximal, provided it is not the unit ideal. (We’re just setting all the
generators equal to constants.) Why isn’t it the unit ideal? In fact, this will come out of
what we ultimately prove about S(VQ)nQ , effectively that there is a modular form of level
VQ with action of the Hecke algebra T(VQ)

+ specified by nQ, so the quotient T(VQ)
+/nQ is

not the zero ring.
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Remark 2.0.4. As Andrew explained to me, this can also be seen directly, as follows. (I’m
kind of confused about this, and I couldn’t really work out the details, but it shouldn’t be
too important for what follows...) Take a modular form f on D of level U◦, hence level 1
at some w ∈ Q. Then f and

(
1 0
0 ̟w

)
f span the space of forms where we ramp up to Γ0

(Iwahori) level at w. We need to check that the Uw operator has an eigenvector in this
space of forms, with eigenvalue matching our chosen lift α̃w. Since f has level 1 at w, the
corresponding automorphic representation is unramified principle series at w, i.e. it is of
the form V = π(µ, ν) = {ϕ : GL2(Fw) → C : ϕ(( a ∗

b)g) = µ(a)ν(b)|a/b|
1/2
w f(g)} for some

unramified characters µ, ν : F×w → C×. The dimension of the spherical fixed vectors in V is
1; this space is spanned by f itself Then f and ( 1

̟w
) f span the Iwahori fixed vectors VIw .

The Uw operator is given by the double coset

Iw (̟w
1) Iw =

∐

x∈(OFw/pw)

(
̟w ex

1

)
Iw.

Using this decomposition and the basis of indicator functions for the two cells in

G = GL2(Fw) = B ⊔ B ( 1
1 ) Iw, (B = borel)

one can compute the action of Uw explicitly. The eigenvalues should be µ(̟w), ν(̟w), one
of which should match α̃w somehow (?).

So we have a maximal ideal m+
Q in T(UQ)

+. We will localize at this to define the rings of
Hecke operators TQ and modules of automorphic forms MQ which we will use for patching:
set

TQ = T(UQ)
+
m+

Q
, MQ = S(UQ)m+

Q
.

There is a natural Galois representation GF → GL2(TQ) which induces a surjection RQ ։
TQ, and hence an RQ-module structure on MQ (which is naturally a TQ-module). Since RQ

is an O[∆Q]-algebra, this makes MQ an O[∆Q]-module as well.
Now we can state our main results.

Theorem 2.0.5. The module MQ is O[∆Q]-free. Moreover,

MQ/aQMQ
∼= M∅.

This should imply more or less directly that certain quotients of appropriate framed
versions M�

Qn
of the MQns form a “patching datum”.

3 Proof of Main Theorem

To prove the first part of the theorem (freeness of MQ over O[∆Q]), we will argue sort of
topologically. We will show that the action on O[∆Q] on MQ via the map O[∆Q] → RQ →
TQ ⊂ End(MQ), agrees with another action which is a bit easier to understand. Specifically,
we will show that the map of double coset spaces

X(UQ) → X(VQ)

is a Galois cover with deck group ∆Q = VQ/UQ, and deduce from this that ∆Q acts freely
on MQ.
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Remark 3.0.6. If you look in DDT for the proof of the analgous freeness assertion in their
setup (Thm 4.16), you’ll see that they invoke the fact that a certain map of modular curves
corresponding to an inclusion of congruence subgroups, is unramified, and they proceed using
Riemann-Hurwitz. Our strategy here is thus sort of similar to theirs.

To ensure that said map is a Galois cover, i.e. a ∆Q-torsor, we need to specify the group
level U◦ at the auxiliary prime vaux I mentioned earlier. Essentially, by adding enough level
at that place, we can ensure that the “stackiness” – the order of the automorphism group
NUQ,x for various x ∈ X(UQ) – is prime to p, hence prime to the index #∆Q = [VQ : UQ],
for all x. This is what we turn to now.

3.1 The smallness condition and vaux

First let us relate the VQ/UQ = ∆Q action on the fibers of X(UQ) → X(VQ), to the amount
of stackiness. This requires a bit of group theory.

3.1.1 Some group theory

First note the following trivial fact.

Lemma 3.1.1. Suppose we have subgroups A,B,C of a group G, and suppose C ⊳ B. Then
(A∩B)/(A∩C) is naturally a subgroup of B/C via (A∩B)/(A∩C) →֒ B/(A∩C) ։ B/C.

Lemma 3.1.2. Suppose we have groups and subgroups

K ′ ⊳ K ⊂ G ⊃ H.

Consider the obvious map of double coset spaces

π : H\G/K ′ ։ H\G/K.

Let S(g0) be the fiber π
−1(Hg0K). Set J(g0) = (K∩g−1

0 Hg0)/(K
′∩g−1

0 Hg0). By the previous
lemma we can regard J(g0) as a subgroup of K/K ′. Then S(g0) is naturally in bijection with
the left coset space J(g0)\(K/K

′).

Proof. Define α : J(g0)\(K/K
′) → S(g0) by

α : J(g0) · (kK ′) 7→ Hg0kK
′.

We can see α is a well-defined map of sets as follows. If J(g0) · (k1K
′) = J(g0) · (k2K

′)
then there exists j ∈ J ⊂ K/K ′ such that j(k1K

′) = k2K
′. Now j = k(K ′ ∩ g−1

0 Hg0) for some
k ∈ K∩g−1

0 Hg0. Say k = g−1
0 hg0. The map of the previous lemma regards j as an element of

K/K ′ as the coset kK ′. The condition j(k1K
′) = k2K

′ says that kk1K
′ = k2K

′. So k2 = kk1k
′

for some k ′ ∈ K ′. Now α(J(g0) · (k1K
′)) = Hg0k1K

′ while α(J(g0) · (k2K
′)) = Hg0k2K

′.
So we must show these agree. But Hg0k2K

′ = Hg0kk1k
′K ′ = Hg0(g

−1
0 hg0)k1k

′)K ′ =
Hhg0k1k

′K ′ = Hg0k1K
′, so they do.

Conversely, define β : S(g0) → J(g0)\(K/K
′) by Hg0kK

′ 7→ J(g0)(kK
′). Again, we

must check this is well-defined. If Hg0k1K
′ = Hg0k2K

′ then g0k1 = hg0k2k
′ for some
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h ∈ H, k ′ ∈ K ′. so k1 = g−1
0 hg0k2k

′. In particular this means g−1
0 hg0 ∈ K ∩ g−1

0 hg0. Call
this element k. So we need to show that J(g0)(k2K

′) = J(g0)(kk2k
′K ′). Clearly we can

ignore the k ′. We leave to the reader to check that kk2K
′ = (k(K ′ ∩ g−1

0 Hg0)) · (k2K
′) when

we regard k(K ′ ∩ g−1
0 Hg0) ∈ J as an element of K/K ′. So kk2k

′K ′ = kk2K
′ is a translate of

k2K
′ on the left by an element of J(g0), so we win.
Finally, it is clear that α and β are mutually inverse bijections.

Remark 3.1.3. Note that the lemma identifies S(g0) with J(g0)\(K/K
′) note merely as sets,

but as (K/K ′)-sets. Hence to prove that H\G/K ′ → H\G/K is a K/K ′-torsor, it suffices to
ensure that J(g0) vanishes for all g0 ∈ G.

3.1.2 Application to our setup

In our setup, the previous lemma identifies the fiber of X(UQ) → X(VQ) over D
×xVQ(A

f
F)

×

as a ∆Q-set with the quotient

(VQ · (Af
F)

×)/(UQ · (Af
F)

×)

(x−1D×x ∩ VQ · (Af
F)

×)/(x−1D×x ∩UQ · (Af
F)

×)
.

(We think of this quotient as a space of left-cosets of the denominator.) We’d like to show
the denominator is trivial, so that this is simply the quotient

VQ(A
f
F)

×/UQ(A
f
F)

× = VQ/UQ = ∆Q,

so the action on fibers is simply transitive as required.
Now the denominator is itself a quotient of

x−1D×x ∩ VQ(A
f
F)

×

x−1D×x ∩ (Af
F)

× .

The denominator of the latter is simply F×.
So we want to ensure that

(x−1D×x ∩ VQ(A
f
F)

×)/F× = {1}.

Since VQ ⊂ U◦, we can simply impose conditions on the ground level U◦ so that

G := (x−1D×x ∩U◦(Af
F)

×)/F× = {1}.

Now x−1D×x is discrete, and U◦(Af
F)

×/F× is compact. (Because U◦ is compact, and the
finite part of the idéle class group is compact.) So this is a finite group.

Now choose vaux lying over some prime ℓaux ≥ 5, sufficiently large so that vaux is unram-
ified for both F and D (and is outside St ∪ Sp). Set

U◦
vaux

= {m ∈ GL2(OFvaux
) : m ≡ 1mod pvaux }.

Observe that U◦
vaux

is pro-ℓaux.

Proposition 3.1.4. GL2(Fvaux) has no elements of order ℓaux.
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This is because Fvaux is an unramified extension of Qℓaux , so it does not contain ℓaux roots
of unity. But if M ∈ GL2(Fvaux) had order ℓaux, it would have an ℓaux root of unity as an
eigenvalue, lying in some quadratic extension of Fvaux . But for ℓaux ≥ 5, [Fvaux(µℓx) : Fvaux ]
cannot be two.

By the proposition, it follows that D× has no elements of ℓaux-power order, since D
× →֒

(D ⊗F Fvaux)
× ≈ GL2(Fvaux) as vaux splits D. Since the finite group G we want to show is

trivial is a subquotient of (a conjugate of) D×, we know that its order is thus prime to ℓaux.
To prove it is trivial, we will show our group G is an ℓaux-group.
So suppose g ∈ G had order n prime to ℓaux. Fix a representative g ∈ x−1D×x∩U◦(Af

F)
×.

Consider the vaux component gvaux . Inside (D⊗F Fvaux)
×, gvaux sits in the subgroup

x−1
vaux

D×xvaux ∩U◦
vaux

F×vaux
⊂ (D⊗ Fvaux)

× ≈ GL2(Fvaux).

Write gvaux = uj as product of something in U◦
vaux

and someting in F×vaux
(here j stands for

“idele”) Now (uj)n = unjn ∈ F×, so un ∈ F×vaux
. Thus the image of u in U◦

vaux
/U◦

vaux
∩ F×vaux

has order prime to ℓaux. But this group is pro-ℓaux, being a quotient of U◦
vaux

, and hence
u = 1. Thus gvaux ∈ F×vaux

∩ x−1
vaux

D×xvaux . In particular, gvaux commutes with xvaux , so
gvaux ∈ F×vaux

∩D× = F×. This shows that in fact g ∈ F× so g = 1 ∈ G as desired.

3.2 Proof of freeness

OK great, so now we have seen that X(UQ) → X(VQ) is a ∆Q-torsor, provided we impose
“principal congruence subgroup” level in U◦ at a well-chosen place vaux. In particular, this
shows that X(UQ) is (non-canonically) the same as X(VQ)×∆Q. So S(UQ) = S(VQ)⊗OO[∆Q].
Since S(VQ) is O-finite free, this means that S(UQ) is O[∆Q]-finite free. (That is, with the
action of O[∆Q] as deck transformations of X(UQ).)

Now the localization MQ = S(UQ)m+
Q

is a summand of S(UQ) as a TQ-module. (This

is because TQ is finite semilocal over the p-adically complete ring O.) So provided we
know that the deck transformation action of O[∆Q] agrees with the action coming from
the homomorphism

O[∆Q] → RQ → TQ ⊂ End(MQ)

this shows that that MQ is a summand of a finite free O[∆Q]-module. Since O[∆Q] is local,
that would force MQ to be O[∆Q]-free. (Projective = flat = locally free = free, for finitely
generated modules over a local Noetherian ring.)

