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1. INTRODUCTION

The first aim of these notes is to explain modularity/automorphy lifting theorems for two-
dimensional p-adic representations, using wherever possible arguments that go over to the
n-dimensional case. In particular, we use Taylor’s arguments in [Tay08] that avoid the use of
Ihara’s lemma. For the most part I ignore the issues which are local at p, focusing on represen-
tations which satisfy the Fontaine–Laffaille condition.

The second aim is to explain the application of these theorems to questions of level raising
and lowering for (Hilbert) modular forms, via the method of Khare–Wintenberger. This is
sketched, with the details left as an exercise, to form the first part of the project.

I would like to thank Kevin Buzzard, Kestutis Cesnavicius, Jessica Fintzen, Jeff Hatley,
Christian Johansson, Keenan Kidwell, Tom Lovering, Judith Ludwig and Jack Shotton for their
helpful comments on earlier versions of these notes.

1.1. Notation. Much of this notation will also be introduced in the text, but I have tried to
collect together various definitions here, for ease of reading. Throughout these notes, p > 2 is
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a prime greater than two. In the earlier stages of the notes, we discuss n-dimensional p-adic
and mod p representations, before specialising to the case n = 2. When we do so, we assume
that p - n. (Of course, in the case n = 2, this follows from our assumption that p > 2.)

If M is a field, we let GM denote its absolute Galois group. We write εp for the p-adic
cyclotomic character. We fix an algebraic closure Q of Q, and regard all algebraic extensions
of Q as subfields of Q. For each prime p we fix an algebraic closure Qp of Qp, and we fix
an embedding Q ↪→ Qp. In this way, if v is a finite place of a number field F, we have a
homomorphism GFv ↪→ GF. We also fix an embedding Q ↪→ C. If L is a local field, we denote
its residue field by k(L).

We normalise the definition of Hodge–Tate weights so that all the Hodge–Tate weights of
the p-adic cyclotomic character εp are −1.

We let ζp be a primitive pth root of unity.

2. GALOIS REPRESENTATIONS

2.1. Basics of Galois representations (and structure of Galois groups). Let K′/K be a (not
necessarily finite) normal and separable extension of fields. Then the Galois group Gal(K′/K)
is the group

{σ ∈ Aut(K′) : σ|K = idK}.
This has a natural topology, making it a compact Hausdorff totally disconnected topological
group; equivalently, it is a profinite group. This can be expressed by the topological isomor-
phism

Gal(K′/K) ∼= lim←−
K′′/K finite normal

Gal(K′′/K),

where the finite groups Gal(K′′/K) have the discrete topology.

Then Galois theory gives a bijective correspondence between intermediate fields K′ ⊃ K′′ ⊃
K and closed subgroups H ⊂ Gal(K′/K), with K′′ corresponding to Gal(K′/K′′) and H corre-
sponding to KH .

Fix a separable closure K of K, and write GK := Gal(K/K). Let L be a topological field;
then a Galois representation is a continuous homomorphism ρ : GK → GLn(L) for some n.
The nature of these representations depends on the topology on L. For example, if L has the
discrete topology, then the image of ρ is finite, and ρ factors through a finite Galois group
Gal(K′′/K).

2.2. Exercise. If L = C with the usual topology, then ρ(GK) is finite, and ρ is conjugate to a
representation valued in GLn(Q).

On the other hand, if L/Qp is a finite extension with the p-adic topology, then there can
be examples with infinite image. The rest of this course will be concerned with these p-adic
representations. For example, if p 6= char K, we have the p-adic cyclotomic character εp :
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GK → Z×p , which is uniquely determined by the requirement that if σ ∈ GK and ζ ∈ K with

ζ pn
= 1 for some n, then σ(ζ) = ζεp(σ) (mod pn).

2.3. Fact. If L/Qp is an algebraic extension, and ρ : GK → GLn(L) is a continuous representa-
tion, then ρ(GK) ⊆ GLn(M) for some L ⊃ M ⊃ Qp with M/Qp finite.

Proof. This follows from the Baire category theorem; see e.g. the proof of Corollary 5 of [Dic01]
for the details. �

2.4. Exercise. If L/Qp is an algebraic extension, and ρ : GK → GLn(L) is a continuous repre-
sentation, then ρ is conjugate to a representation in GLn(OL).

Any finite-dimensional Galois representation has a Jordan–Hölder sequence, and thus a
well-defined semisimplification.

2.5. Fact. Two Galois representations ρ, ρ′ : GK → GLn(L) have isomorphic semisimplifica-
tions if and only if ρ(g), ρ′(g) have the same characteristic polynomials for each g ∈ GK. If
char L = 0 (or indeed if char L > n), then this is equivalent to tr ρ(g) = tr ρ′(g) for all g ∈ GK.

Proof. This is the Brauer–Nesbitt theorem, cf. [CR62, 30.16] �

As a corollary of the previous exercise and fact, we see that p-adic representations have well-
defined semi-simplified reductions modulo p. Indeed, given ρ : GK → GLn(L) with L/Qp

algebraic, we may conjugate ρ to be valued in GLn(OL), reduce modulo the maximal ideal
and semisimplify to get a semisimple representation ρ : GK → GLn(k(L)), whose characteristic
polynomials are determined by those of ρ.

[We really do have to semisimplify here; to see why, think about the reductions modulo p

of the matrices

(
1 1
0 1

)
and

(
1 p
0 1

)
.]

2.6. Local representations with p 6= l: the monodromy theorem. In this section we will let
K/Ql be a finite extension, for some prime l 6= p. In order to study the representations of GK,
we firstly recall something of the structure of GK itself; cf. [Ser79] for further details. Let v be
a uniformiser of OK, and let val K : K× � Z be the v-adic valuation. Let | · |K := (#k)−val K(·)

be the corresponding norm. The action of GK on K preserves val K, and thus induces an action
on k, so that we have a homomorphism GK → Gk, and in fact a short exact sequence

0→ IK → GK → Gk → 0

defining the inertia subgroup IK. We let FrobK = Frobk ∈ Gk be the geometric Frobenius
element, a generator of Gk

∼= Ẑ.



MODULARITY LIFTING THEOREMS 5

Then we define the Weil group WK via the commutative diagram

0 // IK // GK // Gk // 0

0 // IK // WK //
?�

OO

FrobZ
k

//
?�

OO

0

so that WK is the subgroup of GK consisting of elements which map to an integral power of
the Frobenius in Gk. The group WK is a topological group, but its topology is not the subspace
topology of GK; rather, the topology is determined by decreeing that IK is open, and has its
usual topology.

Let Kur = K IK be the maximal unramified extension of K, and let Ktame = ∪(n,l)=1Kur(v1/n
K )

be the maximal tamely ramified extension. Then the wild inertia subgroup PK := Gal(K/Ktame)

is the unique Sylow pro-l subgroup of IK. Let ζ = (ζn)(n,l)=1 be a compatible system of primi-
tive roots of unity (i.e. ζa

ab = ζb). Then we have a character

tζ : IK/PK
∼−→∏

p 6=l
Zp,

defined by
σ(v1/n

K )

v1/n
K

= ζ
(tζ (σ) (mod n))
n .

2.7. Exercise. Any other compatible system of roots of unity is of the form ζu for some u ∈
∏p 6=l Z×p , and we have tζu = u−1tζ .

If σ ∈ WK, then tζ(στσ−1) = ε(σ)tζ(τ), where ε is the cyclotomic character. We let tζ,p be
the composite of tζ and the projection to Zp.

Local class field theory is summarised in the following statement.

2.8. Theorem. Let Wab
K denote the group WK/[WK, WK]. Then there are unique isomorphisms ArtK :

K× ∼−→Wab
K such that

(1) if K′/K is a finite extension, then ArtK′ = ArtK ◦NK′/K, and
(2) we have a commutative square

K×
ArtK //

val K
����

Wab
K

����
Z // FrobZ

K

where the bottom arrow is the isomorphism sending a 7→ Froba
K.

The irreducible representations of the group Wab
K are just the characters of WK, and local

class field theory gives a simple description of them, as representations of K× = GL1(K). The
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local Langlands correspondence for GLn (see Section 4.1) is a kind of n-dimensional generali-
sation of this, giving a description of the n-dimensional representations of WK in terms of the
representation theory of GLn(K).

2.9. Definition. Let L be a field of characteristic 0. A representation of WK over L is a representa-
tion (on a finite-dimensional L-vector space) which is continuous if L has the discrete topology
(i.e. a representation with open kernel).

A Weil–Deligne representation of WK on a finite-dimensional L-vector space V is a pair (r, N)

consisting of a representation r : WK → GL(V), and an endomorphism N ∈ End(V) such that
for all σ ∈WK,

r(σ)Nr(σ)−1 = (#k)−vK(σ)N,

where vK : WK → Z is determined by σ|Kur = FrobvK(σ)
K .

2.10. Remark. (1) Since IK is compact and open in WK, if r is a representation of WK then
r(IK) is finite.

(2) N is necessarily nilpotent.

2.11. Exercise. (1) Show that if (r, V) is a representation of WK and m ≥ 1 then the follow-
ing defines a Weil–Deligne representation Spm(r) with underlying vector space Vm:
we let WK act via

r|Art−1
K |

m−1
K ⊕ r|Art−1

K |
m−2
K ⊕ · · · ⊕ r,

and let N induce an isomorphism from r|Art−1
K |

i−1
K to r|Art−1

K |iK for each i < m− 1,
and be 0 on r|Art−1

K |
m−1
K .

(2) Show that every Weil–Deligne representation (r, V) for which r is semisimple is iso-
morphic to a direct sum of representations Spmi

(ri).
(3) Show that if (r, V, N) is a Weil–Deligne representation of WK, and K′/K is a finite

extension, then (r|WK′
, V, N) is a Weil–Deligne representation of WK′ .

(4) Suppose that r is a representation of WK. Show that if σ ∈ WK then for some positive
integer n, r(σn) is in the centre of r(WK).

(5) Assume further that σ /∈ IK. Show that for any τ ∈ WK there exists n ∈ Z and m > 0
such that r(σn) = r(τm).

(6) Show that for a representation r of WK, the following conditions are equivalent:
(a) r is semisimple.
(b) r(σ) is semisimple for all σ ∈WK.
(c) r(σ) is semisimple for some σ /∈ IK.

(7) Let (r, N) be a Weil–Deligne representation of WK. Set r̃(σ) = r(σ)ss, the semisimplifi-
cation of r(σ). Prove that (r̃, N) is also a Weil–Deligne representation of WK.

2.12. Definition. We say that a Weil–Deligne representation (r, N) is Frobenius-semsimple if r
is semisimple. With notation as above, we say that (r̃, N) is the Frobenius semisimplification of
(r, N).
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2.13. Definition. If L is an algebraic extension of Qp, then we say that an element A ∈ GLn(L)
is bounded if it has determinant in O×L , and characteristic polynomial in OL[X].

2.14. Exercise. A is bounded if and only if it stabilises an OL-lattice in Ln.

2.15. Definition. Let L be an algebraic extension of Qp. Then we say that r is bounded if r(σ) is
bounded for all σ ∈WK.

2.16. Exercise. Show r is bounded if and only if r(σ) is bounded for some σ /∈ IK.

The reason for all of these definitions is the following theorem, which in practice gives us a
rather concrete classification of the p-adic representations of GK.

2.17. Proposition. (Grothendieck’s monodromy theorem) Suppose that l 6= p, that K/Ql is finite, and
that V is a finite-dimensional L-vector space, with L an algebraic extension of Qp. Fix ϕ ∈ WK a lift
of FrobK and a compatible system (ζn)(n,l)=1 of primitive roots of unity. If ρ : GK → GL(V) is a
continuous representation then there is a finite extension K′/K and a uniquely determined nilpotent
N ∈ End(V) such that for all σ ∈ IK′ ,

ρ(σ) = exp(Ntζ,p(σ)).

For all σ ∈ WK, we have ρ(σ)Nρ(σ)−1 = #k−v(σ)N. In fact, we have an equivalence of categories
WD = WDζ,ϕ from the category of continuous representations of GK on finite-dimensional L-vector
spaces to the category of bounded Weil–Deligne representations on finite-dimensional L-vector spaces,
taking

ρ 7→ (V, r, N), r(τ) := ρ(τ) exp(−tζ,p(ϕ−vK(τ)τ)N).

The functors WDζ ′ ,ϕ′ and WDζ,ϕ are naturally isomorphic.

2.18. Remark. Note that since N is nilpotent, the exponential here is just a polynomial - there
are no convergence issues!

The proof is contained in the following exercise.

2.19. Exercise. (1) By Exercise 2.4 there is a GK-stableOL-lattice Λ ⊂ V. Show that if GK′ is
the kernel of the induced map GK → Aut(Λ/pΛ), then K′/K is a finite extension, and
ρ(GK′) is pro-p. Show that ρ|IK′

factors through tζ,p : IK′ → Zp.
(2) Choose σ ∈ IK′ such that tζ,p(σ) topologically generates tζ,p(IK′). By considering the

action of conjugation by ϕ, show that the eigenvalues of ρ(σ) are all p-power roots of
unity. Hence show that one may make a further finite extension K′′/K′ such that the
elements of ρ(IK′′) are all unipotent.

(3) Deduce the existence of a unique nilpotent N ∈ End(V) such that for all σ ∈ IK′′ ,
ρ(σ) = exp(Ntζ,p(σ)). [Hint: use the logarithm map (why are there no convergence
issues?).]

(4) Complete the proof of the proposition, by showing that (r, N) is a Weil–Deligne repre-
sentation. Where does the condition that r is bounded come in?
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One significant advantage of Weil–Deligne representations over Galois representations is
that there are no subtle topological issues: the topology on the Weil–Deligne representation
is the discrete topology. This allows one to describe representations in a way that is “inde-
pendent of L”, and is necessary to make sense of the notion of a compatible system of Galois
representations (or at least to make sense of it at places at which the Galois representation is
ramified).

2.20. Local representations with p = l: p-adic Hodge theory. The case l = p is far more
complicated than the case l 6= p, largely because wild inertia can act in a highly nontrivial
fashion, so there is no simple analogue of Grothendieck’s monodromy theorem. (There is still
an analogue, though, it’s just much harder to state and prove, and doesn’t apply to all p-adic
Galois representations.) The study of representations GK → GLn(Qp) with K/Qp finite is
called p-adic Hodge theory, a subject largely developed by Fontaine in the 1980s. An excellent
introduction to the subject can be found in [BC], and the standard reference is [Fon94]. We
will content ourselves with some terminology, some definitions, and some remarks intended
to give intuition and motivation.

Fix K/Qp finite. In some sense, “most” p-adic Galois representations GK → GLn(Qp) will
not be relevant for us, because they do not arise in geometry, or in the Galois representations
associated to automorphic representations. Instead, there is a hierarchy of classes of represen-
tations

{crystalline} ( {semistable} ( {de Rham} ( {Hodge–Tate}.
For any of these classes X, we say that ρ is potentially X if there is a finite extension K′/K
such that ρ|GK′

is X. A representation is potentially de Rham if and only if it is de Rham,
and potentially Hodge–Tate if and only if it is Hodge–Tate; the corresponding statements for
crystalline and semistable representations are false, as we will see concretely in the case n = 1
later on. The p-adic analogue of Grothendieck’s monodromy theorem is the following deep
theorem of Berger.

2.21. Theorem. (The p-adic monodromy theorem) A representation is de Rham if and only if it is
potentially semistable.

The notion of a de Rham representation is designed to capture the representations arising
in geometry; it does so by the following result of Tsuji (building on the work of many people).

2.22. Theorem. If X/K is a smooth projective variety, then each Hi
ét(X ×K K, Qp) is a de Rham

representation.

Similarly, the definitions of crystalline and semistable are designed to capture the notions
of good and semistable reduction, and one has

2.23. Theorem. If X/K is a smooth projective variety with good (respectively, semistable) reduction,
then each Hi

ét(X×K K, Qp) is a crystalline (respectively, semistable) representation.
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Thus the p-adic monodromy theorem can be thought of as a Galois-theoretic incarnation of
Grothendieck’s semistable reduction theorem.

The case that n = 1 is particularly simple, as we now explain. In this case, every semistable
character is crystalline, and the de Rham characters are exactly the Hodge–Tate characters. In
the case K = Qp, these are precisely the characters whose restrictions to inertia are of the form
ψεn

p where ψ has finite order and n ∈ Z, while the crystalline characters are those for which ψ

is unramified. A similar description exists for general K, with εn
p replaced by a product of so-

called Lubin–Tate characters. In fact (c.f. Exercise 6.4.3 of [BC]), a character χ : GK → Q
×
p is de

Rham if and only if there is an open subgroup U of K× and an integer nτ for each τ : K ↪→ Q
×
p

such that (χ ◦ArtK)(α) = ∏τ τ(α)−nτ for each α ∈ U, and it is crystalline if and only if we can
take U = O×K .

As soon as n > 1, there are non-crystalline semistable representations, and non-de Rham
Hodge–Tate representations. A useful heuristic when comparing to the l 6= p case is that crys-
talline representations correspond to unramified representations, semistable representations
correspond to representations for which inertia acts unipotently, and de Rham representations
correspond to all representations.

Suppose that ρ : GK → GLn(Qp) is a Hodge–Tate representation. Then for each τ : K ↪→ Qp

there is a multiset of τ-labeled Hodge–Tate weights HTτ(ρ) associated to ρ; this is a multiset of
integers, and in the case of a de Rham character χ as above, HTτ(χ) = nτ . In particular, the
p-adic cyclotomic character εp has all Hodge–Tate weights equal to −1. If K′/K is a finite
extension, and τ′ : K′ ↪→ Qp extends τ : K ↪→ Qp, then HTτ′(ρ|GK′

) = HTτ(ρ).

