Deforming Galois Representations
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Given a continuous homomorphism
Ga,s 2 GLy(F,)

where Gq,s is the Galois group of the maximal algebraic extension of Q
unramified outside the finite set S of primes of Q, the motivating problem
of this paper is to study, in a systematic way, the possible liftings of 7 to
p-adic representations,

Ga,s £ GL2(Z,).

We use the techniques of deformation theory. There have been numerous
studies of the global variation of representations over C of finitely gener-
ated groups, cf. the memoir of Lubotzky and Magid [L-M] or the recent
preprint of Goldman and Millson [G-M]. The viewpoint we adopt here is
similar, with the exception that in our context (our groups are profinite
and our representations are p-adic) it makes sense only to consider formal
deformations. We prove that if 7 is absolutely irreducible there is a univer-
sal deformation of p, i.e., a complete noetherian local ring R = R(p) with
residue field F,, and a continuous homomorphism

Gq,s 2+ GLy(R)

(well-defined up to conjugation by an element in GL,(R) which reduces to
the identity matrix modulo the maximal ideal in R) which is universal in
an evident sense. Under the assumption that p > 2 and that S contains
the primes p and oo, we show that the Krull dimension of R/pR is > 1 if
det(p) is even, and it is > 3 if det(p) is odd, with equality holding if the
deformation problem is unobstructed.

I have no examples where there is strict inequality above, or where Spec R
is not equidimensional, or where p is nilpotent on an irreducible component
of Spec R. It would be of great interest to have some better understand-
ing of the basic geometric features of R, for all, or for a large class of
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representations p. The viewpoint of the present article is rather to focus
on a very special class of representations, the structure of whose universal
deformations can be analyzed in some depth.

We give a large number of examples where det(p) is odd, the image of p
in GL(F,) is isomorphic to the symmetric group on three letters, and the
deformation problem is unobstructed.

These examples are instances of what we call special dihedral represen-
tations in Chapter II. If p is special dihedral, the universal deformation
ring R is isomorphic to a power series ring over Z, in three variables, and
the universal deformation space X = Hom(R,Z,) is a three-dimensional
Qp-analytic manifold, whose points £ € X correspond to representations
pz : Gg,s — GLa(Z,) lifting 7 (but taken only up to conjugation by an el-
ement in GL3(Z,) which reduces to the identity matrix mod p). Chapter II
is devoted to the ‘fine structure’ of X. We show that the locus of z € X
such that the image of p, is dihedral, i.e., is contained in the normalizer of
a Cartan subgroup in GL2(Qp), is a smooth hypersurface in X. We show
that the locus of inertially reducible p;’s is a union of two smooth hyper-
surfaces in X. We show that the ordinary representations p, (cf. Ch. I, §7)
trace out a smooth curve in X; they are approximable by representations
attached to modular forms. Are all representations p, for £ € X similarly
approximable?

We show that the inertially ample locus (i.e., the locus of £ € X for which
the image of inertia under p, contains an open subgroup of finite index in
SL2(Z,)) is open and dense in X (Ch. II, §7: the “approximation theorem”).

Our analysis of the fine structure of X leaves open a number of questions.
For example, what precisely is the inertially ample locus in X? How do
the three hypersurfaces alluded to in the preceding paragraph intersect?
These issues and others will be dealt with for a certain subclass of special
dihedral representations in a joint article with Nigel Boston, currently under
preparation.

It gives me pleasure to thank G. Avrunin, N. Boston, P. Deligne, W. Feit,
F. Q. Gouvéa, U. Jannsen, D. Kazhdan, R. Livne, K. A. Ribet, J.-P. Serre,
M. Schlessinger, and J. Wahl for insight, suggestions, and conversation in
the course of my engagement in this project, and to Shankar Sen for his
invaluable aid in the writing of the last section of this article. I am also very
thankful to the Institut Des Hautes Etudes Scientifiques for the financial
support and hospitable setting that it provided.
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1. Universal Deformations of Representations.

1.1 Deformations.

Fix a prime number p. A profinite group II is said to satisfy the finiteness
condition P, if for every open subgroup of finite index Il C II, the following
equivalent conditions hold:

Either

(a) The pro-p-completion of Il is topologically finitely generated, or
(b) The abelianized pro-p-completion of Iy, given its natural Z,-module
structure, is of finite type over Z,, or

(c) There are only a finite number of continuous homomorphisms from
Ho to Fp.

Examples of profinite groups II satisfying ®, for all p, are given by
groups arising as algebraic fundamental groups of smooth (geometrically
connected) schemes of finite type over Z ([K-L]).

In particular, for I{ any number field and S any finite set of primes of
K, we may take II = Gk,s the Galois group of the maximal field extension
of I in an algebraic closure, which is unramified outside S. We may also
take Il = G, the Galois group of an algebraic closure of any local field K.

In this section, II will denote a profinite group satisfying condition &,,
and k will refer to a finite field of characteristic p. Let C denote the category
of complete noetherian local rings with residue field k. We refer to an object
of C asa “local ring in C.” A morphism of the category C is a homomorphism
of complete local rings inducing the identity on residue fields. If A is a local
ring in C, then its maximal ideal is denoted m 4.

Let N be a positive integer. If A is a local ring in C, two continuous
homomorphisms from II to GLy(A4) will be said to be strictly equivalent if
one can be brought to another by conjugation with an element in the kernel
of the reduction map GLy(A) — GLn(k).

By a representation of Il in GLy(A) we shall mean a strict equivalence
class of continuous homomorphisms from II to GLy(A4). Thus, if A = k,
a representation is nothing more than a continuous homomorphism. By
abuse of language, we sometimes write “pg : II — GLy(A)” where py is a
representation.
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If Ay — A, is a morphism in the category C and if p; and p; are
representations of Il in GLy(A;) and in GLN(A3), respectively, we shall say
that p; is a deformation of p if any homomorphism from II to GLy(A4;) in
the strict equivalence class p;, composed with the induced homomorphism
GLN(A;) — GLN(Az), yields a homomorphism in the strict equivalence
class p2. :

By a residual representation of dimension N (in a context where II and
k are understood) we shall mean a continuous homomorphism

p: II — GLn(k),

i.e., a representation of Il in GLy(k).

Two residual representations are equivalent if, as usual, one can be
brought into the other by conjugation by an element in GLy(k); they are
“twist”-equivalent if one, after tensoring with a suitable one-dimensional
representation, can be made equivalent to the other.

1.2 Existence of universal deformation rings.

Fix II and k as in §1. The object of this chapter is to establish the exis-
tence of a universal deformation of any absolutely irreducible N-dimensional
residual representation p. Specifically, there is a complete noetherian local
ring

R=R(Il,k,p)€C

with residue field %, together with a deformation
p: II — GLy(R)

of p which is universal in the sense that for any A € C and deformation pg
of p to A, there is a unique morphism R — A in C such that the induced
homomorphism GLy(R) — GLn(A) brings p to pg. We shall show that
the pair (R,p) is determined up to canonical isomorphism by the twist-
equivalence class of 5. The ring R also has some other attendant structures.
For example, R is endowed in a natural manner with the structure of A-
algebra where A is the local ring in C described in §4. The ring A has a
natural co-multiplication law giving it the structure of formal Hopf algebra
coming from a commutative formal group over W(k), ®, as described in
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§4. The formal group ® operates naturally on the local ring R in a manner
compatible with its A-algebra structure and with the natural action of @
on A. If p is twist-equivalent to its contragredient, there is an involution
(the “duality involution” ¢, §5) of R compatible with inversion in the formal
group ®.

The local ring R = R(II, k,p) will be called the universal deformation
ring of p, and Spec R will be called the universal deformation space.

REMARK: If A € C, then the kernel of GLy(A) — GLy/(k) is a pro-p-group,
and therefore any deformation of 7 factors through the maximal quotient
TI—»1I such that the image in 11 of the kernel of P is a pro-p-group. We call il
the p-completion of II relative to p. It follows that R(1I, k,p) = R(1l, &, p).

PROPOSITION 1: Existence and Uniqueness. (a) if p is absolutely irre-
ducible, a universal deformation ring R = R(Il,k,p) and a universal de-
formation p of p to R exists. The pair (R,p) is uniquely determined up to
canonical isomorphism by the twist-equivalence class of p in the following
sense:

Given two twist-equivalent residual representations p and p', there is a
canonical isomorphism

r(7,7): R(ILk,7) — R(ILk,7)

bringing the universal deformation p of p to the universal deformation p' of
p'. The system of canonical isomorphisms have the homomorphic property:

(i) r(p,P) is the identity, for all p
@) r(@".p)-r(@,p)=r(",p)

(b) if p is not absolutely irreducible, then a “versal” deformation of p
exists, i.e., there is a hull in the sense of Schlessinger [Sch] which means
that we can find an object R € C and a deformation p of p to R such that
any deformation py of p to any object A inC is induced by a not necessarily
unique morphism R — A of C; however, if A is the “dual numbers” kle],
the morphism R — A bringing p to py is unique.

The isomorphism-type of the hull R is unique, but R itself is not deter-
mined up to canonical isomorphism.

In this section we prove the existence of universal and versal deformation
rings. The uniqueness assertions will not be established until §3.5.2.
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Let

As
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be a cartesian diagram of artinian rings in C, i.e., A3 = A; x4, A2.

Suppose also that 4; — Ap is a “small” extension in the sense of Sch-
lessinger [Sch], i.e., it is surjective with kernel a nonzero principal ideal (t)
such that my4, - (t) = 0.

Set

E; = Homyz(II, GLn(A;)) for i =0,...,3

where the subscript p means continuous homomorphisms which are liftings
of p.

Set

Gi = Ker(GLy(A;i) — GLn(k)) for i =0,...,3.

Then G; acts naturally on E; by conjugation of the range GLn(A4;), and
the orbit-space E;/G; may be identified with the space of deformations of
P to A;. We have the natural morphism:

b: E3/G3 — E2/G2 XEO/G0 El/Gl.

Since G; — Gy is surjective, one easily checks that b is surjective. A
straightforward calculation yields the following criterion for injectivity of b:

Let ¢; denote an element of E; and ¢q its image in Ey. Set Gi(yp;) :=
the subgroup of G; consisting of all elements commuting with the image
of p; in GLy(4;), for i =0, 1.

LeEMMA 1. If, for all ¢, € E;, the natural mapping

G1(p1) = Go(wo)

is surjective, then b is injective.

A straightforward application of Schur’s lemma yields
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LEMMA 2. If p is absolutely irreducible, then G;(p;) consists in the sub-
group of scalar matrices in G; C GLy(4;), fori =0,1.

REMARK: The automorphism group of our moduli problem is, by lemma
2, the formal completion of the multiplicative group, which is formally
smooth. Therefore the hypothesis of Lemma 1 holds and b is injective.

We are now ready to prove our proposition, using Schlessinger’s criteria
[Sch).

The tangent space of the functor which assigns to A € C the set of
deformations of p to A is canonically isomorphic to the k-vector space

HY(II, Ad(p))

where Ad(p) is the k-vector space of N x N matrices with entries in £,
viewed as II-module via an action obtained by composition of 7 with the
adjoint representation (i.e., conjugation) of GLy(k).