Thus we are reduced to showing that these two actions of the “diamond operators” ∆Q

agree. For this we will need to know the following.

Lemma 3.2.1. The Hecke algebra TQ is reduced.

Proof. (FIXME: Cf. Taylor Cor. 1.8(3) in “On the Meromorphic Continuation...”)
The rough idea is the following. It suffices to consider the generic fiber of the Hecke

algebra, i.e. to consider the space of forms after inverting p in our coefficients. Reducedness
of the Hecke algebra says that eigenforms are determined by their Hecke eigenvalues at all
but finitely many places. This is because we defined the Hecke ring as subring of the endo-
morphisms of the module of module forms; consequently the modular forms are faithful over

8



the Hecke algebra. Thus if some local quotient of the Hecke algebra is not a field, the cor-
responding quotient module of modular forms will have positive dimension. This translates
directly to the existence of several eigenforms with exactly the same Hecke eigenvalues for
almost all places.

So to prove reducedness, it’s enough to check that in our situation, the Hecke eigenvalues
are actually determined by the corresponding Galois representation which we know (huh?!?),
which is determined by the knowledge of what’s happening at all but finitely many places.

By the lemma, the module MQ is spanned by Hecke eigenforms f ∈ S(UQ)m+
Q

= MQ,

corresponding to the various irreducible components TQ/p (p a minimal prime) of TQ. So for
each f (i.e. for each minimal p) we have two actions of ∆Q on MQ/pMQ:

• The one coming from the ∆Q = VQ/UQ action on X(UQ);

• and the one coming from the morphisms

O[∆Q] → RQ → TQ → TQ/p.

If we know these agree, for each f, then it follows that the two actions of ∆Q on all of
MQ agree. So fix such an f. Let π be the representation of (D ⊗F A

f
F)

× generated by f,
after tensoring with E = Frac(O). Fix one of the TW primes w ∈ Q, and consider the
local component πw of π at w. Now f itself is a UQ,w-fixed vector. (I’ll remind you that
UQ,w = {( a b

c d) ∈ GL2(OFw) : c ≡ 0 mod ̟w, ad
−1 = 1 ∈ ∆Q}. This is like Γ1(w), sort of.)

Moreover we know how the Hecke operator Uw (sorry for the notation!) acts on f: as a
lift of one of the eigenvalues of ρ(Frobw), which are distinct, and whose product is equal
to Nw ≡ 1mod p, because w is a Taylor-Wiles prime. These stringent conditions on the
action of Uw rule out the possibility that πw is Steinberg, but I am not sure why. Now by a
classification result, this implies that πw is in fact a tamely ramified principal series

πw = π(µ, ν), µ, ν : F×v → C× tame.

Now ∆Q = VQ/UQ acts on the right (in the way we like) on

D×\(D⊗Af
F)

×

by translation by a representative for the coset vUQ ∈ ∆Q. This induces an action of the

w-part ∆w = maximal p-power quotient of (OFw/̟w)
× of ∆Q, on the invariants π

UQ,w
w .

Moreover, if we write

πw = π(µ, ν) = {ϕ : GL2(Fw) → C | ϕ(( a ∗
b)g) = µ(a)ν(b)|a/b|1/2ϕ(g)}

as a space of functions on D×
w, this action of ∆w agrees by definition with the usual (= right

regular) action of

{〈x〉 = ( ex
1) : x ∈ ∆w, x̃ a lift to OFw } ⊂ {〈x〉 : x ∈ (OFw/̟w)

×}.

(We really only care about these diamond operators for x ∈ ∆w, but they make perfect sense
for any x ∈ (OFw/̟w)

×.)
“The following lemma is well-known”:
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Lemma 3.2.2 (Similar to Taylor, “On the meromorphic continuation...”, Lemma 1.6). If µ
and ν are tame, then π(µ, ν)UQ,w is two dimensional, with a basis eµ, eν of Uw-eigenvectors,
such that

Uweµ = µ(̟w)eµ, Uweν = ν(̟w)eν,
1

and the diamond operators act by

〈x〉eµ = µ(x̃)eµ, 〈x〉eν = ν(x̃)eν, (x ∈ (OFw/̟w)
×).

(Does anyone know a real reference? Probably it’s not too hard prove; it should just be
some explicit computation.)

Now f is a Uw-eigenvector with eigenvalue α̃w, by the way we set things up, so we can

say that µ is determined by αw plus the action of ∆w on π
UQ,w
w .

Local Langlands implies that

ρf,p : GF → GL2(Qp)

corresponding to π = πf, satisfies
ρf,p|GFw

∼ ( µ
ν)

where µ, ν are the Galois characters corresponding to µ, ν via class field theory. 2 But this
representation is precisely the one we know as

GFw → GL2(RQ) → GL2(TQ) → GL2(TQ/p) → GL2(Qp).

So the action of the diamond operators 〈x〉 for x ∈ ∆w act on f by the values of the character
µ(x̃), agrees with action of x via the value of the character “η1(x̃)” we picked out when
originally defining O[∆Q] → RQ.

This essentially proves the desired compatibility between the two actions, modulo all the
details I’ve omitted or gotten wrong. Therefore we have completed the proof of the freeness
of MQ over O[∆Q].

3.3 Proof of relation of level Q with level ∅
The remaining part of the theorem is the “moreover”, namely:

MQ/aQMQ
∼= M∅.

The key ingredient in the proof of the “moreover” will be the following.

Proposition 3.3.1. There is an isomorphism

M∅ := S(U◦)m
∼→ S(VQ)nQ .

1This may not be quite right...
2Clearly I’ve been sloppy somewhere regarding Qp and C....
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Assuming the proposition, let us deduce what we want. By the proposition, it is sufficient
to prove that

MQ/aQMQ
∼= S(VQ)nQ ,

since the latter is the same as M∅. Since we’ve already “shown” that the two ∆Q actions are
the same, we may as well compute the ∆Q-coinvariants of MQ, namely MQ/aQMQ, using
the description of MQ as O-valued functions “upstairs” in the ∆Q torsor

X(UQ)
∆Q։ X(VQ).

But with this description, it is more or less obvious that the desired isomorphism holds: we
have (non-canonically) that

S(UQ) = S(VQ)⊗OO[∆Q]

so
S(UQ)∆Q

= S(VQ).

Since quotients commute with localization, the same equality holds when we localize at m+
Q,

resp. nQ.
It remains only to prove the relationship between S(VQ)nQ and S(U◦)m.

4 Proof of Proposition

We will prove the proposition by induction on the size of the TW-set Q, reducing to the
case when Q = {w} is a singleton.

This argument is due to Andrew, the basic outline being from Taylor’s “On the mero-
morphic continuation...” paper (Lemma 2.2).

4.1 Inductive setup

Specifically, let V be any compact open subgroup of U◦. Let Φ : T(V) → k be a homomor-

phism with kernel m, and let Φ̃ : T(V) → O be any set-theoretic lift. Let w be a TW prime,
meaning the following.

a) w 6∈ Σ(V) (which, recall, is just the bad set of places: Sp∪St∪{v|∞}∪{v : Vv nonmaximal}).
In practice, i.e. for our inductive argument, this means w is nonarchimedean and out-
side Sp ∪ St and the TW primes we already added.

b) Nw = 1mod p.

c) X2−Φ(Tw)X+Nw has distinct roots α,β ∈ k.

By Hensel’s lemma, we obtain a factorization in T(V)m[X]:

X2− TwX+Nw = (X−A)(X− B)

where Φ(A) = α,Φ(B) = β.
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Now let V ′ be the compact open subgroup of V obtained by replacing Vw = GL2(OFw)
with V ′

w = Iw the Iwahori. Let Uw be the Hecke operator on S(V ′) given by Iw (̟w
1) Iw as

before. Let T(V ′)+ be the subalgebra of End(S(V ′)) generated by T(V ′) and Uw. Let m ′

be the ideal of T(V ′)+ generated by p, Tv− Φ̃(Tv) for v 6∈ Σ(V ′), and Uw− α̃.

Proposition 4.1.1 (Induction step). There is an isomorphism

η : S(V)m → S(V ′)m′

given by
f 7→ Af− ( 1

̟w
) f.

Granting this, the proof of the main theorem is complete. For using this induction step,
we can build a chain of isomorphisms from S(U◦)m to S(VQ)m+

Q
by adding the Taylow-Wiles

primes w ∈ Q one at a time, invoking the induction step each time.

4.2 Proof of induction step

4.2.1 Well-definedness of η

Note that a priori it is not clear that η lands in the localization S(V ′)m′ . (Recall that
T(V ′)m′ is semilocal and finite over O, hence a direct sum of its localizations at its maximal
ideals, so in particular we can regard those localizations as subs rather than quotients.)
We can characterize S(V ′)m′ as precisely the T(V ′)+-submodule of S(V ′) on which m ′ acts
topologically nilpotently. (Also, S(V)m ⊂ S(V) is characterized similarly.) As a first step,
let us use this characterization to show that η actually lands where we want it to.

The following is a consequence of explicit computations done with double cosets.

Lemma 4.2.1. The identities

Twf = Uwf+ ( 1
̟w

) f, Uw ( 1
̟w

) f = Nw · f

hold for any f ∈ S(V).

As a consequence we have

Lemma 4.2.2. Uw ◦ η = η ◦A.

Proof. Using the previous lemma, we can expand

Uwη(f) = Tw(Af) − ( 1
̟w

) (Af) −Nw · f.

Since A is a root of X2− TwX+Nw ∈ T(V)m[X], we have

A2 = TwA−Nw.

Hence
η(Af) = A2f− ( 1

̟w
) (Af) = TwA−Nw · f− ( 1

̟w
) (Af) = Uwη(f).
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Now we deduce that η is well-defined. We need to show that p, Tv− Φ̃(Tv) for v 6∈ Σ(V ′),
and Uw− α̃ all act topologically nilpotently on η(f) for any f ∈ S(V)m.

For p this is clear.
For Tv−Φ̃(Tv), one checks that Tv commutes with η. It is clear that Tv commutes with A,

since T(V) is commutative. It is maybe not so obvious that T(V) commutes with the right
regular action of ( 1

̟w
); that follows from a calculation with the appropriate double coset.

Consequently the topological nilpotence of Tv − Φ̃(Tv) on η(f) follows from the topological
nilpotence of the same operator acting on f ∈ S(V)m.

Finally, by the previous lemma we have (Uw − α̃)(ηf) = η(A − α̃)(f). But this is
topologically nilpotent since f is in S(V)m, hence A− α̃, acts topologically nilpotently on f.

[FIXME: Explain the last sentence.]

4.2.2 Aside: the “integration pairing” on X(U)

Next we will show that η is injective. To do so, we will make use of an “integration pairing”

〈, 〉U : S(U)⊗ S(U) → O

for any U ⊂ U◦. This is defined by

〈f, g〉U =
∑

x∈X(U)

f(x)g(x).

It is just the “L2 inner product” with respect to the counting measure on X(U).
As I think Akshay mentioned several lectures ago, in principle we should use a different

measure: we should weight a point x by the amount of “stackiness” of X(U) at x:

NU,x = [x−1D×x ∩U · (Af
F)

× : F×].

But we arranged U◦ so that NU,x is automatically 1.

4.2.3 Injectivity

Lemma 4.2.3. For f, g ∈ S(V), we have

〈f, Twg〉V = 〈f, ( 1
̟w

)g〉V ′.

Proof. An explicit computation with double cosets, which we omit.

Lemma 4.2.4. Let π : S(V ′) → S(V) be the adjoint to the inclusion S(V) →֒ S(V ′). Then
the composition

S(V)m
η→ S(V ′)m′

π→ S(V)m

equals Nw ·A− B.