If furthermore ρ is potentially semistable (equivalently, de Rham) then a construction of
Fontaine associates a Weil–Deligne representation WD(ρ) = (r, N) of WK to ρ. If K′/K is a
finite extension, then WD(ρ|GK′

) = (r|WK′
, N). It is known that ρ is semistable if and only if

r is unramified, and that ρ is crystalline if and only if r is unramified and N = 0. Thus ρ is
potentially crystalline if and only N = 0.

2.24. Number fields. We now consider the case that K is a number field (that is, a finite ex-
tension of Q). If v is a finite place of K, we let Kv denote the completion of K at v. If K′/K is
a finite Galois extension, then Gal(K′/K) transitively permutes the places of K′ above v; if we
choose one such place w, then we define the decomposition group

Gal(K′/K)w := {σ ∈ Gal(K′/K)|wσ = w}.

Then we have a natural isomorphism Gal(K′/K)w
∼−→ Gal(K′w/Kv), and since Gal(K′/K)wσ =

σ−1Gal(K′/K)wσ, we see that the definition extends to general algebraic extensions, and in
particular we have an embedding GKv ↪→ GK which is well-defined up to conjugacy (alterna-
tively, up to a choice of embedding K ↪→ Kv).

If K′/K is Galois and unramified at v, and w is a place of K′ lying over v, then we define

Frobw := FrobKv ∈ Gal(K′w/Kv)
∼−→ Gal(K′/K)w ↪→ Gal(K′/K).
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We have Frobwσ = σ−1 Frobw σ, and thus a well-defined conjugacy class [Frobv] = {Frobw}w|v
in Gal(K′/K).

2.25. Fact. (Chebotarev density theorem) If K′/K is a Galois extension which is unramified
outside of a finite set S of places of K, then the union of the conjugacy classes [Frobv], v /∈ S is
dense in Gal(K′/K).

We briefly recall the statement of global class field theory. Let AK denote the adeles of K,

and write K∞ = ∏v|∞ Kv. Let Kab = K[GK ,GK ] be the maximal abelian extension of K. Then there
is a homomorphism ArtK : A×K /(K×∞)◦ → Gal(Kab/K), defined in the following way: for each
finite place v of K, the restriction of ArtK to K×v agrees with the local Artin maps ArtKv , and
similarly at the infinite places, it agrees with the obvious isomorphisms ArtKv : K×v /(K×v )◦

∼−→
Gal(Kv/Kv). Then global class field theory states that ArtK induces an isomorphism

ArtK : A×K /K×(K×∞)◦
∼−→ Gal(Kab/K).

The global Galois representations that we will care about are those that Fontaine and Mazur
call geometric. Let L/Qp be an algebraic extension.

2.26. Definition. A continuous representation ρ : GK → GLn(L) is geometric if it is unramified
outside of a finite set of places of K, and if for each place v|p, ρ|GKv

is de Rham.

2.27. Remark. It is known that both conditions are necessary; that is, there are examples of
representations which are unramified outside of a finite set of places of K but not de Rham
at places lying over p, and examples of representations which are de Rham at all places lying
over p, but are ramified at infinitely many primes.

In practice (and conjecturally always), geometric Galois representations arise as part of a
compatible system of Galois representations. There are a number of different definitions of a
compatible system in the literature, all of which are conjecturally equivalent (although prov-
ing the equivalence of the definitions is probably very hard). The following definition, taken
from [BLGGT10], seems to incorporate the minimal assumptions under which one can hope
to employ automorphy lifting theorems to study a compatible system.

2.28. Definition. Suppose that K and M are number fields, that S is a finite set of primes of
K and that n is a positive integer. By a weakly compatible system of n-dimensional p-adic rep-
resentations of GK defined over M and unramified outside S we mean a family of continuous
semisimple representations

rλ : GK −→ GLn(Mλ),

where λ runs over the finite places of M, with the following properties.

• If v /∈ S is a finite place of K, then for all λ not dividing the residue characteristic of v,
the representation rλ is unramified at v and the characteristic polynomial of rλ(Frobv)

lies in M[X] and is independent of λ.
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• Each representation rλ is de Rham at all places above the residue characteristic of λ,
and in fact crystalline at any place v 6∈ S which divides the residue characteristic of λ.
• For each embedding τ : K ↪→ M the τ-Hodge–Tate numbers of rλ are independent of

λ.

2.29. Remark. By the Chebotarev density theorem, each rλ is determined by the characteristic
polynomials of the rλ(Frobv) for v /∈ S, and in particular the compatible system is determined
by a single rλ. Note that for a general element σ ∈ GK, there will be no relationship between
the characteristic polynomials of the rλ(σ) as λ varies (and they won’t even lie in M[X], so
there will be no way of comparing them).

There are various other properties one could demand; for example, we have the following
definition (again following [BLGGT10], although we have slightly strengthened the definition
made there by allowing λ to divide the residue characteristic of v).

2.30. Definition. We say that a weakly compatible system is strictly compatible if for each finite
place v of K there is a Weil–Deligne representation WDv of WKv over M such that for each place
λ of M and every M-linear embedding ς : M ↪→ Mλ we have ςWDv ∼= WD(rλ|GKv

)F-ss.

Conjecturally, every weakly compatible system is strictly compatible, and even satisfies fur-
ther properties, such as purity (c.f. Section 5 of [BLGGT10]). We also have the following con-
sequence of the Fontaine–Mazur conjecture and standard conjectures on the étale cohomology
of algebraic varieties over number fields.

2.31. Conjecture. Any semisimple geometric representation GK → GLn(L) is part of a strictly com-
patible system of Galois representations.

In practice, most progress on understanding these conjectures has been made by using au-
tomorphy lifting theorems to prove special cases of the following conjecture.

2.32. Conjecture. Any weakly compatible system of Galois representations is strictly compatible, and
is in addition automorphic, in the sense that there is an algebraic automorphic representation (in the
sense of [Clo90]) π of GLn(AK) with the property that WDv(ρ) ∼= rec(πv|det |(1−n)/2) for each
finite place v of K, where rec is the local Langlands correspondence as in Section 4.1 below.

2.33. Sources of Galois representations. The main source (and conjecturally the only source)
of compatible systems of Galois representations is the étale cohomology of algebraic varieties.
We have the following result, whose proof is well beyond the scope of this course.

2.34. Theorem. Let K be a number field, and let X/K be a smooth projective variety. Then for any i, j,
the Hi

ét(X×K K, Qp)ss(j) (the (j) denoting a Tate twist) form a weakly compatible system.

2.35. Remark. Conjecturally, it is a strictly compatible system, and there is no need to semisim-
plify the representations. Both of these properties are known if X is an abelian variety.
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2.36. Conjecture. (The Fontaine–Mazur conjecture, [FM95]) Any irreducible geometric representa-
tion ρ : GK → GLn(Qp) is (the extension of scalars to Qp of) a subquotient of a representation arising
from étale cohomology as in Theorem 2.34.

2.37. Remark. Conjecture 2.36, together with the expectation expressed in Remark 2.35, implies
Conjecture 2.31. The Fontaine–Mazur–Langlands conjecture is a somewhat ill-defined conjecture,
which is essentially the union of Conjectures 2.31 and 2.32, expressing the expectation that an
irreducible geometric Galois representation is automorphic.

When n = 1, all of these conjectures are essentially known, as we will now explain. For
n > 1, we know very little (although the situation when K = Q and n = 2 is pretty good), and
the main results that are known are as a consequence of automorphy lifting theorems (as dis-
cussed in this course) and of potential automorphy theorems (which are not discussed in this
course, but should be accessible given the material we develop here; for a nice introduction,
see [Buz12]).

2.38. Definition. A grossencharacter is a continuous character χ : A×K /K× → C×. We say that
χ is algebraic (or “type A0”) if for each τ : K ↪→ C there is an integer nτ , such that for each
α ∈ (K×∞)◦, we have χ(α) = ∏τ(τα)−nτ .

2.39. Definition. Let L be a field of characteristic zero such that for each embedding τ : K ↪→ L,
we have τ(K) ⊆ L. Then an algebraic character χ0 : A×K → L× is a character with open kernel
such that for each τ : K ↪→ L there is an integer nτ with the property that for all α ∈ K×, we
have χ0(α) = ∏τ(τα)nτ .

2.40. Exercise. Show that if χ0 is an algebraic character, then χ0 takes values in some number
field. [Hint: show that A×K /(K× ker χ0) is finite, and that χ0(K× ker χ0) is contained in a
number field.]

2.41. Theorem. Let E be a number field containing the normal closure of K. Fix embeddings ı∞ : E ↪→
C, ıp : E ↪→ Qp. Then the following are in natural bijection.

(1) Algebraic characters χ0 : A×K → E×.
(2) Algebraic grossencharacters χ : A×K /K× → C×.
(3) Continuous representations ρ : GK → Q

×
p which are de Rham at all v|p.

(4) Geometric representations ρ : GK → Q
×
p .

2.42. Exercise. Prove Theorem 2.41 as follows (see e.g. Section 1 of [Far] for more details). Use
the non-trivial fact that if v|p is a place of K, then a representation ρv : GKv → Q

×
p is de Rham

if and only if there is an open subgroup U ⊆ K×v and an integer nτ for each τ : Kv ↪→ Qp

such that (ρv ◦ArtKv)(α) = ∏τ τ(α)nτ for each α ∈ U. Use this, together with global class field
theory, to show that (3) =⇒ (4).
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For the correspondence between (1) and (2), show that we can pair up χ0 and χ by

χ(α) = ı∞

(
χ0(α) ∏

τ:K↪→C

τ(α∞)
−n

ı−1
∞ τ

)
.

For the correspondence between (1) and (3), show that we can pair up χ0 and ρ by

(ρ ◦ArtK)(α) = ıp

χ0(α) ∏
τ:K↪→Qp

τ(αp)
−n

ı−1
p τ

 .

3. GALOIS DEFORMATIONS

There are a number of good introductions to the material in this section, and for the most
part we will simply give basic definitions and motivation, and refer elsewhere for proofs. In
particular, [Maz97] is a very nice introduction to Galois deformations (although slightly out
of date, as it does not treat liftings/framed deformations), and [Boe] is a thorough modern
treatment.

3.1. Generalities. Take L/Qp finite with ring of integers O = OL and maximal ideal λ, and
write F = O/λ. Let G be a profinite group which satisfies the following condition (Mazur’s
condition Φp): whenever ∆ is a finite index open subgroup of G, then ∆/〈[∆, ∆], ∆p〉 is finite.
Equivalently (cf. Exercise 1.8.1 of [Boe]), for each ∆ the maximal pro-p quotient of ∆ is topo-
logically finitely generated. If G is topologically finitely generated, then Φp holds, but we will
need to use the condition for some G (the global Galois groups GK,S defined below) which are
not known to be topologically finitely generated.

In particular, using class field theory or Kummer theory, it can be checked that Φp holds if
G = GK = Gal(K/K) for some prime l (possibly equal to p) and some finite extension K/Ql ,
or if G = GK,S = Gal(KS/K) where K is a number field, S is a finite set of finite places of K, and
KS/K is the maximal extension unramified outside of S and the infinite places (cf. the proof of
Theorem 2.41 of [DDT97]).

Fix a representation ρ : G → GLn(F). Let CO be the category of complete local noetherian
O-algebras with residue field F, and consider the functor CO → Sets which sends A to the set
of continuous representations ρ : G → GLn(A) such that ρ mod mA = ρ (that is, to the set of
lifts of ρ to A).

3.2. Lemma. This functor is represented by a representation ρ� : G → GLn(R�
ρ ).

Proof. This is straightforward, cf. Proposition 1.3.1(a) of [Boe]. �

3.3. Definition. We say that R�
ρ is the universal lifting ring (or in Kisin’s terminology, the uni-

versal framed deformation ring). We say that ρ� is the universal lifting of ρ.
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If EndF[G]ρ = F we will say that ρ is Schur. By Schur’s lemma, if ρ is absolutely irreducible,
then ρ is Schur. In this case, there is a very useful (and historically earlier) variant on the above
construction.

3.4. Definition. Suppose that ρ is Schur. Then a deformation of ρ to A ∈ ob CO is an equivalence
class of liftings, where ρ ∼ ρ′ if and only if ρ′ = aρa−1 for some a ∈ ker(GLn(A) → GLn(F))

(or equivalently, for some a ∈ GLn(A)).

3.5. Lemma. If ρ is Schur, then the functor CO → Sets sending A to the set of deformations of ρ to A
is representable by some ρuniv : G → GLn(Runiv

ρ ).

Proof. See Proposition 1.3.1(b) of [Boe], or Theorem 2.36 of [DDT97] for a more hands-on ap-
proach. �

3.6. Definition. We say that ρuniv (or more properly, its equivalence class) is the universal de-
formation of ρ, and Runiv

ρ is the universal deformation ring.

Deformations are representations considered up to conjugation, so it is reasonable to hope
that deformations can be studied by considering their traces. In the case that ρ is absolutely
irreducible, universal deformations are determined by traces in the following rather strong
sense. This result is essentially due to Carayol [Car94].

3.7. Lemma. Suppose that ρ is absolutely irreducible. Let R be an object of CO , and ρ : G → GLn(R)
a lifting of ρ.

(1) If a ∈ GLn(R) and aρa−1 = ρ then a ∈ R×.
(2) If ρ′ : G → GLn(R) is another continuous lifting of ρ and tr ρ = tr ρ′, then there is some

a ∈ ker(GLn(R)→ GLn(F)) such that ρ′ = aρa−1.
(3) If S ⊆ R is a closed subring with S ∈ ob CO and mS = mR ∩ S, and if tr ρ(G) ⊆ S, then there

is some a ∈ ker(GLn(R)→ GLn(F)) such that aρa−1 : G → GLn(S).

Proof. See Lemmas 2.1.8 and 2.1.10 of [CHT08], or Theorem 2.2.1 of [Boe]. �

3.8. Exercise. Deduce from Lemma 3.7 that if ρ is absolutely irreducible, then Runiv
ρ is topolog-

ically generated over O by the values tr ρuniv(g) as g runs over any dense subset of G.

3.9. Exercise. Show that if ρ is absolutely irreducible, then R�
ρ is isomorphic to a power series

ring in (n2 − 1) variables over Runiv
ρ . Hint: let ρuniv be a choice of universal deformation, and

consider the homomorphism

ρ� : G → GLn(Runiv
ρ JXi,jKi,j=1,...,n/(X1,1))

given by ρ� = (1n + (Xi,j))ρ
univ(1n + (Xi,j))

−1. Show that this is the universal lifting.
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3.10. Tangent spaces. The tangent spaces of universal lifting and deformation rings have
a natural interpretation in terms of liftings and deformations to the ring of dual numbers,
F[ε]/(ε2).

3.11. Exercise. Show that we have natural bijections between

(1) HomF(mR�
ρ

/(m2
R�

ρ

, λ), F).

(2) HomO(R�
ρ , F[ε]/(ε2)).

(3) The set of liftings of ρ to F[ε]/(ε2).
(4) The set of cocycles Z1(G, ad ρ).

Show that if ρ is absolutely irreducible, then we also have a bijection between HomF(mRuniv
ρ

/(m2
Runiv

ρ
, λ), F)

and H1(G, ad ρ). Hint: given f ∈ HomF(mR�
ρ

/(m2
R�

ρ

, λ), F), define an element of HomO(R�
ρ , F[ε]/(ε2))

by sending a + x to a + f (x)ε whenever a ∈ O and x ∈ mR�
ρ

. Given a cocycle φ ∈ Z1(G, ad ρ),

define a lifting ρ : G → GLn(F[ε]/(ε2)) by ρ(g) := (1 + φ(g)ε)ρ(g).

3.12. Corollary. We have dimF mR�
ρ

/(m2
R�

ρ

, λ) = dimF H1(G, ad ρ) + n2 − dimF H0(G, ad ρ).

Proof. This follows from the exact sequence

0→ (ad ρ)G → ad ρ→ Z1(G, ad ρ)→ H1(G, ad ρ)→ 0. �

In particular, if d := dimF Z1(G, ad ρ), then we can choose a surjection φ : OJx1, . . . , xdK �

R�
ρ . Similarly, if ρ is absolutely irreducible, we can choose a surjection φ′ : OJx1, . . . , xd′K �

Runiv
ρ , where d′ := dimF H1(G, ad ρ).

3.13. Lemma. If J = ker φ or J = ker φ′, then there is an injection HomF(J/mJ, F) ↪→ H2(G, ad ρ).

Proof. See Proposition 2 of [Maz89]. �

3.14. Corollary. If H2(G, ad ρ) = (0), then R�
ρ is formally smooth of relative dimension dimF Z1(G, ad ρ)

over O.

In any case, the Krull dimension of R�
ρ is at least

1 + n2 − dimF H0(G, ad ρ) + dimF H1(G, ad ρ)− dimF H2(G, ad ρ).

If ρ is absolutely irreducible, then the Krull dimension of Runiv
ρ is at least

1 + dimF H1(G, ad ρ)− dimF H2(G, ad ρ).

3.15. Deformation conditions. In practice, we frequently want to impose additional condi-
tions on the liftings and deformations we consider. For example, if we are trying to prove the
Fontaine–Mazur conjecture, we would like to be able to restrict to global deformations which
are geometric. There are various ways in which to impose extra conditions; we will use the
formalism of deformation problems introduced in [CHT08].
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3.16. Definition. By a deformation problem D we mean a collection of liftings (R, ρ) of (F, ρ)

(with R an object of CO), satisfying the following properties.