Since II satisfies the condition ®,, we easily check that H'(II, Ad(p)) is
finite-dimensional. In particular, condition (H3) in Theorem 2.11 of [Sch]
is always satisfied, as is condition (Hy).

To apply Theorem 2.11, we must check (Hz) in general, and (H;) when
P is absolutely irreducible. But if Ag = k, A; = k[e], then the morphism
in Lemma 1 is clearly surjective, giving (Hz), and if 7 is absolutely irre-
ducible, Lemma 2 implies that the morphism in Lemma 1 is surjective for
all surjective maps A; — Ag (of the sort we are considering), whence (Hjy).

If 5 is absolutely irreducible, we refer to R = R(«,k,p) as the universal
deformation ring of p. The universal deformation ring is unique in the sense
that it is determined up to canonical isomorphism. In general (i.e., if p is
not necessarily absolutely irreducible) the “versal deformation ring” R is
determined up to (noncanonical) isomorphism (which induces the “identity
mapping” on Zariski tangent spaces; see [Sch]).

Having obtained the universal deformation ring R, it is now an easy
matter to construct the universal deformation p. Specifically, for every
power of the maximal ideal m of R, we have a deformation p, of p to
R/m™ which can be realized by a compatible family of liftings

Tyt I = GLy(R/m™),

using the surjectivity of the homomorphisms GLy(R/m"*!) — GLy(R/m™).
The universal deformation p of 5 is then just the strict equivalence class of

the inverse limit limr,,.
pin
n
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1.3 Functoriality.

In this section we shall deal only with absolutely irreducible residual
representations. There are analogous statements to be made for general
residual representations, but they are somewhat more complicated.

(a) Change of range:
Fix IT and k. Let W(k) denote the ring of Witt vectors of k. Let

Sywiry © GLNywwy — Gl )
be a homomorphism of group schemes. Let
p: II — GLy(k)

be a residual representation, and let 7' be the composition of p with &.
The composition with § brings deformations of p to deformations of p'. If 5
and p' are absolutely irreducible and R = R(II, k,7), R' = R(Il, k,7'), then
composition with §' induces a morphism

r(§):R' = R

in the category C. The system of morphisms § — r(§) has the homomor-
phic property:

3 r)=1
and (ii) r(81)-r(62) = r(6:162).

(a.1) (conjugation) In particular, if
6g : GLN/w(k) e d GLN/W(k)

is given by conjugation with a fixed element g € GLy(W(k)) we obtain an
isomorphism in C,

r(8,;) : R(I,k,p) = R(IL, k,7p"),

where 7' is the residual representation equivalent to p obtained by conju-
gation by § € GLn(k), the reduction of g. Clearly, the isomorphism r(6,)
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depends only upon the image of §in PGLx (k). But since 7 is absolutely ir-
reducible, an application of Schur’s lemma guarantees that the image of g in
PGLy(k) is completely determined by the pair (p',p). Consequently, r(§,)
depends only upon the pair (5',7). Put r(p',p) = r(6,). We have therefore
defined the system of homomorphisms r(p’, ) of the Proposition in §2, for
any pair of equivalent (absolutely irreducible) residual representations.

(2.2) (duality) Let
7: GLnjwa) — GLNwa,
be the outer automorphism “transpose-inverse”. Then if
p: II - GLn(k)

is an absolutely irreducible residual representation, and p5* is its composition
with 7, i.e., the contragredient representation, and if R, R* are the universal
deformation rings of 7 and p* respectively, we have morphisms

RO Rpg
which can easily be seen to be two-sided inverses of one another. This

establishes canonical identifications of R and R*.

(a.3) (determinant) Let p be an N-dimensional (absolutely irreducible)
residual representation, and let

6 =det: GLn,w) — GL1,w(,

be the determinant homomorphism. We obtain a natural homomorphism

R(IL, k, det(p)) = R(IL, k,7)

to which we shall return later.

(b) Tensor product.
Let p;: II — GLy(k) and p, : II — GLp(k) be two residual representa-
tions, and let

P1®P2: II = GLy.pm(k)

denote their tensor product.
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To any pair of deformations, of p; to A; € C and of p, to A; € C we
can naturally associate a deformation of p; ® p, to the completed tensor
product A4; @W(k) Az. Let p;, P2, and p; ® P, be absolutely irreducible. We
get a natural homomorphism

—_ - h(ﬁl )77-2) — N —_
R(pr®72) —" R(p1)®wr) R(P2)
where R(p) refers to the universal deformation ring R(II, k, 7). The sys-
tem of homomorphisms (p;, 7,) — h(p,, p,) satisfies evident commutativ-

1ty and associativity properties whose explicit descriptions we leave to the
reader.

(b.1) (contraction with a lifting of p;) Now let p; : Il —» GLy(W(k))
be a deformation of p; to W(k). Thus p; is induced from the deformation
of p, via a unique homomorphism h,, : R(p) —» W (k). Define

h(p1,P,) : R(p; ® p;) — R(P,)

to be the composition of h(p;,p,) with h,, @ 1.
From the associative property referred to above, one sees that the follow-
ing diagram

R(p, ® 9, ® P2)

h(po, —p-l ® pZ) h(Po ® plaﬁ2)

R(p, ®7) R(p,)

h(plaﬁ2)

commutes, where the relevant residual representations are absolutely irre-
ducible, and pg, p; are deformations of gy, p, respectively, to W(k).

(b.2) (twisting by a character) In the special case where p, is one-
dimensional, we refer to h(p1, P;) as the twisting morphism by p;, and
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sometimes denote it simply h(p;). From the commutative triangle dis-
played above, one sees that the twisting morphisms are isomorphisms in
the category C and enjoy the evident homomorphic property in the vari-
able p;.

Now let p be any absolutely irreducible residual representation, and let o'
be the tensor product of p with a one-dimensional residual representation
P1- Let p; denote the Teichmiiller lifting to W(k)* of the character p,, and
let

r(7, 7') = R(p)
be the twisting isomorphism h(p;, 7). This, together with the discussion in
(a.1), enables us to define canonical isomorphisms r(p’, p) for any pair of
twist-equivalent residual representations such that (}o",. p) — r(7, P) pos-
sesses the homomorphic property stated in the Proposition of §2.

(c) Change of domain.
Let
o4

be a continuous homomorphism (between profinite groups satisfying ®,).
Let

7 : II' = GLy(k)
be a residual representation. Let p be the residual representation
7: II - GLy(k)

obtained by composing p’' with . Suppose that both 7 and 7' are absolutely
irreducible. Set

R = R(IL k,7) and R' = R(IT', k, 7).

Then, composition with ¢ brings deformation of p' to deformations of 7
and therefore induces a homomorphism

r(p): R— R

in the category C.
The system ¢ — R(¢p) is homomorphic in ¢. If ¢ is surjective, then for
all A in C, R(¢y) induces an injection

Hom¢(R', A) — Home(R, A).
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(d) Change of field.
Let : : k — k' be a morphism of finite fields of characteristic p. Let
p : II —» GLN(k) be an absolutely irreducible residual representation and
let ' : II — GLy(k') be the representation obtained from 7 by extension
of scalars via .

Then tensoring with W (k') over W(k) brings deformations of p to defor-
mations of 7' and therefore induces a natural morphism

in the category C, where R = R(II, k,p) and R' = R(IL, k', 7').
The morphism R(z) induces an isomorphism on Zariski tangent spaces.

1.4 One-dimensional representations.

Fix II and k. Since any two one-dimensional residual representations
of II are projectively equivalent, it follows from the proposition of §2 that
when 7P is one-dimensional, the universal deformation ring R = R(II, k, )
depends (up to canonical isomorphism) only upon II and k£ and not upon
P. One easily describes this ring:

Put

[ :=[ebe? (the abelianized p-completion of II), and
A := W(k)[[T]] (the completed group ring of I with
coefficients in W(k)).

Let 5: II —» W(k)* denote the Teichmiiller lifting of p; let IT —» T' denote
the natural surjection, and 4 — [y] the natural injection of I into A*. Let
p: II = A* = GL;(A) be the homomorphism given by

g~ p(z) - [v(z)] € W(k)*-T C A"

Then p is a deformation of p to A and is isomorphic to the universal
deformation in the sense that the mapping

R(ILk,p) = A

induced by p is an isomorphism in C.
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From now on we shall identify A with the universal deformation ring
R(IL, k, p) via e.

If p, denotes the principal (i.e., trivial) one-dimensional residual charac-
ter, then the morphism h(p,, po) of §3.b is the “standard” co-multiplication
law on A:

h(Po»Po)
R(po) = R(py ® Po) R(py) Qw ) R(po)
€ = o e@e
u
A AQwyA
[y} V& M.

Denote by @ the formal group with affine coordinate ring whose formal
group law is given by pu. For any absolutely irreducible residual represen-
tation, the morphism

-\ ~~ _ — h(Fo-F) ~ o
R(p) = R(p, ® ) —— ABww)R(P)

defines an action of the formal group @ on the formal scheme X (5) (cf. §2),
which commutes with the morphism r(6) of (a) above.

In particular, for any such p, we may view R(p) as endowed with a natural
A-algebra structure, given by the composition

A <& R(IL k, det 7) " R(IL k,7) = R(p)

and this A-algebra structure is compatible with the action of ® on A and
on R(p).
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1.5 The duality involution.

Let p be absolutely irreducible, and suppose that there is a one-dimensional
residual representation x such that the contragredient p* is equivalent to
P ® x. Then we have a canonical involution

o+ R() 5 RO)
defined as the composition

—\ () ey T(PP")
R(p) =5 R(p") =" R(p).
The duality involution ¢ is inversion ([y] — [y™!]) on A, and commutes
with the natural A-algebra structure morphisms A — R(p).

1.6 Obstructions.

Let p : Il — GLn(k) be an absolutely irreducible residual representation.
Let R = R(p) denote its universal deformation ring. By Ad(p) we shall
mean the II-representation whose underlying k-vector space is the space of
N x N matrices with entries in k, Mn(k), and whose II-action is given by
application of 5 and then conjugation. Denote by d’ the dimension of the
k-vector space H'(II, Ad(p)), and by § the difference d* — d2.

Let A; — Ay be a surjective mapping of artinian local rings in C with
kernel I C A;. Suppose that I -my4, = 0, where m4, is the maximal ideal
of A;. We view I as a k-vector space (necessarily finite dimensional).

Given gny deformation pg : I — GLy(A4y) of p to Ap there is a canoni-
cal obstruction class O(po) € H%(II, Ad(p)) ® I which depends only upon
the deformation pg, and which vanishes if and only if there is a deforma-
tion p; of p to A;, which when projected to Ay yields the deformation
po. The construction of O(py) is standard: Fix a set-theoretic mapping
7 : II — GLpn(A;) which when projected to GLy(4,) yields a homo-
morphism in the strict equivalence class of pg. Then form the obstruction
cocycle:

o(g91,92) = m1(9192) 11(92)™" € 1+I® Mn(k)=I® Ad(p).

