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Annals of Mathematics, 128 (1988), 295-384

On p-adic Hecke algebras for GL, over
totally real fields

By Haruzo Hipa

0. Introduction

The purpose of this paper is to lay the foundation of the theory of p-adic
Hecke algebras for GL, over totally real fields. Apart from the flatness of the
ordinary part of the universal Hecke algebra over the Iwasawa algebra, almost all
results obtained in our previous papers [12] and [14, §1] in the case where
F = Q are generalized to arbitrary totally real fields F. Our result holds without
any exception for the prime p; thus, the assumption: p > 5 which we made in
[12] and [14] is now eliminated. One peculiar feature in the treatment of Hilbert
modular forms is the existence of multiple weight modular forms; i.e., those
forms with the automorphic factor: 1 (c,z, + d,)* for mutually distinct k’s.
In order to guarantee the stability of the space of integral cusp forms under
Hecke operators, we have to modify a little in Section 3 the definition of Hecke
operators T(») unless k is parallel (i.e. k, = k, for all o, 7). When we consider
the congruence subgroups of the adelized GL, over F of type

p— * * da
e[y o)

the independence of the p-adic Hecke algebras relative to the weight k no
longer holds. We can recover the isomorphism between the ordinary Hecke
algebras of different weights k and ! only when the difference of k and [ is
parallel. Thus we have infinitely many distinct Hecke algebras parametrized by
the classes of weights modulo parallel ones. The presentation of this phenomenon
is one of the motives of this work. Besides the obvious generalizations to totally
real fields of the results obtained for Q in [14] on Galois representations, we hope
to discuss in a future occasion how to unify these infinitely many Hecke algebras
into the universal one and also to discuss an intimate relation between our results
and the theory of cyclotomic Z -extensions over Q. In fact, the construction of
Galois representations over our big Hecke algebra of parallel weight (i.e. in the
case of v = 0; see below for details) has already been done by Wiles [40]. His
result even covers the totally real fields of even degree.
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We shall now give a sketch of our result in the simplest case of odd p-power
level. We fix throughout the paper a rational prime p and a totally real field F of
finite degree over Q. Let I be the set of all embeddings of F into R. The module
Z[1] of weights of F is by definition a free module generated by the elements of
I. Each welght k =%,k, - o can be considered as a quasi character of F*
assigning x* = [T (x*)° to x € F*. We fix an algebraic closure Q of the p-adic
field Q, and take the algebraic closure Q of Q inside C. We fix once and for all
an embeddmg Q- Q and hence any algebraic number in Q can be consid-
ered as a complex number as well as a p—adlc number in Q Let ®(k) be the
subfield of Q generated by the values x* for all x € F, and let O(k) denote the
valuation ring of ®(k) corresponding to the embedding: ®(k) = Qp In Z[I],
there is one specific element ¢ = 3 _,0 corresponding to the norm map:
F*— Q*. We write £ ~n (resp. £>1) for two elements & n e Z[I] if
§E—nme€Z- -t (resp. §,—1,>0 for all 0 €I). We shall fix one class of
Z[I]/Z - t and take the smallest non-negative representative v € Z[I] of this
class. ForeachO < n € Z[I]withn ~ - 2v,weput k =n + 2t, w =0 + k —
t and W =t—v=k— w. Let H be the upper half complex plane. We
consider the following automorphic factor:

det(y) " “j(v, 2)" = T1(and, — b,c,)” ‘(coz, + d,)*

ocel

b
for y = (ad d° )) € GLy(R)" and z = (3,), € H'. Let F, (resp. F,,, F;) be

the adele ring of F (resp. the infinite part of F, and the finite part of F,). Then
GL(F,)) can be identified with GL ,(R)’, and its connected component GL (F, )
with the identity acts naturally on H”. Let C_, be the stabilizer in GL; (F, ) of

= (\/—— \/‘ 1) € H'. We denote by + the integer ring of F and put
=18, Z, where Z is the product of the l-adic integer ring Z, over all rational

primes l Define congruence subgroups of GL (%) by
a b A
Vi) = {(¢ 5) e L)

Regarding 4 as a subring of F,, we consider V\(p*) to be an open-compact
subgroup of GLy(F;). We consider modular forms f: GLy(F,) — C satisfying

(0.1) flaxu) = f(x)det(u,,)j(u,,, z,)
foralla € GLy(F) and allu = upu,, withu,€ V|(p*) andu,, € C,

cew,d—lew}.