• (F, ρ) ∈ D.
• If f : R→ S is a morphism in CO and (R, ρ) ∈ D, then (S, f ◦ ρ) ∈ D.
• If f : R ↪→ S is a morphism in CO then (R, ρ) ∈ D if and only if (S, f ◦ ρ) ∈ D.
• Suppose that R1, R2 ∈ ob CO and I1, I2 are ideals of R1, R2 respectively such that there

is an isomorphism f : R1/I1
∼−→ R2/I2. Suppose also that (R1, ρ1), (R2, ρ2) ∈ D, and

that f (ρ1 mod I1) = ρ2 mod I2.
Then ({(a, b) ∈ R1 ⊕ R2 : f (a mod I1) = b mod I2}, ρ1 ⊕ ρ2) ∈ D.

• If (R, ρ) is a lifting of (F, ρ) and I1 ⊃ I2 ⊃ · · · is a sequence of ideals of R with ∩j Ij =

(0), and (R/Ij, ρ mod Ij) ∈ D for all j, then (R, ρ) ∈ D.
• If (R, ρ) ∈ D and a ∈ ker(GLn(R)→ GLn(F)), then (R, aρa−1) ∈ D.

In practice, when we want to impose a condition on our deformations, it will be easy to see
that it satisfies these requirements. (An exception is that these properties are hard to check for
certain conditions arising in p-adic Hodge theory, but we won’t need those conditions in this
course.)

The relationship of this definition to the universal lifting ring is as follows. Note that each
element a ∈ ker(GLn(R�

ρ ) → GLn(F)) acts on R�
ρ , via the universal property and by sending

ρ� to a−1ρ�a. [Warning: this isn’t a group action, though!]

3.17. Lemma. (1) If D is a deformation problem then there is a ker(GLn(R�
ρ )→ GLn(F))-invariant

ideal I(D) of R�
ρ such that (R, ρ) ∈ D if and only if the map R�

ρ → R induced by ρ factors through
the quotient R�

ρ /I(D).

(2) Let L̃(D) ⊆ Z1(G, ad ρ) ∼= Hom(mR�
ρ

/(λ,m2
R�

ρ

), F) denote the annihilator of the image of

I(D) in mR�
ρ

/(λ,m2
R�

ρ

).

Then L̃(D) is the preimage of some subspace L(D) ⊆ H1(G, ad ρ).

(3) If I is a ker(GLn(R�
ρ )→ GLn(F))-invariant ideal of R�

ρ with
√

I = I and I 6= mR�
ρ

, then

D(I) := {(R, ρ) : R�
ρ → R factors through R�

ρ /I}

is a deformation problem. Furthermore, we have I(D(I)) = I and D(I(D)) = D.

Proof. See Lemma 2.2.3 of [CHT08] and Lemma 3.2 of [BLGHT09] (and for (2), use that I(D) is
ker(GLn(R�

ρ )→ GLn(F))-invariant). �

3.18. Fixing determinants. For technical reasons, we will want to fix the determinants of our
Galois representations. To this end, let χ : G → O× be a continuous homomorphism such
that χ mod λ = det ρ. Then it makes sense to ask that a lifting has determinant χ, and we
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can define a universal lifting ring R�
ρ,χ for lifts with determinant χ, and when ρ is Schur, a

universal fixed determinant deformation ring Runiv
ρ,χ .

3.19. Exercise. Check that the material developed in the previous section goes over unchanged,
except that ad ρ needs to be replaced with ad 0ρ := {x ∈ ad ρ : tr x = 0}.

Note that since we are assuming throughout that p - n, ad 0ρ is a direct summand of ad ρ

(as a G-representation).

3.20. Global deformations with local conditions. Now fix a finite set S, and for each v ∈ S,
a profinite group Gv satisfying Φp, together with a continuous homomorphism Gv → G, and
a deformation problem Dv for ρ|Gv . [In applications, G will be a global Galois group, and the
Gv will be decomposition groups at finite places.]

Also fix χ : G → O×, a continuous homomorphism such that χ mod λ = det ρ. Assume
that ρ is absolutely irreducible, and fix some subset T ⊆ S.

3.21. Definition. Fix A ∈ ob CO . A T-framed deformation of ρ of type S := (S, {Dv}v∈S, χ) to A
is an equivalence class of tuples (ρ, {αv}v∈T), where ρ : G → GLn(A) is a lift of ρ such that
det ρ = χ and ρ|Gv ∈ Dv for all v ∈ S, and αv is an element of ker(GLn(A)→ GLn(F)).

The equivalence relation is defined by decreeing that for each β ∈ ker(GLn(A)→ GLn(F)),
we have (ρ, {αv}v∈T) ∼ (βρβ−1, {βαv}v∈T).

The point of considering T-framed deformations is that it allows us to study absolutely ir-
reducible representations ρ for which some of the ρ|Gv are reducible, because if (ρ, {αv}v∈T) is
a T-framed deformation of type S , then α−1

v ρ|Gv αv is a well-defined element of Dv (indepen-
dent of the choice of representative of the equivalence class). The following lemma should be
unsurprising.

3.22. Lemma. The functor CO → Sets sending A to the set of T-framed deformations of ρ of type S is
represented by a universal object ρ�T : G → GLn(R�T

S ).

Proof. See Proposition 2.2.9 of [CHT08]. �

If T = ∅ then we will write Runiv
S for R�T

S .

3.23. Presenting global deformation rings over local lifting rings. Continue to use the nota-
tion of the previous subsection. Since α−1

v ρ�T |Gv αv is a well-defined element of Dv, we have a
tautological homomorphism R�

ρ|Gv ,χ/I(Dv)→ R�T
S . Define

Rloc
S ,T := ⊗̂v∈T

(
R�

ρ|Gv ,χ/I(Dv)
)

.

Then we have a natural map Rloc
S ,T → R�T

S .
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We now generalise Corollary 3.14 by considering presentations of R�T
S over Rloc

S ,T . In or-

der to compute how many variables are needed to present R�T
S over Rloc

S ,T , we must compute
dimF m

R�T
S

/(m2
R�T
S

,mRloc
S ,T

, λ). Unsurprisingly, in order to compute this, we will compute a

certain H1.

We define a complex as follows. As usual, given a group G and a F[G]-module M, we let
Ci(G, M) be the space of functions Gi → M, and we let ∂ : Ci(G, M) → Ci+1(G, M) be the
coboundary map. We define a complex Ci

S ,T,loc(G, ad 0ρ) by

C0
S ,T,loc(G, ad 0ρ) = ⊕v∈TC0(Gv, ad ρ)⊕⊕v∈S\T0,

C1
S ,T,loc(G, ad 0ρ) = ⊕v∈TC1(Gv, ad ρ)⊕⊕v∈S\TC1(Gv, ad 0ρ)/L̃(Dv),

and for i ≥ 2,

Ci
S ,T,loc(G, ad 0ρ) = ⊕v∈TCi(Gv, ad ρ)⊕⊕v∈S\TCi(Gv, ad 0ρ).

Then we let Hi
S ,T(G, ad 0ρ) denote the cohomology of the complex

Ci
S ,T(G, ad 0ρ) := Ci(G, ad 0ρ)⊕ Ci−1

S ,T,loc(G, ad 0ρ)

where the coboundary map is given by

(φ, (ψv)) 7→ (∂φ, (∂ψv − φ|Gv)).

Then we have an exact sequence of complexes

0→ Ci−1
S ,T,loc(G, ad 0ρ)→ Ci

S ,T(G, ad 0ρ)→ Ci(G, ad 0ρ)→ 0,

and the corresponding long exact sequence in cohomology is

0 H0
S ,T(G, ad 0ρ) H0(G, ad 0ρ) ⊕v∈T H0(Gv, ad ρ)

H1
S ,T(G, ad 0ρ) H1(G, ad 0ρ) ⊕v∈T H1(Gv, ad ρ)⊕v∈S\T H1(Gv, ad 0ρ)/L(Dv)

H2
S ,T(G, ad 0ρ) H2(G, ad 0ρ) ⊕v∈T H2(Gv, ad ρ)⊕v∈S\T H2(Gv, ad 0ρ)

H3
S ,T(G, ad 0ρ) . . . . . . . . .

Taking Euler characteristics, we see that if we define e.g. χ(G, ad 0ρ) = ∑i(−1)i−1 dimF Hi(G, ad 0ρ),
we have

χS ,T(G, ad 0ρ) =χ(G, ad 0ρ)− ∑
v∈S\T

χ(Gv, ad 0ρ)− ∑
v∈T

χ(Gv, ad ρ)

+ ∑
v∈S\T

(
dimF L(Dv)− dimF H0(Gv, ad 0ρ)

)
.

From now on for the rest of the notes, we specialise to the case that F is a number field, S is a
finite set of finite places of F including all the places lying over p, and we set G = GF,S, Gv =
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GFv for v ∈ S. (Since G = GF,S, note in particular that all deformations we are considering are
unramified outside of S.) We then employ standard results on Galois cohomology that can be
found in [Mil06]. In particular, we have Hn(GFv , ad ρ) = (0) if n ≥ 3, and

Hn(GF,S, ad 0ρ) ∼= ⊕v realHn(GFv , ad 0ρ) = (0)

if n ≥ 3 (the vanishing of the local cohomology groups follows as p > 2, so GFv has order
coprime to that of ad 0ρ). Consequently, Hn

S ,T(GF,S, ad 0ρ) = (0) if n > 3.

We now employ the local and global Euler characteristic formulas. The global formula gives

χ(GF,S, ad 0ρ) = −∑
v|∞

dimF H0(GFv , ad 0ρ) + [F : Q](n2 − 1),

and the local formula gives

∑
v∈S

χ(GFv , ad 0ρ) + ∑
v∈T

χ(GFv , ad ρ) = −#T + ∑
v∈S

χ(GFv , ad 0ρ)

= −#T + ∑
v|p

(n2 − 1)[Fv : Qp]

= −#T + (n2 − 1)[F : Q],

so that

χS ,T(GF,S, ad 0ρ) = #T−∑
v|∞

dimF H0(GFv , ad 0ρ)+ ∑
v∈S\T

(
dimF L(Dv)− dimF H0(GFv , ad 0ρ)

)
.

Assume now that ρ is absolutely irreducible; then H0(GF,S, ad 0ρ) = (0), so H0
S ,T(GF,S, ad 0ρ) =

(0). To say something sensible about H1
S ,T(GF,S, ad 0ρ) we still need to control the H2

S ,T and
H3
S ,T . Firstly, the above long exact sequence gives us in particular the exact sequence

H1(GF,S, ad 0ρ) ⊕v∈T H1(GFv , ad 0ρ)⊕v∈S\T H1(GFv , ad 0ρ)/L(Dv)

H2
S ,T(GF,S, ad 0ρ) H2(GF,S, ad 0ρ) ⊕v∈S H2(GFv , ad 0ρ)

H3
S ,T(GF,S, ad 0ρ) 0.

On the other hand, from the Poitou–Tate exact sequence [Mil06, Prop. 4.10, Chapter 1] we
have an exact sequence

H1(GF,S, ad 0ρ) ⊕v∈SH1(GFv , ad 0ρ) H1(GF,S, (ad 0ρ)∨(1))∨

H2(GF,S, ad 0ρ) ⊕v∈SH2(GFv , ad 0ρ) H0(GF,S, (ad 0ρ)∨(1))∨ 0.

Note that ad 0ρ is self-dual under the trace pairing, so we can and do identify (ad 0ρ)∨(1) and
(ad 0ρ)(1). If we let L(Dv)⊥ ⊆ H1(GFv , (ad 0ρ)(1)) denote the annihilator of L(Dv) under the
pairing coming from Tate local duality, and we define

H1
S ,T(GF,S, (ad 0ρ)(1)) := ker

(
H1(GF,S, (ad 0ρ)(1))→ ⊕v∈S\T

(
H1(GFv , (ad 0ρ)(1))/L(Dv)

⊥
))

,
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then we deduce that we have an exact sequence

H1(GF,S, ad 0ρ) ⊕v∈T H1(GFv , ad 0ρ)⊕v∈S\T H1(GFv , ad 0ρ)/L(Dv)

H1
S ,T(GF,S, ad 0ρ(1))∨ H2(GF,S, ad 0ρ) ⊕v∈S H2(GFv , ad 0ρ)

H0(GF,S, ad 0ρ(1))∨ 0,

and comparing with the diagram above shows that

H3
S ,T(GF,S, ad 0ρ) ∼= H0(GF,S, ad 0ρ(1))∨,

H2
S ,T(GF,S, ad 0ρ) ∼= H1

S ,T(GF,S, ad 0ρ(1))∨.

Combining all of this, we see that

dimF H1
S ,T(GF,S, ad 0ρ) =#T −∑

v|∞
dimF H0(GFv , ad 0ρ) + ∑

v∈S\T

(
dimF L(Dv)− dimF H0(GFv , ad 0ρ)

)
+ dimF H1

S ,T(GF,S, ad 0ρ(1))− dimF H0(GF,S, ad 0ρ(1)).

Now, similar arguments to those we used above give us the following result (cf. Section 2.2
of [CHT08]).

3.24. Proposition. (1)There is a canonical isomorphism

Hom(m
R�T
S

/(m2
R�T
S

,mRloc
S ,T

, λ), F) ∼= H1
S ,T(GF,S, ad 0ρ).

(2) R�T
S is the quotient of a power series ring in dimF H1

S ,T(GF,S, ad 0ρ) variables over Rloc
S ,T .

(3) The Krull dimension of Runiv
S is at least

∑
v∈S

(
Krull dim.(R�

ρ|GFv
/I(Dv))− n2

)
−∑

v|∞
dimF H0(GFv , ad 0ρ)− dimF H0(GF,S, ad 0ρ(1)).

3.25. Finiteness of maps between global deformation rings. Suppose that F′/F is a finite
extension of number fields, and that S′ is the set of places of F′ lying over S. Assume that
ρ|GF′ ,S′

is absolutely irreducible. Then restricting the universal deformation ρuniv of ρ to GF′ ,S′

gives a ring homomorphism Runiv
ρ|GF′ ,S′

→ Runiv
ρ . The following very useful fact is due to Khare

and Wintenberger.

3.26. Proposition. The ring Runiv
ρ is a finitely generated Runiv

ρ|GF′ ,S′
-module.

Proof. See e.g. Lemma 1.2.3 of [BLGGT10]. (Note that it is easy to see that it is quasifinite, but
finiteness uses Exercise 3.8.) �
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3.27. Local deformation rings with l = p. The local deformation rings when l = p are one
of the most difficult and interesting parts of the subject; for example, a detailed computation
of deformation rings with l = p = 3 was at the heart of the eventual proof of the Taniyama–
Shimura–Weil conjecture, and many of the recent improvements to automorphy lifting theo-
rems have relied on deep results on these deformation rings due to Kisin.

In this course, we will ignore all of these difficulties, and work only with the “Fontaine–
Laffaille” case. This is already enough to have important applications. In this case the local
deformation rings are smooth; for the most part, the deformation rings that we care about
when l = p aren’t smooth, but the situation is in some sense worse than this, in that we don’t
have a concrete description of the rings in most cases, or even basic information such as the
number of irreducible components of the generic fibre.

Assume that K/Qp is a finite unramified extension, and assume that L is chosen large
enough to contain the images of all embeddings K ↪→ Qp. For each σ : K ↪→ L, let Hσ be a set
of n distinct integers, such that the difference between the maximal and minimal elements of
Hσ is less than or equal to p− 2.

3.28. Theorem. There is a unique reduced, p-torsion free quotient R�
ρ,χ,cr,{Hσ} of R�

ρ,χ with the property

that a continuous homomorphism ψ : R�
ρ,χ → Qp factors through R�

ρ,χ,cr,{Hσ} if and only if ψ ◦ ρ� is

crystalline, and for each σ : K ↪→ L, we have HTσ(ψ ◦ ρ�) = Hσ.

Furthermore, dim R�
ρ,χ,cr,{Hσ} = n2 + [Fv : Qp]

1
2 n(n − 1), and in fact R�

ρ,χ,cr,{Hσ} is formally

smooth over O, i.e. it is isomorphic to a power series ring in n2 − 1 + [Fv : Qp]
1
2 n(n− 1) variables

over O.

In fact, if we remove the assertion of formal smoothness, Theorem 3.28 still holds with-
out the assumption that K/Qp is unramified, and without any assumption on the difference
between the maximal and minimal elements of the Hσ, but in this case it is a much harder
theorem of Kisin ([Kis08]). In any case, the formal smoothness will be important for us.

Theorem 3.28 is essentially a consequence of Fontaine–Laffaille theory [FL82], which is a
form of integral p-adic Hodge theory; that is, it classifies the Galois-stable lattices in crystalline
representations, under the assumptions we’ve made above. The first proof of Theorem 3.28
was essentially in Ramakrishna’s thesis [Ram93], and the general result is the content of section
2.4 of [CHT08].

3.29. Local deformation rings with p 6= l. In contrast to the situation when l = p, we will
need to consider several deformation problems when l 6= p. We will restrict ourselves to the
two-dimensional case. Let K/Ql be a finite extension, with l 6= p, and fix n = 2. As we
saw in Section 2.6, there is essentially an incompatibility between the wild inertia subgroup of
GK and the p-adic topology on GL2(O), which makes it possible to explicitly describe the p-
adic representations of GK, and consequently the corresponding universal deformation rings.
This was done in varying degrees of generality over a long period of time; in particular, in
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the general n-dimensional case we highlight Section 2.4.4 of [CHT08] and [Cho09], and in the
2-dimensional setting [Pil] and [Sho13]. In fact [Sho13] gives a complete description of the
deformation rings for a fixed inertial type.