The cohomology class of ¢ in H*(II, I ® Ad(p)) = H*(II, Ad(p))® I can
be seen to depend only upon the deformation py (and not on the chosen
mapping v;) and is denoted O(po).
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If po does lift to a deformation p; to A;, then the set of all such lift-
ings is, in a natural way, a principal homogeneous set under the action
of HY(II, Ad(p)) ® I. It follows that the set of deformations of p to the
ring of “dual numbers” k[e] is canonically isomorphic to the k-vector space
H(II, Ad(p)). The set of deformations of p to k[e] is naturally endowed (cf.
[Sch]) with the structure of k-vector space (the “reduced Zariski tangent
space” of R, or equivalently: the Zariski tangent space of R/pR) and as
such, is the k-dual of mp/(m%,p). We therefore have a perfect k-duality
between H(II, Ad(p)) and mg/(m%, p).

PROPOSITION 2. We have the inequality:
Krulldim(R/pR) > § = d* — d*.

If & = 0 (i.e., the lifting problem for p is unobstructed) then we have
equality above, and moreover R is a formal power series ring in d* param-
eters over W (k).

PROOF: The ring R/pR is the universal deformation ring for characteristic
p deformations of p. Let F be a power series ring in d* variables over
k, and let F — R/pR be a continuous homomorphism which induces an
isomorphism on Zariski tangent spaces. Then F — R/pR is surjective. Let
J C F denote its kernel; let m = mp, the maximal ideal.

Consider the exact sequence:

0—-J/m-J— F/m-J— R/pR — 0.

Let pp denote the deformation of p to R/pR induced from the universal
deformation p of p to R. One can define, as above, an obstruction class
O(po) € HY(II, Ad(p)) ® J/m - J. If V denotes the dual k-vector space
to J/m - J, then f — (1® f)O(po)) defines a homomorphism from V to
H?(II, Ad(p)). The inequality stated in the proposition follows from the
fact that this homomorphism is injective, a fact which we shall now prove.
If f € V goes to zero in H%(II, Ad(p)), let R' denote the quotient of
F/m-J by the kernel of f. We suppose that f # 0. Then we have an exact
sequence,

0—I—R —R/pR—0

where I is isomorphic to k, and for which the obstruction to lifting pp to a
deformation to R' vanishes. But R' is of characteristic p, and by universality
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of R, it follows that the above exact sequence splits which contradicts the
fact that the mapping R' — R/pR is an isomorphism on Zariski tangent
spaces and I # 0.

REMARK: The above argument is a standard one in deformation theory, as
is the statement of the proposition in the unobstructed case.

The Lie Algebra structure on Ad(p) induces, via cup-product, a graded
Lie algebra structure on H*(II, Ad(p)), and, in particular, a symmetric
bilinear pairing,

HY(IL, Ad(5)) x H\(IL, Ad(p)) — H*(II, Ad(5))

which gives the “quadratic relations” (up to higher terms) satisfied by a
minimal set of formal parameters of R/pR, if p # 2.

1.7 Ordinary representations.

Fix Il and k. Fix I C II a closed subgroup. A 2-dimensional representa-
tion

po : I — GL2(A) (4€0)

is said to be ordinary at I if for M = A x A given a II-module structure via
a homomorphism in the strict equivalence class of pg, the sub-A-module of
I-invariant elements M7 is a direct summand in M and free of rank 1 over
A.

If the subgroup I C II is understood, we shall simply say that p is
ordinary.

PROPOSITION 3. Let p be an ordinary, absolutely irreducible, 2-dimensional
residual representation. Then a universal ordinary deformation of p exists.
That is, there is a local ring

R° = R°(IL k,5) €C

and an ordinary deformation p° of p to R°® such that any ordinary deforma-
tion of p to A is induced from p° by a unique morphism R° — A. The pair
(R°, p°) depends, up to canonical isomorphism, only upon the equivalence
class of p.

PROOF: Similar to the Proposition of §2. Note that the notion of ordinar-
iness is, in general, destroyed by twisting by a one-dimensional character.
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The Zariski tangent space of R° may be identified with the subspace
of HY(II,, End(M)) consisting of cohomology classes representable by 1-
cocycles ¢ : IT — End(M) for which all g € I have as value endomorphisms
¢(g) : M — M in End(M) with the property that M7 is contained in
the kernel of ¢(g). We refer to this subspace as the A-module of ordinary
1-cohomology in H'(II, End(M)).

There is a natural morphism

R— R°

(where R = R(Il, k,p) is the universal deformation ring of 7).

1.8 Schur-type results.

Let Mn(k)® denote the k-vector space of N x N matrices with entries in
k, of trace zero. For H C GLn(k), let AdY; denote My (k)° endowed with
the adjoint action of H.

PROPOSITION 4. Let
p: I - GLy(k)

be a residual representation (absolutely irreducible). Let H C GLy(k) be
the image of Il under p. Suppose that

HY(H,AdY) =0.

Let R = R(p) be the universal deformation ring of p and let Ry, C R
denote the smallest closed W (k)-subalgebra containing the traces of all p(g)
for g € 11, where p is the universal deformation.

Then:

R: = R.

PRrOOF: It suffices to show surjectivity of reduced tangent spaces. That
is, it suffices to show that there are no non-constant deformations of p to
k[e] (¢2 = 0) with traces lying in k C k[e].

Let H C GLy(k[e]) be the image of II under a lifting of 7 to k[e] with
traces lying in k C kle].

LEMMA 3. The natural mapping H — Hisan isomorphism.

First note that if the lemma is true, we are done, for then (by virtue
of our assumption of the vanishing of H'(H,Ad%)) any lifting of 7 with
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traces in k C k[e] is conjugate to the standard lifting (i.e., the constant
deformation induced by the inclusion k& C k[e]).
To prove the lemma, let U denote the k-linear subspace of My(k) such
that
121+l -H—oH-1

is exact. We view Mpy(k) as H x H-module with the natural “left-right”
action. We claim that if V. C Mp(k) is the smallest H x H submodule
containing U, then V is contained in the hyperplane My (k)° C My(k). But
since H — GLy(k) is an absolutely irreducible representation, it follows
that Mn(k) is an absolutely irreducible H x H-module (Exer. 2 of §27.28
in [C-R]). Therefore V is zero, and so is U. To prove the claim, let v € V.
Then v can be written as a summation

v = Z hiu;g;

for h;,g; € H and u; € U.
We shall show that the trace of hu g is zero for any h,g € H andu € U.
To see this, let h,§ € H be liftings in H of h, g, respectively, and note that:

R(1 + ew)§ — hg = ehu g(in My(k[e]).

But the two terms on the lefthand side are elements of H and therefore
have traces in k € k[¢]. It follows that the righthand side has trace zero.

REMARK: The requirement that H'(H, AdY) vanish is not very restric-
tive. It holds, for example, if H has order prime to p, or if k has cardinality
> 7 and H = GLy(k) or H = SLy(k) ([C-P-S] Thm. 4.2).

COROLLARY 1. Let A' C A be an inclusion of complete local noetherian
W (k)-algebras with residue field equal to k. Let p : I — GLn(k) be
an absolutely irreducible residual representation admitting a deformation
po : II — GLN(A), to A. Let H be the image of p and suppose that
H'(H,AdY) vanishes. Suppose that the traces of py(g) for g € II lie in A'.

Then there is a deformation pg : II — GLy(A") of p to A' which induces
the deformation py when composed with the homomorphism coming from
the inclusion A' C A.

COROLLARY 2. Let A' C A be an inclusion of complete noetherian semi-
local W(k)-algebras, with A' local. Let A = HA,- be the factorization of
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A into a product of local rings. We suppose that A' and the A;’s all have
k as residue field. Let r : Il - GLy(A) be a continuous homomorphism
such that the residual representations

5+ I -2 GLy(A4) 2% GLy(4;) — GLy (k)

are all equivalent, and are absolutely irreducible. Suppose that the trace of
r(g) lies in A" C A for all g € Il. Suppose, finally, that if H is the image of
one of the p;, H'(H,Ad%;) vanishes.

Then there is a continuous homomorphism r' : Il — GLx(A") such that
the induced representation in GLy(A) is A-equivalent to r.

PROOF: It suffices to prove Cor. 2. Let us first apply an A-equivalence
to replace r by a representation such that all the residual representations
P; are equal to a fixed one, p. Then consider R = R(p) and note that by
the universality property, the deformations given by the strict equivalence
classes of the r; determine mappings R — A; and taking the product over
i, we get a mapping R — A. Corollary 2 will follow if we show that R maps
into A’. But under the hypotheses of Corollary 2, R;. = R and R;, maps
into A'. O

1.9 A few simple examples.

Let II be a subgroup of GLy(k), where k is a finite field of characteristic
p, and let p denote the inclusion homomorphism. Let R = R(II, k, p).

(a) If the order of I1 is prime to p, then p admits o unique deformation to
W(k), and this deformation is the universal deformation of p. In particular,
R =W(k).

(b) Let I1 = SLy(k), and p: SLy(k) — GLy(k) the natural inclusion.

If the cardinality of k is > 7, then HY(II, Ad(p)) = 0 by [C-P-S,
Thm. 4.2] and consequently R/pR = k. An argument when k =F, (p2
7) derived directly from [Serre 1, IV 3.4, Lemma 3, and Ex. la on IV-27]
then gives that R = k, i.e., p is rigid. When k = Fj, (and II = SLy(Fs)),
however, one can show that R = Z5[/5].
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1.10 Global Galois Representations.

Let K be a finite field extension of @, of degree n. Let K be an algebraic
closure of K, and S a finite set of places of K containing S.,, the set
of all archimedean places of K, and also containing the places dividing
the rational prime number p. Let Gg s denote the Galois group of the
maximal intermediate extension of K which is unramified outside S. Then,
as previously remarked, II = Gk, s satisfies the condition @, of §1.

Let

p: GK,S — GLN(IC)

be an absolutely irreducible residual representation, where k is a finite field
of characteristic p.

Let R = R(p) be the universal deformation ring of p.

Recall the notation d' = dim; HY(Gk,s,Ad(p)) and 6§ = d' — d%. For
each v € S fix Gy C Gk,s a “decomposition group” at v, so that G, is of
order 2 if v is real, and is trivial if v is complex.

PROPOSITION 5.

Krulldim(R/pR) > § =n-N?>+1- Y H°(G,, Ad(p)).
vESoo

REMARKS: We have no examples where the Krull dimension of R/pR is
strictly greater than §. We have no examples of Global Galois representa-
tion P such that Spec R/pR possesses an irreducible component of Krull
dimension different from é. We also have no example of a Global Galois
representation P such that Spec R possesses an irreducible component on
which p is nilpotent, i.e., which “doesn’t lift to characteristic zero”.

PROOF: Recall Tate’s Global Euler Characeristic Formula (cf. Theorem 2
of 3.1 in [H], but note that we have corrected a typographical error that
occurs in formula (1) in the statement of the theorem): Let G s be as
above, with S containing S., and let M be a finite G, s-module, of order
which is an S-unit in K. Then:

{HO(GK,SvM)] ) [HZ(GK,SyM)] _ HveSm [HO(vaM)]
(HY(Gk,s, M) - [M]n

where n = [K : Q] and [ ] denotes cardinality.
Now set M = Ad(p). The above formula is applicable since, for our
proposition, we have assumed that all primes above p lie in S. Since p
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is absolutely irreducible, we have the H°(Gk,s,M) is a vector space of
dimension one over k. One immediately computes the equality asserted in
the proposition from the above formula and remark. The inequality comes
directly from the Proposition of §7.
Consequences:

(1) N = 1: In this case § = ry + 1, where r; is the number of complex
places of K.