The space of cusp forms SF (p% C) we consider consists of functions on
GL(F,) satisfying, in addition to (0.1), the holomorphy condition at co and the
cuspidal condition (for details, see §2). This space is naturally isomorphic to the
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ON p-ADIC HECKE ALGEBRAS FOR GL, 297

space of classical holomorphic Hilbert cusp forms of weight k and of level p*
Then we can define Hecke operators Tj( ) for each ideal » acting on S (p*; C),
and the Hecke algebra 74,  (p% O(v)) is by definition the subalgebra of
Endo(SF (p% C)) generated over O(v) by T(#) for all ideals »~. The precise
definition of T;(~) will be given in Section 3, which is a slight modification of the
classical definition when v # 0. Let K/Q, be a finite extension inside 6,, and
suppose that K D ®(v). Then the p-adic integer ring @ of K contains O(v). We
simply put, for A = 0 or K,
4k,w(1’a$ A) = ﬁk,w(paé 0(0)) Bo(o) A.

For each pair of integers 8 > a > 0, it is wellknown that there exists a
surjective O-algebra homomorphism pg: 4, o PP O) = 4, (p% O) which takes
To(72) to T(») for all ». Without having recourse to the theory of p-adic
modular forms, we can define the p-adic Hecke algebra by

4k,w(poo; @) = (IE 4k,w(pa; 0)’

which, as will be seen in Section 4, acts naturally on the space of p-adic modular
forms and is in fact the @-linear dual space of the space of p-adic modular forms
(Th. 5.3 in §5). The ordinary part 4% (p* 0) (0 < a < o0) is the maximal
algebra direct summand of 4, (p*; O) on which the image of Ti(p) is a unit.
Then we have:

THEOREM 1. For any two weights n and n’ with n ~n’ ~ — 20 and
n > n’ > 0, there exists an O-algebra isomorphism:

A(p™5 0) = A0, (p®; 0)
which takes T(») to Ty(»), where k' = n’ 4+ 2t and w’ = v + k' — ¢.

By this theorem, the ordinary Hecke algebra #;™(p>; @) depends only on
the class of v modZ - ¢; so, we write h%%(1; 0) instead of 4™ (p*; @). Similar
independence of the whole Hecke algebra 7%, . (p>; @) with respect to the
weights will also be shown in Section 11 in the case where v = 0 by some results
of Shimura [30] (see also Ohta [26]).

Let Z be the Galois group of the maximal abelian extension %, /F
unramified outside p and oo. Let %, be the maximal ray class field modulo p°,
and put

Z,= Gal(Z /%) C Z.
Let Z,, be the torsion part of Z and decompose Z = W X Z, _ for a torsion
free part W. Then Z, and W are p-profinite groups and for sufficiently large a,

Z,c W.Let o, A, and A be the continuous group algebras over 0 of Z, Z,
and W, respectively. Then, A is isomorphic to the formal power series ring over
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O of several variables (if the Leopoldt conjecture holds for F, then A = O[[X]]
for one indeterminate X). Let x = x,; Z = Z be the cyclotomic character,
and for each | € Z - ¢, with I = [l]t for [I] € Z, we write x, for x!": Z - Z*.
Since x;: Z, = Z is a continuous character, we can extend it to an @-algebra
homomorphism x, ,; A, = 0. Let «, , = Ker(x, ,) which is a prime ideal of
A, Let A, , denote the localization of A, at w, ,. Then we have:

TueOREM II. There is a natural sfalgebra structure on h®(1; 0) such that
the natural surjection: h(1; 0) — 42 (p®; 0) induces an isomorphism:

hOJd(l; (9) ®Aa Aa,l/wl,aAa,l = 41(:1:10(’)("; K)
foralln ~—2v (n >0)and a > 0,

where 1 =n + 2v, k=n+ 2t and w = v + k — t. Moreover h°(1; 0) is a
torsion-free A-module of finite type and is reduced.