Proof. A similar argument to what we did above using topological nilpotence shows that the
composition above is well-defined, i.e. lands in S(V)m. It uses the fact that the adjoint π

respects the action of the Tvs.
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Now fix g ∈ S(V). The adjoint π(η(g)) is characterized by

〈f, π(η(g))〉V = 〈f, η(g)〉V ′, ∀f ∈ S(V).

So
〈f, πη(g)〉V = 〈f, ηg〉V ′ = 〈f,Ag− ( 1

̟w
)g〉V ′.

Now
〈f,Ag〉V ′ =

∑

x∈X(V ′)

f(x)(Ag)(x) =
∑

y∈X(V)

∑

X(V ′)∋x7→y

f(x)(Ag)(x)

= [V : V ′]
∑

y∈X(V)

f(y)(Ag)(y) = [V : V ′]〈f,Ag〉V.

On the other hand by the last lemma

〈f, ( 1
̟w

)g〉V ′ = 〈f, Twg〉V.

So we see
〈f, πηg〉V = 〈f, [U : U ′]Ag− Twg〉U.

This shows that πηg = ([U : U ′]A − Tw)g. But [U : U ′] = #P1(k(w)) = Nw + 1, so
πηg = (Nw ·A+A− (A+ B))g = (NwA− B)g.

To conclude that η is injective, by the last lemma it suffices to show that Nw ·A− B is
a unit. We just need to show it is not in m. But Nw = 1mod p, so

Nw ·A− B ≡ α− βmod m,

and this is nonzero because α and β were assumed distinct.
So we crucially used the fact that we are at a TW-prime!

4.2.4 Cokernel is torsion-free

In fact, the last proof gives us a bit more. If we scale π by the inver of NwA− B, we get a
genuine section of η. So the image of η is a summand of S(V ′)m′ , and hence the cokernel of
η is torsion free.

4.2.5 Surjectivity

It remains to prove that η is surjective.
The first key point is to show that S(V ′)m′ (and hence the image of η) is contained in the

space of old-forms, i.e. those coming from S(V) either by the inclusion or by f 7→ ( 1
̟w

) f.
Call this space Old(V ′).

Lemma 4.2.5. S(V ′)m′ ⊂ Old(V ′).
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Proof. This is a representation theoretic argument, which I sketch, following Andrew’s
writeup of it.

Fix f ∈ S(V ′)m′ . After tensoring with E = Frac(O), f generates an automorphic repre-
sentation of (D ⊗Af

F)
×, perhaps reducible, say π =

⊕
π(i). We can decompose f =

∑
f(i)

according to this decomposition. The component f(i) is an Iw-fixed vector in π
(i)
w , for each

i. By the representation theory of GL2(Fw), this forces π
(i)
w to be an irreducible unramified

principle series, or a “special representation with trivial central character”.
The latter case will be ruled out the fact that since f ∈ S(V ′)m′ , we know how the

Uw operator acts on it. Indeed, Uw acts on the Iwahori invariants (π
(i)
w )Iw of a special

representation π
(i)
w by ±1. In the special case, the Iwahori fixed vectors are 1-dimensional,

so they are spanned by f(i). So Uw acts on f(i) by ±1. Thus Uw ± 1 acts topologicaly
nilpotently on f(i). Now αβ = Nw = 1mod p. Since α 6= β, it cannot be the case that
α = ±1 ∈ k. So since Uw ± 1 acts topologically nilpotently on f(i), Uw − α̃ cannot, as the
difference α̃ ± 1 acts invertibly. This holds for each i, so Uw − α̃ cannot act topologically
nilpotently on f. But this contradicts the fact that f ∈ S(U ′)m′ .

It follows that each π
(i)
w is an irreducible unramified principle series. This means the

spherical fixed vectors are one-dimensional – spanned by sph, say – and the Iwahori fixed
vectors are spanned by

sph, ( 1
̟w

) · sph.
These are all oldforms. In particular, the Iwahori fixed vector f(i) is in Old(V ′). So the
linear combination f =

∑
f(i) is in Old(V ′) too.

But in fact we want more: we want im(η) to be in the old-forms coming from S(V)m!.
Call this space Oldm(V

′). It’s now convenient to introduce some notation: write F for the
level-raising map

S(V)⊕ S(V) → S(V ′)

(f1, f2) 7→ f1+ ( 1
̟w

) f2.

Lemma 4.2.6. S(V ′)m′ ⊂ Oldm(V
′) = F(S(V)⊕2

m ).

Proof. F respects the action of T(V ′). This implies that for any maximal ideal n of T(V ′),
we have F(S(V)⊕2

n ) ⊂ S(V ′)n and F−1(S(V ′)n) = S(V)⊕2
n .

Apply this with n = m0, the maximal ideal of T(V ′) generated by the Tv − Φ̃(Tv) for
v 6∈ Σ(V ′). By definition, S(V ′)m′ ⊂ S(V ′)m0

. By the last lemma,

F(S(V)⊕2) ⊃ S(V ′)m′,

so
S(V ′)m′ ⊂ S(V ′)m0

⊂ F(F−1(S(V ′)m0
)) = F(S(V)⊕2

m0
).

But by multiplicity one, S(V)m0
= S(V)m, since the only difference between m0 and m is the

presence of the single Hecke operator Tw− Φ̃(Tw).

An easy computation shows:

Lemma 4.2.7. UwF
(
f1
f2

)
= F

(
T Nw
−1 0

) (
f1
f2

)
.
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Lemma 4.2.8. S(V)⊕2
m is the direct sum of submodules A = {(Af,−f) : f ∈ S(U)m} and

B = {(Bf,−f) : f ∈ S(U)m}. Moreover we have

(
Tw Nw
−1 0

)
a = Aa, a ∈ A

(
Tw Nw
−1

)
b = Bb, b ∈ B.

Proof. We compute
TwAf−Nwf = A2f

by a previous calculation. So

(
Tw Nw
−1 0

) (
Af
−f

)
=

(
A2f
−Af

)
= A

(
Af
−f

)
.

The computation for B is similar. The decomposition S(V)⊕2
m = A ⊕ B is true because the

determinant of the “change of basis matrix” is

det
(

A B
−1 −1

)
= A− B ≡ α− β 6= 0mod m

which is a unit in T(V)m.

Lemma 4.2.9. F restricts to a surjection A ։ S(V ′)m′ .

Proof. For a ∈ A, b ∈ B, the last lemmas show

UwF(a+ b) = F
(
Tw Nw
−1 0

)
(a+ b) = F(Aa+ Bb).

So
(Uw− α̃)F(a+ b) = F((A− α̃)a+ (B− α̃)b).

Iterating this gives

(Uw− α̃)nF(a+ b) = F((A− α̃)na+ (B− α̃)nb).

As n → ∞ this goes to (B − α̃)nF(x ′), since A − α̃ is topologically nilpotent on S(V)m.
But B− α̃ is invertible. Consequently if Uw− α̃ is topologically nilpotent on F(a+ b), then
F(b) = 0. We know that S(V ′)m′ ⊂ F(A⊕B), so this implies that in fact S(V ′)m′ ⊂ F(A).

Finally we can prove the surjectivity of η. For η(f) = F(a) where a = (Af,−f) ∈ S(V)⊕2
m .

Since everything in S(V ′)m′ is of the form F(a) for some a, by the last lemma, and since
every a ∈ A is of the form (Af,−f) for some f ∈ S(V)m, we are done.
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1. Introduction

In our seminar we have been working towards a modularity lifting theorem. Recall that such a theorem
allows one (under suitable hypotheses) to deduce the modularity of a p-adic Galois representation from that
of the corresponding mod p representation. This is a wonderful theorem, but it is not immediately apparent
how it can be applied: when does one know that the residual representation is modular?

One example where residual modularity is known is the following: a theorem of Langlands and Tunnel
states that any Galois representation (of any number field) into GL2(F3) is modular. Their result is specific
to F3 and does not apply to representations valued in other finite fields (except perhaps F2?): the key point
is that GL2(F3) is solvable. Modularity lifting thus allows one to conclude (under appropriate hypotheses)
that representations into GL2(Z3) are modular. Wiles’ original application of modularity lifting to elliptic
curves used this line of reasoning.

For finite fields other than F3 (and maybe F2) there is no analogue of the Langlands–Tunnel theorem: the
finite groups GL2(Fq) are typically not solvable. However, Taylor [Tay], [Tay2] partially found a way around
this problem: he observed, using a result of Moret-Bailly, that any odd residual representation of a totally real
field F becomes modular after passing to a finite extension of F ; that is, odd residual representations of F are
potentially modular. Using modularity lifting, one can conclude that many p-adic are potentially modular
as well. Typically, one cannot deduce modularity from potential modularity. Nonetheless, many of the
nice properties of modular p-adic representations can be established for potentially modular representations
as well: they satisfy the Weil bounds, their L-functions admit meromorphic continuation and satisfy a
functional equation, they often can be realized in the Tate module of an abelian variety and they fit into
compatible systems. We prove the final of these results.

As if these consequences of potential modularity were not impressive enough, Khare and Wintenberger
[KW] went even farther: they proved that every irreducible odd residual representation of GQ is modular,
a result first conjectured by Serre. To do this, they first showed — using potential modularity — that any
mod p representation admits a nice p-adic lift. This lift (by one of the corollaries of potential modularity)
fits into a compatible system. To prove the modularity of the original mod p representation, it suffices (by
modularity lifting, and basic properties of compatible systems) to prove the modularity of the reduction
of any of the ℓ-adic representations in the system. This permits the possibility of an inductive argument,
which turns out to be quite subtle but possible. The base cases of the induction had been previously proved
by Serre and Tate; these results are specific to Q and is one reason that this sort of result has not been
extended to other fields.

Date: March 27, 2010.
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2 ANDREW SNOWDEN

As indicated, the results presented here are mainly due to Taylor, Khare and Wintenberger, building on
the modularity lifting theorems of Wiles and Kisin (though many other people contributed along the way).
I learned most of these arguments by writing a paper [Sno] that extends them a small amount. Some of
these notes are taken directly from that paper.

2. Review of compatible systems

In this section we provide a brief review of compatible systems and some of their most basic properties.

2.1. Compatible systems with rational coefficients. Let F be a number field. An n-dimensional
compatible system of GF with coefficients in Q is a family {ρℓ} indexed by the set of rational prime numbers
ℓ (or possibly some subset thereof) where ρℓ : GF → GLn(Qℓ) is a continuous representation, such that the
following conditions hold:

• There exists a finite set S of places of F such that each ρℓ is unramified outside S ∪ Sℓ. Here Sℓ

denotes the set of places of F above ℓ.
• For each place v of F not in S there exists a polynomial pv ∈ Q[t] such that: for any prime ℓ and
any place v 6∈ S ∪ Sℓ the characteristic polynomial of ρℓ(Frobv) is pv.

In words: the ρℓ have uniform ramification properties and the characteristic polynomial of Frobv is inde-
pendent of ℓ.

Example 1. Let f be a Hilbert modular form over F whose Hecke eigenvalues are rational numbers. For
each rational prime ℓ we have a Galios representation ρℓ : GF → GL2(Qℓ). The collection of these Galois
representations forms a compatible system. The set S can be taken to be the set of primes dividing the level
of f , while pv can be taken to be t2 − avt+ av,v where av and av,v are the Tv and Tv,v eigenvalues of f .

Example 2. Let E be an elliptic curve over F . Let ρℓ be the representation of GF on the ℓth Tate module
of E (tensored with Qℓ). Then the collection of these Galois representations forms a two-dimensional
compatible system. The set S can be taken to be the set of places of F where E has bad reduction. We
have pv(t) = t2 − avt + N v, where N v + 1 − av is the number of points of the reduction of E at v with
coefficients in the residue field of v. Of course, one can replace E with a higher dimensional abelian variety.