LEMMA 4. Leopoldt’s conjecture for the field K and the prime p is equiv-
alent to the statement that the Krull dimension of R/pR is equal to §, for
one, and hence all, residual representations with N = 1.

PRroOF: Note that R/pR is isomorphic to k[[G;{b”g]] where the superscripts
ab and p refer to “maximal abelian quotient” and “p-completion” respec-
tively. The Krull dimension of R/pR is therefore equal to the dimension of
the Qp-vector space @, ®z, G;?:g where we view the abelian pro-p-group
G}‘(b”g as Z,-module in the natural way. A standard calculation using class
field theory gives that the dimension of this vector space is o + 1 if and
only if Leopoldt’s conjecture for (I, p) is valid.

(2) N =2,K = Q, and p > 2. Our residual representation is then a
homomorphism

Gaq,s ~ GLy(k).

We say that 7 is even or odd depending upon whether the image of
one (and hence all) complex conjugation involutions under p is a scalar
or a nonscalar matrix, i.e., in the even case its image would be one of the
matrices + ((1) (1)) and in the odd case it would be equivalent to the diagonal

+1 0 . . . . i
o —1 )- Equivalently, p is even if and only if the splitting field of

det(p) is totally real.

An immediate consequence of our proposition is that if 5 is as above, and
R = R(p), then:

matrix (

COROLLARY 3.

3 ifpisodd

1 ifpiseven.

Krulldim(R/pR) > {

We shall give examples below of odd Galois representations, such that
the Krull dimension of R/pR is equal to 3.
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1.11 Remarks on Galois Representations to SLy(F,).

These are relatively hard to come by. A consequence of Remark (2) at
the end of the preceding paragraph is that in the “unobstructed case”, i.e.,
when d? = 0, a Galois representation of even determinant is “rigid” in
the sense that its only deformations in characteristic p come from twisting
by wild, one-dimensional characters. The following example is meant to
illustrate this, and deserves further study.

Let

p:Gq,s — SLy(Fp)

be a surjective Galois representation. Thus its splitting field extension L/Q
has Galois group isomorphic to SLy(F,) and is unramified outside S.

PROPOSITION 6. Let p be as above, and suppose that p > 7. Then one of
the two conditions below holds:

(A) There is a Galois extension M/Q unramified outside S, containing
L/Q, with Galois group isomorphic to SLa(Fpe]).
(B) There is a unique lifting (up to strict equivalence) of p to Zp:

/

SL2(ZP)

GQ,S

SLy(Fp)

PROOF: In remark (2) at the end of §10 we see that, viewing 7 as a repre-
sentation into GL,(F,), we have § > 1 with equality if d? = 0. Thus either
d? = 0 and d! = 1 which gives (B) or d* > 1 which yields a nontrivial
deformation of p to SLy(Fp[e]) C GLa(Fp[e]). But since p > 7, there are
no proper subgroups of SLy(F,[e]) which project surjectively to SLa(F,);
therefore we are in case (A).
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REMARKS: There are very few surjective Galois representations from Ggq,s
to SLa(Fp) known, for p > 7. I am grateful to Walter Feit who informed
me of some examples for p = 7 due to Zeh-Marschke, [ZM] whose con-
struction depends upon a family of PSLy(F,)-extensions of Q found by
La Macchia [LM]. Does case (A) or case (B) apply for the examples of
Zeh-Marschke?

See also the paper of Feit [F] in which an infinity of SL,(F5)- extensions
are constructed.

1.12 Neat Residual Representations.

Let, as above, S denote a finite set of places of K containing the archi-
medean places and all places above p. Let 5 : Gx,s — GLn(k) be an
absolutely irreducible representation whose image has order prime to p.
Let L/K be its splitting field over K, and let G = Gal(L/K). Say that an
F,[G]-module is “relatively prime to Ad(p)” if

F»[G] ®F, Ad(p)

does not contain the identity representation of G, when viewed as k[G]-
module.
We say that p is neat if the order of its image is prime to p and if the
following three Fp[G]-modules are relatively prime to ‘Ad('ﬁ):
(1) The cokernel of py(L) — @y pp(Ly), where the summation is taken
over all nonarchimedean pla;ces w of L lying over places in S. Here
{p means the group of p-th roots of 1.
(2) The kernel of O} /07" — @, O} /07 , where the summation over
w is as in (1) above.
(3) Pic(Op)pl, i.e., the subgroup of elements killed by p in the ideal
class group of L.

Let d' = dim; H*(Gk,s, Ad(p)) as before, and § = d* — d2.
PROPOSITION 7. If p is a neat residual representation whose image has

order prime to p, then d*> = 0. The universal deformation ring R of p is
isomorphic to a power series ring over W(k) in § = d* parameters.

PROOF: Let S’ denote the set of places of L lying above the places S of
K. Let Y, = Spec(Or) where Oy, is the ring of integers in L and let
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Y1 s+ C YL denote the open subscheme which is the complement of the
closed subscheme S’ — S!_. From the standard long exact sequence for
étale cohomology for the pair (Y,Yy, s) with coefficients in F,, one com-
putes, using (1),(2), (3), that H2(Yy s, F;) is, as F,[G]-module, relatively
prime to Ad(p). But by [H, Appendix 2, 3.3.1] we have the isomorphism
H2(YL,51 s Fp) = Hz(GL,sl ,Fp).

Also, since G has order prime to p, we have the isomorphism

H*(Gx.s,Ad(P)) = HY(G, HX(GL,s',Fy) ® Ad(P))

from which our proposition follows.

1.13 Neat S;-extensions of Q.

Let K;/Q be a noncyclic cubic extension of discriminant £p =1 mod 4
for p a prime number > 5. Let L/Q be the Galois closure of I /Q, so that
L contains K; ¢ =(1,2,3) the fields conjugate to Ky, and L contains the
quadratic field Q(v/Ep). Let G = Gal(L/Q) (& S;, the symmetric group
on three letters). Let K = Q, S = {p, o0} and let

P: Gq,(p00} — GLa(k)

be a residual representation obtained by choosing a suitable finite field k of
characteristic p, and imbedding of G in GL2(k), and then composing with
the natural projection Gg, (5,00} = G-

If 1, ¢, po denote the three inequivalent irreducible k-representations of G
(i.e., 1 is the trivial representation, € is the nontrivial one-dimensional sign
representation, and p, is the irreducible two-dimensional representation
given by the above imbedding), then Ad(p) =1® e ® p».

An F,[G]-module is relatively prime to Ad(p), in the sense of §12, if and
only if it vanishes. Let us consider the three F,[G]- modules (1), (2), (3) of
§12 and the conditions under which they vanish.

(1) If w is a place of L lying over p, pp(Ly) = 0, so the F,[G}-module
(1) of §12 vanishes.

(2) (Special cubic fields). We shall exhibit a family of S3-extensions
of Q of discriminant —p which have the property that the G-representation
(2) of §12 vanish. Note first that since the discriminant is negative, we have
that L is a totally complex sextic field, and consequently the representation
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of G on the vector Q-vector space Q@ ® O7 is the irreducible 2-dimensional
representation. If the natural imbedding of O} — HOZ,‘, does not have

the property that the image is contained in the sul:’ghx,'oup of p-th powers,
then condition (2) of §12 holds.

Consider cubic polynomials f(X) = X3 +aX + 1 for integers a such that
27 + 4a® is a prime number. Set p = 27 + 4a®.

DEFINITION. A special cubic fleld (of discriminant —p) is a fleld K; =
Q(z) where z is a root of f(z).

It is, indeed, the case that K; has discriminant —p. Moreover (see [Art,
pp. 169-171] the full group of units of K is generated by +z. Here is the
list of p < 1,000,000 such that —p is the discriminant of a special cubic:
23, 31, 59, 283, 1399, 4027, 5351, 11003, 16411, 32027, 97583, 119191,
157243, 202639, 275711, 415319, 562459, 665527.

Let K; be a special cubic field of discriminant —p. Let L be the Galois
closure of K; over Q, i.e., a splitting field of f over Q, containing z. Since
the constant term of the polynomial f is 1, the element z is a unit in the
ring, Oy,, of integers in Kj.

The polynomial f factors (mod p) as follows:

f(X)=(X +3/2a)%- (X —3/a) (mod p).

One calculates the norm Nk, /q(z +3/2a) to be p/8a®. It follows that if we
put = z + 3/2a and = =z — 3/a we may write the prime decomposition
of pin Ok, as follows: (p) = p; - po? where p; = (p,n) is the unramified
prime lying above p, and p, = (p, ) is the ramified prime lying above
p. If Ok, p, is the completion at p;, then Ok, o, = Z,[II] with II equal
to the image of 7. If we let z, denote the image of z in Ok, .. (ie,
z9 = —3/2a+1I) then z, is not a p-th power in O%, p, since no p-th power
in Ok, ,,, can be expressed as an integer plus II times a unit.
By considering the mapping

* * *
OKhPt x OKlmz HOL'P
plp

one sees then that the image of z in HOZ", is not a p-th power, and

vlp
consequently the G-representation space given by (2) of §12 vanishes.
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(3) Let K; be any cubic field of discriminant —p for p a prime number.
We shall show that the class number of L is prime to p and hence the
F,[G]-module (3) of §12 vanishes. For this it suffices to prove that the class
number of Q(v/=p) (for —p=1 mod 4)is < p (a fact which follows from
the standard inequalities coming from the Minkowski bounds) and that the
class number h; of K; is also < p. To see that h; < p, we use an explicit
bound for h; R; (the product of class number and regulator of K;) given
in a more general situation by Lavrik (cf. [Na] and the discussion on page
401 in §3 of Chap. VIII there for detailed statements and references) but
which can be computed in our situation to yield

hiR; < (0.01765155) - (1 + 1/ log p)* - log® p - 1/p.

Throwing out the case p = 23 (where h; = 1) we have the following lower
bound for the regulator (cf. [Art, p. 170]):

p—24
)

Ry > {/log(

which yields the desired inequality (with a wide margin) for h;.

DEFINITION. A representation p : Gq,(p,c0} = GL2(Fp) is called a special
Ss-representation if it is a residual representation constructed as in the
beginning of this section starting with K;/Q a special cubic field, where
K; = Q(z) and 2% 4+ az + 1 = 0 with p = 27 + 4a®.

To summarize:

PROPOSITION 8. For each prime number p of the form 27+ 4a® witha € Z
there is a unique special S3-representation (up to equivalence),

P : Gq,{p,00} = GLa(Fp).

The special S3-representations are neat (in the sense of §12 above). If R =
R(p) denotes the universal deformation ring of a special S3-representation,
then R is a power series 1ing on 3 parameters over Z,,.
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2. The Internal Structure of Universal Deformation Spaces.