Let % be the quotient field of A, and fix an algebraic closure & of . To
give an absolutely irreducible component of Spec(h®(1; 0)) is equivalent to
giving a A-algebra homomorphism A: ho(1; 0) — #. We fix such a . Let X'
be the quotient field of the image of A and .# be the integral closure of A in X",
By extending the scalar field if necessary, we may assume that (_)p NS= 0. We
say that a Q -valued point P in Spec(.#)/0 is algebraic if P is over w, , €
Spec(A,) for some a > 0and 0 <l € Z - t. We write this | as n(P), and the
minimum of a with the above property as a(P). Regarding algebraic points P as
an (-algebra homomorphism: £ — (_)p, we can define an @-algebra homomor-
phism

Ap=PoA:h7(1;0) > Q,.
Then we have:

THEOREM III. For each algebraic point P of Spec(F#) with n(P) > 2v,
A(Ty(2)) is an algebraic number in Q for all ideals », and there exists a
non-trivial complex cusp form f, € SF (p*®;C) for k = n(P) — 2v + 2t,
w = n(P) — v + t such that f,|Ty(») = A(Ty(2))f, for all ideals n. This cusp
form f, is determined up to constant multiple.

In fact, we can specify f, by using the Fourier expansion of f;. Then, this
correspondence: P — f, can be extended to an algebraic function on
Spec(# )(6,,) with values in the space of p-adic modular forms. This parametri-
zation of common eigenforms is universal in the sense that for any given
common eigenform f € S¥ (p*C) (k = 2t, k ~ — 2v) whose eigenvalue for
Ty(p) is a p-adic unit in (3,,, we can find A: b(1; 0) - £ from which f is
obtained as in the theorem.

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

ON p-ADIC HECKE ALGEBRAS FOR GLgy 299

These theorems will be restated for arbitrary level in Section 3 and will be
proved in Sections 11 and 12. We shall also prove the finiteness over A of the
module of congruence and the module of differentials of A in Section 3, which
has at least conjecturally an intimate relation with the special values of L-func-
tions of GL(3) as seen in [14] in the case of F = Q. Our method for proving
these theorems relies firstly upon the analysis of the structure, as A-module, of
cohomology groups of arithmetic subgroups of quaternion algebras over F and
secondly upon the theory of p-adic Hilbert modular forms constructed by
Deligne, Ribet, Rapoport and Katz. We shall give an exposition of the latter
theory in Section 4 and will prove the duality between the Hecke algebras and
the space of cusp forms in Section 5. We then analyse the above mentioned
cohomology groups in the following Sections 6, 7, 8, 9 and 10 by adopting an
idea of Shimura which goes back to 1960’s [30]. We shall generalize in these
sections the results obtained in [14, §§3, 4 and 5] on cohomology groups coming
from M,(Q) to those coming from quaternion algebras over F which are totally
definite, or indefinite but yield Shimura curves. In the hope of having the same
type of results for more general quaternion algebras yielding varieties of higher
dimension, we have included some results which are irrelevant to our present
purpose but are expected to be useful in the higher dimensional case.