Example 3. Let X be a smooth projective variety over a number field F . Let ρℓ be the representation of GF

on the étale cohomology Hi(XF ,Qℓ), for some fixed i. Then the collection of these Galois representations
forms a compatible system. The set S can be taken to be the set of primes where X does not have good
reduction. Here, we say that X has good reduction at a place v if there exists a smooth projective scheme
X /OFv

whose generic fiber is isomorphic to X. The polynomials pv comes from certain pieces of the zeta
function of X (which is by definition independent of ℓ); to find these pieces, the Riemann hypothesis (proved
by Deligne) is needed. When X is an abelian variety, this example is more or less the same as the previous
one.

Remark 4. Since the compatibility condition is in terms of characteristic polynomials, it is not good at detect-
ing extensions: if {ρℓ} is a compatible system then so too is {ρssℓ } where ρss denotes the semi-simplification
of ρ. The converse is not quite true since the ramification of ρℓ cannot be controlled in terms of that of ρssℓ .
We say that a compatible system is semi-simple if all of its members are.

2.2. Compatible systems with general coefficients. As suggested by the terminology of the previous
section, there is a more general notion of compatible system. Let K be a number field. Then an n-
dimensional compatible system of GF with coefficients in K is a family {ρw} indexed by the set of finite
places w of K (or possibly some subset thereof) where ρw : GF → GLn(Kw) is a continuous representation,
such that conditions analogous to those given in the K = Q case hold. The polynomial pv will now have
coefficients in K.

Example 5. Let f be a Hilbert modular form over F whose Hecke eigenvalues generate the number field
K. Then for each place w of K we have a Galois representation ρw : GF → GL2(Kw), and these form a
compatible system. The description of S and pv are as in Example 1.

Example 6. A GL2(K)-type abelian variety is an abelian variety A/F of dimension [K : Q] equipped with an
injection OK → End(A). This implies that TℓA⊗Qℓ is a free K⊗Qℓ module of rank two. Decomposing this
module into its pieces (corresponding to how ℓ splits in K), gives a two dimensional Galois representation
GF → GL2(Kw) for each finite place w of K. These form a compatible system.
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2.3. Properties of compatible systems. The Chebotarev density theorem immediately yields the fol-
lowing result:

Proposition 7. Let {ρw} and {ρ′w} be two semi-simple compatible systems of GF with coefficients in the
same field K. Assume there is some place w0 of K such that ρw0 and ρ′w0

are isomorphic. Then ρw and ρ′w
are isomorphic for all w.

As a corollary, we obtain the following, which we will use constantly:

Proposition 8. Let {ρw} be a two-dimensional compatible system of semi-simple representations of GF

with coefficients in K, and let w1 and w2 be two places of K. Then ρw1
is modular if and only if ρw2

is. In
particular, if any member of a compatible system is modular then all members are.

Proof. This follows from the previous proposition since modular representations always come in compatible
systems; see Example 5. �

3. Potential modularity

In this section, we sketch give a sketch of Taylor’s potential modularity. The original arguments are in
the papers [Tay] and [Tay2]. The basic idea is as follows. We are given a two dimensional mod p Galois
representation ρ of GF , where F is totally real, which we want to show is potentially modular. We find
a two dimensional ℓ-adic Galois representation σ, which we know to modular. This new representation is
completely independent of ρ. However, using a very general theorem of Moret-Bailly, we show that there is
a GL2-type abelian variety A over some finite extension F ′/F whose mod ℓ representation is σ|F ′ and whose
mod p representation is ρ|F ′ . Modularity lifting implies that the ℓ-adic representation of A is modular.
General properties of compatible systems then give the modularity of the p-adic representation of A, and
thus of the mod p representation ρ|F ′ as well.

We now make this precise. We begin by recalling the theorem of Moret-Bailly [MB]:

Theorem 9 (Moret-Bailly). Let X be a smooth geometrically irreducible variety over a number field F . Let
S be a finite set of places of F and for each v ∈ S let Lv/Fv be a finite Galois extension and let Uv ⊂ X(Fv)
be a non-empty open subset (for the v-adic topology). Then there exists a finite Galois extension F ′/F which
splits over each Lv (i.e., F ′ ⊗F Lv is a direct product of Lv’s) and a point x ∈ X(F ′) such that the image
of x in X(Lv) under any map F ′ → Lv belongs to Uv.

Using this result, we deduce the following crucial result, which “links” arbitrary residual representations.

Proposition 10. Let F be a totally real number field and let ρ1 : GF → GL2(Fp) and ρ2 : GF → GL2(Fℓ)
be irreducible odd representations, with p 6= ℓ. Then there exists a finite totally real Galois extension F ′/F
and a two-dimensional compatible system {ρw} of representations of GF ′ with coefficients in some number
field K, such that for some place v1 | p of K the representation ρv1

is equivalent to ρ1 while for some place
v2 | ℓ the representation ρv2 is equivalent to ρ2. Furthermore, the field F ′/F can be taken to be linearly
disjoint from any given finite extension of F and the system {ρw} can be taken so that ρv1 (resp. ρv2) is
ordinary crystalline at all places over p (resp. ℓ).

Proof. For simplicity we assume that ρ1 and ρ2 take values in GL2(Fp) and GL2(Fℓ) respectively, and that
both have cyclotomic determinant. We give some comments on the general case following the proof.

Let Y/F be the moduli space classifying elliptic curves whose p-torsion is ρ1 and whose ℓ-torsion is ρ2.
More precisely, regard ρ1 and ρ2 as finite étale group schemes G1 and G2 over F . Pick an isomorphism
G1 → G∨

1 of G1 with its Cartier dual such that the corresponding pairing G1 × G1 → Gm is symplectic,
which is possible by the assumption on the determinant of ρ1; do the same for G2. For a scheme T/F let
Y (T ) be the groupoid of elliptic curves E/T equipped with isomorphisms E[p] → (G1)T and E[ℓ] → (G2)T
such that the Weil pairing on E[p] corresponds to the given pairing on (G1)T , and similarly for ℓ. It is
not difficult to see that Y is representable by a scheme. In fact, the open modular curve Y (pℓ) of full level
splits into a several connected components over Q and our space Y is a twisted form of any one of these
components. This shows that Y is smooth and geometrically irreducible.

We are now going to apply the theorem of Moret-Bailly. Take S to be the set of infinity places of F and
for v ∈ S let Lv = Fv, the real numbers, and let Uv = Y (Lv). Clearly, Uv is an open subset of Y (Lv). To
apply the theorem we need Y (Fv) to be non-empty. This is the case because the representations ρ1 and ρ2
are odd: if E/Fv is any elliptic curve then E[p] is automatically equivalent to (G1)Fv

, and similarly for E[ℓ].
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Thus any elliptic curve over Fv can be given the additional structure needed to define a point of Y (Fv).
Moret-Bailly now gives a finite totally real Galois extension F ′/F (totally real because it splits over each
Fv for v | ∞) and an elliptic curve E/F ′ such that E[p] = ρ1|F ′ and E[ℓ] = ρ2|F ′ . The compatible system
can now be taken to be the Tate modules of E.

We now show that E may be taken to be ordinary crystalline at all places above ℓ. (The arguments at
p are identical, and can be carried out simultaneously.) Add to S all the places of F above ℓ. Fix for the
moment a place v of F over ℓ. Let Uv be the subset of Y (F v) consisting of elliptic curves with good ordinary
reduction. This is clearly a non-empty set, since there exist elliptic curves with good ordinary reduction, and
these can be given arbitrary level structure over F v. We now show that it is open. Let j : Y (F v) → F v be
the j-invariant; it is a continuous function for the v-adic topology. The subset V of Y (F v) where the elliptic
curve has good reduction consists of those curves for which j is integral; it is therefore open. The subset
of V where the elliptic curve has ordinary reduction is open, since this only depends upon the reduction
of the curve: if E and E′ are two curves whose j-invariants are v-adically close then they have the same
reduction, and so one is ordinary if and only if the other is. This shows that Uv is open. Let Lv/Fv be any
Galois extension such that Uv ∩ Y (Lv) is non-empty, and take Uv to be this intersection. We now apply
Moret-Bailly as before. The elliptic curve E/F ′ that we produce has good ordinary reduction at all places
over ℓ by the construction of the sets Uv, and so the Tate module ρv2

is ordinary crystalline at all places
over ℓ.

Finally, we show that F ′/F can be taken linearly disjoint from any given finite extension of F . Thus let
M/F be a finite extension, which we can and do assume to be Galois. Observe that Y (Fv) is non-empty for
all sufficiently large v: indeed, if v is sufficiently large then Y will be smooth at v and its reduction will have
rational points by the Weil bounds; smoothness allows us to lift these mod v points to OFv

points. Let S′ be
a finite collection of finite places of F satisfying the following conditions: (1) for each v ∈ S′ the set Y (Fv)
is non-empty; (2) no place of S′ lies over p or ℓ; and (3) no place of S′ ramifies in M ; (4) the elements Frobv
with v ∈ S′ generate the finite group Gal(M/F ). We now again modify the Moret-Bailly set-up. We add
the set S′ to the set S, and for v ∈ S′ we take Lv = Fv and Uv = Y (Fv). The field F ′/F that Moret-Bailly
produces splits at all elements of S′ and is therefore linearly disjoint from M . �

Remark 11. In the above proof we assume that ρ1 and ρ2 had cyclotomic determinant and were valued in
the prime field. The first of these conditions is straightforward to relax by passing to an appropriate finite
extension of F and twisting. To remove the second assumption one proceeds as follows. Pick a number field
K which is sufficiently large so that ρ1 can be regarded as taking values in the residue field of K at some
place above p, and similarly for ℓ. Then, instead of considering moduli spaces of elliptic curves, consider
moduli spaces of GL2(K)-type abelian varieties. The theory of these moduli spaces is developed in [Rap].

Remark 12. In the previous theorem we required that ρ1 and ρ2 be irreducible. This is not really needed,
but we included since we have defined compatible systems to be rational objects, and so one can typically
only form the semi-simplification of their reductions.

We now produce a large supply of “universally” modular Galois representations.

Proposition 13. Let F be a totally real field and ℓ a prime number. There exists a Galois representation
σ : GF → GL2(Qℓ) satisfying the following conditions:

(a) σ is modular.
(b) σ is ordinary and crystalline at all places above ℓ.
(c) σ|F (ζℓ) is (absolutely) irreducible.

Furthermore, these conditions hold after restricting σ to any finite totally real extension of F .

Proof. An exercise in class field theory allows one to produce an imaginary quadratic extension E/F and

a character ψ : GE → Q
×
ℓ such that the representation σ = IndFE(ψ) satisfies conditions (b) and (c) of the

proposition. (One picks E to split at all places of F above ℓ. If v | ℓ is a place of F and w1 and w2 the two
places of E above F then one takes ψ so that ψ|Ew1

is finitely ramified and ψ|Ew2
differs from the cyclotomic

character by a finitely ramified character.) A theorem of Hecke states that σ is modular. If F ′/F is a finite

extension then σ|F ′ = IndF
′

EF ′(ψ|F ′) and the same arguments apply. �

We can now prove potential modularity for residual representations:
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Theorem 14. Let F be a totally real field and let ρ : GF → GL2(Fp) be an odd representation such that
ρ|F (ζp) is (absolutely) irreducible. Then there exists a finite totally real Galois extension F ′/F , which can
be taken to be linearly disjoint from any finite extension of F , such that ρ|F ′ is modular. Furthermore, the
modular form can be taken to be ordinary at all places of F ′ above p and of level prime to p.