2.1 General Glossary.

Let p : Gk,s — GLn(k) be an absolutely irreducible residual represen-
tation, and let R = R(p) be its universal deformation ring. We shall be
interested in studying X = Spec(R), which we refer to as the universal
deformation space of p.

Although at times we are interested in the A-valued points of the scheme
X for A any object of the category C, if we refer simply to a point z of
X, we shall mean a D-valued point of the scheme X, where D is some
complete discrete valuation ring, finite as W(k)-algebra which is fixed in
the discussion. Thus to a point z is associated a local- ring homomorphism
¢z : R — D, and consequently we also get an induced D-valued represen-
tation,

pz : Gk,s — GLN(D).

The “points” of X are then also points of the analytic space over the field
of fractions of D, determined by the scheme X. We refer to this analytic
space as X*". If the representation p, satisfies any property P, we shall
say that = has property P. A property P is called a quotient group property
if there is a commutative diagram

Gk,s Q

(0.1)

GLn(k)

where the horizontal map is a surjection of profinite groups and such that
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z has property P if and only if p; factors through .

Given such a diagram (0.1) one can then define the property P for any
A-valued point of X by the same requirement, and an application of the
proposition of §2 of Chap. 1 gives us that there is a closed affine subscheme
(call it Xp) in X with the characterization that an A-valued point of X
has property P if and only if it lies in Xp.

Specifically, take Xp to be the universal deformation space X(p') and
the mapping m induces a closed immersion, Xp «— X.

Here is a “glossary” of properties which we shall be concerned with in
this chapter. We assume N = 2.

I Inertial Properties. Fix D, a finite discrete valuation ring extension
of Z,.

If z is a point of X and v a place in S, let I, denote an inertia group at
v contained in Gk s and let p, , be the restriction of p, to I,.

A point z is said to be inertially finite at v if the image of I, under pg ,
is finite. A point z is inertially dihedral at v if p, , is a generalized dihedral
representation of I, in the sense that its image in GLy(F'), where F' is the
field of fractions of D, is contained in the normalizer of a Cartan subgroup
of GLy(F).

It is inertially reducible at v if p; , is reducible in the sense that if M =
D x D is the D-module upon which the group I, is made to act via p,,
composed with the standard representation of GL;(D), then there is a free
D-module of rank 1 contained in M which is left stable under the action of
I,. It is ordinary at v if p; is ordinary at I,, in the sense of §7 of Chap. 1.
Ordinary points are inertially reducible. If z is a D-valued point, it is said
to be inertially D-ample at v if the image of p, , contains an open subgroup
of finite index in SL2(D) C GLy(D).

Recall that a profinite group is said to be metabelian if it contains a
closed abelian normal subgroup whose associated quotient group is also
abelian. A point z is said to be inertially metabelian at v if the image of I,
under p, is metabelian; it is said to be inertially abelian at v if that image
is abelian. Both properties (inertially metabelian and inertially abelian at
v) are quotient group properties.

II. Global properties. We shall call ¢ globally dihedral if p, is a dihedral
representation of Gk s.

We shall say that = is automorphic if there is an automorphic repre-
sentation 7 of GL;,x, unramified outside S, whose Hecke eigenvalues are
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contained in the ring of integers Or of a number field F' C C, and there is a
homomorphism 7 : O — D such that if v is a place of K not in S, and A,
is the eigenvalue of the Hecke operator T, on =, then i(}\,) = trace p,(¢,)
where ¢, is a (geometric) Frobenius element at v in Gg,s.

More specially, if K = Q and the automorphic representation m can be
generated from a holomorphic modular form w of weight w > 1 on I'; (Np™)
for some integer N > 1 (prime to p) and for n > 1, where w is an eigenform
for the Hecke operators Ty (for £ ¢ Np), for the operators U, (for ¢|Np)
and for the “diamond operators” <r>, r € (Z/Np"Z)*, we say that z is
modular (of weight w and level Np™). In the case of weight w = 2 the
correspondence to modular eigenforms of such representations p, is due to
Eichler-Shimura-Igusa (cf. [Sh]); the generalization to the case of weight
w > 2 is due to Deligne [D]; for weight w = 1 it is due to Deligne-Serre [D-
S).

The reader should note that the form w is not necessarily uniquely de-
termined up to multiplication by scalars by the point = to which it gives
rise.

Say that z is pro-automorphic in X(D) if there is a sequence of auto-
morphic D-valued points of X converging to z (in the natural topology of
X(D)). Define pro-modular similarly. What is the locus of pro-automorphic
points in X (D)? Of pro-modular points?

III. Twists. The universal deformation ring R is naturally a A-algebra as
described in Chap. 1. The algebra A has a natural Hopf algebra structure,
and if @ is the formal group scheme whose associated affine Hopf algebra
is A, then X = Spec(R) is endowed with a natural action of ®. If z is
any point of X, and y is in the orbit of £ under the action of ® we shall
call y a twist of z, insofar as the representation p, is the twist of p; by a
one-dimensional (wild) character.

In certain cases “a twist by a tame character” may also induce an auto-
morphism of X. Specifically, let

7:Gks— GLZ(’C) .

be a dihedral, absolutely irreducible, residual representation. Let L/K be
the quadratic field extension of K which cuts out the normal subgroup
of index two in Gk s determined by the dihedral representation 7. Let
er/k : Gk,s — (£1) be the quadratic character determining the field ex-
tension L/K. If p' = €1,k - p one immediately sees that 7 and 7' have the
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same trace and determinant, and consequently they are equivalent. We get
natural isomorphisms

R(p) = R(p) % R(p)

where « is obtained as in Chap. 1, §2 because p and 7' are equivalent. Let
4 denote the composition § o & which one easily sees to be a (nontrivial)
involution of R and consequently, of X. If p is dihedral, we refer to v as
the inner twist of X. If p is dihedral, the inner twist of X preserves the
locus of points of X satisfying each of the properties we have listed above,
except for the property of being ordinary.

2.2 Special dihedral representations.

We will analyze the universal deformation spaces of certain absolutely
irreducible residual representations in some detail.
Specifically, let p > 5, and let

p:Ggq,s — GLy(F))

be an absolutely irreducible residual representation which is odd and has
as image a dihedral group of order 2h, where h is supposed prime to 2p.
Let L/Q be the dihedral extension of Q which is the splitting field of p. We
shall say that such a 7 is a special dihedral representation if S = {p, oo},
the class number of L is prime to p, p is neat, cf. Chap. I, §12, and the
restriction of p to Gg(,/=5),s is unramified (where S’ consists in the primes
of Q(+/=p) lying above S).

There exist special dihedral representations: for example, we may take
the special S3-representations studied in Chapter L.

The action of an inertia group I, C Gq,s via a special dihedral represen-
tation p is through its unique quotient group of order two, the nontrivial
element in that quotient group having as image under p a matrix equivalent
to (";1 _01) in GLa(F). It follows that special dihedral representations are
ordinary.

From the theory developed in Chapter I, it follows that the universal
deformation ring of such a p is a power series ring in three variables over
Z,. ‘

From now on, we fiz such a special dihedral representation p. Let R be
its universal deformation ring, and X = Spec(R), its universal deformation
space. Let Doy C GLo(F,) denote the image of 5.
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2.3 The origin.
Up to strict equivalence, there is a unique lifting
Po GQ’S b d GLg(Z,)

of p, such that its image in GLy(Z,) is isomorphic to Dz, the image of p
in GLz(Fp)

Let o € X denote the Z,-valued point of X corresponding to pg, which
we take as our origin.

Clearly, zo is ordinary, and hence also inertially reducible; zo is also

dihedral.

PROPOSITION 9. The point z, is the unique inertially finite Z,,-valued point
of X.

PROOF: Let z € S be a Z,-valued inertially finite point. Since the im-
age of I, under p, is finite, it follows that its image is isomorphic to its
image under p, the isomorphism being given by the natural projection
GL2(Z,)—GLy(F;). It follows that p, restricted to Gg(,/=5) is unram-
ified. Consequently, restricted to G, it is also unramified. But p, |G, has
image in the kernel of GL3(Z,) — GL2(F,) which is a pro-p group. Since
the class number of L is prime to p, it then follows that p, is trivial on G,
i.e., the image of p, is isomorphic to D,p. Since, up to strict equivalence,
there is a unique lifting of Dap from GLy(F,) to GL3(Z,), it then follows
that z = zo.

REMARK: The same argument gives the fact that an infinitesimal defor-
mation of p is constant if and only if the restriction to I, is constant. To
be precise,

LEMMA 5. Let p : Gq,s — GL2(Fple]) be a deformation of p to the ring
of dual numbers. Then p is constant (i.e., obtained from p by pullback via
the imbedding F, — F,[e]) if and only if § |1, is constant.

PROOF: If p |, is constant, it follows as in the proof of the previous propo-
sition that p restricted to G, the Galois group of the splitting field of 7,
is an everywhere unramified mapping of G to a p-group, which must be
trivial since L has class number prime to p.

PROPOSITION 10. The “origin” zo € X is modular. The representation
po associated to zo comes from a modular form w of weight one on I'y(p)
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which is an eigenvector for the Hecke operators Te (£ # p) and for Up, and
which is p-ordinary, in the sense that the Up-eigenvalue is +1, and hence a
p-unit.

PROOF: The basic statement, that py is attached to a modular form 6 of
the above description is due, essentially, to Hecke. Here is a description of
the modular form 6. Let

Xo : Gal(L/Q(v-p)) — D*

be the one-dimensional character whose induction to Gal(L/Q) gives pq,
where D is either Z, (in the split dihedral case) or an extension of degree
two over Z, (in the nonsplit dihedral case). By Class Field Theory, xo
corresponds to an ideal class character x (indeed, an unramified ideal class
character, by our assumptions on L). Then

6=> x(a)g"*

where a runs through all ideals in the rings of integers of Q(1/=p). Note that
0 is actually a power series in ¢ with coefficients in Z,. Note also that, by
([Serre 2, §8]; cf. also [Hecke]), 6 is of weight one with Legendre character
on I'o(p). It is an eigenvector for the Hecke operators T, £ # p and U, and,
moreover, its U,-eigenvalue is 1. Consequently 6 is a p-ordinary eigenform.

2.4 The globally dihedral locus.

Let IIp (the subscript D is for “dihedral”) denote the maximal profinite
quotient group of Ggq,s in which the image of Gg(/=),s is abelian. Let
pp : IIp — GLy(F,) denote the residual representation such that com-
position with the natural projection Gg,s — II yields p. Let Rp be the
universal deformation ring of pp and Xp = Spec(Rp) its universal repre-
sentation space. We have a natural closed immersion,

XDHX.

LEMMA 6. A Z,-valued point z € X is globally dihedral if and only if it is
in XD.

REMARK: In particular, the property of being globally dihedral is a “quo-
tient group property” in the sense of §1.



417

Proor: If z € Xp, then p, is an odd representation whose image is a
dihedral subgroup in GL2(Z,). Also, since 7 is absolutely irreducible, so is
pz. It follows that p, is a dihedral representation.

PROPOSITION 11. The universal deformation ring Rp is a power series ring
in two variables over Z,. The subscheme Xp is a smooth hypersurface in

X.