Contents

Introduction
Modules over quaternion algebras
Spaces of cusp forms and Hecke operators
Results on Hecke algebras
Stability of integral cusp forms under Hecke operators
Duality theorems between Hecke algebras and spaces of cusp forms
A theorem of Matsushima and Shimura
Hecke operators on cohomology groups and proof of Theorems 3.1
and 4.10
Comparison between cohomology groups of different weights
9. Controllability of ¥ °(v; U)
10. Co-freeness of ¥ °(v; N) over A
11. Proof of Theorems 3.2 and 3.3
12. Proof of Theorems 3.4 and 3.6 and Corollary 3.7

N3 R WD O

®

Notation. Throughout this paper, we fix a rational prime p and a totally
real algebraic number field F of finite degree. We denote by Q the algebraic
closure of Q inside C. We also fix an algebraic closure Q,, of the p-adic field Q,
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and an embedding: Q < 6,,. Thus any algebraic number in Q can be considered
uniquely as a p-adic number as well as a complex number. The normalized
p-adic absolute value of x € Q will be denoted by |x|,. We denote by £ the
completion of Q under the norm | |,

By a quaternion algebra over F, we mean a central simple algebra over F of
dimension 4; so, we include the matrix algebra M,(F) in this category. For each
quaternion algebra B/F, we denote by G = G2 the linear algebraic group
defined over Q such that G(Q) = B*. We denote by G, the adelization of G,
and G, (resp. G, G,, ) denotes the finite part of G, (resp. the infinite part of
G, and the connected component of G, with the identity). Similarly, for each
finite extension K/Q, we sometimes consider K* (resp. K) as a non-split torus
(resp. an additive group) defined over Q such that K*(Q) (resp. K(Q)) is
isomorphic to the multiplicative group (resp. the additive group) of K, and K,,
K, K, and K, denote the adele ring of K, the infinite part of K,, the finite
part of K, and the connected component of K of the identity, respectively.
We denote by »: G - F* the reduced norm map which can be viewed as a
homomorphism of algebraic groups. For each place o of F, let F, denote the
completion of F at o. For each finite extension K/Q, let 2z, denote the integer
ring of K. We write simply 2 for 2. For each integral ideal N of z, let

v = 1,y F,- We denote by x for x € G,, F, or F{ the projection of x in
G(Fy), Fy or Fy. Especially, x, (resp. x,, x) denotes the s-component (resp.
the infinite part, the finite part) of x. We denote by 2, (resp. z,) the closure of 2
in Fy (resp. F,). Then we know that 2y = [, y2,. We put Z = I1,Z,, where 1
runs over all rational primes, and we put £y = 2 ® ;Z. We can regard 7 as a
subring of K. Each fractional ideal 2 of K can be expressed as x#x N K (in

K;) for some x € K. The ideal x4, N K will be written as x4.

Let I, be the set of all embeddings of K into Q. When K = F, we simply
write [ for I.. We denote by A[J], for each commutative algebra A and a
subset J of I, the A-free module generated by the elements of J. The module
A[Ik] has a natural right action of Gal(Q/Q). For k =Xk, - o € R[I], we
write k>0 if k,>0 for all 6 €1, and k>0 if k>0 and k # 0. This
positivity on R[] is extended to an order on R[I] so that k > k’ (resp. k > k') if
k — k' > 0 (resp. k — k’ > 0). We define a map k: C' 2 x » x* € C for each
k=Y,k, o€ Z[I]byx*=TI,,,xk. When x, > 0forall ¢ € I, we can even
define x* = I1,x% for s € C[I]. Since we can consider F as a subspace of C’
naturally, the map k induces a quasi-character: F — C*. We denote by ®(k)
the subfield of Q generated by x* for all x € F. Then ®(k) is the fixed field of

{o e Cal((_)/Q)]ko = k}.
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Let e = e;: F,/F — C be the unique additive character such that

ep(x) = exp(2m/——1 Y xo) forx = (x,) € F,.
cel

By abusing notation, we write for x = (x,) € C!, e(x) = exp(2m/— 1Z_ . x,);
especially, for £ € F and x € C/, e (£x) = exp(2m/— 1L,£%,) is well defined.
For each x € F[, we write |x|, for the module of x as in [38].

For each finite set A, |A| denotes the cardinality of A. For any two sets X
and Y, we denote by XY the set of all functions of Y into X. There is one
exception for this notation: If we are given a group I' and a I'-module X, we put

X'=H)T,X)={x€X|y-x=xforally e T}.