We will content ourselves with recalling some of the basic structural results, and with giving
a sketch of how the results are proved in one particular case (see Exercise 3.34 below).

3.30. Deformations of fixed type. Recall from Proposition 2.17 that given a representation
ρ : GK → GL2(Qp) there is a Weil–Deligne representation WD(ρ) associated to ρ. If WD =

(r, N) is a Weil–Deligne representation, then we write WD|IK for (r|IK , N), and call it an inertial
WD-type.

Fix ρ : GK → GL2(F). Then (assuming as usual that L is sufficiently large) we have the
following general result on R�

ρ,χ (see e.g. Theorem 3.3.1 of [Boe]).

3.31. Theorem. R�
ρ,χ has Krull dimension 4, and the generic fibre R�

ρ,χ[1/p] has Krull dimension 3.
Furthermore:

(a) The function which takes a Qp-point x : R�
ρ,χ[1/p]→ Qp to (the isomorphism class of) WD(x ◦

ρ�)|IK (forgetting N) is constant on the irreducible components of R�
ρ,χ[1/p].

(b) The irreducible components of R�
ρ,χ[1/p] are all formally smooth, and there are only finitely many

of them.

In the light of Theorem 3.31, we make the following definition. Let τ be an inertial WD-
type. Then there is a unique reduced, p-torsion free quotient R�

ρ,χ,τ of R�
ρ,χ with the property

that a continuous homomorphism ψ : R�
ρ,χ → Qp factors through R�

ρ,χ,τ if and only if ψ ◦ ρ�

has inertial Weil–Deligne type τ. (Of course, for all but finitely many τ, we will just have
R�

ρ,χ,τ = 0.) By Theorem 3.31 we see that if R�
ρ,χ,τ is nonzero then it has Krull dimension 4, and

its generic fibre is irreducible and formally smooth.

3.32. Taylor–Wiles deformations. As the name suggests, the deformations that we consider
in this subsection will be of crucial importance for the Taylor–Wiles–Kisin method. Write k for
the residue field of K, and suppose that ρ is unramified, that ρ(FrobK) has distinct eigenvalues,
and that #k ≡ 1 (mod p). Suppose also that χ is unramified.

3.33. Lemma. Suppose that (#k − 1) is exactly divisible by pm. Then R�
ρ,χ
∼= OJx, y, B, uK/((1 +

u)pm − 1). Furthermore, if ϕ ∈ GK is a lift of FrobK, then ρ�(ϕ) is conjugate to a diagonal matrix.

3.34. Exercise. Prove this lemma as follows. Note firstly that ρ�(PK) = {1}, because ρ(PK) =

{1}, so ρ�(PK) is a pro-l-subgroup of the pro-p-group ker(GL2(R�
ρ,χ)→ GL2(F)).

Let ϕ be a fixed lift of FrobK to GK/PK, and σ a topological generator of IK/PK, which as in

Section 2.6 we can choose so that ϕ−1σϕ = σ#k. Write ρ(ϕ) =

(
α 0
0 β

)
, and fix lifts α, β ∈ O

of α, β.
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Then we will show that we can take

ρ�(ϕ) =

(
1 y
x 1

)−1(
α + B 0

0 χ(ϕ)/(α + B)

)(
1 y
x 1

)
,

ρ�(σ) =

(
1 y
x 1

)−1(
1 + u 0

0 (1 + u)−1

)(
1 y
x 1

)
.

(1) Let ρ : GK → GL2(A) be a lift of ρ. By Hensel’s lemma, there are a, b ∈ mA such that
ρ(ϕ) has characteristic polynomial (X − (α + a))(X − (β + b)). Show that there are x,
y ∈ mA such that

ρ(ϕ)

(
1
x

)
= (α + a)

(
1
x

)
and

ρ(ϕ)

(
y
1

)
= (β + b)

(
y
1

)
(2) Since ρ is unramified, ρ(σ) = 1, so we may write(

1 y
x 1

)−1

ρ(σ)

(
1 y
x 1

)
=

(
1 + u v

w 1 + z

)
with u, v, w, z ∈ mA. Use the commutation relation between ρ(ϕ) and ρ(σ) to show
that v = w = 0.

(3) Use the fact that χ is unramified to show that 1 + z = (1 + u)−1.
(4) Show that (1 + u)#k = 1 + u, and deduce that (1 + u)#k−1 = 1.
(5) Deduce that (1 + u)pm

= 1.
(6) Complete the proof of the lemma.

3.35. Taylor’s “Ihara avoidance” deformations. The following deformation rings are crucial
to Taylor’s arguments in [Tay08] which avoid the use of Ihara’s lemma in proving automorphy
lifting theorems. When n = 2 these arguments are not logically necessary, but they are crucial
to all applications of automorphy lifting theorems when n > 2.

Continue to let K/Ql be a finite extension, and assume that ρ is the trivial 2-dimensional
representation, that #k ≡ 1 (mod p), that χ is unramified, and that χ is trivial. Again, we
see that ρ�(PK) is trivial, so that ρ� is determined by the two matrices ρ�(σ) and ρ�(ϕ), as in
Exercise 3.34. A similar analysis then yields the following facts. (For the proof of the analogous
results in the n-dimensional case, see Section 3 of [Tay08].)

3.36. Definition. (1) Let Pur be the minimal ideal of R�
ρ,χ modulo which ρ�(σ) = 12.

(2) For any root of unity ζ, we let Pζ be the minimal ideal of R�
ρ,χ modulo which ρ�(σ)

has characteristic polynomial (X− ζ)(X− ζ−1).
(3) LetPm be the minimal ideal of R�

ρ,χ modulo which ρ�(σ) has characteristic polynomial

(X− 1)2, and #k(tr ρ�(ϕ))2 = (1 + #k)2 det ρ�(ϕ).
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[The motivation for the definition of Pm is that we are attempting to describe the unipotent

liftings, and if you assume that ρ�(σ) =

(
1 1
0 1

)
, this is the relation forced on ρ�(ϕ).]

3.37. Proposition. The minimal primes of R�
ρ,χ are precisely

√
Pur,

√
Pm, and the

√
Pζ for ζ 6= 1.

We have
√
P1 =

√
Pur ∩

√
Pm.

Write R�
ρ,χ,1, R�

ρ,χ,ζ , R�
ρ,χ,ur, R�

ρ,χ,m for the corresponding quotients of R�
ρ,χ.

3.38. Theorem. We have R�
ρ,χ,1/λ = R�

ρ,χ,ζ/λ. Furthermore,

(1) R�
ρ,χ,ζ [1/p] is formally smooth and geometrically irreducible of dimension n2.

(2) R�
ρ,χ,ur is formally smooth over O (and thus geometrically irreducible) of relative dimension

n2.
(3) R�

ρ,χ,m[1/p] is formally smooth and geometrically irreducible of dimension n2.
(4) Spec R�

ρ,χ,1 = Spec R�
ρ,χ,ur∪Spec R�

ρ,χ,m and Spec R�
ρ,χ,1/λ = Spec R�

ρ,χ,ur/λ∪Spec R�
ρ,χ,m/λ

are both a union of two irreducible components, and have relative dimension n2.

Proof. See Proposition 3.1 of [Tay08] for an n-dimensional version of this result. In the 2-
dimensional case it can be proved by explicitly computing equations for the lifting rings;
see [Sho13]. �

4. MODULAR AND AUTOMORPHIC FORMS, AND THE LANGLANDS CORRESPONDENCE

4.1. The local Langlands correspondence (and the Jacquet–Langlands correspondence). Weil–
Deligne representations are the objects on the “Galois” side of the local Langlands correspon-
dence. We now describe the objects on the “automorphic” side. These will be representations
(π, V) of GLn(K) on (usually infinite-dimensional) C-vector spaces.

4.2. Definition. We say that (π, V) is smooth if for any vector v ∈ V, the stabiliser of v in
GLn(K) is open. We say that (π, V) is admissible if it is smooth, and for any open subgroup
U ⊂ V, VU is finite-dimensional.

For example, a smooth one-dimensional representation of K× is the same thing as a contin-
uous character.

4.3. Fact. (1) If π is smooth and irreducible then it is admissible.
(2) Schur’s lemma is true, and in particular if π is smooth, admissible and irreducible then

it has a central character χπ : K× → C×.

In general these representations are classified in terms of the (super)cuspidal representa-
tions. We won’t need the details of this classification, and accordingly we won’t define the
cuspidal representations.
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Let B be the subgroup of GL2(K) consisting of upper-triangular matrices. Define δ : B →
K× by

δ

((
a ∗
0 d

))
= ad−1.

Given two characters χ1, χ2 : K× → C×, we may view χ1 ⊗ χ2 as a representation of B by

χ1 ⊗ χ2 :

(
a ∗
0 d

)
7→ χ1(a)χ2(d).

Then we define a representation χ1 × χ2 of GL2(K) by

χ1 × χ2 = n-IndGL2(K)
B (χ1 ⊗ χ2)

:= {ϕ : GL2(K)→ C|ϕ(hg) = (χ1 ⊗ χ2)(h)|δ(h)|1/2
K ϕ(g) for all h ∈ B, g ∈ GL2(K)}

where GL2(K) acts by (gϕ)(g′) = ϕ(g′g), and we only allow smooth ϕ, i.e. functions for which
there is an open subgroup U of GL2(K) such that ϕ(gu) = ϕ(g) for all g ∈ GL2(K), u ∈ U.

The representation χ1 × χ2 has length at most 2, but is not always irreducible. It is always
the case that χ1× χ2 and χ2× χ1 have the same Jordan-Hölder factors. If χ1× χ2 is irreducible
then we say that it is a principal series representation.

4.4. Fact. (1) χ1 × χ2 is irreducible unless χ1/χ2 = | · |±1.
(2) χ× χ| · | has a one-dimensional irreducible subrepresentation, and the corresponding

quotient is irreducible. We denote this quotient by Sp2(χ).

We will let χ1 � χ2 denote χ1 × χ2 unless χ1/χ2 = | · |±1, and we let χ � χ| · | = χ| · |� χ =

Sp2(χ). (While this notation may seem excessive, we remark that a similar construction is
possible for n-dimensional representations, which is where the notation comes from.) These
representations, and one-dimensional characters, are all the non-cuspidal irreducible admissi-
ble representations of GL2(K). We say that an irreducible smooth representation π of GL2(K)
is discrete series if it is of the form Sp2(χ) or is cuspidal.

The local Langlands correspondence provides a unique family of bijections recK from the
set of irreducible smooth representations of GLn(K) to the set of n-dimensional Frobenius
semisimple Weil–Deligne representations of WK over C, satisfying a list of properties. In order
to be uniquely determined, one needs to formulate the correspondence for all n at once, and
the properties are expressed in terms of L- and ε-factors, neither of which we have defined. Ac-
cordingly, we will not make a complete statement of the local Langlands correspondence, but
will rather state the properties of the correspondence that we will need to use. It is also pos-
sible to define the correspondence in global terms, as we will see later, and indeed at present
the only proof of the correspondence is global.

4.5. Fact. We now list some properties of recK for n = 1, 2.

(1) If n = 1 then recK(π) = π ◦Art−1
K .

(2) If χ is a smooth character, recK(π ⊗ (χ ◦ det)) = recK(π)⊗ recK(χ).
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(3) recK(Sp2(χ)) = Sp2(recK(χ)).
(4) If χ1/χ2 6= | · |±1, then recK(χ1 � χ2) = recK(χ1)⊕ recK(χ2).
(5) recK(π) is unramified (i.e. N = 0 and the restriction to IK is trivial) if and only if

π = χ1 � χ2 with χ1/χ2 6= | · |±1 both unramified characters (i.e. trivial on O×K ),
or π = χ ◦ det for some unramified character χ. These conditions are equivalent to
πGL2(OK) 6= 0, in which case it is one-dimensional.

(6) π is discrete series if and only if recK(π) is indecomposable, and cuspidal if and only
if recK(π) is irreducible.

4.6. Hecke operators. Let ϕ be a compactly supported C-valued function on GL2(OK)\GL2(K)/ GL2(OK).
Concretely, these are functions which vanish outside of a finite number of double cosets GL2(OK)g GL2(OK).
The set of such functions is in fact a ring, with the multiplication being given by convolution.
To be precise, we fix µ the (left and right) Haar measure on GL2(K) such that µ(GL2(OK)) = 1,
and we define

(ϕ1 ∗ ϕ2)(x) =
∫

GL2(K)
ϕ1(g)ϕ2(g−1x)dµg.

Of course, this integral is really just a finite sum. One can check without too much difficulty
that the ringH of these Hecke operators is just C[T, S±1], where T is the characteristic function
of

GL2(OK)

(
vK 0
0 1

)
GL2(OK)

and S is the characteristic function of

GL2(OK)

(
vK 0
0 vK

)
GL2(OK).

The algebra H acts on an irreducible admissible GL2(K)-representation π. Given ϕ ∈ H,
we obtain a linear map π(ϕ) : π → πGL2(OK), by

π(ϕ)(v) =
∫

GL2(K)
ϕ(g)π(g)vdµg.

In particular, if π is unramified then π(ϕ) acts via a scalar on the one-dimensional C-vector
space πGL2(OK). We will now compute this scalar explicitly.

4.7. Exercise. (1) Show that we have decompositions

GL2(OK)

(
vK 0
0 vK

)
GL2(OK) =

(
vK 0
0 vK

)
GL2(OK),

and

GL2(OK)

(
vK 0
0 1

)
GL2(OK) =

 ä
α∈OK (mod vK)

(
vK α

0 1

)
GL2(OK)

ä
(

1 0
0 vK

)
GL2(OK).

(2) Suppose that π = (χ| · |1/2) ◦ det with χ unramified. Show that πGL2(OK) = π, and
that S acts via χ(vK)

2(#k)−1, and that T acts via (#k1/2 + #k−1/2)χ(vK).



MODULARITY LIFTING THEOREMS 27

(3) Suppose that χ1, χ2 are unramified characters and that χ1 6= χ2| · |±1
K . Let π =

χ1 � χ2. Using the Iwasawa decomposition GL2(K) = B(K)GL2(OK), check that

πGL2(OK) is one-dimensional, and is spanned by a function ϕ0 with ϕ0

((
a b
0 d

))
=

χ1(a)χ2(d)|a/d|1/2. Show that S acts on πGL2(OK) via (χ1χ2)(vK), and that T acts via
#k1/2(χ1(vK) + χ2(vK)).

4.8. Modular forms and automorphic forms on quaternion algebras. Let F be a totally real
field, and let D/F be a quaternion algebra with centre F, i.e. central simple F-algebra of dimen-
sion 4. Letting S(D) be the set of places v of F at which D is ramified, i.e. for which D⊗F Fv is
a division algebra (equivalently, is not isomorphic to M2(Fv)), it is known that S(D) classifies
D up to isomorphism, and that S(D) can be any finite set of places of D of even cardinality
(so for example S(D) is empty if and only if D = M2(F)). We will now define some spaces of
automorphic forms on D×.

For each v|∞ fix kv ≥ 2 and ηv ∈ Z such that kv + 2ηv − 1 = w is independent of v. These
will be the weights of our modular forms. Let GD be the algebraic group over Q such that for
any Q-algebra R, GD(R) = (D⊗Q R)×. For each place v|∞ of F, we define a subgroup Uv of
(D ⊗F Fv)× as follows: if v ∈ S(D) we let Uv = (D ⊗F Fv)× ∼= H×, and if v /∈ S(D), so that

(D⊗F Fv)× ∼= GL2(R), we take Uv = R× SO(2). If γ =

(
a b
c d

)
∈ GL2(R) and z ∈ C−R, we

let j(γ, z) = cz + d. One checks easily that j(γδ, z) = j(γ, δz)j(δ, z).

We now define a representation (τv, Wv) of Uv over C for each v|∞. If v ∈ S(D), we have
Uv ↪→ GL2(Fv) ∼= GL2(C) which acts on C2, and we let (τv, Wv) be the representation

(Symkv−2C2)⊗ (∧2C2)ηv .

If v /∈ S(D), then we have Uv ∼= R× SO(2), and we take Wv = C, with

τv(γ) = j(γ, i)kv(det γ)ηv−1.

We write U∞ = ∏v|∞ Uv, W∞ = ⊗v|∞Wv, τ∞ = ⊗v|∞τv. Let A = AQ be the adeles of
Q, and let A∞ be the finite adeles. We then define SD,k,η to be the space of functions ϕ :
GD(Q)\GD(A)→W∞ which satisfy

(1) ϕ(gu∞) = τ∞(u∞)−1 ϕ(g) for all u∞ ∈ U∞ and g ∈ GD(A).
(2) There is a nonempty open subset U∞ ⊂ GD(A

∞) such that ϕ(gu) = ϕ(g) for all
u ∈ U∞, g ∈ GD(A).

(3) Let S∞ denote the infinite places of F. If g ∈ GD(A
∞) then the function

(C−R)S∞−S(D) →W∞

defined by

h∞(i, . . . , i) 7→ τ∞(h∞)φ(gh∞)
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is holomorphic. [Note that this function is well-defined by the first condition, as U∞ is
the stabiliser of (i, . . . , i).]