Proof. Let σ be as in Proposition 13, where ℓ can be any prime different from p (and maybe larger than
5). By Proposition 10, we can find a finite extension F ′/F , linearly disjoint from whatever we want, a
compatible system {ρw} of representations of GF ′ with coefficients in some number field K and two places
v1 | p and v2 | ℓ of K such that: (1) ρv1 is ordinary crystalline at all places above p and its reduction is
equivalent to ρ; (2) ρv2 is ordinary crystalline at all places above ℓ and its reduction is equivalent to σ. The
modularity lifting theorem that we have proved now establishes that ρv2

itself is modular. By compatibility,
ρv1 is modular (see Proposition 8), and thus ρ is as well. Since ρv1 is ordinary crystalline at all places above
p, the modular form giving rise to it has prime to p level and is ordinary at all places above p. �

We can now prove potential modularity for p-adic representations:

Theorem 15. Let F be a totally real field, let p > 5 be a prime and let ρ : GF → GL2(Qp) be a continuous
representation satisfying the following conditions:

(A1) ρ is odd.
(A2) ρ ramifies at only finitely many places.
(A3) ρ|F (ζp) is (absolutely) irreducible.
(A4) ρ is ordinary crystalline at all places above p.

Then there exists a finite totally real Galois extension F ′/F , which can be taken to be linearly disjoint from
any given finite extension of F , such that ρ|F ′ is modular.

Proof. By the previous theorem, we can find a finite extension F ′/F such that ρ|F ′ comes from a modular
form which is ordinary crystalline at all places above p. The modularity lifting theorem we have proved
gives the modularity of ρ|F ′ . �
Remark 16. Condition (A4) be relaxed if one is willing to use more general modularity lifting theorems.
However, (A1)–(A3) are essential to the method of proof.

Remark 17. This clause about being able to produce the field F ′ so that it is linearly disjoint from a given
extension of F is often used to make F ′ linearly disjoint from the kernel of ρ. This implies that ρ and ρ|F ′

have the same image. Thus ρ|F ′ will still be irreducible.

4. Putting representations into compatible systems

We now use potential modularity to put p-adic representations in compatible systems. I learned the proof
of this result from a lecture given by Taylor at the Summer School on Serre’s Conjecture held at Luminy
in 2007. Taylor attributed the proof to Dieulefait; a sketch of the argument can be found in [Die, §3.2].
However, I have not found a detailed proof in the literature.

Proposition 18. Let F be a totally real field, let p > 5 be a prime and let ρ : GF → GL2(Qp) be a
continuous representation satisfying (A1)–(A4). Then there exists a compatible system {ρw} of GF with
coefficients in some number field K such that for some place v0 of K the representation ρv0

is equivalent to
ρ.

Proof. Apply Theorem 15 to produce a finite Galois totally real extension F ′/F linearly disjoint from ker ρ
and a modular form f over F ′ such that ρ|F ′ = ρf (we regard the coefficient field of f as being embedded in

Qp). Let I be the set of fields F ′′ which are intermediate to F ′ and F and for which Gal(F ′/F ′′) is solvable.
For i ∈ I we write Fi for the corresponding field. For each i we can use solvable descent to find a modular
form fi such that ρ|Fi

= ρfi . Let Ki denote the field of coefficients of fi, which we regard as being embedded

in Qp. Let K be a number field which is Galois over Q, into which each Ki embeds and which contains

all roots of unity of order [F ′ : F ]. Fix an embedding K → Qp and embeddings Ki → K such that the

composite Ki → K → Qp is the given embedding. Let v0 be the place of K determined by the embedding

K → Qp. For each place v of K and each i ∈ I we have a representation ri,v : GFi
→ GL2(Kv) associated

to the modular form fi. It is absolutely irreducible. Note that after composing ri,v0
with the embedding

GL2(Kv0) → GL2(Qp) we obtain ρ|GFi
.
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By Brauer’s theorem, we can write

1 =
∑

i∈I

ni Ind
Gal(F ′/F )
Gal(F ′/Fi)

(χi)

where the ni are integers (possibly negative) and the χi are characters of Gal(F ′/Fi) valued in K×. (Here we
use the fact that K contains all roots of unity of order [F ′ : F ].) This equality is taken in the Grothendieck
group of representations of Gal(F ′/F ) over K. Note that by taking the dimension of each side we find∑
ni[Fi : F ] = 1.
Let v be a place of K. For a number field M write CM,v for the category of semi-simple continuous

representations of GM on finite dimensional Kv-vector spaces. The category CM,v is a semi-simple abelian
category. We let K(CM,v) be its Grothendieck group. It is the free abelian category on the set of irreducible
continuous representations of GM on Kv-vector spaces. We let (, ) be the integer valued pairing on K(CM,v)
given by (A,B) = dimKv

Hom(A,B). This is well-defined because CM,v is semi-simple. It is symmetric. If

M ′/M is a finite extension then we have adjoint functors IndMM ′ : CM ′,v → CM,v and ResMM ′ : CM,v → CM ′,v.
(One must check, of course, that induction and restriction preserve semi-simplicity — we leave this to the
reader.) These functors induce maps on the K-groups which are adjoint with respect to (, ). If M1 and M2

are two extensions of M and r1 belongs to CM1,v and r2 belongs to CM2,v then we have the formula

(1) (IndMM1
(r1), Ind

M
M2

(r2)) =
∑

g∈S

(Res
Mg

1

Mg
1 M2

(rg1),Res
M2

Mg
1 M2

(r2))

where S is a set of representatives for GM1
\GM/GM2

, Mg
1 is the field determined by gGM1

g−1 and rg1 is the
representation of gGM1g

−1 given by x 7→ r1(g
−1xg). This formula is gotten by using Frobenius reciprocity

and Mackey’s formula.
Define

ρv =
∑

i∈I

ni Ind
F
Fi
(ri,v ⊗ χi),

which is regarded as an element of K(CF,v). We now show that each ρv is (the class of) an absolutely
irreducible two dimensional representation. To begin with, we have

ρv0
⊗Kv0

Qp =
∑

i∈I

ni Ind
F
Fi
((ri,v0

⊗Kv0
Qp)⊗K χi)

=
∑

i∈I

ni Ind
F
Fi
((ρ|Fi

)⊗K χi)

=

[∑

i∈I

ni Ind
F
Fi
(χi)

]
⊗K ρ

=ρ

This shows that ρv0
is (the class of) an absolutely irreducible representation.

Now let v be an arbitrary finite place of K. We have

(ρv, ρv) =
∑

i,j∈I

ninj(Ind
F
Fi
(ri,v ⊗ χi), Ind

F
Fj
(rj,v ⊗ χj))

=
∑

i,j∈I

∑

g∈Sij

ninj(Res
F g

i

F g
i Fj

((ri,v ⊗ χi)
g),Res

Fj

F g
i Fj

(rj,v ⊗ χj))

where we have used (1). Here Sij is a set of representatives for GF1
\GF /GF2

. The representation ri,v|F ′ is
the representation coming from the form f ′ and so is absolutely irreducible. It follows that the restriction of
ri,v to any subfield of F ′ is absolutely irreducible. Thus the representations occurring in the pairing in the
second line above are irreducible. It follows that the pairing is then either 1 or 0 if the representations are

isomorphic or not. Therefore, if let δv,i,j,g be 1 or 0 according to whether Res
F g

i

F g
i F2

(ri,v ⊗ χi)
g is isomorphic

to Res
Fj

F g
i F2

(rj,v ⊗ χj) then we find

(ρv, ρv) =
∑

i,j∈I

∑

g∈Sij

ninjδv,i,j,g.
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Now, the {ri,v}v and the {rj,v}v form a compatible system. It follows that δv,i,j,g is independent of v. The
above formula thus gives

(ρv, ρv) = (ρv′ , ρv′)

if v′ is another place of K. Taking v′ = v0 and using that ρv0 is an absolutely irreducible representation gives
(ρv, ρv) = 1. Now, if we write ρv =

∑
miπi wheremi ∈ Z and the πi are mutually non-isomorphic irreducible

representations then we have (ρv, ρv) =
∑
m2

i (πi, πi). Since the terms are all non-negative integers and the
sum is 1, we find ρv = ±π with (π, π) = 1. Thus π is an absolutely irreducible representation. Now,
dim ρv = 2 since each ri,v is two dimensional and

∑
ni[Fi : F ] = 1. Since dimπ is non-negative, we must

have ρv = π. This proves that ρv is the class of an absolutely irreducible representation.
Of course, it must be shown that the ρv actually form a compatible system! This is fairly easy after what

we have done, and we leave this task to the reader. �

Remark 19. The compatible system constructed above is in fact strongly compatible. For a discussion of
this, see [Tay, Theorem 6.6].

5. Lifting residual representations

We now show that one can lift most residual representations to characteristic zero representations.

Proposition 20. Let F be a totally real field, p > 5 a prime and ρ : GF → GL2(Fp) an odd representation
such that ρ|F (ζp) is (absolutely) irreducible. Assume that for each plave v | p of F the representation ρ|Fv

admits a lift to Zp which is ordinary crystalline. Then there exists a continuous representation ρ : GF →
GL2(Qp) satisfying (A1)–(A4) lifting ρ. One can take ρ to be unramified at the same places where ρ is
unramified (excluding places above p).

Proof. Let S be the set of primes away from p at which ρ ramifies and let Sp denote the set of primes above

p. For v ∈ S ∪ Sp we have the universal framed deformation ring R�
v of ρ|Fv

. For v ∈ Sp we let R†
v be the

quotient of R�
v parameterizing ordinary crystalline representations, in the same manner as we have done

before. The ring R†
v is non-zero since we have assumed that ρ|Fv

admits an ordinary crystalline lift. Our
previous work therefore shows that it is O-flat and has relative dimension dimension is 3+ [Fv : Qp] over O.

For v ∈ S we pick a non-zero O-flat quotient R†
v of R�

v of relative dimension 3 over O. It takes a little bit
of work to show that such a quotient exists, but it is not very hard. (The calculations appear in [Sno], and

they probably are also somewhere in [KW].) We let B̃ (resp. B) be the completed tensor product of the R�
v

(resp. R†
v) for v ∈ S ∪ Sp. We let R� be the universal framed deformation ring for ρ unramified outside of

S. We put R† = R� ⊗ eB B and let R‡ be the unframed version of R†.

Now, we have a presentation for R� over B̃ [Ki, Prop. 4.1.5]:

R� = B̃Jx1, . . . , xr+n−1K/(f1, . . . , fr+s)

where s =
∑

v|∞ dimH0(Fv, ad
◦ ρ), n is the cardinality of S ∪ Sp and r is some non-negative integer.

Tensoring this over B̃ with B gives

R† = BJx1, . . . , xr+n−1K/(f1, . . . , fr+s)

Now, since ρ is odd, we have s = [F : Q]. On the other hand, the dimension of B is [F : Q] + 3n + 1. We
conclude that R† has dimension at least 4n. Since R† is a power series ring over R‡ in 4n− 1 variables, we
find that R‡ has dimension at least 1.

Let F ′/F be a finite totally real extension over which ρ becomes modular, by an ordinary modular form
of level prime to p. We can then define deformation rings for ρ|F ′ analgous to the ones we have defined for
ρ. We will denote these rings with an overline. There is a natural map R → R (the universal unframed
deformation rings unramified outside of S), which is easily verified to be a finite map of rings. It follows that

the induced map R
‡ → R‡ is finite as well. Now, to establish our modularity lifting theorem we identified

R
‡
[1/p] with a Hecke algebra using a patching argument. Out of this argument we obtained another piece of

information: that R
‡
itself, without p inverted, is finite over O. (Actually, we did not quite use the ring R

‡
,

we needed to make a slight modification of the local deformation ring at p. Nonetheless, the same argument

establishes the finiteness of R
‡
.) We now conclude that R‡ itself is finite over O.
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We have thus show that R‡ is finite over O and has Krull dimension at least one. These two properties
imply that R‡ cannot consist soley of p-power torsion. Therefore R‡[1/p] is non-zero, and so there exists
some homomorphism R‡ → Qp. The corresponding deformation is the representation ρ that we are required
to produce. �

Remark 21. One can still prove that ρ admits a nice lift without the assumption that ρ|Fv
admit an ordinary

crystalline lift for each v | p. Of course, without this assumption the resulting lift cannot be assured to
be ordinary. Not surprisingly, this more general statement makes use of more general modularity lifting
theorems.