We trust there will be no confusion about this notation.

1. Modules over quaternion algebras

We take a quaternion algebra B over F and fix a maximal order R of B. Let
2 be the set of all places of F, and put

I, = (r€1|B & F,= My(F,))},

r=|Ig], =B={r€Z|B& F, #M,yF,)}.

We consider I as a subset of 2 consisting of infinite places. Take a finite Galois
extension K,/Q (in C) containing F, and denote by 2, its integer ring. Suppose
that we have an isomorphism:

(L1) B ®, K, = My(K,)" such that (i) the projection : B > M,(K,) at
each 7 € I takes B into My(K, N R), and (ii) R ®, ¢, is sent
into My(2,)".

We can always find an extension K, and an isomorphism as in (1.1). For
each 2yalgebra A, we consider the polynomial ring A[X, Y] with 2|I| inde-
terminates: X = (X,),<; and Y = (Y,), ;- On each polynomial P(X,Y) with
coefficients in A, we get v = (v,),<; € Ms(2,)" act via

Ply(X,Y) = P((X,Y)"y),

where (X, Y)'y = ((X,,Y,)"Y,)s ;- Thus A[X, Y] becomes a right module over
the multiplicative semi-group R. Let L(n; A) for 0 < n € Z[I] denote the
A-submodule of A[X,Y] consisting of all polynomials homogeneous for the
variables (X, Y,) of degree n, at every o € I. Then L(n; A) is stable under
the right action of R. For each v € Z[I], we shall now twist the action of R on
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L(n; A) and define a new action by P|,y = »(y)"P|y. The A-module L(n; A)
equipped with this twisted right R-action will be denoted by L(n, v; A). More
generally, for each A-module M, we can consider the right R-module
L(n,v; M) = L(n,v; A) ® M whose R-action is induced from L(n, v; A).
This action can be naturally extended to a unique action of GB(A). We can
convert the right action of G3(A) into a left action by

y-P=Py "

This left G5(A)-module will be denoted by ‘L(n, v; M).

2. Spaces of cusp forms and Hecke operators

Put IB=1—I,= 38N I For each k € Z[I], we define k® € Z[I1?] and
ky€ Z[Ig)by kP =X, sk, - oand ky =%, k, - 6. We denote by t € Z[I]
the special element ¢ = ¥ _,0. We firstly clarify what kind of conditions we
shall impose on the weights of cusp forms. For two elements k, k’ € Z[I], we
write k ~ k" if k — k'’ € Z - t. We fix throughout the paper a class in Z[I]/Z - ¢
and choose a representative v € Z[I] of this class such that v > 0 and v, = 0
for some o € I. Such an element v is uniquely determined. We take n € Z[I]
satisfying n + 20 ~ 0 and n > 0 and put

k=n+ 2¢t, w=v+k—t and dD=t—v=k— w.
Then, we see
(2.1) k~ 2w, w~®w~—-v and k~n.
Under our choice of n, the unit group
E={e€+*|e">0forallo €1} =R*NES,

acts trivially on L(n, v; A) for any commutative algebra A over 2.

The isomorphism (1.1) induces an identification: G2 = GL(R)"s x (H*)",
where H denotes the Hamilton quaternion algebra over R. Let H be the upper
half complex plane, and put 2= 2, = H'>. We can identify H with
GL4(R)/O,(R) - R* by

GL,(R) 3 (‘Z Z) s> (/=1 +b)/(cV=1+d)eH
if ad — bd > 0 and
GL,(R) 2 (‘c’ Z) (/=T +b)/(—c/=1 +d) € H
if ad — be < 0.

Thus G, naturally acts on z by g(z) = (g,(%,)), <1, Especially, G . acts on
% complex analytically. Put z, = (Vv—1,...,/— 1) €Z and

Coo = {g € Goo|g(z0) = z()} and Coo+= Coo N Goo+'

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

ON p-ADIC HECKE ALGEBRAS FOR GL, 303

Then, we can identify
C, = (R*O,R))” x (H9)", €, .= (R*SO4R))" x (H*)".