(4) If S(D) = ∅ then for all g ∈ GD(A) = GL2(AF), we have

∫
F\AF

ϕ(

(
1 x
0 1

)
g)dx = 0.

If in addition we have F = Q, then we furthermore demand that for all g ∈ GD(A
∞),

h∞ ∈ GL2(R)+ the function ϕ(gh∞)|Im (h∞i)|k/2 is bounded on C−R.

There is a natural action of GD(A
∞) on SD,k,η by right-translation, i.e. (gϕ)(x) := ϕ(xg).

4.9. Exercise. While this definition may at first sight appear rather mysterious, it is just a
generalisation of the familiar spaces of cuspidal modular forms. For example, take F = Q,
S(D) = ∅, k∞ = k, and η∞ = 0. Define

U1(N) = {g ∈ GL2(Ẑ)|g ≡
(
∗ ∗
0 1

)
(mod N)}.

(1) Let GL2(Q)+ be the subgroup of GL2(Q) consisting of matrices with positive determi-
nant. Show that the intersection of GL2(Q)+ and U1(N) inside GL2(A

∞) is Γ1(N), the

matrices in SL2(Z) congruent to

(
1 ∗
0 1

)
(mod N). [Hint: what is Ẑ× ∩Q×?]

(2) Use the facts that GL2(A) = GL2(Q)U1(N)GL2(R)+ [which follows from strong ap-
proximation for SL2 and the fact that det U1(N) = Ẑ×] and that A× = Q×Ẑ×R×>0 to

show that SU1(N)
D,k,0 can naturally be identified with a space of functions

ϕ : Γ1(N)\GL2(R)+ → C

satisfying

ϕ(gu∞) = j(u∞, i)−k ϕ(g)

for all g ∈ GL2(R)+, u∞ ∈ R×>0 SO(2).
(3) Show that the stabiliser of i in GL2(R)+ is R×>0 SO(2). Hence deduce a natural iso-

morphism between SU1(N)
D,k,0 and Sk(Γ1(N)), which takes a function ϕ as above to the

function (gi 7→ j(g, i)k ϕ(g)), g ∈ GL2(R)+.

The case that S∞ ⊂ S(D) is particularly simple; then if U ⊂ GD(A
∞) is an open subgroup,

then SU
D,2,0 is just the set of C-valued functions on

GD(Q)\GD(A)/GD(R)U,

which is a finite set. When proving modularity lifting theorems, we will be able to reduce to
the case that S∞ ⊂ S(D); when this condition holds, we say that D is a definite quaternion
algebra.
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We will now examine the action of Hecke operators on these spaces. Choose an orderOD ⊂
D (that is, a Z-subalgebra of D which is finitely generated as a Z-module and for whichOD⊗Z

Q
∼−→ D). For example, if D = M2(F), one may take OD = M2(OF).

For all but finite many finite places v of F we can choose an isomorphism Dv ∼= M2(Fv) such
that this isomorphism induces an isomorphism OD ⊗OF OFv

∼−→ M2(OFv). Then GD(A
∞) is

the subset of elements g = (gv) ∈ ∏v-∞ GD(Fv) such that gv ∈ GL2(OFv) for almost all v.

We now wish to describe certain irreducible representations of GD(A
∞) in terms of irre-

ducible representations of the GL2(Fv). More generally, we have the following construction.
Let I be an indexing set and let Vi be a C-vector space. Suppose that we are given 0 6= ei ∈ Vi

for almost all i (that is, all but finitely many i). Then we define the restricted tensor product

⊗′{ei}Vi := lim−→
J⊂I
⊗i∈JVi,

where the colimit is over the finite subsets J ⊆ I containing all the places for which ei is not
defined, and where the transition maps for the colimit are given by “tensoring with the ei”. It
can be checked that ⊗′{ei}

Vi
∼= ⊗′{ fi}

Vi if for almost all i, ei and fi span the same line.

4.10. Definition. We call a representation (π, V) of GD(A
∞) admissible if

(1) for any x ∈ V, the stabiliser of x is open, and
(2) for any U ⊂ GD(A

∞) an open subgroup, dimC VU < ∞.

4.11. Fact. If πv is an irreducible smooth (so admissible) representation of (D ⊗F Fv)× with

π
GL2(OFv )
v 6= 0 for almost all v, then ⊗′πv := ⊗′{

π
GL2(OF,v)
v

}πv is an irreducible admissible

smooth representation of GD(A
∞), and any irreducible admissible smooth representation of

GD(A
∞) arises in this way for unique πv.

We have a global Hecke algebra, which decomposes as a restricted product of the local
Hecke algebras in the following way. For each finite place v of F we choose Uv ⊂ GD(Fv) a
compact open subgroup, such that Uv = GL2(OFv) for almost all v. Let µv be a Haar measure
on GD(Fv), chosen such that for almost all v we have µv(GL2(OFv)) = 1. Then there is a unique
Haar measure µ on GD(A

∞) such that for any Uv as above, if we set U = ∏v Uv ⊂ GD(A
∞),

then µ(U) = ∏v µv(Uv). Then there is a decomposition

Cc(U\GD(A
∞)/U)µ ∼= ⊗′{1Uv µv}Cc(Uv\GD(Fv)/Uv)µv,

and the actions of these Hecke algebras are compatible with the decomposition π = ⊗′πv.

4.12. Fact. SD,k,η is a semisimple admissible representation of GD(A
∞).

4.13. Definition. The irreducible constituents of SD,k,η are called the cuspidal automorphic rep-
resentations of GD(A

∞) of weight (k, η).
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4.14. Remark. Note that these automorphic representations do not include Maass forms or
weight one modular forms; they are the class of regular algebraic or cohomological cuspidal au-
tomorphic representations.

4.15. Fact. (Strong multiplicity one (and multiplicity one) for GL2) Suppose that S(D) = ∅.
Then every irreducible consituent of SD,k,η has multiplicity one. In fact if π (respectively π′) is
a cuspidal automorphic representation of weight (k, η) (respectively (k′, η′)) such that πv ∼= π′v
for almost all v then k = k′, η = η′, and π = π′.

4.16. Fact. (The theory of newforms) Suppose that S(D) = ∅. If n is an ideal of OF, write

U1(n) = {g ∈ GL2(ÔF)|g ≡
(
∗ ∗
0 1

)
(mod n)}.

If π is a cuspidal automorphic representation of GD(A
∞) then there is a unique ideal n such

that πU1(n) is one-dimensional, and πU1(m) 6= 0 if and only if n|m. We call n the conductor (or
sometimes the level) of π.

Analogous to the theory of admissible representations of GL2(K), K/Qp finite that we
sketched above, there is a theory of admissible representations of D×, D a nonsplit quater-
nion algebra over K. Since D×/K× is compact, any irreducible smooth representation of D×

is finite-dimensional. There is a bijection JL , the local Jacquet–Langlands correspondence, from
the irreducible smooth representations of D× to the discrete series representations of GL2(K),
determined by a character identity.

4.17. Fact (The global Jacquet–Langlands correspondence). We have the following facts about
GD(A

∞).

(1) The only finite-dimensional cuspidal automorphic representations of GD(A
∞) occur if

S(D) ⊃ S∞ and kv = 2 for all v ∈ S∞, in which case there are 1-dimensional represen-
tations, which factor through the reduced determinant.

(2) There is a bijection JL from the infinite-dimensional cuspidal automorphic represen-
tations of GD(A

∞) of weight (k, η) to the cuspidal automorphic representations of
GL2(A

∞
F ) of weight (k, η) which are discrete series for all finite places v ∈ S(D). Fur-

thermore if v /∈ S(D) then JL (π)v = πv, and if v ∈ S(D) then JL (π)v = JL (πv).

4.18. Remark. We will use the global Jacquet–Langlands correspondence together with base
change (see below) to reduce ourselves to considering the case that S(D) = S∞ when proving
automorphy lifting theorems.

4.19. Galois representations associated to automorphic representations.

4.20. Fact (The existence of Galois representations associated to regular algebraic cuspidal au-
tomorphic representations). Let π be a regular algebraic cuspidal automorphic representation
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of GL2(A
∞
F ) of weight (k, η). Then there is a CM field Lπ and for each finite place λ of Lπ a

continuous irreducible Galois representation

rλ(π) : GF → GL2(Lπ,λ)

such that

(1) if πv is unramified and v does not divide the residue characteristic of λ, then rλ(π)|GFv

is unramified, and the characteristic polynomial of Frobv is X2 − tvX + (#kv)sv, where

tv and sv are the eigenvalues of Tv and Sv respectively on π
GL2(OFv )
v . [Note that by the

Chebotarev density theorem, this already characterises rλ(π) up to isomorphism.]
(2) More generally, WD(rλ(π)|GFv

)F−ss ∼= recFv(πv ⊗ |det |−1/2).
(3) If v divides the residue characteristic of λ then rλ(π)|GFv

is de Rham with τ-Hodge-
Tate weights ητ , ητ + kτ − 1, where τ : F ↪→ Lπ ⊂ C is an embedding lying over v. If
πv is unramified then rλ(π)|GFv

is crystalline.
(4) If cv is a complex conjugation, then det rλ(π)(cv) = −1.

4.21. Remark. Using the Jacquet–Langlands correspondence, we get Galois representations for
the infinite-dimensional cuspidal automorphic representations of GD(A

∞) for any D. In fact,
the proof actually uses the Jacquet–Langlands correspondence; in most cases, you can transfer
to a D for which S(D) contains all but one infinite place, and the Galois representations are
then realised in the étale cohomology of the associated Shimura curve. The remaining Galois
representations are constructed from these ones via congruences.

4.22. Fact (Cyclic base change). Let E/F be a cyclic extension of totally real fields of prime
degree. Let Gal(E/F) = 〈σ〉 and let Gal(E/F)∨ = 〈δE/F〉 (here Gal(E/F)∨ is the dual abelian
group of Gal(E/F)). Let π be a cuspidal automorphic representation of GL2(A

∞
F ) of weight

(k, η). Then there is a cuspidal automorphic representation BC E/F(π) of GL2(A
∞
E ) of weight

(BC E/F(k), BC E/F(η)) such that

(1) for all finite places v of E, recEv(BC E/F(π)v) = (recFv|F (πv|F ))|WEv
. In particular,

rλ(BCE/F(π)) ∼= rλ(π)|GE .
(2) BC E/F(k)v = kv|F , BC E/F(η)v = ηv|F .
(3) BC E/F(π) ∼= BC E/F(π

′) if and only if π ∼= π′ ⊗ (δi
E/F ◦ArtF ◦det) for some i.

(4) A cuspidal automorphic representation π of GL2(A
∞
E ) is in the image of BC E/F if and

only if π ◦ σ ∼= π.

4.23. Definition. We say that r : GF → GL2(Qp) is modular (of weight (k, η)) if it is isomorphic
to i(rλ(π)) for some cuspidal automorphic representation π (of weight (k, η)) and some i :
Lπ ↪→ Qp lying over λ.

4.24. Proposition. Suppose that r : GF → GL2(Qp) is a continuous representation, and that E/F is
a finite solvable Galois extension of totally real fields. Then r|GE is modular if and only if r is modular.

4.25. Exercise. Prove the above proposition as follows.
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(1) Use induction to reduce to the case that E/F is cyclic of prime degree.
(2) Suppose that r|GE is modular, say r|GE

∼= i(rλ(π)). Use strong multiplicity one to
show that π ◦ σ ∼= π. Deduce that there is an automorphic representation π′ such that
BC E/F(π

′) = π.
(3) Use Schur’s lemma to deduce that there is a character χ of GF such that r ∼= i(rλ(π

′))⊗
χ. Conclude that r is modular.

We can make use of this result to make considerable simplifications in our proofs of mod-
ularity lifting theorems. It is frequently employed in conjunction with the following fact from
class field theory.

4.26. Fact (Lemma 2.2 of [Tay03]). Let K be a number field, and let S be a finite set of places of
K. For each v ∈ S, let Lv be a finite Galois extension of Kv. Then there is a finite solvable Galois
extension M/K such that for each place w of M above a place v ∈ S there is an isomorphism
Lv ∼= Mw of Kv-algebras.

Note that we are allowed to have infinite places in S, so that if K is totally real we may
choose to make L totally real by an appropriate choice of the Lv.

5. THE TAYLOR–WILES–KISIN METHOD

Our aim now is to prove the following theorem. Let p > 3 be prime, and let L/Qp be a
finite extension with ring of integers O, maximal ideal λ, and residue field F = O/λ. Let F be
a totally real number field, and assume that L is sufficiently large that L contains the images of
all embeddings F ↪→ L.

5.1. Theorem. Let ρ, ρ0 : GF → GL2(O) be two continuous representations, such that ρ = ρ

(mod λ) = ρ0 (mod λ). Assume that ρ0 is modular, and that ρ is geometric. Assume further that
the following properties hold.

(1) For all σ : F ↪→ L, HTσ(ρ) = HTσ(ρ0), and contains two distinct elements.
(2) • For all v|p, ρ|GFv

and ρ0|GFv
are crystalline.

• p is unramified in F.
• For all σ : F ↪→ L, the elements of HTσ(ρ) differ by at most p− 2.

(3) Im ρ ⊇ SL2(Fp).

Then ρ is modular.

5.2. The integral theory of automorphic forms. In order to prove Theorem 5.1, we will need
to study congruences between automorphic forms. In order to do this, it is convenient to work
with automorphic forms on GD(A

∞
F ), where S(D) = S∞. In order to do this, assume that

[F : Q] is even. (We will reduce to this case by base change.) Then such a D exists, and we
have GD(A

∞) ∼= GL2(A
∞
F ), and (D⊗Q R)×/(F⊗Q R)× is compact.
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Fix an isomorphism ı : L ∼−→ C, and some k ∈ Z
Hom(F,C)
≥2 , η ∈ ZHom(F,C) with w :=

kτ + 2ητ − 1 independent of τ. Let U = ∏v Uv ⊂ GL2(A
∞
F ) be a compact open subgroup, and

let S be a finite set of finite places of F, not containing any of the places lying over p, with the
property that if v /∈ S, then Uv = GL2(OFv).

Let US := ∏v∈S Uv, write U = USUS, let ψ : US → O× be a continuous homomorphism
(which implies that it has open kernel), and let χ0 : A×F /F× → C× be an algebraic grossen-
character with the properties that

• χ0 is unramified outside S,
• for each place v|∞, χ0|(F×v )◦(x) = x1−w, and
• χ0|(∏v∈S F×v )∩US

= ψ−1.

As in Theorem 2.41, this gives us a character

χ0,ı : A×F /F×(F×∞ )◦ → L×,

x 7→
(

∏
τ:F↪→L

τ(xp)
1−w)ı−1( ∏

τ:F↪→C

τ(x∞))w−1χ0(x).

Our spaces of (p-adic) algebraic automorphic forms will be defined in a similar way to the
more classical spaces defined in Section 4.8, but with the role of the infinite places being played
by the places lying over p. Accordingly, we define coefficient systems in the following way.

Let Λ = Λk,η,ı = ⊗τ:F↪→CSymkτ−2(O2)⊗ (∧2O2)⊗ητ , and let GL2(OF,p) := ∏v|p GL2(OFv)

act on Λ via ı−1τ on the τ-factor. In particular, Λ⊗O,ı C ∼= ⊗τ:F↪→CSymkτ−2(C2)⊗ (∧2C2)⊗ητ ,
which has an obvious action of GL2(F∞), and the two actions of GL2(OF,(p)) (via its embed-
dings into GL2(OF,p) and GL2(F∞)) are compatible.

Let A be finite O-module. Then we define S(U, A) = Sk,η,ı,ψ,χ0(U, A) to be the spaces of
functions

φ : D×\GL2(A
∞
F )→ Λ⊗O A

such that for all g ∈ GL2(A
∞
F ), u ∈ U, z ∈ (A∞

F )×, we have

φ(guz) = χ0,ı(z)ψ(uS)
−1u−1

p φ(g).

Since D×\GL2(A
∞
F )/U(A∞

F )× is finite, we see in particular that S(U,O) is a finite free O-
module. It has a Hecke action in the obvious way: let T̃ := O[Tv, Sv : v - p, v /∈ S], and let

Tv, Sv act via the usual double coset operators corresponding to

(
vv 0
0 1

)
,

(
vv 0
0 vv

)
. Let

TU be the image of T̃ in EndO(S(U,O)), so that TU is a commutative O-algebra which acts
faithfully on S(U,O), and is finite free as an O-module.

By definition, we see that

S(U,O)⊗O,ı C
∼−→ HomUS(C(ψ−1), SUS ,χ0

k,η ),
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with the map being
φ 7→ (g 7→ g−1

∞ ı(gpφ(g∞))),

and the target of the isomorphism being the elements φ ∈ Sk,η with zφ = χ0(z)φ for all z ∈
(A∞

F )×, uφ = ψ(uS)
−1φ for all u ∈ U. This isomorphism is compatible with the actions of T̃

on each side. The target is isomorphic to

⊕π HomUS(C(ψ−1), πS)⊗⊗′v/∈Sπ
GL2(OFv )
v ,

where the sum is over the cuspidal automorphic representations π of GD(A
∞) of weight (k, η),

which have central character χ0 and are unramified outside of S (so that in particular, for v /∈ S,

π
GL2(OFv )
v is a one-dimensional C-vector space).

By strong multiplicity one, this means that we have an isomorphism

TU ⊗O,ı C ∼= ∏
π as above, with HomUS (C(ψ−1),πS) 6=(0)

C

sending Tv, Sv to their eigenvalues on π
GL2(OFv )
v . (Note in particular that this shows that TU

is reduced.) This shows that there is a bijection between ı-linear ring homomorphisms θ :
TU → C and the set of π as above, where π corresponds to the character taking Tv, Sv to their
corresponding eigenvalues.