6. Remarks on Serre’s conjecture

Recall Serre’s conjecture:

Conjecture 22. Any odd semi-simple representation ρ : GQ → GL2(Fp) is modular.

When ρ is reducible it is easy to see that it is easy to see that ρ is modular. This is very far from the case
when ρ is irreducible. However, Khare and Wintenberger proved this a few years ago. We now give some
idea of the proof.

To begin with, Serre made a stronger conjecture, specifying the optimal weight and level of a modular
form giving rise to ρ. (See Akshay’s talk for more details along these lines.) The level N(ρ) is just the
prime-to-p Artin conductor of ρ. Thus is N(ρ) always prime to p, and ℓ | N(ρ) if and only if ρ is ramified at
ℓ. The weight k(ρ) is more complicated to define, but it can be bounded in terms of p. It is known that if ρ is
modular then it is modular of this optimal weight and level. Furthermore, the work we have done in §4 and
§5 can be generalized to show that ρ lifts to a strongly compatible system of weight k(ρ) and conductor N(ρ).
This uses more advanced modularity lifting theorems. (The weight of a p-adic representation is defined using
p-adic Hodge theory. The conductor of a p-adic representation is a product of the usual prime-to-p part
together with a p-part coming from p-adic Hodge theory. If {ρℓ} is a strongly compatible system then all
the ρℓ have the same weight and conductor.)

We begin by discussing the level one case of Serre’s conjecture. We have the following result:

Proposition 23 (Serre, Tate). Conjecture 22 holds if N(ρ) = 1 and p = 2 or p = 3.

The p = 2 case is due to Tate, the p = 3 case to Serre. In fact, there are no cusp forms of level 1 and small
weight, so the above proposition is really saying that there are no irreducible representations GQ → GL2(Fp)
ramified only at p for p = 2, 3.

This result allows one to try to attempt an inductive argument. Let ρ : GQ → GL2(Fp) have N(ρ) = 1.
Lift ρ to a compatible system {ρℓ} of conductor 1 and weight k = k(ρ). By the above result, we know
that the reduction of ρ3 is modular. We would like to use a modularity lifting theorem to conclude that
ρ3 is modular. Of course, this is going to require a more powerful modularity lifting theorem than we have
discussed. Such theorems do exist (and can handle, for instance, the fact that ρ3 will be reducible), but
they are not completely unconditional: the weight has to be small compared to p. Thus if one is going to
apply a modularity lifting theorem in characteristic 3 the weight has to be quite small (maybe 3 or 4). Our
compatible system {ρℓ} can have arbitrarily large weight, so this is a real problem! (One might think to
try to lift our original ρ to a small weight p-adic representation unramified outside of p, and then put this
in a compatible system. This is possible, but the small weight p-adic representation will typically have a
conductor at p; this means that the 3-adic representation will ramify at p and we can no longer use the
theorems of Serre and Tate.)

To get around this problem, Khare (who proved the level one case before he and Wintenberger established
the general case) employs an inductive argument on the weight and the prime. I do not know the details of
how this works, so I cannot explain it.

Now consider the general case, whereN(ρ) is no longer assumed to be 1. The proof of Khare–Wintenberger
is again an induction, but now the level is considered as well. Here is one way the level can be cut down:
lift ρ to a compatible system {ρℓ}. Say ℓ | N(ρ). Then look at ρℓ. By definition, its Serre-level is prime to
ℓ. If we were just inducting on the level, then we could assume that ρℓ were modular (since it has smaller
level than ρ). Of course, we would then like to conclude that ρℓ is modular as well. However, the available
modularity lifting theorems may not be strong enough for us to make this deduction — for instance, the
weight could be too larger compared to ℓ. I think the argument of Khare–Wintenberger runs induction on
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several things at once to get around this sort of issue. Again, I do not know the details, so I will leave it at
that.
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The Patching Argument

Brandon Levin

August 2, 2010

1 Motivating the Patching Argument

My main references for this talk were Andrew’s overview notes and Kisin’s paper ”Mod-
uli of Finite Flat Group Schemes.” I also would like to thank Andrew for his help and
letting me incorporate some of his Tex code which saved me time and energy.

Since this is the final lecture in this seminar, we begin by stating the theorem we set
out to prove.

Theorem 1.1. Let F/Q be a totally real number field and let ρ : GF → GL2(Q̄p) be a continuous
representation of its absolute Galois group, with p > 5. Assume that ρ satisfies the following
conditions:

• ρ ramifies at only finitely many places.

• ρ is odd, i.e., det ρ(c) = −1 for all complex conjugations c ∈ GF .

• ρ is potentially crystalline and ordinary at all places above p.

• ρ̄|GF (ζp)
is absolutely irreducible.

• There exists a parallel weight two Hilbert modular form f such that ρf is potentially crys-
talline and ordinary at all places above p and ρ̄ = ρ̄f .

Then there exists a Hilbert modular form g such that ρ = ρg.

As explained in Andrew’s Lecture 18, we can make a solvable totally real base changes
to arrange so that ρ is crystalline and ordinary at all places dividing p and that ρ is Stein-
berg at all places where it is ramified. We are careful to choose a solvable extension pre-
serving the absolute irreducibility condition. Solvable base change ensures that modular-
ity of this new ρ implies modularity of the one we started with. All the other conditions
are preserved. For convenience, we also base change so that the number of real places of
F and the number of Steinberg places of ρ are both even.
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The techniques of level lowering and level raising as discussed in Akshay’s most re-
cent talk allows us find a new Hilbert modular form f ′ with the same reduction mod p
whose level exactly matches with ρ, that is, f ′ is ramified only where ρ is Steinberg and is
Steinberg there, and further f ′ is ordinary at all places dividing p. Some further reductions
are discussed in Andrew’s notes to get ourselves to the following situation:

Theorem 1.2. We have a representation

ρ̄ : GF → GL2(k)

where k is a finite field of characteristic p, a finite set St of places of F away from p and a modular
representation ρf lifting ρ̄. Let Sp denote the places of F above p. We assume the following
hypotheses:

(A1) ρf is crystalline and ordinary at all places in Sp, Steinberg at all places in St and unramified
at all other places.

(A2) det ρf = χp.

(A3) ρ̄|GF (ζp)
is absolutely irreducible.

(A4) ρ̄|GFv
is trivial for v ∈ Sp ∪ St.

(A5) F has even degree over Q and St has even cardinailty.

Then ρ is modular.

As we go through the patching argument, the question may arise: why would one
think to do it this way? The argument feels very unnatural. The best I can do is to
point to similar argument from Iwasawa theory which arose much more naturally and
undoubtably inspired this one. If you are unfamiliar with Iwasawa theory or not inter-
ested, you may skip to the next section.

Everything I say can be found in Washington’s book Cyclotomic Fields in much more
detail. The important first case in Iwasawa theory is the study of the p-part of the class
group of the cyclotomic fields Q(ζpn) = Kn. Let Mn be the p-part of the class group Kn.
One first observes that Mn comes with an action of Gal(Kn/Q). For our brief discussion,
the relevant action is that of Gal(Kn/K1) which is a cyclic group of order pn−1. Further-
more, we think of Gal(Kn/K1) as a quotient of Γ = Gal(K∞/K1). So that Γ acts on all the
Mn’s.

Now, there exists maps of abelian groups

Mn+1 →Mn.

One can think interpret this map as norm map Kn+1/Kn either at the level of ideal class
groups or at the level of ideles. Or an alternative description exists in terms of Hilbert
class fields. It is not hard to show the map is both surjective and Γ-equivariant.

2



Each Mn is an abelian p-group with the structure of a Zp[Γ/Γ
pn−1

]-module. Hence the
projective limit

M∞ := lim
←
Mn

is naturally a module over the completed group ring

lim
←

Zp[Γ/Γ
pn−1

] = Zp[[Γ]] ∼= Zp[[T ]]

the last isomorphism being given by sending a topological generator for Γ to 1 + T .
The value of this limiting process is that while the Mn themselves may be very mys-

terious, there is a nice structure theory for Zp[[T ]]-modules which can be applied to M∞.
Knowing this and the fact that Mn can be recovered as quotient of M∞ by an augmen-
tation ideal, allows one to derive strong results about how |Mn| grows as we go up the
tower.

Idea of the Proof: As both Mike and Sam have discussed, given a set of Taylor-Wiles
primesQ, the corresponding deformation ring and space of modular forms have an action
of O[∆Q]. The naive idea would be to take a limit where the Taylor-Wiles sets become
congruent to 1 modulo higher and higher powers of p. The limiting ”deformation ring”
and ”space of forms” then become modules over a power series in |Q| variables. One
could then use commutative algebras results which only work over domains to deduce
that R = T .

One big problem not present in the Iwasawa setup is that these TW-sets have abso-
lutely no relationship to each other. There will be no obvious maps from Mn+1 to Mn, and
this will lead to the ”miracle” that is patching argument. While the Iwasawa construction
moves vertically, the Taylor-Wiles construction is ”horizontal” one and will involve many
more choices, but nevertheless, in the end, it works and we can recover facts about our
original R and T in exactly the same way one does in Iwasawa theory.

2 Setup/Recollection of Previous Results

There is unfortunately a huge amount of notation to set up here so let’s get started.

2.1 Deformation Rings

All our deformation rings will be algebras over O which is the ring of integers of its
fraction field E, a p-adic field. We will denote the residue field of O by F and assume the
ρ̄ is representation over F.

In this section, we add in the framings we need and recall the necessary dimension
formulas.

Let R̃� be the universal deformation ring of ρ̄ unramified outside Sp∪St together with
framings at each place in Sp ∪ St. The essential thing is that R̃� is naturally an algebra
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over the universal local framed deformation ring R̃v of ρ̄|GFv
for all v ∈ Sp ∪ St. All our

local deformation rings will be framed so I leave off the box.
The functor of forgetting the framings makes R̃� an algebra over the plain old global

deformation ring R̃ which exists since ρ̄ is absolutely irreducible.
We now state the first important dimension formula which was discussed in the fall:

(R1) R̃� is smooth over R̃ of relative dimension j = 4|Sp ∪ St| − 1.

Note that we need these framings at v ∈ Sp ∪ St because otherwise the local deforma-
tion rings may not be representable. In fact, as Andrew points out in his overview we can
actually assume that ρ̄|GFv

is trivial.
Now let Rv be the quotient of R̃v which represents the crystalline-ordinary (respec-

tively Steinberg component) of the local deformation ring at v ∈ Sp ∪ St as discussed in
Rebecca and Brian’s (Corollary 4.3) talks earlier this quarter.

Set B̃ = ⊗̂v∈St∪SpR̃v and B = ⊗̂v∈St∪SpRv, and note that B is a quotient of B̃.
The relevant properties of the Rv are

• Rv is a flat O-algebra (also complete local with residue field F).

• Rv is a domain (i.e. Spec Rv is connected).

• Rv[1/p] is a regular E-algebra.

• Rv has relative dimension 3 for v ∈ St and 3 + [Fv : Qp] for v ∈ Sp over O.

These were all discussed or proved in previous lectures except I believe the dimension
formula which was only discussed for Rv[1/p] but should be in the notes. For later appli-
cations, we will also want to know that Rv has the same dimension at all maximal ideals.
This is Lemma 4.6 in Brian’s notes from this quarter.

Proposition 2.1. (B1) B is a flat O-algebra (also complete local with residue field F).

(B2) B is a domain of relative dimension 3|Sp ∪ St|+ [F : Q] over O.

(B3) B[1/p] is a regular E-algebra.