Especially we know that C_/C,_ ,= (Z/2Z)"s as groups. For each subset J of I,
and x € G_, we define another subset J* C I, by

= {‘r € IB|7 €Jand »(x,) > 0,orreJ=1I,— Jand »(x,) < 0}.
Then one verifies that this gives an action of G on subsets of I; i.e.,
(2.2a) Jv=(J5) forx,y €G,.
For each subset J of I, we shall define an automorphic factor j,(x, z) € C's for

aﬂ bU
z2€ % and x = e d

o o

Ierby

o€

j](x,Z) = (coz£+da)aélﬁ’
where
z, ifoe],
zl = -
? z, ifoe]=I1-1].

Then, by definition, we have

(2.2b) ir(ys 2) = ji (v, 27),
and as an element of the semi-simple algebra C'z, j (v, z) satisfies
(2.2¢) §(¥8, z) = ju(y,8(2))j,(8,2) fory,8 € G,.

For each function f: GZ — L(n? v% C), we define a transform f|, ,, ;u of f
under u € G2 by

232)  (flew, u)(x) = jplug, 70) " r(u,) " flzu™) - uy,

where u_ acts from the right on the value f(xu™!) in L(n% 0% C). By
(2.2a, b, ¢), we have the compatibility relation:

(2.3b) (Flew, 1)k w9 = Flicw, (x9).

When it is unlikely to cause misunderstanding, we simply write f|x or f|; ,x
for the transform f|, , ,x. Let U be an open-compact subgroup of GfB. We now
denote by S, , /(U;B;C) =S, , ,(U;C) the space of functions f: G —
L(n®, vB; C) satisfying the following conditions (2.4a, b, ¢, d):

f=fliw,u foralue UC_ ., and

(2.4a)
flax) = f(x)  foralla € G3(Q).
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For each z € &5, we can choose u,, € G, so that u_(z,) = z and define a
function f: %5 —'L(n® 0% C) for each x € G} out of each function f
satisfying (2.4a) by

£(2) = it 70) v (ug) " flxu,,) - ug!

Then f, is well defined independently of the choice of u_, by (2.4a) as a function
on Z with values in ‘L(n®, v®; C). Then we impose

I

ForalleGf, — =0 if o€], and
0z,
(2.4b) of | )
7z =0 if c€]J=13—-1].

[

In the extreme cases: r = 0 (i.e., B is totally definite) or B = M,(F), we need to
impose some other conditions:

(2.4c)
When B = My(F), then | f(((l) ‘ll)x) da=0 forallx € G,
E,/F

for each additive Haar measure da on F, /F .

(When B = M,(Q), we also add the following condition: |Im(z)¥/%f(z)| is
uniformly bounded on H for all x € GL4(Q/)). When B is totally definite and
n = 0 (then v = 0), we firstly consider the space S(U) of all functions on G2
satisfying (2.4a). Let Inv(U) be the subspace of S(U) consisting of functions of
the form f o » for some function f: FJ — C, where »: G2 — F{ is the reduced
norm map. Then we put

(2.4d) S, , ,(U;B;C)=S(U)/Inv(U)  ifn=0 and r=0.

We have now finished defining the space of cusp forms for each B/F. In our
definition, we have (implicitly) assumed that k > 2¢ since n > 0. It is well-known
that the space S, ,, ,(U; C) is of finite dimension.

By the approximation theorem, we can find ¢, € G, (i =1,..., h) with
(t),, = (t,)x = 1 for any given ideal N of + such that GB AL Qt UG,
When B is indefinite, the number h is equal to |F*\ F /V(U) | and is
independent of B by the strong approximation theorem. When B is (totally)
definite, h depends on U and B. We put, by fixing such a decomposition,

I'(U) =GENtUGE ¢!, TYU)=TU)/T{U) nF~

oo +"i

Then TYU) is a discrete arithmetic subgroup of G_ .. We then consider the
space of cusp forms with respect to I'((U), which is written as S, ,, (I'((U); C)
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and consists of functions f: 2 — ‘L(n5, v8; C) satisfying the following condi-
tions:

(2.52) f(¥(2)) =v(v) j,(y,2)"(v - f(z))  forall y € T'(U),
f . of

(2.5b) — =0 ifee], and —
dz,

9 0
3z, N ifocl

When B = M,(F), we suppose the cuspidal condition:
(2.5¢) f vanishes at all cusps of T'(U).