PROOF: Let s : Dyp—+(%1) denote the natural surjective homomorphism
given by the dihedral structure of Dj,. Let I'y,I'_ be two free pro-p-
groups on one generator (i.e., & Z,) endowed with continuous D,-actions
as follows:

(a) Dgp acts trivially on I'y.

(b) An element g € Dy acts on I'_ by multiplication by s(g).

Let A denote the semi-direct product I'y x I'_ x Dy, where the action of
Dyj onTy and T'_ is given as in (a),(b). An elementary exercise in class field
theory shows that there exists a (noncanonical) surjective homomorphism
IIp — A such that any lifting p : IIp — GL2(A) of p; for any A € C factors
through A. Thus, if we fix such a surjective homomorphism a : IIp—A,
and let

Pa i A - GLy(F,)

be the residual representation such that composition with a yields pp then
Rp is isomorphic to the universal deformation ring of p,. But the lat-
ter universal deformation ring is immediately seen to be isomorphic to
Z,[[T+ x T_]] since pp |p,, admits a unique deformation to A for any
AecC. (]

2.5 The ordinary locus.
Let R° be the universal deformation ring of ordinary deformations of p

(Chap. 1, §7) and let X° = Spec(R°).
We have a natural mapping

R—R°
which brings p to the deformation

p*: Gaypee) — GLa(RY).
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i.e., to the universal ordinary deformation of p. If M° = R° x R° is the
free R°-module of rank 2 endowed with a G, (p 0} action via composition
of p° with the natural action of GLz(R°), then the submodule (M°)% of
inertial invariants is a free R°-module of rank 1, which is a direct factor in
Me.

PROPOSITION 12. The natural mapping R — R° is surjective.

PROOF: Let R' C R° denote the image of R. The universal deformation
p of p' to R induces a deformation p' of p to R'. Let M = R' X R' be
the module upon which Gq,s acts by composition of p’ with the standard
action of GLy(R'). The induced action of Gg s on M° = M Qp R° is
ordinary: in fact, it is the universal ordinary deformation p° of 7.

Let II denote the p-completion of Gg,s relative to p (Chap. I, §2). Then
II is an extension of the dihedral group Dy by a pro-p-group. By Schur-
Zassenhaus (compare [B, Prop. 2.6], it is a semi-direct product. Let 7 be
the image of an inertia group at p in II. Then T is a semi-direct product
of a cyclic group of order two by a pro-p-group. Let o € T be an element
of order two. Since p # 2, the R'-module M decomposes as a direct sum
M = M* @ M~ where the R'-modules M* are the +-eigenspaces of the
involution o. Since ¢ is not a scalar matrix, it follows that M* are both free
R'-modules of rank 1. Consequently, M* ®p R° are also free R°-modules
of rank 1. Since o acts like —1 on M~ it follows that the invariants under 7
in M° = M ®pg: R° are contained in M @z R°. But since p° is ordinary,
the module of T-invariants in M° is free of rank 1 over R° and a direct
summand in M°. It follows that M+ @z R°® is the module of Z-invariants
in M°, and consequently, M* is the module of Z-invariants in M. But
then we have shown that the module of Z-invariants in M is free of rank
1 and a direct summand in M. It follows that p' is ordinary. Since R° is
the universal ring of ordinary deformations of 5, we then have a canonical
homomorphism R° — R’ with respect to which, 7 is induced from p°. One
easily sees that the composition R° — R' C R° is the identity, giving
equality, R' = R°, and our proposition.
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We have the following diagram of subschemes (after §4, and prop. 12
above):

XO

(0'2) /
Xp
and we now show that the ordinary locus X° and the globally dihedral

locus X p intersect transversally in X. Specifically, abbreviating k = F,,
we show:

LEMMA 7. Any deformation of p to the ring of dual numbers k[e] which is
both globally dihedral and ordinary is constant.

PROOF: Let § be such a deformation, and let M = k[e] x k[e] be the k[e]-
module on which Gq s operates via . Let H be the (finite) quotient group
of Gg,s through which j operates faithfully. We may write

H=AxDy (semi-direct product)

where D, acts on A via an automorphism factoring through the projection
of Doy, to (£1), and A is a finite abelian p-group. If Cj, < Dy, is the kernel
of the projection to (£1), we have, evidently,

H=AxCpx (1)

For this description of things, we have used that 5 is globally dihedral.

We may coordinatize H as above so that the image of the inertia group
at p, Iin H is given by A X (0) X (£1). Here we use that L has class number
prime to p.

Now we make use of the assumption that j is also ordinary. Thus M7 is
a free k[e]-submodule of M, of rank 1. Since A is contained in the image
of I, MT C MA4. Let us first note that M’ cannot be equal to M4. For if
we had equality, since Dy, C H normalizes A, it stabilizes M4, hence also
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M, which would give us that M7 is stabilized by all of 5, which is clearly
not the case (p is absolutely irreducible). For the rest of this argument, we
make use only of the k-vector space structure of M (and not its k[e]-module
structure). M is a k-vector space of dimension 4, and M7 is of dimension
2. Since M7 is properly contained in M4, we have that dim; M# is either
3 or 4. But M, viewed as k-representation space for Dy, C H is a sum of
two copies of an absolutely irreducible representation of dimension 2. In
particular, there are no D,-stable subspaces of the k-vector space M of
dimension 3. Since M4 is stabilized by Dgzp, it then follows that M 4 is all
of M; but A acts faithfully on M, giving A = 0, and our lemma.

Recall that the reduced Zariski tangent space of a local ring A with
residue field k is the k-vector space which is k-dual to m4/(m%,p) where
my4 is the maximal ideal in A. An easy consequence of the above lemma is:

PROPOSITION 13. The reduced Zariski tangent space of X° has dimension
<1loverk=F,.

PRrROOF: Consider the diagram of subschemes (0.2) above. Since the re-
duced Zariski tangent space of X is of dimension 3, and the reduced Zariski
tangent space of Xp is of dimension 2 (Prop. of §4) the transversality
lemma above implies our proposition.

A consequence of Proposition 2 and Nakayama’s lemma is that if Z,[[¢]]
is a power series ring in the variable ¢ over Z,, there is a surjection of rings
Z,([t]] — R°.

Fix such a surjection and let J C Z,[[t]] denote its kernel.
It follows that

LEMMA 8.
&) Krull dimension (R°®) < 2.

We have equality in (1) if and only if J = 0, i.e., if and only if R® is
isomorphic to a power series ring in one variable over 7.

To proceed further in our argument, we must bring in Hida’s theory [Hida).
By proposition 2 of §4, the origin ¢ € X is modular, and moreover there is
a p-ordinary modular form w of weight one whose associated representation

18 pzq.
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We view w as having Fourier coefficients in Z,, and now invoke the theory
developed in [Hida] and [M-W]. (See also the Ph.D. Thesis of Gouvéa [G,
§ 2.4]) Let T be the Hecke algebra associated to the prime number p, as
defined in §8 of [M-W]. Then there is a homomorphism f : T — Z, such
that Ty € T goes to the eigenvalue of the action of T; on w for all £ # p,
and U, € T goes to the eigenvalue of U, on w. Let f: T — Z/pZ denote
the reduction mod p of f, and let m C T denote the kernel of f. If Ty,
denotes the completion of T at m, then by Prop. 2 of §8 of [M-W] we have
a two-dimensional ordinary representation

pm: GQ,s — GLy(Tw)

which is a lifting of p. The ordinary-ness of pm (i.e., the fact that the module
of inertial tnvariants in its representation space is a free T~ module of rank
one and a direct factor) is linked to our requirement—cf. [M-W]—that T}
be the trace of a geometric Frobenius element in the representation space of
pm- If we had chosen, instead, to work with the arithmetic Frobenius, the
inertial coinwvariants would enjoy the property described in the parenthesis
above.

LEMMA 9. There is a surjective homomorphism
R —» Th

of A-algebras such that py is induced via this homomorphism from p°, the
universal ordinary deformation of p.

PRrOOF: Existence (and uniqueness) of the asserted homomorphism comes
from the universality property of p° and the fact that py is ordinary. For
prime numbers £ # p, set T; = the trace (over R°) of (geometric) Frobenius
at £ acting on the free R°-module M°® = R° x R°® via p°, and let U, € R°
denote the eigenvalue of a choice of Frobenius at p, acting on the free R°-
module of rank 1 consisting in the inertial invariants in M°. It follows
easily that the natural homomorphism R® — Ty, is a homomorphism of
A-algebras which sends T} to Tp for all £ # p and Uy to Up. Since the
A-algebra Tr, is generated by the Hecke operators T} for £ # p and by U,
the surjectivity assertion of lemma 9 follows.

Since Ty, is finite and flat over A, [Hida, Theorem 3.1] and nonzero, we
have that
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LEMMA 10. Krull Dimension (Tm) = Krull dimension (A) = 2.

PROPOSITION 14. The natural mapping
R° - Ty

is an isomorphism of rings, which are noncanonically isomorphic to power
series rings in one variable over Z,.

PROOF: Putting lemmas 8, 9, 10 together, we get, firstly, that the Krull
dimension of R° is equal to 2. Then, by lemma 8, R° is isomorphic to
Z,[[t]]. But then, by lemma 9, there is a surjection

(B 2)Z,[[f) —» Tm

which, by Lemma 10, is an isomorphism. We have thus proved our propo-
sition.

COROLLARY 4. Let D be any finite discrete valuation ring extension of Z,.
Then any ordinary deformation of p to D is pro-modular.

COROLLARY 5. The A-algebra R° is finite and flat.

Both corollaries are immediate consequences of Proposition 14. Indeed,
since R° = Ty any ordinary deformation of p to D “comes from” a p-adic
p-ordinary cuspidal eigenform. Corollary 5 is also immediate, and it is
recorded here because we see no way of proving it without appeal to Hida’s
theory.

Problem: Let 7(p) denote the rank of the finite flat A-algebra
R° = Ty. What can be said about 7(p)? Is it ever greater than one?

For some information about () see forthcoming joint publications with
Nigel Boston.

2.6 The inertially reducible locus.

The purpose of this section is to show that the locus of inertially reducible
points in X consists in the union of two regular hypersurfaces (Prop. 18
below). The intersection of these hypersurfaces consists in the locus of
inertially abelian points (Prop. 16 below).

Let X° C X be the ordinary locus as in §5. Let X° c X denote the
associated formal affine schemes. Recall the action of the formal group @
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on X (“twists by wild one-dimensional characters”; see Chap. I, §4). Let
Z° c X be the saturation of X° under the action of ®,ie., 7 is the smallest
closed formal subscheme of X stable under the action of ®, and containing
Xe. In particular, we have a “dominant morphism” & x X° % Z°. If A(-)
denotes the affine ring of a formal affine scheme, then, using the morphism
i, We may view .A(Z") as a subring of A(® x }?") = A®R® which (using
the propositions of §5) is a power series ring on two parameters over Z,.

PROPOSITION 15. The morphism
p:®x X 7°

is an isomorphism of formal affine schemes. The affine ring A(Z°) is a
power series ring on two parameters over Z,.