Proof. Since we can build B up one step at a time, for simplicity, let R1 and R2 complete
local O-algebras that are domains and which become formally smooth after inverting p.
Because the formation of the local deformation rings commutes with any finite extension
O′ of O, we can further assume that same properties hold for Ri ⊗O O′.

Let A = R1⊗̂R2. For (B1), it suffices to show that A if flat over R1 since R1 is flat over
O. Note that R1 → A is a local map of complete local Noetherian rings. By Prop 5.1,
it suffices to show that A/mn

1A is flat over R1/m
n
1 where m1 is the maximal ideal of R1.

However, once you quotient by mn
1 the completed tensor product goes away and we get

A/mn
1A

∼= R1/m
n
1 ⊗O R2
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which is clearly flat over R1/m
n
1 since R2 is flat over O.

Since A is O-flat, it is p-torsion free and so A →֒ A[1/p]. Thus for (B2) and (B3), it suf-
fices to show A[1/p] is a regular domain. Intuitively, one might think of Ri[1/p] as being
bounded functions on the corresponding rigid analytic space which we will call Xi. This
is not quite true, but in any case, if it were, then A[1/p] would be bounded functions on
the rigid analytic product space X1 × X2. And we are reduced to the statement that the
product of smooth spaces is smooth and product of geometrically connected is geomet-
rically connected. This motivates why one might believe modulo lots of technical details
that it would be true. Now I give the more hands-on algebraic proof.

Let X1 = Spec R1[1/p], X2 = Spec R2[1/p], and X = Spec A[1/p]. The rough idea is that
while X is very far from being the product of X1 and X2, it looks like a product at the
level of MaxSpec and this turns out to be enough. This is made precise in Lemma 5.2.

Recall also the following essential facts from Brian’s lecture ”Generic Fibers of Defor-
mation Rings”:

1. A[1/p], R1[1/p], R2[1/p] are all Noetherian and Jacobsen rings. In particular, their
closed points are dense in their spectrum.

2. All maximal ideal of A[1/p], R1[1/p], R2[1/p] have a residue field a finite extension of
E.

3. Under any homomorphism Ri[1/p] → E ′ where E ′ is finite extension of E, Ri lands
in the ring of integers of E ′.

Regularity (B3) for Noetherian ring over a field can be checked by a functorial criterion
on Artin local E-algebras (see Remark 2.3 in Lecture 21). Thus, it follows immediately
from Lemma 5.2. Knowing regularity, we get the dimension count by applying Lemma
5.2 to the dual numbers over E. It remains to show the X is connected.

There are natural projections πi : X → Xi given by the evident ring inclusions. Fur-
ther, given any rational point x ∈ X2(E), we get a section sx : X1 → X . Our point x
corresponds to a map R2[1/p] → E which from fact (3), gives rise to a map

R2 → O
which induces a map

R1⊗̂OR2 → R1

which after inverting p yields sx. Note that by construction sx is a closed immersion onto
the fiber π−12 (x).

We can now showX is irreducible. Assume that U and V were two disjoint non-empty
open subsets of X . After extending the field if necessary, we can assume U and V contain
rational points u and v. Let su and sv be sections passing through u and v respectively.
Since X1 is irreducible, s−1u (U) ∩ s−1v (V ) is non-empty. Again extending the field, we can
assume it contains a rational point y. Consider the fiber Xy = π−11 (y). Both U and V
intersect Xy, a closed subset of X . By remark above, Xy is the image of some section sy
and hence irreducible because X2 is.
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The universal deformation ring for ρ̄ unramified outside Sp ∪ St, crystalline and ordi-
nary in Sp, and Steinberg in St with local framings is given by

R� = R̃�⊗̂B̃B.

Intuitively, one should just think the B is gotten from B̃ by the univeral equations forcing
the desired local properties and all that we are doing here is just applying those universal
conditions to the global deformation ring.

Proposition 2.2. Let

g = dim(ker(H1(GFSp∪St
, ad0) → ⊕v∈Sp∪StH

1(GFv , ad
0))+

∑

v∈Sp∪St
dimH0(Fv, ad)−dimH0(GFSp∪St

, ad)

(1)
Then, R� can be written as a quotient of B[[x1, . . . , xg]].

Proof. The quantity g is exactly the number of generators of R̃ over B̃. This can be shown
by a slight modification (to take into account framings) of the argument given by Samit in
Lecture 6. Taking any presentation for R̃ over B̃ and then tensoring with B over B̃ gives
the desired presentation.

2.2 Taylor-Wiles Sets

Just as in Mike’s lecture, a TW set of primes is a setQ of places of F satisfying the following
conditions:

• Q is disjoint from Sp and St.

• N(v) ≡ 1 (mod p) for all v ∈ Q.

• The eigenvalues of ρ̄(Frobv) are distinct and belong to k.

• The map
H1(GFSp∪St∪Q

, ad0(ρ̄)(1)) → ⊕v∈QH
1(Fv, ad

0(ρ̄)(1))

is an isomorphism.

Note that the last conditions implies that TW-sets always have the same size h.
Given a TW-set Q, we define R�

Q to be the universal deformations ring unramified
outside Sp ∪ St ∪ Q which is ord-cryst at Sp and Steinberg at St and with local framings
at Sp ∪St but not at Q. So R�

Q is exactly the same as R� except we allow ramification now
at the auxiliary set Q. Note that there exists a natural map ϕQ : R�

Q → R� since R� is the
unramified at Q quotient of R�

Q. We now recall a series of important properties of these
R�

Q.

(Q1) All the conditions together combined with a duality result for Selmer groups imply
R�

Q is a quotient of B[[x1, . . . , xg]] just as R� is.
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(Q2) R�
Q is an algebra over the group ring O[∆Q], where ∆Q is the maximal pro-p quotient

of
∏

v∈QOv.

(Q3) The kernel of ϕQ is the augmentation ideal aQR�
Q where aQ is the augmentation ideal

of O[∆Q].

Let me say a word or two about these results. (Q2) involves a choice of root of the
characteristic polynomial of Frobv for each v ∈ Q or equivalently a choice of one of the
two univeral tame characters mapping Iv into R�,×

Q . We will resolve this ambiguity by
including the choice in our data below. Since the action of O[∆Q] is exactly the ”univeral”
action of inertia, the unramified at Q quotient is given by the co-invariants under the ∆Q

action, that is,
R� ∼= R�

Q/ < g − 1 > RQ

where < g − 1 > is ideal generated by running over all g ∈ ∆Q. This gives (Q3).

Definition 2.3. A TW-datum of depth n is a TW-set Qn together with a choice of root αv

of the characterstic polynomial of ρ̄(Frobv) for each v ∈ Qn and such that for all v ∈ Qn,
Nv ≡ 1 mod pn.

Mike showed in Lecture 24 the existence of TW-datum for any depth n given our
assumptions on ρ̄. For each n ≥ 1, we fix once and for all a TW-datum Qn of depth n. The
end result being the existence of R�

Qn
together with an O[∆Qn ] structure. The condition on

the norm of v ∈ Qn forces ∆Qn to grow with n.
Given (Q1), we now fix a surjection

B[[x1, . . . , xg]] → R�
Qn

for all Qn.
R�

Qn
is an algebra over O[∆Qn ] but choosing framing variables (i.e RQn [[y1, . . . , yj]]

∼=
R�

Qn
), we can make R�

Qn
an algebra over O[[y1, . . . , yj]][∆Qn ]. Choosing generators for the

cyclic factors of ∆Qn , we get a homomorphism

γn : O[[y1, . . . , yj, T1, . . . , Th]] → R�
Qn

where the kernel of γn contains (Ti + 1)p
ni − 1 for some ni ≥ n.

The following key formula says that B[[x1, . . . , xg]] and O[[y1, . . . , yj, T1, . . . , Th]] have
the same dimension.

Proposition 2.4. Let g, h, j be defined as above with g generating global over local, h being size
of TW-set, and j generating framed global over global. Then,

h+ j + 1 = dimB + g.
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Proof. In the end, we will only need an inequality (≥). However, in this case, we know
equality and so we might as well prove it. We have

h+ j − g = h+ (4|Sp ∪ St| − 1)− (h− [F : Q] + |Sp ∪ St| − 1)

by (R1) and Proposition 1. Simplifying we get

h+ j − g = [F : Q] + 3|Sp ∪ St| = dimB − 1.

2.3 Hecke Modules

We now turn to the modular forms side. Let D be the unique quaternion algebra over F
ramifying exactly at all infinite places and all places in St. Jacquet-Langlands tells us that
any modular form f which could satisfy ρ = ρf would come from a form on D. Thus, we
lose nothing by working on D where certain things are much simpler.

Recall the following key result which Sam discussed last week:

Proposition 2.5. Given a TW-datum Q of any depth, there exists a level U and direct summand
MQ of the space of automorphic forms S(U) on D which is a Hecke-stable submodule such that the
deformation ring R̃Q acts via a natural map R̃Q → TQ. R̃Q comes with a O[∆Q] structure which
induces an action on MQ. MQ is a finite free O[∆Q]-module. Furthermore, M =MQ/aMQ.

Let MQn be the space of modular forms associated to our TW-datum Qn.
It is a small technical point, but we have to pass to a framed version of MQn to make

the argument work. We use our chosen presentation

R̃Qn [[y1, . . . , yj]] ։ R̃�
Qn

which is a map of O[∆Q]-algebras. Define

M�
Q :=MQ ⊗R̃Qn

R̃�
Qn

and similarly for M .

Proposition 2.6 (H1). Using the O[[y1, . . . , yj]]-algebra structure coming from the framing,M�
Qn

is a finite free over O[[y1, . . . , yj]][∆Qn ] and M✷ =M✷
Qn
/aM✷

Qn
.

Proof. Consider the following diagram:

O[[y1, . . . , yj]][∆Qn ] // R̃�
Qn

O[∆Qn ] //

OO

R̃Qn

OO

which one can show is a Cartesian square by considering the chosen presentation of the
unframed over the framed. Further, the vertical arrows are faithfully flat. The first state-
ment follows from flat base change; the second from the fact that quotients commute with
flat extension.

8



3 Passing to the Limit

We recall now where we are headed.
A priori, we only started with a surjective map of O-algebras

ϕ : R̃ → T

where T is some Hecke algebra acting faithfully on M a space of modular forms. R̃ is the
deformation ring with no local conditions. We can pass to the framed version of this map:

ϕ� : R̃� → T�

acting on M�. By how we chose M� as a space of modular forms on a quaternion algebra
ϕ� will factor through the deformation ring with local conditions to give a map:

ϕ′ : R� → T�.

We will show this map is an isomorphism after inverting p. Technical Aside: To make
everything work on the automorphic side one has to allow ramification at an auxiliary
prime, this may cause the map ϕ′ not to be surjective and so this has to be dealt with, but
we won’t worry about it here.

Observe that to show ϕ′ is injective, it suffices to show that R� acts faithfully on M�.
Hence we forget T and focus on M�. We prove the following theorem:

Theorem 3.1. The module M�[1/p] is a finite projective (hence faithful) module over R�[1/p].
Further, R� is finite over O[[y1, . . . , yj]].

Corollary 1. The map
ϕ′[1/p] : R�[1/p] → T�[1/p]

is an isomorphism.

Note that by (H1) and (Q3) and some compatibilities, we can recover the action of R�

on M� from any (R�
Qn
,M�

Qn
). This is the strategy we employ.

For each integer n ≥ 1, with all the choices we have made we get a diagram:

O[[y1, . . . , yj, T1, . . . , Th]]

((QQQQQQQQQQQQQQQ

B[[x1, . . . , xg]] // // R�
Qn

M�
Qn
.