Each π has a corresponding Galois representation. Taking the product of these representa-
tions, we obtain a representation

ρmod : GF →∏
π

GL2(L) = GL2(TU ⊗O L),

which is characterised by the properties that it is unramified outside of S ∪ {v|p}, and for any
v /∈ S, v - p, we have tr ρmod(Frobv) = Tv, det ρmod(Frobv) = Sv#k(v).

Let m be a maximal ideal of TU . Then if p ( m is a minimal prime, then there is an injec-
tion θ : TU/p ↪→ L, which corresponds to some π as above. (This follows from the going-up
and going-down theorems, and the fact that TU is finitely generated and free over O.) The
semisimple mod p Galois representation corresponding to π can be conjugated to give a rep-
resentation ρm : GF → GL2(TU/m) (because the trace and determinant are valued in TU/m,
which is a finite field, and thus has trivial Brauer group). This is well defined (up to isomor-
phism) independently of the choice of p and θ (by the Cebotarev density theorem).

Since TU is finite over the complete local ring O, it is semilocal, and we can write TU =

∏m TU,m. Suppose now that ρm is absolutely irreducible. Then we have the representation

ρmod
m : GF → GL2(TU,m ⊗O L) = ∏

π

GL2(L),

where the product is over the π as above with ρπ,ı
∼= ρm. Each representation to GL2(L) can

be conjugated to lie in GL2(OL), and after further conjugation (so that the residual representa-
tions are equal to ρm, rather than just conjugate to it), the image of ρmod

m lies in the subring of
∏π GL2(OL) consisting of elements whose image modulo the maximal ideal of L lie in TU/m.
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We can then apply Lemma 3.7 to see that ρmod
m can be conjugated to lie in GL2(TU,m). We will

write ρmod
m : GF → GL2(TU,m) for the resulting representation from now on.

We will sometimes want to consider Hecke operators at places in S. To this end, let T ⊆ S
satisfy ψ|UT = 1, and choose gv ∈ GL2(Fv) for each v ∈ T. Set Wv = [UvgvUv], and define
TU ⊆ T′U ⊆ EndO(S(U,O)) by adjoining the Wv for v ∈ T. This is again commutative, and
finite and flat over O. However, it need not be reduced; indeed, we have

T′U ⊗O,ı C ∼= ⊕π ⊗v∈T { subalgebra of EndC(π
Uv
v ) generated by Wv},

so that there is a bijection between ı-linear homomorphisms T′U → C and tuples (π, {αv}v∈T),
where αv is an eigenvalue of Wv on πUv

v .

We can write
GL2(A

∞
F ) = ä

i∈I
D×giU(A∞

F )×

for some finite indexing set I, and so we have an injection S(U, A) ↪→ ⊕i∈I(Λ⊗ A), by sending
φ 7→ (φ(gi)). To determine the image, we need to consider when we can have gi = δgiuz for
δ ∈ D×, z ∈ (A∞

F )×, u ∈ U (because then φ(gi) = φ(δgiuz) = χ0,ı(z)ψ(uS)
−1u−1

p φ(gi)). We
see in this way that we obtain an isomorphism

S(U, A)
∼−→ ⊕i∈I(Λ⊗ A)(U(A∞

F )×∩g−1
i D×gi)/F× .

We need to have some control on these finite groups Gi := (U(A∞
F )× ∩ g−1

i D×gi)/F×.
(Note that they are finite, because D× is discrete in GD(AF).) Since we have assumed that
p > 3 and p is unramified in F, we see that [F(ζp) : F] > 2. Then we claim that Gi has order
prime to p. To see this, note that if g−1

i δgi is in this group, with δ ∈ D×, then δ2/ det δ ∈
D× ∩ giUg−1

i (det U), the intersection of a discrete set and a compact set, so δ2/ det δ has finite
order, i.e. is a root of unity. However any element of D generates an extension of F of degree
at most 2, so by the assumption that [F(ζp) : F] > 2, it must be a root of unity of degree prime
to p, and there is some p - N with δ2N ∈ F×, so that g−1

i δgi has order prime to p, as required.

5.3. Proposition. (1) We have S(U,O)⊗O A ∼−→ S(U, A).

(2)If V is an open normal subgroup of U with #(U/V) a power of p, then S(V,O) is a free
O[U/V(U ∩ (A∞

F )×)]-module.

Proof. (1) This is immediate from the isomorphism S(U, A)
∼−→ ⊕i∈I(Λ⊗ A)Gi , because the

fact that the Gi have order prime to p means that (Λ⊗ A)Gi = (Λ)Gi ⊗ A.

(2) Write U = äj∈J ujV(U∩ (A∞
F )×). We claim that we have GL2(A

∞
F ) = äi∈I,j∈J D×giujV(A∞

F )×,
from which the result is immediate. To see this, we need to show that if giuj = δgi′uj′vz then
i = i′ and j = j′.

That i = i′ is immediate from the definition of I, so we have uj′vu−1
j z = g−1

i δ−1gi. As above,

there is some positive integer N coprime to p such that δN ∈ F×, so (uj′vu−1
j )N ∈ (A∞

F )×.

Since V is normal in U, we can write (uj′vu−1
j )N = (uj′u

−1
j )Nv′ for some v′ ∈ V, so that
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(uj′u
−1
j )N ∈ V(U ∩ (A∞

F )×). Since #(U/V) is a power of p, we see that in fact uj′u
−1
j ∈

V(U ∩ (A∞
F )×), so that j = j′ by the definition of J. �

5.4. Base change. We begin by using base change to reduce to a special case. By Facts 4.22
and 4.26, we can replace F by a solvable totally real extension which is unramified at all primes
above p, and assume that

• [F : Q] is even.
• ρ is unramified outside p.
• For all primes v - p, both ρ(IFv) and ρ0(IFv) are unipotent (possibly trivial).
• If ρ or ρ0 are ramified at some place v - p, then ρ|GFv

is trivial, and #k(v) ≡ 1 (mod p).
• det ρ = det ρ0. [To see this, note that the assumption that ρ, ρ0 are crystalline with

the same Hodge–Tate weights for all places dividing p implies that det ρ/ det ρ0 is
unramified at all places dividing p. Since we have already assumed that ρ(IFv) and
ρ0(IFv) are unipotent for all primes v - p, we see that the character det ρ/ det ρ0 is
unramified at all primes, and thus has finite order. Since it is residually trivial, it has
p-power order, and is thus trivial on all complex conjugations; so the extension cut out
by its kernel is a finite, abelian, totally real extension unramified at all places dividing
p, as required.]

We will assume from now on that all of these conditions hold. Write χ for det ρ = det ρ0; then
we have χεp = χ0,ı for some algebraic grossencharacter χ0.

From now on, we will assume without further comment that the coefficient field L is suffi-
ciently large, in the sense that L contains a primitive p-th root of unity, and for all g ∈ GF, F

contains the eigenvalues of ρ(g).

5.5. Patching. Having used base change to impose the additional conditions of the previous
section, we are now in a position to begin the main patching argument.

We let D/F be a quaternion algebra ramified at exactly the infinite places (which exists by
our assumption that [F : Q] is even). By the Jacquet–Langlands correspondence, we can and
will work with automorphic representations of GD(AF) from now on.

Let Tp be the set of places of F lying over p, let Tr be the set of primes not lying over p at
which ρ or ρ0 is ramified, and let T = Tp ä Tr. If v ∈ Tr, write σv for a choice of topological
generator of IFv /PFv . By our assumptions above, if v ∈ Tr then ρ|GFv

is trivial, ρ|IFv
, ρ0|IFv

are
unipotent, and #k(v) ≡ 1 (mod p).

The patching argument will involve the consideration of various finite sets Q of auxiliary
finite places. We will always assume that if v ∈ Q, then

• v /∈ T,
• #k(v) ≡ 1 (mod p), and
• ρ(Frobv) has distinct eigenvalues, which we denote αv and βv.
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For each set Q of primes satisfying these conditions, we define deformation problems SQ =

(T ∪Q, {Dv}, χ) and S ′Q = (T ∪Q, {D′v}, χ) as follows. Let ζ be a fixed primitive p-th root of
unity in L.

• If v ∈ Tp, then Dv = D′v is chosen so that R�
ρ|GFv

,χ/I(Dv) = R�
ρ|GFv

,χ,cr,{HTσ(ρ)}.

• If v ∈ Q, then Dv = D′v consists of all lifts of ρ|GFv
with determinant χ.

• If v ∈ Tr, then Dv consists of all lifts of ρ|GFv
with char ρ(σv)(X) = (X − 1)2, while D′v

consists of all lifts with char ρ(σv)(X) = (X− ζ)(X− ζ−1).

(So, the difference between SQ and S∅ is that we have allowed our deformations to ramify at
places in Q.) We write

Rloc = ⊗̂v∈T,OR�
ρ|GFv

,χ/I(Dv), Rloc,′ = ⊗̂v∈T,OR�
ρ|GFv

,χ/I(D′v).

Then Rloc/λ = Rloc,′/λ, because ζ ≡ 1 (mod λ). In addition, we see from Theorems 3.28
and 3.38 that

• (Rloc,′)red is irreducible, O-flat, and has Krull dimension 1 + 3#T + [F : Q],
• (Rloc)red isO-flat, equidimensional of Krull dimension 1+ 3#T+[F : Q], and reduction

modulo λ gives a bijection between the irreducible components of Spec Rloc and those
of Spec Rloc/λ.

We have the global analogues Runiv
Q := Runiv

ρ,SQ
, Runiv,′

Q := Runiv
ρ,S ′Q

, R�
Q := R�T

ρ,SQ
, R�,′

Q := R�T
ρ,S ′Q

, and

we have Runiv
Q /λ = Runiv,′

Q /λ, R�
Q /λ = R�,′

Q /λ. There are obvious natural maps Rloc → R�
Q ,

Rloc,′ → R�,′
Q , and these maps agree after reduction mod λ.

We can and do fix representatives ρuniv
Q , ρuniv,′

Q for the universal deformations of ρ over

Runiv
Q , Runiv′

Q respectively, which are compatible with the choices of ρuniv
∅ , ρuniv,′

∅ , and so that
the induced surjections

Runiv
Q � Runiv

∅ , Runiv′
Q � Runiv,′

∅

are identified modulo λ.

Fix a place v0 ∈ T, and set J := OJXv,i,jKv∈T,i,j=1,2/(Xv0,1,1). Let a be the ideal of J gen-
erated by the Xv,i,j. Then our choice of ρuniv

Q gives an identification R�
Q
∼−→ Runiv

Q ⊗̂OJ , corre-
sponding to the universal T-framed deformation (ρuniv

Q , {1 + (Xv,i,j)}v∈T).

Now, by Exercise 3.34, for each place v ∈ Q we have an isomorphism ρuniv
Q |GFv

∼= χα ⊕ χβ,
where χα, χβ : GFv → (Runiv

Q )×, where (χα mod mRuniv
Q

)(Frobv) = αv, (χβ mod mRuniv
Q

)(Frobv) =

βv.

Let ∆v be the maximal p-power quotient of k(v)×. Then χα|IFv
factors through the composite

IFv � IFv /PFv � k(v)× � ∆v,

and if we write ∆Q = ∏v∈Q ∆v, (∏ χα) : ∆Q → (Runiv
Q )×, then we see that (Runiv

Q )∆Q = Runiv
∅ .
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The isomorphism R�
Q

∼−→ Runiv
Q ⊗̂OJ and the homomorphism ∆Q → (Runiv

Q )× together
give a homomorphism J [∆Q] → R�

Q . In the same way, we have a homomorphism J [∆Q] →
R�,′

Q , and again these agree modulo λ. If we write aQ := 〈a, δ− 1〉δ∈∆Q � J [∆Q], then we see

that R�
Q /aQ = Runiv

∅ , and that R�,′
Q /aQ = Runiv,′

∅ , and again these agree modulo λ.

We now examine the spaces of modular forms that we will patch. We have our fixed iso-
morphism ı : L ∼−→ C, and an algebraic grossencharacter χ0 such that χεp = χ0,ı. Define k, η

by HTτ(ρ0) = {ηıτ , ηıτ + kıτ − 1}. We define compact open subgroups UQ = ∏ UQ,v, where:

• UQ,v = GL2(OFv) if v /∈ Q ∪ Tr,

• UQ,v = U0(v) = {
(
∗ ∗
0 ∗

)
(mod v)} if v ∈ Tr, and

• UQ,v = {
(

a b
c d

)
∈ U0(v)|a/d (mod v) ∈ k(v)× 7→ 1 ∈ ∆v} if v ∈ Q.

We let ψ : ∏v∈Tr UQ,v → O× be the trivial character. Similarly, we set U′Q = UQ, and we define
ψ′ : ∏v∈Tr UQ,v → O× in the following way. For each v ∈ Tr, we have a homomorphism

UQ,v → k(v)× given by sending

(
a b
c d

)
to a/d (mod v), and we compose these characters

with the characters k(v)× → O× sending the image of σv to ζ, where σv is a generator of
IFv /PFv .

We obtain spaces of modular forms S(UQ,O), S(U′Q,O) and corresponding Hecke alge-
bras TUQ , TU′Q

(generated by the Hecke operators Tv, Sv with v /∈ T ∪ Q). Note that ψ = ψ′

(mod λ), so we have S(U∅,O)/λ = S(U′∅,O)/λ. We let m∅ � TU∅ be the ideal gener-
ated by λ and the tr ρ(Frobv) − Tv, det ρ(Frobv) − #k(v)Sv, v /∈ T. This is a proper maxi-
mal ideal of TU∅ , because it is the kernel of the homomorphism TU∅ → O � F, where the
map TU∅ → O is the one coming from the automorphicity of ρ0, sending Tv 7→ tr ρ0(Frobv),
Sv 7→ #k(v)−1 det ρ0(Frobv).

By the universal property of Runiv
∅ , we have a surjection Runiv

∅ � T∅ := TU∅,m∅ , and a
corresponding lifting ρmod : GF → GL2(T∅) of type S∅. Similarly, we have a surjection
Runiv,′
∅ � T′∅ := TU′∅,m∅ . Set S∅ := S(U∅,O)m∅ , S′∅ := S(U′∅,O)m∅ . Then the identification

Runiv
∅ /λ ∼= Runiv,′

∅ /λ is compatible with S∅/λ = S′∅/λ.

We claim that in order to show that ρ is modular, it suffices to show that SuppRuniv
∅

(S∅) =

Spec Runiv
∅ . Suppose that this is true; then since S∅ is a faithful T∅-module by definition, we

see that ker(Runiv
∅ → T∅) is nilpotent, so that (Runiv

∅ )red ∼−→ T∅. Then ρ corresponds to some
homomorphism Runiv

∅ → O, and thus to a homomorphism T∅ → O, and the composite of
this homomorphism with ı : O ↪→ C corresponds to a cuspidal automorphic representation π

of GD(A
∞
F ) of weight (k, η), which by construction has the property that ρ ∼= ρπ,ı, as required.
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To show that SuppRuniv
∅

(S∅) = Spec Runiv
∅ , we will study the above constructions as Q

varies. Let mQ �TUQ be the maximal ideal generated by λ, the tr ρ(Frobv)−Tv and det ρ(Frobv)−
#k(v)Sv for v /∈ T ∪Q, and the Uvv − αv for v ∈ Q, where

Uvv =

[
UQ,v

(
vv 0
0 1

)
UQ,v

]
.

We write SQ = SUQ := S(UQ,O)mQ , and TQ := (TUQ)mQ . We have a homomorphism

∆Q → End(SQ), given by sending δ ∈ ∆v to

(
δ 0
0 1

)
∈ U0(v). We also have another homo-

morphism ∆Q → End(SQ), given by the composite

∆Q → Runiv
Q � TQ → End(SQ).

We now examine the consequences of local-global compatibility at the places in Q. A ho-
momorphism θ : TQ → C corresponds to a cuspidal automorphic representation π, and for

each v ∈ Q the image αv of Uvv is such that αv is an eigenvalue of Uvv on π
UQ,v(v)
v .

It can be checked that since π
UQ,v(v)
v 6= 0, πv is necessarily a subquotient of χ1× χ2 for some

tamely ramified characters χ1, χ2 : F×v → C×. Then one checks explicitly that

(χ1 × χ2)
UQ,v(v) ∼= Cφ1 ⊕Cφ2,

where w =

(
0 1
1 0

)
, φ1(1) = φw(w) = 1, and Supp φ1 = B(Fv)UQ,v(v), Supp φw = B(Fv)wUQ,v(v).

Further explicit calculation shows that

Uvv φ1 = #k(v)1/2χ1(πv)φ1 + Xφw

for some X, which is 0 if χ1/χ2 is ramified, and

Uvv φw = #k(v)1/2χ2(πv)φw.

Note that by local-global compatibility, ı−1(#k(v)1/2χ1(πv)) and ı−1(#k(v)1/2χ2(πv)) are the
eigenvalues of ρπ,ı(φv), so one of them is a lift of αv, and one is a lift of βv.

It is also easily checked that(
δ 0
0 1

)
φ1 = χ1(δ)φ1,

(
δ 0
0 1

)
φw = χ2(δ)φw.