PROOF: The idea is simply that Xe° is transversal to the orbits of & in
the sense that the natural morphism induced by p on k[e]-points yields an
injection
B(kle]) x X(kle]) = X (k[e]).
This can be checked using the fact that if  is any ordinary deformation of 5
to k[e], and x is any (wild) nontrivial character with values in 1+¢k C k[e]*,
then x ® p is no longer ordinary.
It follows that

p i ®(k[e]) x X°(k[e]) — Z°(k[e])
is injective, and consequently, the injective homomorphism
pi AZ%) — A® x X°)
induces a surjection on Zariski cotangent spaces. It follows that u is an

isomorphism.

Now let v : X — X denote the inner twist involution (cf. §1) acting on
the formal scheme X.
Put
A ~- ze.

Since v is an automorphism of formal schemes, we have that the affine
ring A(Z°°), as well, is isomorphic to a power series ring on two parameters
over Z,.
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Let X;, C X be the closed subscheme representing deformations of p
which are inertially abelian, i.e., deformations with respect to which I, acts
through an abelian quotient, and let X i.a. be the formal completion of X; , .

Let 7 denote the saturation under the action of @ of the reduced formal
subscheme in X consisting of the origin z,.

Thus, since ® acts principally on be , we have that A(Z) is a power series
ring on one parameter over Z,.

Clearly, z C be i.a.- Is this inclusion an equality?

PROPOSITION 16. We have an equality of formal subschemes of X:
2°nZ%° = Xia.
PROOF: Let A be an artinian object of the category C and let
pa: Gg,s — GLy(A)
be a deformation of p to A. Let M = A x A be given a Gg,s-module

structure via p4.

If paisin X,-.a_(A), then the action of I, on M is through I;,‘b =T xFj
(the isomorphism being given by local class field theory). The A-module
M is completely reducible for the F}-action, and splits into the direct sum
of two free A-modules of rank 1, M = M+ @® M~ where F} acts trivially on
M and through the character of order two on M ™. Since the action of I’
commutes with the Fj-action, M * and M~ are I'-stable, hence I,-stable.
Let x* be the inverses of the wild character with values in A* giving the
action of I' on M*. Twisting p4 by x* yields an ordinary representation,
hence py4 is in 2°(A). Twisting p4 by x~ and then applying the “inner
twist” « also gives an ordinary representation, hence p4 is in 2°°(A) as
well.

If pa is in Z°(A) and in 2""(/1), we may find A-submodules M* ¢ M
which are direct factors of rank 1, and on M*, I, acts via a wild character
‘with values in A* while on M~, I, acts via € times such a wild character,
where € is the basic quadratic character. It follows that the natural homo-
morphism M* @ M~ — M is an isomorphism and consequently I, acts
through an abelian quotient group.

PROPOSITION 17. Let x be a Z,-valued point of X. Then z is inertially
reducible if and only if x is a Z,-valued point of 7oy Zee.

PROOF: It is evident that any ordinary Z,-valued point is inertially re-
ducible, and that inertially reducible points remain so after tensoring with
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one-dimensional characters. It follows that any Z,-valued point of ZouZeo
is inertially reducible. Now let z be an inertially reducible Z,- valued point
of X. We can choose a homomorphism p; : G, (p,c} — GL2(Z;) in the
strict equivalence class of deformations of 5 corresponding to z so that its
restriction to I, is a “triangular representation”:

Pz : I — GLa(Z,)
g (np(()g) :)

where 71, : I, — Z} is some continuous character. Let 7, : I, — F} be the
reduction of 7, mod p. Since p, is a deformation of p we have that 7, is
either the trivial character, or else it is the quadratic character e attached
to the field Q(1/=p), restricted to the inertia group I,.

Replacing = by y = v(z) if necessary, we may suppose that 7, is trivial,
i.e., that n, is wild. Let

1:Gape0) — 1+pL, CZ;
be the unique global character of the above form, whose restriction to I, is
Mp-

Tensoring p, with n~! gives us an ordinary representation. It follows
that y is a Zp,-valued point of Z° and our original « lies in either Z° C X
or Z°° C X. Let X;, C X denote the union of these subschemes. To
summarize:

PROPOSITION 18. X; . is the union of two regular hypersurfaces. A Z,-
valued point of X is inertially reducible if and only if = is a point of X ...

2.7 The inertially metabelian and the inertially dihedral locus.

The property of being inertially metabelian at p is a quotient group prop-
erty.
Specifically, let
Gq,s = Him.

denote the maximal quotient group of Gg,s in which the image of I, is
metabelian (“i.m.” stands for inertially metabelian). Note that p factors
through a residual representation,

Pim. : Lim. — GLa(Z,).
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Form the universal representation ring Rim. := R(p;,,.) and universal
representation space Xi m. = Spec(R;.m.) attached to p; , .

We have that X;,,. C X is a closed subscheme, and by construction any
A-valued point z € X lies in X ,,. if and only if it is inertially metabelian
in the sense that the image of I, under p, is metabelian.  Since any closed
metabelian subgroup of GL2(Z,) is either contained in a group conjugate
to the group of upper triangular matrices

I p——

or in the normalizer of a Cartan subgroup of GLy(Q,) we have the following

PROPOSITION 19. Any Zp-valued point of X, is either inertially re-
ducible or inertially dihedral.

Since the group of upper triangular matrices in GLo(A) is metabelian,
we have that any inertially reducible A-valued points of X is contained in
Xi.m.-

COROLLARY 6. The closed subscheme X; ;. is contained in X; ..

ProOF: It suffices to show that Z° and Z°° are separately contained in
Xim.. But each are smooth hypersurfaces in which the Z,-valued points
are Zariski-dense. Since the Z,-valued points of Z° and of Z°° are contained
in X; ., the Corollary follows.

Since any closed subgroup G in GL2(Z,) which projects to the two-
element subgroup (; :31) of GLy(Fp) is either metabelian, or else it con-

tained an open subgroup of SLy(Z,), we have the following

PROPOSITION 20. A Z,-valued point = of X is inertially ample if and only
if it does not lie in X; ..

We shall conclude this section with a proof of
PROPOSITION 21. X; ... is not equal to X,
yielding the following Corollary, in the light of Prop. 20:
APPROXIMATION THEOREM. The inertially ample points in X(Z,) are

open and dense. (Equivalently:) Given any deformation

¢ : Gg,s — GLy(Z/pN2)
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of p to Z/pNZ (any N > 1), there is an inertially ample deformation
pz : Go,5 = GLo(Z,)
of p' toZ,.

We now prepare for the proof of Proposition 21. Let G denote the p-
completion of Gg,{p,c0}) relative to p as defined in the Remark of Chap. I,
§2 and also in [B], and [B-M]. By Schur-Zassenhaus (e.g., Prop. 2.6 of [B])
G can be expressed as a semi-direct product Dy, X P, where P is an open
(and closed) normal pro-p subgroup in G (P is the pro-p-Sylow subgroup
in G). Moreover, we have that the deformation theory of p factors through
G. Write the dihedral group D5, explicitly as a semi-direct product, Dy, =
{1,0} x C), where C}, is a cyclic subgroup of order 2. We have the following
diagram of fields:

O —X —t—9

Here K = Q(1/=p) and  is the maximal p-extension of L unramified
outside the set of primes of L lying above p. Note that Q contains Q,, the
unique Z,-extension of @, and consequently we have a canonical surjection
G—+Gal(Qw/Q).

Since L/K is an everywhere unramified abelian extension, and the prime
ideal (1/=p) in O is principal, it follows that it splits completely in L. Let
g1,92,- - - ,gn denote the primes lying above it in O where we have chosen
g = ¢1 to be the prime ideal stabilized by o.

LEMMA 11. There are two elements u,v contained in the image of an inertia
group at ¢ in P satisfying the following properties:

(a) The closed subgroup of P generated by u and v is equal to the image
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of that inertia group at gq.

(b) The closed subgroup in P generated by the elements (u), 7(v) for
T ranging through the elements of C}, is all of P.

(c) o(u) =u and o(v) = v~ L.

(d) The image of u under the natural projection G—+Gal(Qe/Q) is of

infinite order, or equivalently: is # 0.

PROOF: We use the techniques of [B]. Let @; be a choice of prime of
lying above g¢;, for each : = 1,2,... ,h. Let G; denote the inertia group
at Q; in G. Let P; C G; denote the (pro-) p Sylow subgroup (in fact it is
the unique closed normal subgroup of index 2) in G. We have that P; is
contained in P, and we have an induced mapping P; — P on Frattini (p-)
quotients.

Recall that the Frattini p-quotient of a group is the maximal abelian
quotient of exponent p (cf. [B] for a detailed relevant discussion).

The action of D,j, on P induces an action on P and the subgroup Cj
acts transitively on the set of h subgroups {image P;}. Let L'/L denote
the intermediate field extension in /L such that the quotient group P is
identified with Gal(L'/L). Then L' is an abelian extension of exponent
p, unramified outside the primes ¢;, 1 = 1,2,... , h. The set of subgroups
image P; C P generate all of P, since L has class number prime to p. By
local class field theory, we have a surjection U—»P;, where U is the Frattini
p-quotient of U, with U the group of units in Z,[/=p)].

One sees that U is an F p-vector space of dimension 2, and the involution
o acts semi-simply on it, in a nonscalar manner. It follows that one can find
two elements %, € P which generate Py, and such that (%) = @, o(7) =
71, The element @ is nontrivial as can be seen from the fact that it maps
to a generator of the Frattini p-quotient of Gal(Q../Q), via the natural
projection signalled above.

By Theorem 2.8 of [B] (applied to "G" = P; and A = {1,0}) we
may find two elements u,v € P; which generate P; as a pro-p group, i.e,
which satisfy property (a), which also satisfy property (¢) of our lemma,
and which lift @, € P. By the paragraph above, property (d) holds, as
well. By Burnside’s lemma [B, Prop. 2.2] and the fact that the subgroups
{r(image P;); T € C}} generate P, property (b) also holds, establishing our
lemma.
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We now introduce two other groups,
GI=D2hXP' and G"=DthP"

to compare with G.

Definition of G': Let P’ denote the free pro-p group on 2h generators
which are labelled 7(U), 7(V') where 7 ranges through the elements of Ch.
We make the abbreviations U = 1(U) and V' = 1(V) where 1 is the identity
element in Ch. Let Ch act on the free pro-p group P' in the expected
manner, i.e., A 7(U) = (Ar)(U) for all A,7 € C}, and similarly for V.
Extend the action of C} on P’ to an action of Dy on P’ by requiring o to
fix U and to send V to its inverse. There is a unique surjection P'—»P which
sends U to u and V' to v and which respects D,,-actions. This surjection
extends to a surjection G'—G which is the identity on the subgroups Ds}.

Definition of G": Let P" denote the quotient of P’ obtained by im-
posing the commutation relations [7(U),7(V)] = 1 for each 7 € C,. The
action of Dyp, on P' stabilizes the normal subgroup generated by these re-
lations, and therefore induces an action on P". Let G = Djj, x P" be the
semi-direct product formed via this action.