<<

There is absolutely no a priori relationship between the diagrams for different n. How-
ever, for the sake of exposition, assume there existed compatible maps between the dia-
grams. Once we explain the patching technique the same argument will go through.
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Set R∞ = lim←R�
Qn

and M∞ = lim←R�
Qn

. We get the following diagram:

A = O[[y1, . . . , yj, T1, . . . , Th]]

))SSSSSSSSSSSSSSSSS

��
D = B[[x1, . . . , xg]] // // R∞ M∞.

55

where we pick a lift of the A-algebra structure on R∞ to D, which we can do since its a
power series ring.

Note that M∞ is finite free over A. At each finite level, M�
Qn

was finite free over
O[[y1, . . . , yj]][∆Qn ], but in the limit, because we demanded higher and higher congru-
ences for ∆Qn , we get freeness over the power series ring A.

Proposition 3.2. Let ψ : A → D be a map of domains of the same dimension and let V be a
D-module which is finite free as an A-module. Then, ψ is finite and if A and D are regular then V
is a projective D-module.

Proof of Theorem 3.1. We assume the proposition and deduce the theorem as a corollary
(modulo actually constructing compatible maps). Both A and D from the diagram above
are clearly domains. Proposition 2.4 tells us they have the same dimension.

Setting V =M∞ first, we get that the mapA→ B[[x1, . . . , xg]] is finite. SinceB[[x1, . . . , xg]]
surjects onto R∞, we get that R∞ is finite over A. This remains true after quotienting both
sides by the augmentation ideal a to get back down to R�.

A is already regular but D may not be. However, (B3) says that

D[1/p] = B[[x1, . . . , xg]][1/p] = (B⊗̂OO[[x1, . . . , xg]])[1/p]

is regular. The second part of the proposition applies toA[1/p], D[1/p],M∞[1/p] soM∞[1/p]
is projective over D[1/p] hence faithful. Since D[1/p] acts through R∞[1/p] the map be-
tween them must be injective, hence an isomorphism.

Thus, M∞[1/p] is projective over R∞[1/p] and this property descends through the quo-
tient by a to (R�[1/p],M�[1/p]).

Proof of Prop 3.2. Each d ∈ D acts on V and that action commutes with the action of A.
This gives a map

D → EndA(V ).

Let D′ be the image of this map.

D //

$$ $$IIIIIIIIII EndA(V )

A

OO

finite
// D′

?�

OO
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It’s clear that D′ is finite over A so dimD′ = dimA = dimD. But D is a domain so any
proper quotient of D has strictly smaller dimension so D′ = D, and hence D is finite over
A.

Now, we recall the Auslander-Buchsbaum Theorem (CRT Th’m 19.1): Let R be local
Noetherian ring and M be finite module over R. Assume M has finite projective dimen-
sion. Then,

pdR(M) + depth(M) = depth(R).

Assume A and D regular so that V has finite projective dimension over D. To show V is
projective, it suffices to show the inequality

depth(V ) ≥ depth(D) = dim(D).

Take any regular sequence a1, . . . , adim(A) for V over A. The images of these in D form a
regular sequence for V over D so we are done.

4 Patching Datum

The key idea in patching datum is that the deformation rings and auxiliary rings are
determined by their finite artinian quotients. This leads to a pigeonhole argument to find
compatible maps between diagrams.

We unfortunately begin with more notation:

• m
(n)
A is the ideal generated by nth powers for any complete local ring A

• Mn :=M�
Qn
,M0 :=M�, Rn := R�

Qn
, R0 := R�

• s = rank of Mn over O[[x1, . . . , xj]][∆Qn ] = O[[x1, . . . , xj, T1, . . . , Th]]/bn

• rm := smpm(h+ j)

• cm := (πm
E , x

pm

1 , . . . , xp
m

j , (T1 + 1)p
m − 1, . . . , (Th + 1)p

m − 1)

Remark 4.1. For m ≤ n, we have an inclusion of ideals bn ⊂ cm. This is simply because for
k ≥ m, (Ti + 1)p

k − 1 is divisible by (Ti + 1)p
m − 1.

Definition 4.2. A patching datum (D,L) of level m consists of:

1. A complete local noetherian ring D which is a B-algebra and such that m(rm)
D = 0

together with a D-module L which is finite free over O[[x1, . . . , xj, T1, . . . , Th]]/cm of
rank s;

2. A sequence of maps of complete local O-algebras

O[[x1, . . . , xj, T1, . . . , Th]]/cm → D → R0/(cmR0 +m
(rm)
R0

)

where the second map is a map of B-algebras;
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3. A surjection B[[y1, . . . , yg]] ։ D;

4. And a surjection of B[[y1, . . . , yg]]-modules

L։M0/cmM0.

This definition may seem arbitrary at first. However, the following two key properties
illustrate the relevance of the definition.

Proposition 4.3. For any n ≥ m, we can construct a patching datum (Dm,n, Lm,n) of level m
out of (Rn,Mn) by taking

Dm,n = Rn/(cmRn +m
(rm)
Rn

)Lm,n =Mn/cmMn.

For each fixed level m, this yields an infinite sequence of patching datum, one for each n ≥ m.

Proof. First, Dm,n is quotient of Rn and so is a complete local Noetherian ring which in-
herits a B-algebra structure from Rn as well as a surjection

B[[y1, . . . , yg]] ։ Dm,n

which we fixed earlier for Rn.
The desired sequence of maps comes from reducing

O[[x1, . . . , xj, T1, . . . , Th]] → Rn → R0

modulo cm, (cmRn +m
(rm)
Rn

), and (cmR0 +m
(rm)
R0

) respectively.
Input (H1) tells us theMn is finite free over O[[x1, . . . , xj, T1, . . . , Th]]/bn. Since bn ⊂ cm,

Lm,n = Mn/cmMn is finite free over O[[x1, . . . , xj, T1, . . . , Th]]/cm of the same rank. The
surjective map

Lm,n ։M0/cmM0

comes from reducing the map Mn ։M0 modulo cm.
It turns out the one non-trivial check is that Lm,n is actually a module over Dm,n. Since

Mn is an Rn-module Lm,n = Mn/cmMn is an Rn/cmRn - module. It suffices to show that
m

(rm)
Rn

acts trivially on Mn/cmMn.
Let a ∈ mRn then a acts on Mn = M�

Qn
via the Hecke algebra T�

Qn
. Consider the action

of a on the quotient

Mn/(πE, x1, . . . , xj, T1, . . . , Th)Mn =M0/(πE, x1, . . . , xj)M0

which is a finite F vector space of rank s. Since a lies in the maximal ideal of the Hecke
algebra it acts as a nilpotent endomorphism hence

asMn ⊂ (πE, x1, . . . , xj, T1, . . . , Th)Mn.
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A standard pigeonhole argument implies that

asp
m(h+j)Mn ⊂ (πE, x

pm

1 , . . . , xp
m

j , T pm

1 , . . . , T pm

h )Mn.

Raising to m, to get necessary power of πE , in there, we conclude that

asp
m(h+j)mMn ⊂ cmMn.

If you are struggling like me to keep track of all the exponents, the important point is that
there is a fixed power of a which only depends on m which lands you in cmMn. This is
not hard to see once you have asMn ⊂ (πE, x1, . . . , xj, T1, . . . , Th)Mn.

Proposition 4.4. There exist finitely many isomorphism classes of patching datum of level m.

Proof. The number of elements in D is bounded above by the size of

B[[y1, . . . , yg]]/m
(rm)
B[[y1,...,yg ]]

.

Also, L is free over finite ring. Its not hard to see from here that there are finitely many
ways of putting the various structures on (D,L).

Finally, we come to the salvage for our earlier passing to the limit argument. Consider
the following arrangement of the data:
(D1,1, L1,1)

(D1,2, L1,2) (D2,2, L2,2)

(D1,3, L1,3) (D2,3, L2,3) (D3,3, L3,3)

(D1,4, L1,4) (D2,4, L2,4) (D3,4, L3,4) (D4,4, L4,4)

(D1,5, L1,5) (D2,5, L2,5) (D3,5, L3,5) (D4,5, L4,5) (D5,5, L5,5)

(D1,6, L1,6) (D2,6, L2,6) (D3,6, L3,6) (D4,6, L4,6) (D5,6, L5,6) (D6,6, L6,6)

The columns correspond to patching datum of increasing levels. In the first column,
we can choose a infinite subsequence of isomorphic patching datum of level 1. Call it
(D1, L1). In the second column consider the subsequence already chosen and pick a sub-
subsequence all of whose entries at level 2 are isomorphic. Call it (D2, L2). Repeating this
process, we get a sequence (Di, Li) of patching datum of level i such that the reduction to
a lower level (D̃i, L̃i) ∼= (Di−1, Li−1).
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Taking the inverse limit, we get a pair (D∞, L∞) which one checks has the same prop-
erties as the R∞,M∞ considered in the previous section. By this remarkable process, we
manage to piece together seemingly disconnected pieces of information to build a tower
which with some clever commutative algebra proves our modularity lifting theorem.

5 Appendix A: Algebra Lemmas

Proposition 5.1. LetR → R′ be a local homomorphism of complete local Noetherian rings. Then,
R′ is flat over R if and only if R′/mnR′ is flat over R/mnR for n ≥ 1.

Proof. The slight difficulty here is that we are not assuming R′ is finite type over R. The
forward implication is clear. We can check flatness on finite type modules so assume

0 → K →֒M

is an injective map of finite type R-modules. To check that

K ⊗R R
′ →M ⊗R R

′

is injective, we would like to use that

K ⊗R R
′ ⊗R R/m

nR →M ⊗R R
′ ⊗R R/m

n

is exact because its isomorphic to

K/mnK ⊗R/mnR R
′/mnR′ →M/mnM ⊗R/mnR R

′/mnR′.

The injectivity of the unquotiented map is thus equivalent to the statement that

∩mn(K ⊗R R
′) = 0

i.e. that V = K ⊗R R
′ is separated as an R-module. Since K finite-type, V is finite-type

as a R′ module so standard Nakayama says that for any ideal I ⊂ R′ contained in the
maximal ideal ∩InV = 0. Since the homomorphism is local mR′ ⊂ mR′ .

Lemma 5.2. Let R1 and R2 be complete local Noetherian O-algebras. Let E be the fraction field
of O and A be any local Artinian E-algebra. Then,

Ψ : HomE(R1⊗̂OR2[1/p], A) → HomE(R1[1/p], A)× HomE(R2[1/p], A)

is a bijection.

Proof. Since p is invertible in A, we get

HomE(R1⊗̂OR2[1/p], A) = HomO(R1⊗̂OR2, A).
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Before completing, we have

HomO(R1 ⊗O R2, A) = HomO(R1, A)× HomO(R2, A)

so the only question is does a homomorphism f : R1⊗OR2 → A extend to the completion.
If it does, it does so uniquely.

Write R1
∼= O[[x1, . . . , xn]]/(g1, . . . , gr) and R2

∼= O[[y1, . . . , ym]]/(h1, . . . , hs). Let f1, f2
be the induced maps R1 → A,R2 → A respectively. Now, A has both a reduction map
A → E and section E → A. We know from Brian’s Lecture 6 that under the reduction
maps f1(xi) and f2(yj) map to elements di, ej respectively in the maximal ideal of O. Con-
sidering di and ej as elements of A under the section map, we see that f1(xi − di) ∈ mA

and similarly f2(yj − ej) ∈ mA.
Now, let k be an integer such that mk

A = 0. Then, its clear that

(x1 − d1, . . . , xr − dr)
k ⊂ ker f1 and (y1 − e1, . . . , ys − es)

k ⊂ ker f2.

Hence, the morphism f factors through R1/(x1 − d1, . . . , xr − dr)
k ⊗O R2/(y1 − e1, . . . , ys −

es)
k. Both quotients, however, are now polynomial rings over O so the completed ten-

sor product is the same as the ordinary tensor product and so f trivially extends to the
completion.
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