By local-global compatibility,

ρπ,ı|ss
WFv
∼= (χ1| · |−1/2 ⊕ χ2| · |−1/2) ◦Art−1

Fv
= χβ ⊕ χα,

say. Reducing modulo λ, we see that {αv, βv} = {#k(v)1/2ı−1(χ1(πv)), #k(v)1/2ı−1(χ2(πv))}.
As a consequence, we see that χ1/χ2 6= | · |±1 (as if this equality held, we would have αv/βv ≡
#k(v)±1 ≡ 1 (mod λ), contradicting our assumption that αv 6= βv). Consequently we have
πv = χ1 × χ2 ∼= χ2 × χ1, so that without loss of generality we have χ1(πv) = βv, χ2(πv) = αv.
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We see that SQ ⊗O,ı C = ⊕π ⊗v∈Q Xv, where Xv is the 1-dimensional space where Uvv acts
via a lift of αv. Since this space is spanned by φw, we see that ∆v acts on SQ via χ2 = χα ◦Art,
so that we have proved the following important fact.

5.6. Fact. The two homomorphisms ∆Q → End(SQ) (the other one coming via Runiv
Q ) are equal.

Let UQ,0 := ∏v/∈Q UQ,v ∏v∈Q U0(v). Then UQ is a normal subgroup of UQ,0, and UQ,0/UQ =

∆Q.

5.7. Fact. SQ is finite free over O[∆Q].

Proof. This is immediate from Proposition 5.3(2). �

Fix a place v ∈ Q. Since αv 6= βv, by Hensel’s lemma we may write char ρmod
∅ (Frobv) =

(X− Av)(X− Bv) for some Av, Bv ∈ T∅ with Av ≡ αv, Bv ≡ βv (mod m∅).

5.8. Proposition. We have an isomorphism ∏v∈Q(Uvv − Bv) : S∅
∼−→ S(UQ,0,O)mQ .

Proof. We claim that it is enough to prove that the map is an isomorphism after tensoring with
L, and an injection after tensoring with F. To see this, write X := S∅, Y := S(UQ,0,O)mQ , and
write Q for the cokernel of the map X → Y. Then X, Y are finite free O-modules, and if the
map X ⊗ L → Y ⊗ L is injective, then so is the map X → Y, so that we have a short exact
sequence 0→ X → Y → Q→ 0. Tensoring with L, we have Q⊗ L = 0. Tensoring with F, we
obtain an exact sequence 0 → Q[λ] → X ⊗ F → Y ⊗ F → Q⊗ F → 0, so we have Q[λ] = 0.
Thus Q = 0, as required.

In order to check that we have an isomorphism after tensoring with L, it is enough to check
that the induced map ∏v∈Q(Uvv − Bv) : S∅⊗O,ı C→ S(UQ,0,O)mQ ⊗O,ı C is an isomorphism.
This is easily checked: S∅ ⊗ C ∼= ⊕π ⊗v∈Q (χ1,v × χ2,v)

GL2(OFv ), and (χ1,v × χ2,v)
GL2(OFv ) =

Cφ0, where φ0 is as in Exercise 4.7(3). Similarly, S(UQ,0,O)mQ ⊗O,ı C = ⊕π ⊗v∈Q Mv, where
Mv is the subspace of (χ1,v × χ2,v)

U0(v) on which Uvv acts via a lift of αv, which is spanned by
φw. Since the natural map (χ1,v × χ2,v)

GL2(OFv ) → (χ1,v × χ2,v)
U0(v) sends φ0 7→ φ1 + φw (as

φ0(1) = φ0(w) = 1), the result follows.

It remains to check injectivity after tensoring with F. The kernel of the map would be a
nonzero finite module for the Artinian local ring T∅/λ, and would thus have nonzero m∅-
torsion, so it suffices to prove that the induced map

∏
v∈Q

(Uvv − Bv) : (S∅ ⊗F)[m∅]→ S(UQ,0,O)mQ ⊗F

is an injection. By induction on #Q, it suffices to prove this in the case that Q = {v}. Suppose
for the sake of contradiction that there is a nonzero x ∈ (S∅ ⊗ F)[m∅] with (Uvv − βv)x = 0.
Since x ∈ S∅ ⊗F, we also have Tvx = (αv + βv)x, and we will show that these two equations
together lead to a contradiction.
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Now, x is just a function D×\GL2(A
∞
F ) → Λ⊗ F, on which GL2(A

∞
F ) acts by right trans-

lation. If we make the action of the Hecke operators explicit, we find that there are gi such

that Uv = äi giUQ,v(v), and Tv = (äi gi GL2(OFv))ä

(
1 0
0 πv

)
GL2(OFv), so that we have(

1 0
0 πv

)
x = Tvx −Uvv x = αvx. Then

(
πv 0
0 1

)
x = w

(
1 0
0 πv

)
wx = αvx, and Uvv x =

∑a∈k(v)

(
πv a
0 1

)
x = ∑a∈k(v)

(
1 a
0 1

)(
πv 0
0 1

)
x = #k(v)αvx = αvx. But Uvv x = βvx, so

αv = βv, a contradiction. �

Set S�
Q := SQ ⊗Runiv

Q
R�

Q . Then we have S�
Q /aQ = S(UQ,0,O)mQ

∼−→ S∅, compatibly with

the isomorphism R�
Q /aQ

∼−→ Runiv
∅ . Also, S�

Q is finite free over J [∆Q].

We now return to the Galois side. By Proposition 3.24, we can and do choose a presentation

RlocJx1, . . . , xhQK � R�T
Q ,

where hQ = #T + #Q− 1− [F : Q] + dimF H1
Q(GF,T , (ad 0ρ)(1)), and H1

Q(GF,T , (ad 0ρ)(1)) =

ker(H1(GF,T , (ad 0ρ)(1))→ ⊕v∈QH1(Gk(v), (ad 0ρ)(1)).

The following result will provide us with the sets Q that we will use.

5.9. Proposition. Let r = max(dim H1(GF,T , (ad 0ρ)(1)), 1 + [F : Q] − #T). For each N ≥ 1,
there exists a set QN of primes of F such that

• QN ∩ T = ∅.
• If v ∈ QN , then ρ(Frobv) has distinct eigenvalues αv 6= βv.
• If v ∈ QN , then #k(v) ≡ 1 (mod pN).
• #QN = r.
• R�T

QN
(respectively R�T ,′

QN
) is topologically generated over Rloc (respectively Rloc,′ ) by #T− 1−

[F : Q] + r elements.

Proof. The last condition may be replaced by

• H1
QN

(GF,T , (ad 0ρ)(1)) = (0).

Therefore, it is enough to show that for each 0 6= [φ] ∈ H1(GF,T , (ad 0ρ)(1)), there are infinitely
many v /∈ T such that

• #k(v) ≡ 1 (mod pN).
• ρ(Frobv) has distinct eigenvalues αv, βv.
• Res[φ] ∈ H1(Gk(v), (ad 0ρ)(1)) is nonzero.

(This then gives us some set of primes Q with the given properties, except that #Q may be too
large; but then we can pass to a subset of cardinality r, while maintaining the injectivity of the
map H1(GF,T , (ad 0ρ)(1))→ ⊕v∈QH1(Gk(v), (ad 0ρ)(1)).
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We will use the Cebotarev density theorem to do this; note that the condition that #k(v) ≡ 1
(mod pN) is equivalent to v splitting completely in F(ζpN ), and the condition that ρ(Frobv)

has distinct eigenvalues is equivalent to asking that ad ρ(Frobv) has an eigenvalue not equal
to 1.

Set E = Fker ad ρ
(ζpN ). We claim that we have H1(Gal(E/F), (ad 0ρ)(1)) = (0). In or-

der to see this, we claim firstly that ζp /∈ Fker ad ρ. This follows from the classification of fi-
nite subgroups of PGL2(Fp): we have assumed that Im ρ ⊇ SL2(Fp), and this implies that
Im ad ρ = PGL2(Fps) or PSL2(Fps) for some s, and in particular (Im ad ρ)ab is trivial or cyclic

of order 2. Since p ≥ 5, we have [F(ζp) : F] ≥ 4, so ζp /∈ Fker ad ρ, as claimed.

The extension E/Fker ad ρ is abelian, and we let E0 be the intermediate field such that Gal(E/E0)

has order prime to p, while Gal(E0/Fker ad ρ
) has p-power order. Write Γ1 = Gal(E0/F),

Γ2 = Gal(E/E0). Then the inflation-restricton exact sequence is in part

(0)→ H1(Γ1, (ad 0ρ)(1)Γ2)→ H1(Gal(E/F), (ad 0ρ)(1))→ H1(Γ2, (ad 0ρ)(1))Γ1 ,

so in order to show that H1(Gal(E/F), (ad 0ρ)(1)) = (0), it suffices to prove that H1(Γ1, (ad 0ρ)(1)Γ2) =

H1(Γ2, (ad 0ρ)(1))Γ1 = (0).

In fact, we claim that (ad 0ρ)(1)Γ2 and H1(Γ2, (ad 0ρ)(1)) both vanish. For the first of these,
note that Γ2 acts trivially on ad 0ρ (since E0 contains Fker ad ρ), but that ζp /∈ E0 (as [E0 : Fker ad ρ

]

is a power of p). For the second term, note that Γ2 has prime-to-p order.

Suppose that #k(v) ≡ 1 (mod p), and that ρ(Frobv) =

(
αv 0
0 βv

)
. Then ad 0ρ has the basis(

1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
of eigenvectors for Frobv, with eigenvalues 1, αv/βv, βv/αv re-

spectively. Consequently, we see that there is an isomorphism H1(Gk(v), (ad 0ρ)(1) ∼= F (since
in general for a (pro)cyclic group, the first cohomology is given by passage to coinvariants),
which we can write explicitly as [φ] 7→ πv ◦ φ(Frobv) ◦ iv, where iv is the injection of F into the
αv-eigenspace of Frobv, and πv is the Frobv-equivariant projection onto that subspace.

Let σ0 be an element of Gal(E/F) such that

• σ0(ζpN ) = ζpN .
• ρ(σ) has distinct eigenvalues α, β.

(To see that such a σ0 exists, note that Gal(Fker ρ/F(ζpN ) ∩ Fker ρ
) contains PSL2(Fp), and so

we can choose σ0 so that its image in this group is an element whose adjoint has an eigenvalue
other than 1.) Let Ẽ/E be the extension cut out by all the [φ] ∈ H1(GF,T , (ad 0ρ)(1)). In order to
complete the proof, it suffices to show that we can choose some σ ∈ Gal(Ẽ/F) with σ|E = σ0,
and such that in the notation above, we have πσ0 ◦ φ(σ) ◦ iσ0 6= 0, because we can then choose
v to have Frobv = σ by the Cebotarev density theorem.
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To this end, choose any σ̃0 ∈ Gal(Ẽ/F) with σ̃0|E = σ0. If σ̃0 does not work, then we have
πσ0 ◦ φ(σ̃0) ◦ iσ0 = 0. In this case, take σ = σ1σ̃0 for some σ1 ∈ Gal(Ẽ/E). Then φ(σ) =

φ(σ1σ̃0) = φ(σ1) + σ1φ(σ̃0) = φ(σ1) + φ(σ̃0), so πσ0 ◦ φ(σ) ◦ iσ0 = πσ0 ◦ φ(σ1) ◦ iσ0 .

Note that φ(Gal(Ẽ/E)) is a Gal(E/F)-invariant subset of ad 0ρ, which is an irreducible
Gal(E/F)-module, since the image of ρ contains SL2(Fp). Thus the F-span of φ(Gal(Ẽ/E)) is
all of ad 0ρ, from which it is immediate that we can choose σ1 so that πσ0 ◦ φ(σ1) ◦ iσ0 6= 0. �

We are now surprisingly close to proving the main theorem! Write h := #T− 1− [F : Q] + r,
and R∞ := RlocJx1, . . . , xhK. For each set QN as above, choose a surjection R∞ � R�

QN
. Let

J∞ := J Jy1, . . . , yrK. Choose a surjection J∞ � J [∆QN ], given by writing QN = {v1, . . . , vr}
and mapping yi to (γi− 1), where γi is a generator of ∆vi . Choose a homomorphism J∞ → R∞

so that the composites J∞ → R∞ � R�
QN

and J∞ → J [∆QN ] → R�
QN

agree, and write
a∞ := (a, y1, . . . , yr). Then S�

QN
/a∞ = S∅, R�

QN
/a∞ = Runiv

∅ .

Write bN := ker(J∞ → J [∆QN ]), so that S�
QN

is finite free over J∞/bN . Since all the

elements of QN are congruent to 1 modulo pN , we see that bN ⊆ ((1 + y1)
pN − 1, . . . , (1 +

yr)pN − 1).

We can and do choose the same data for Rloc,′ , in such a way that the two sets of data are
compatible modulo λ.

Now choose open ideals cN �J∞ such that

• cN ∩O = (λN).
• cN ⊇ bN .
• cN ⊇ cN+1.
• ∩NcN = (0).

(For example, we could take cN = ((1 + Xv,i,j)
pN − 1, (1 + yi)

pN − 1, λN).) Note that since
cN ⊇ bN , S�

QN
/cN is finite free over J∞/cN . Also choose open ideals dN � Runiv

∅ such that

• dN ⊆ ker(Runiv
∅ → End(S∅/λN)).

• dN ⊇ dN+1.
• ∩NdN = (0).

If M ≥ N, write SM,N = S�
QM

/cN , so that SM,N is finite free over J∞/cN of rank equal to the

O-rank of S∅; indeed sM,N/a∞
∼−→ S∅/λN . Then we have a commutative diagram

J∞ R∞ Runiv
∅ /dN

SM,N S∅/dN

where SM,N , S∅/dN and Runiv
∅ /dN all have finite cardinality. Because of this finiteness, we see

that there is an infinite subsequence of pairs (Mi, Ni) such that Mi+1 > Mi, Ni+1 > Ni, and
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the induced diagram

J∞ R∞ Runiv
∅ /dNi

SMi+1,Ni+1 /cNi S∅/dNi

is isomorphic to the diagram for (Mi, Ni).

Then we can take the projective limit over this subsequence, to obtain a commutative dia-
gram

J∞ R∞ Runiv
∅

S∞ S∅

where S∞ is finite free over J∞. Furthermore, we can simultaneously carry out the same
construction in the ′ world, compatibly with this picture modulo λ.

This is the key picture, and the theorem will now follow from it by purely commutative
algebra arguments. We have dim R∞ = dim R′∞ = dimJ∞ = 4#T + r, and since S∞, S′∞ are
finite free over the power series ring J∞, we have depthJ∞

(S∞) = depthJ∞
(S∞) = 4#T + r.

Since the action of J∞ on S∞ factors through R∞, we see that depthR∞
(S∞) ≥ 4#T + r, and

similarly depthR′∞
(S′∞) ≥ 4#T + r. Now, if P � R′∞ is a minimal prime in the support of S′∞,

then we see that

4#T + r = dim R′∞ ≥ dim R′∞/P ≥ depthR′∞/P S′∞ ≥ 4#T + r,

so equality holds throughout, and P is a minimal prime of R′∞. But R′∞ has a unique minimal
prime, so in fact SuppR′∞

(S′∞) = Spec R′∞.

By the same argument, we see that SuppR∞
(S∞) is a union of irreducible components of

Spec R∞. We will show that it is all of Spec R∞ by reducing modulo λ and comparing with the
situation for S′∞.

To this end, note that since SuppR′∞
(S′∞) = Spec R′∞, we certainly have SuppR′∞/λ(S

′
∞/λ) =

Spec R′∞/λ. By the compatibility between the two pictures, this means that SuppR∞/λ(S∞/λ) =

Spec R∞/λ. Thus SuppR∞
(S∞) is a union of irreducible components of Spec R∞, which con-

tains the entirety of Spec R∞/λ. Since the irreducible components of Spec R∞/λ are in bijection
with the irreducible components of Spec R∞, this implies that SuppR∞

(S∞) = Spec R∞. Then
SuppR∞/a∞

(S∞/a∞) = R∞/a∞, i.e. SuppRuniv
∅

S∅ = Runiv
∅ , which is what we wanted to prove.

6. LEVEL RAISING AND LOWERING

6.1. Level raising and lowering: the Khare–Wintenberger method. So far, our arguments
have been directed towards proving the modularity of Galois representations. It turns out
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that they can also be applied to the internal study of modular forms, by producing congru-
ences between modular forms. Of course, these congruences can also be stated as congruences
between the associated Galois representations, and indeed are often best stated in these terms.

The kind of congruences that we will be particularly concerned with are of the following
kind: given an automorphic representation π and the associated p-adic Galois representation
ρπ,ı, we would like to find another automorphic representation π′ such that ρπ′ ,ı ≡ ρπ,ı, and
such that π′ has different local properties to π. What do we mean by “different local prop-
erties”? There are several things we could mean by this, but for the purposes of the present
discussion, we will mean that at some primes v - p, πv and π′v have different conductors. If
the conductor of π′v is greater than that of πv, we are considering “level raising”, and if the
conductor of π′v is less that of πv, the problem is called “level lowering”.

Both of these problems long predate modularity lifting theorems, and indeed results on
both were ingredients in the original Taylor–Wiles arguments. However, the most general
results now known about these problems come from modularity lifting theorems, and indeed
there is now a fairly complete theory, even for n-dimensional representations. We will now
sketch the argument; one of the first exercises is to fill in the details.

It is possible to rephrase the problem in a fashion that makes the connection to modularity
lifting theorems more apparent. Suppose that we have a Galois representation ρ which satisfies
the hypotheses of our main theorem with ρ0 = ρπ,ı. Then ρ is modular, so ρ ∼= ρπ′ ,ı for some π′.
Then arranging that π′v has the required conductor is (by the local Langlands correspondence)
simply a question of arranging that ρ|GFv

corresponds to a point of a deformation ring of a
particular type. In fact, we can even ask for refinements, where we specify precisely which
component of the local deformation ring we should be on.