Now consider the three residual representations

7:G — GLy(F,), 7 :G' — GLy(Fp), 7":G" — GLy(F))

obtained by projecting the three groups G, G',G" to D, and then imbed-
ding D55, in GL2(F,) by the identity. There is no loss of generality in assum-
ing that the involution in D, maps to the matrix ((1) _(_)1) € GLy(F,), and
we assume this. Moreover, we fix a lifting of this imbedding,
D,p — GL3(Z,) where the involution maps to (; _01) in GL2(Z,). Such a
lifting is unique up to strict equivalence (indeed, up to strict equivalences
fixing (; _?1) ).

It is now an elementary matter to obtain an explicit description of R', the
universal deformation ring of 7', and a description of p' : G' — GLy(R'),
the universal deformation of p’. Specifically, we may coordinatize R' as
R' :=17,[[T\,T>,T3,T4]], and take p' to be the homomorphism which

(a) when restricted to Dy C G’ is the chosen lifting of Dyp, to GL2(Z,)
composed with the natural imbedding GL2(Z,) C GL2(R').

®) /)= (47 5)
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(c) P(V)= (lj;;" 11_;_“5) where S is chosen to make the determinant of

the matrix equal to 1, i.e., S = —(TZ + T3)/(1 + T3).

What about R, the universal deformation ring of the residual represen-
tation p"'? This is simply the quotient ring of R’ given by the two relations
TyT, = 0 and T3(T3 — S) = O [these relations expressing the fact that the
images of U and V commute].

We now consider again R, the universal deformation ring of p. The
surjection G'-—»G makes R a quotient ring of R'. We already know that R
is smooth of Krull dimension 4. Let X, X', X" denote the Spectra of the
rings R, R', R", respectively.

Thus, we have a diagram of closed immersions,

XX X"

where X' is smooth of Krull dimension 5, and as can immediately be seen
from the relations defining R", X" is the union of two smooth irreducible
components of Krull dimensions 3 and 4.

From the defining property of X", one sees that the D-valued inertially
metabelian points of X all are precisely the D-valued points of the sub-
scheme X N X' in X'. To show that the inertially metabelian locus is of
codimension > 1 in X, it then suffices to show that X is not contained
in X", as subscheme of X'. Suppose, then, that X is contained in X". It
would then follow that X is contained in (indeed is equal to) the irreducible
component of X" of Krull dimension 4. Consequently, the relation 75 = 0
holds for all Z,-valued points = of X, i.e., pz(u) is a scalar matrix for any

“such Z,-valued point z. If z is ordinary, it follows that py(u) = 1. But
there exist ordinary points z € X(Z,) such that p, has determinant x* - g
where 7 is a character of finite order and x is the cyclotomic character, and
k is a nonzero rational integer. Since x(u) is of infinite order (as follows
from property (d) of the Lemma above) we have our contradiction.

2.8 Loci of constant p-adic Hodge Type.

Up to this point we have considered “algebraic structures” in X (e.g.,
the closed subschemes Xp,X; m., Xi.q., Xir.,X?, etc.) and “formal alge-
braic structures” related to the formal completion X {e.g., the action of
the formal group ®). We shall now study the associated analytic space
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X*" = X(Z,) and introduce a locally analytic mapping provided to us by
Sen [Sen 2] from X*" to the two- dimensional Qp-analytic manifold of
monic polynomials of degree two with coefficients in Q,.

Let us briefly recall the part of Sen’s theory that is relevant to our situ-
ation.

If V is a vector space over Q, of dimension two, endowed with a con-
tinuous Ggq,-action, let V' ® C, denote the tensor product over Q, with
C,p, the completion of the algebraic closure of Q,. The action of Gg, on
V ® C, is taken to be the diagonal action, with Gg, acting on C, in the
unique manner which continuously extends its natural action on Q,. We
refer to this action of Gq, as the “semi-linear action”. It is a consequence
of the theory of Sen Sen 1 that (taking as our choice of x the canonical
cyclotomic character, cf. [Sen 2] §1) we may associate to the Gg,-module
V an operator ¢ € M,(IK), where K is some finite extension of Q,. The
characteristic polynomial

fv(t) =detg(t-I—¢)

has coefficients in Q, and is dependent only upon the isomorphism class of
V ® C, viewed as semi-linear G g-module for K any finite extension of Q,
in _Qp.

Moreover, we have the following (sufficient) criterion for fy(t) to be re-
ducible as a polynomial over Q,. If K C @, is a finite field extension
containing the 2p-th roots of 1, and if s is a p-adic integer, then C,(s)
denotes the semi-linear G g-module obtained by twisting C,, given the nat-
ural Gk-action, by the character x* : Gx — 1+2p Z, C Z, where ¥ is the
natural cyclotomic character restricted to Gg. The s-th power x* makes
sense, since x takes its valuesin 1+ 2p Z,,.

LEMMA 12. Let I be a field extension of Q, as above, and let V @ Q,
denote the semi-linear G k-module obtained by restriction from Ggq,. Let
81,82 be p-adic integers and suppose that there exists an exact sequence of
semi-linear G g-modules

(8 0= Cps1) 2 V®Cp = Cp(s2) = 0

Then fy(t) is reducible over Qp, with roots sy, s3.

PRrOOF: This follows directly from the construction of [Sen 1,Sen 2].
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Recall further that the sequence of Gg-modules (§) splits if s; differs
from sp. If the exact sequence (§) splits, we say that V has semi-simple
(generalized) p-adic Hodge structure. If s; = s = 0, then V has semi-
simple (generalized) p-adic Hodge structure if and only if the inertia group
at p acts through a finite quotient group on V' [Sen 1].

Let us now return to the analytic space X** = X(Z,). For z € X",
consider the representation p; : Gg,s — GL2(Z,) associated to X, and let
V: denote the two-dimensional @p-vector space Q, x Q, with Gq,- action
obtained by allowing Gg,s to act on Q, x Q, via composition of p, with
the standard action of GLy(Z,) and then restricting to the image of Gg, in
Gq,s- Let fv,(t) denote the characteristic polynomial constructed by Sen,
as described above, and let b(z), ¢(z) denote its coefficients:

fr.(t) = +b(z) - t + ().

By the Sen mapping S : X" — Q, x Q, we mean the mapping which
sends z € X" to the pair (b(z), c(z)).

PROPOSITION 22 (Sen). The mapping § : X" — Q, x Q,, is locally ana-
Iytic.

PROOF: This is a particular case of the main result in [Sen 2].

For a pair of p-adic numbers (b,¢) € Q, x Q,, let X(b,c) denote the
inverse image of (b, ¢) under S in X" = X(Z,). Since S is locally analytic
with domain a p-adic analytic manifold of dimension three and range of
dimension two it immediately follows that

PROPOSITION 23. Let (b,¢) € Qp X Q,. The set X(b,c) inherits the struc-
ture of p-adic analytic variety from X®". The analytic variety X (b, c) may
be empty, but for each smooth point = € X (b,c), there is a neighborhood
of z in X (b, c¢) which is a p-adic analytic manifold of dimension 1.

If X (b, c) contains a smooth point, it contains an uncountable number of
points.

PROOF: By “smooth point” I mean: point at which the Sen mapping has
a jacobian of maximal rank (i.e., of rank 2). The second sentence of the
proposition is then evident by the implicit function theorem, as is the third
sentence.
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PROPOSITION 24. The restriction of S to Z°(Z,) gives us a finite-to-one
mapping
§:2°(1,) 2 1L, x1,CQp,xQ,

[to be described “explicitly” below].

PROOF: By Prop. 15 of §6, we have:

Z°(Z,) = Hom(A®R°; Z,).

Let A = R° be the structural homomorphism and consider the composition,
S

(1®yg*
Z°(1,) = Hom(A®R°,Z,) : Hom(A®A; Z,)
Sl
Hom(T', Z;) x Hom(T',Z})
q
1,x1, Z,x1,

where to obtain the two right-hand vertical isomorphisms we use the natural
isomorphisms,
Hom(A,Z,) = Hom(T', Z})

(where I' C Z} is the subgroup of 1-units and “Hom” means “continuous
homomorphisms”) and

Z, - Hom(T', Z})

(defined in the usual manner: for s € Z,,%(s)(7) = 7°).

The mapping ¢ : Z, X Z, — Z, X Z,, sends (s1, $2) to the coefficients (b, ¢)
of the polynomial t2 + bt + ¢ = (t — s;)(t — 81 — 82), i.e., b= —2s1 — s9,¢c =
s1(s1 + s2)-
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By the corollary to prop. 14 of §5, R is a finite flat A-algebra. Conse-
quently, (1 ® ¢)* is finite-to-one.

Since ¢ is a quadratic mapping, and since all the mappings other than
(1 ® ¢)* and ¢ (contributing to the composition §') are isomorphisms, it
follows that &' is finite-to-one.

From the lemma of this section it follows that S = &'.

Remark. Note that in the important case where A = R° is an isomor-
phism, we have that the mapping of proposition 24 is surjective.

COROLLARY 7. The restriction of S to X; . (Z,) is finite-to-one.

PROOF: S(v:z)=S(z) and

Xir(Zp) = 2°(Z,) U72°(Zy).

By the “weight-one locus”, we mean the locally analytic subvariety X (0, 0)
in X%*(Z,). Since the origin z is in X(0,0), X(0,0) is nonempty, but zg
is not a smooth point for the mapping S. Are there other Z,-valued points
of p-adic Hodge type (0,0)? In any event, we have

PROPOSITION 25. All points z in X(0,0) — {zo} have non-semi-simple p-
adic Hodge type. None of these points are inertially dihedral. All but a
finite number of points in X (0,0) are inertially ample.

PRrOOF: Let z € X(0,0) and let V; denote the associated G g,-representa-
tion as in the discussion at the beginning of this section. By the theorem
of Sen already quoted, V; has semi-simple p-adic Hodge type if and only
if the action of I, on V, factors through a finite quotient group, i.e., if
and only if z is inertially finite. But by Proposition 9, the origin z4 is
the only inertially finite Z,-valued point of X. It follows that all points in
X(0,0) — {zo} have non-semi-simple p-adic Hodge type.

Now the property of having non-semi-simple p-adic Hodge type is insen-
sitive to finite base change. If = were inertially dihedral, then p, restricted
to the decomposition group GQ» (v=p) of the prime above p in the quadratic
extension field Q(y/=p) would be, after a possible change of scalars, a di-
rect sum of two one-dimensional representations and hence would have
semi-simple p-adic Hodge type.

It follows that no point in X(0,0) — {zo} is inertially dihedral. Note
also, that since the image of X (0,0) under S is a single point, and since
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(Proposition 24) S is finite-to-one on X;.,.(Z,) we have that X (0,0) has at
most a finite number of points in common with X;, (Z,). By Prop. 19 it
then follows that X(0,0) has only a finite number of points in common with
Xi.m.(Zp). By Proposition 20, we then have that all but a finite number of
points in X(0,0) are inertially ample.

Further Questions.

Is it generally true that X (a, b) is (either empty or) a 1-dimensional p-adic
analytic variety?

Are there irreducible polynomials (over Q,) t? + bt + ¢ for which X (b, ¢)
is nonempty?

Is it the case that whenever X(b,c) is nonempty, it contains an open
dense subspace of inertially ample points?

For integers k > 2, how many modular points (necessarily of weight k)
does X(1 — k,0) contain?
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