So, modularity lifting theorems reduce the problem of level raising and level lowering to
that of producing a particular Galois representation. At first sight, this may not be an obvious
simplification, but we can now rephrase the problem in terms of universal Galois deformation
rings. Indeed, the representation ρ corresponds to a Qp-point on an appropriate Galois defor-
mation ring Runiv

S (given by choosing an inertial type at finitely many primes v - p, and by the
Fontaine–Laffaille condition at places v|p), so it is enough to check that Runiv

S has Qp-points.

You might hope that this could be accomplished by purely commutative algebra arguments,
but this seems to be hard. However, we can make a start using Proposition 3.24; under the
Taylor–Wiles assumption that ρ|GF(ζp)

is irreducible, we see that dim Runiv
S ≥ 1. On its own,

this doesn’t give us anything, because Runiv
S could be a power series ring over F. However,

we claim that it is also the case that Runiv
S is finite over O; this is enough, by (for example)

Proposition 2.2 of [KW09].

In order to show that Runiv
S is finite over O, we return to the world of modularity lifting

theorems. Indeed, an output of the modularity lifting theorem we proved is that Runiv
∅ is a

finite O-module. To see this, note that we have identified (Runiv
∅ )red with a certain Hecke
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algebra, which is certainly finite over O (as it is a subalgebra of the endomorphism ring of a
finite O-module). Then Runiv

∅ /mRuniv
∅

is 0-dimensional and Noetherian, hence Artinian, and it

follows from the topological version of Nakayama’s lemma that Runiv
∅ is finite over O.

So, if we are in a situation where Runiv
S satisfies the hypotheses that we imposed on Runiv

∅ ,
then we are done. Unfortunately, it is not always the case that those hypotheses are satisfied;
indeed, a crucial part of the argument was to use base change to put ourselves in the situation
that all of the primes at which ρ or ρ0 were ramified satisfied some rather restrictive hypothe-
ses. This might seem to be a limitation, but we are rescued by Proposition 3.26. This shows
that in order to show that Runiv

S is finite overO, it is enough to show that Runiv
S ′ is finite overO,

where S ′ is the base change of S (which is defined in the obvious way); so if we make the base
change that we made at the start of the proof of the main theorem, we can write Runiv

S ′ = Runiv
∅ ,

and we are done.

7. THE PROJECT (ARIZONA WINTER SCHOOL MARCH 2013)

The first three items below should all be achievable in the project; the later items are more
speculative, and will require some new ideas.

(1) Generalise the main result of [DT94] to Hilbert modular forms, under the usual Taylor–
Wiles condition (i.e. that if ρ : GF → GL2(Fp) is the representation under considera-
tion, then ρ|GF(ζp)

is irreducible). (This is mostly a matter of expanding the sketch given
in Section 6.1.)

(2) Further generalise this result to allow Hilbert modular forms of weight other than
parallel weight two.

(3) Prove the corresponding results for automorphic forms on quaternion algebras.
(4) To what extent can these results be combined with results on the weight part of Serre’s

conjecture, to allow finer control on the representations at p?
(5) Is it possible to relax the assumption that the Taylor–Wiles condition holds?
(6) What about the case p = 2? (Note that the case p = 3 is discussed in section 8.1 below.)

There are also some interesting questions relating to topics that have not been covered in these
notes, but which should be accessible without learning huge amounts of new material.

(7) What are the most general statements about multiplicity one for mod p automorphic
forms on quaternion algebras that can be proved via modularity lifting theorems, using
the method of [Dia97] (cf. the recent preprint [BD12] for some results for totally real
fields).

There are analogous automorphy lifting theorems available for rank 2 unitary groups (indeed,
for rank n unitary groups), and some results on level raising and lowering are available (cf.
Theorem 3.1.2 of [BLGG13]), but they all involve an assumption that should be unnecessary,
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namely that the Galois representations are only ramified at primes that split in the splitting
field of the unitary group.

(8) Remove this condition, by developing the deformation theory at nonsplit primes.

8. GENERALISATIONS

8.1. Relaxing the hypotheses. The hypotheses on our main theorem are not optimal. We will
now briefly indicate the “easy” relaxations of the assumptions that could be made, and discuss
the generalisations that are possible with (a lot) more work.

Firstly, it is possible to relax the assumption that p ≥ 5, and that Im ρ ⊇ SL2(Fp). These
assumptions cannot be completely removed, but they can be considerably relaxed. The case
p = 2 is harder in several ways (and indeed there are no automorphy lifting theorems available
for GLn and p = 2 with n > 2), and I will say nothing more about it, except that important
theorems have been proved in this case, for example the results of [Kis09b] which completed
the proof of Serre’s conjecture.

On the other hand, the case p = 3 presents no real difficulties, and we can also allow the
image of ρ to be considerably smaller. Firstly, we consider the case p = 3. The first place that
we assumed that p > 3 was in the proof of Proposition 5.3; this argument could also break
down for cases when p > 3 if we allowed p to ramify in F, which in general we would like to
do. Fortunately, there is a simple solution to this problem, which is to introduce an auxiliary
prime v to the level, to make it sufficiently small that the finite groups Gi have order prime to p.
This prime is chosen in such a way that all deformations of ρ|GFv

are automatically unramified,
so none of the global Galois deformation rings that we work with are changed when we relax
the conditions at v. The existence of an appropriate v follows from the Cebotarev density
theorem and some elementary group theory; see Lemma 4.11 of [DDT97] and the discussion
immediately preceding it.

We now consider the possibility of relaxing the assumption that Im ρ ⊇ SL2(Fp). We should
certainly assume that ρ is absolutely irreducible, because otherwise many of our constructions
don’t even make sense; we always had to assume this in constructing universal deformation
rings, in constructing the universal modular deformation, and so on. (Similar theorems have
been proved in the case that ρ is reducible, cf. [SW99], but the arguments are considerably
more involved, and at present involve a number of serious additional hypotheses, in par-
ticular ordinarity.) Examining the arguments made above, we see that the main uses of the
assumption that Im ρ ⊇ SL2(Fp) is in the proof of Proposition 5.9. Looking more closely at the
proof, the key assumption is really that ρ|GF(ζp)

is absolutely irreducible; this is known as the
“Taylor–Wiles assumption”. (Note that by elementary group theory, this is equivalent to the
absolute irreducibility of ρ|GK , where K/F is the unique quadratic subextension of F(ζp)/F; in
particular, over Q the condition is equivalent to the absolute irreducibility of ρ|G

Q(

√
(−1)(p−1)/2 p)

,

which is how the condition is stated in the original papers.)
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Unfortunately this condition isn’t quite enough in complete generality, but it comes very
close; the only exception is certain cases when p = 5, F contains Q(

√
5), and the projective

image of ρ is PGL2(F5). See [Kis09c, (3.2.3)] for the definitive statement. Without assuming
that ρ|GF(ζp)

is absolutely irreducible, the argument runs into trouble at this point, and the
only results are those of [SW01] in the ordinary case, which use similar arguments to those
of [SW99].

The other conditions that we could hope to relax are the assumptions on ρ|GFv
, ρ0|GFv

at
places v|p. We’ve hardly discussed where some of these assumptions come from, as we swept
most issues with p-adic Hodge theory under the carpet. There are essentially two problems
here. One is that we have assumed that p is unramified in F, that the Galois representations
are crystalline, and that the gaps between the Hodge–Tate weights are “small”; this is the
Fontaine–Laffaille condition. There is also the assumption that ρ, ρ0 have the same Hodge–
Tate weights.

Both conditions can be considerably (although by no means completely) relaxed. For the
first restriction, the fundamental difficulty is in understanding the local deformation rings,
which are no longer smooth in general. In the Fontaine–Laffaille case, the integral p-adic
Hodge theory is very simple, and amenable to direct computation. In any greater general-
ity, while we have suitable integral p-adic Hodge theory, it seems hopeless to make general
computations (essentially the only computations that have been made are for certain tamely
potentially Barsotti–Tate representations; that is, for potentially crystalline representations,
where the gaps between the Hodge–Tate weights are all equal to 1, and the representations
become crystalline over a tamely ramified extension). Furthermore, while very little is known
about these local deformation rings, it seems very likely that they have many irreducible com-
ponents in general.

This is a problem, because if we run through the arguments above in a more general context
(assuming for the sake of exposition that T consists of just a single place lying over p), we will
find that the support of R∅ will be a union of components of the local deformation ring, and
we need to show that it is supported on every component. This is an analogous problem to the
one that we faced at the places in Tr, but it seems hard to make a similar argument, because
in general we have no way of explicitly computing the deformation rings. At present, there
are three methods for getting around this problem, none of which is strictly stronger than the
other.

The first method is that of [Kis09c], which applies only in the potentially Barsotti–Tate case,
but which proves essentially complete results in this case. In this case (which was also the
case considered in the original work of Taylor–Wiles on the modularity of elliptic curves, and
the subsequent work of Breuil–Conrad–Diamond–Taylor) the local deformation ring can be
reinterpreted in terms of p-divisible groups and finite flat group schemes. After making a
base change to the Barsotti–Tate (i.e. crystalline case), the deformations being considered are
those which are the generic fibres of finite flat group schemes. In a highly ramified situation, a
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representation can have many finite flat models, and Kisin constructs a moduli space of these
models, which is better behaved than the Galois deformation ring. This space can be studied
in a relatively explicit fashion, and (possibly after a further base change) it is possible to check
that the Galois deformation ring has at most two components, one for ordinary representations
and one for non-ordinary representations.

We are not quite done, because it is necessary to show that S∅ is supported on both com-
ponents. A simple argument shows that it is supported on the non-ordinary component (in
brief: it is easy to see that there is a congruence to a cuspidal potentially crystalline represen-
tation, which after a further base change gives a non-ordinary crystalline representation), but
in general to show that it is supported on the ordinary component requires the techniques of
the third method discussed below.

The second method is that of [Kis09a], which applies only in the case that p splits completely
in F, but again proves essentially complete results in this case. This method relies on the p-adic
local correspondence for GL2(Qp) (which is the main reason for the restriction to the case that
p splits completely in F), as well as some more commutative algebra, and some results on the
weight part of Serre’s conjecture (see below).

One disadvantage of both of these methods that they do not (at least at present) seem to
generalise any further, and in particular they cannot be applied to n-dimensional representa-
tions when n > 2. The third method is that of [BLGGT10], which has the advantage of work-
ing for some n-dimensional potentially crystalline representations with arbitrary Hodge–Tate
weights, but has the disadvantage that it is at present unclear how general a class of represen-
tations it applies to. Suppose that both ρ and ρ0 are unramified outside of p; then our main
argument shows that we can deduce the modularity of ρ from ρ0, provided that for each place
v|p, ρ|GFv

and ρ0|GFv
correspond to points on the same component of the local deformation

ring. There is a definition of a “potentially diagonalizable” representation of GFv , which is one
that (perhaps after base change) lies on the same component as a sum of characters. The basic
idea is then that if the global representation ρ happened to be induced from a character, then
we could take ρ0 to be induced from a character, and if ρ|GFv

is potentially diagonalizable for
each v|p, we could deduce the modularity of ρ from that of ρ0 (which is known, as an instance
of automorphic induction).

Of course, in general ρ will not be induced from a character. However, in the general case,
this problem can be circumvented by tensoring ρ with a representation induced from a char-
acter, and using an idea of Michael Harris to “undo” this after proving a modularity lifting
theorem. (Of course, this process turns a 2-dimensional representation into a 4-dimension rep-
resentation, so it is necessary to develop a theory of higher dimensional automorphy lifting
theorems in order to use this argument.) The eventual output is a modularity lifting theorem
(in any dimension) in which it is necessary to assume that both ρ and ρ0 are potentially diag-
onalizable at all places dividing p, but where there are no assumptions on the local fields Fv,
and no assumptions that the Hodge–Tate weights of ρ and ρ0 agree. (The reason that it is no
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longer necessary to assume that ρ, ρ0 have the same Hodge–Tate weights is that as part of the
argument, both ρ, ρ0 are tensored with inductions of characters, and those inductions are not
required to have the same Hodge–Tate weights.)

Unfortunately, it seems to be hard to establish potential diagonalizability in any generality,
although it seems reasonable to expect that it holds for all potentially crystalline representa-
tions. It is easily checked to hold in both the ordinary and Fontaine–Laffaille cases, and this
makes it a very useful notion in proving potential automorphy theorems for compatible sys-
tems of Galois representations; it turns out to be relatively easy to prove such theorems for
ordinary representations, but unfortunately it is hard to prove that many Galois representa-
tions in a compatible system are ordinary (although it is conjectured that they are). On the
other hand, all but finitely many of the representations are Fontaine–Laffaille, and potential
diagonalizability gives a bridge from the ordinary to the Fontaine–Laffaille case.

This third argument gives one case in which it is not necessary to assume that ρ and ρ0

have the same Hodge–Tate weights. For many reasons, it would be desirable to remove this
assumption whenever it is present in a modularity lifting theorem. This seems to be a hard
problem in general, and is known as the weight part of Serre’s conjecture. It is now known in
enough generality to remove it as an assumption from our main theorem, but the only known
proof in this case makes use of ideas and methods from all three arguments above, together
with the method of Khare–Wintenberger discussed below. It is plausible that a complete un-
derstanding of this problem within reach, but it seems to be bound up surprisingly tightly with
the problem of proving general modularity lifting theorems where the Hodge–Tate weights of
ρ, ρ0 are assumed to be equal.

8.2. Further generalisations. Other than the results discussed in the previous subsection,
there are a number of obvious generalizations that one could hope to prove. One obvious step,
already alluded to above, is to replace 2-dimensional representations with n-dimensional rep-
resentations. This was originally done in [CHT08], [Tay08], and has been refined in a number
of papers, most notably [Tho10], [BLGGT10]. It is necessary to assume that the Galois repre-
sentations are essentially self-dual (that is, self-dual up to twist; note that this is automatic if
n = 2), but the argument then goes through in much the same way (albeit with a great deal
more work!).

Another obvious way in which one could hope to relax the hypotheses in the theorem
would be to allow F to be a more general number field. If F is not a CM field, then this
seems to be out of reach at present, as there is not even a conjectural method for attaching Ga-
lois representations to automorphic representations. If F is a CM field, then the prospects are
better; recently announced work of Harris–Lan–Taylor–Thorne constructs the required Galois
representations (even for GLn, without any self-duality hypothesis), and Calegari–Geraghty
have suggested a strategy to adapt the modularity lifting machinery to this case, related to
their work on weight one modular forms mentioned below. However, their strategy would
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require a generalisation of the methods of Harris–Lan–Taylor–Thorne to attach Galois repre-
sentations to torsion classes in cohomology, so it seems likely that we are still some way off
having general theorems here.

Another natural condition to relax would be the condition that the Hodge–Tate weights are
distinct; for example, one could ask that they all be equal, and hope to prove Artin’s conjecture.
For general n-dimensional representations, this appears to be completely beyond reach, but in
the case n = 2 the problems are more manageable. Since we do not know how to associate
Galois representations to Maass forms, we stick with modular forms of partial weight 1; for
simplicity, assume in fact that F = Q, so that we want to prove a modularity lifting theorem
for weight 1 modular forms.

The first problem that occurs when trying to adapt the arguments above is that weight 1
modular forms are not in the image of the Jacquet–Langlands transfer from the automorphic
forms on any definite quaternion algebra, so it is necessary to work directly with modular
forms. This in itself is not a fundamental obstruction, and indeed the original modularity
lifting theorem of Taylor–Wiles was proved directly on the modular curve. However, the dif-
ference between weight 1 modular forms and higher weight modular forms is that the weight
1 forms are only seen in coherent cohomology, and they contribute to cohomology in degrees
0 and 1 (while higher weight cuspforms only contribute to cohomology in a single degree).
This means that, for example, the analogue of Proposition 5.3 is false. (In particular, it is easy
to find examples of mod p modular forms of weight 1 which do not lift to characteristic zero
modular forms of weight 1.)

In addition, the corresponding local deformation ring has lower dimension than in the
higher weight case, meaning that the numerical coincidence that dimJ∞ = dim R∞ no longer
holds, and the commutative algebra arguments that we made above failed. Recently Calegari
and Geraghty ([CG12]) found a way to avoid these problems, and prove a modularity lifting
theorem for weight one modular forms. They do this by patching cohomology in degrees 0
and 1 simultaneously, effectively patching complexes of modules rather than modules. (There
is also earlier work of Buzzard–Taylor, which has now been considerably generalised, which
proves a modularity lifting theorem more generally for weight 1 modular forms via one for
Hida families and an analytic continuation argument.)

Finally, of course in the end we would like to be able to dispose of the hypothesis that ρ is
modular (that is, to dispose of ρ0). This is the problem of Serre’s conjecture and its generali-
sations, and has only been settled in the case that F = Q and n = 2. The proof in that case
(by Khare–Wintenberger and Kisin) makes essential use of modularity lifting theorems and
of the Khare–Wintenberger lifting method discussed below, in order to inductively reduce to
the cases that p ≤ 5 and ρ has very little ramification, when direct arguments using discrimi-
nant bounds can be made. The modularity lifting theorems discussed above make it plausible
that the inductive steps could be generalised, but the base case of the induction seems specific
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to the case of GL2 /Q, and proving the result in greater generality is one of the biggest open
problems in the field.
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