(This condition means that for all @ € SLy(F), f|a(z) = v(a)j o, z) “flalz))
has Fourier expansion of the form ¥, ., a(£)e,(£z) (z € 2= H') for a lattice
L depending on a, where L, is the subset of all totally positive elements of L.)
Then the correspondence: f — (f,); gives an isomorphism:

h
(2.6a) Sk, w,1(U;C) = e_al Sk.w,s(T'(U); C)

ifk > 2t (n > 0) or B is indefinite.

h
S(U)= @ Sy, ,(T(U);C)  ifk=2t and Bis totally definite.

i=

Note that if B is totally definite, we have the trivial identity
(2.6b)  H°(T¥(U),'L(n,v;C)) = S, , ,(T'(U);C)  ifk > 2t.

The assertion (2.6a) follows from the following formula (2.6c): We define for
f: &y —'L(n®, 0% C) another function f|, , ,v: 25 —'L(n? v5C) for y €
G& by

Q

(Fle,w, ¥)(2) = 2(¥) 4, (v, 2) (v~ f¥(2))).

Put, for each x € G.C,, U* = x~'Ux and decompose
¢t - Llcguves,

1

(for example, the choice t/ = t,x works well). Then, if tix € yt/U'G,,, for
vy € G&, then

(260) (flk,w,lx)t{ =(f;j)‘k,w.ly.

For the proof of (2.6¢), see for example [29, §3] and [8, §1].
We shall now define the Hecke operators on S, , ,(U;C). Let U and U’
be two open compact subgroups of G,. For each x € G/C,,, we shall define a
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linear operator [UxU’]: S, , ,(U;C) = S, , «(U’;C) as follows: Decompose
(UC,,)x(UC, ) = LI(UC,,)x; as a disjoint union of finitely many left cosets.
Then we define

UKV = X Fli 5

By (2.4a), this operator is independent of the choice of the representative set
{x;} of the left cosets. By (2.2a,c) and (2.6c), the operator [UxU’] takes
Si. . (U;C) into S, , (U’;C). Note that Ux U’ = LI,U(x;); if and only if
(UC,, )x(UC, ,) = L1,U(x,) sx . Because of this fact, we have used the symbol
[UxU’] to denote this operator instead of [UC_ ,xUC, ,]. Through the oper-
ator [Ux U] for x_ € C_, the finite group C_/C,, acts on the sum
D, 1,5 w, (U; C). In the extreme case of r = 0 and n = 0, the transformation:
f — f|x preserves by definition the subspace Inv(U). Thus the operator [UxU’]
induces a linear operator:

S2t, t,¢(U; C) - S2t,t,¢(U,; C)>

which is again denoted by [UxU’].
If UcU, S, ,(U;C) is naturally contained in S, , ,(U’;C). Thus we
can take the injective limit:

(2.7) St.w.,(B;C) = lim S, , ,(U; B;C)

U

over the partially ordered set of all open compact subgroups of G,. By (2.3b), for
each f€ S, , ,(B;C), the transform f], ,, ,x is again contained in S, ,, ,(B;C)
for x € G;. Thus G naturally acts on S; ,, ,(B;C). When B is unramified at
every finite place (then r = [F:Q]mod2), we shall fix an isomorphism of
R=R ®; Z with M,(%). Then every open compact subgroup U of GL( Fy) can
be regarded as an open compact subgroup of GZ. Then, by virtue of a result of
Jacquet, Langlands and Shimizu, we have:

THEOREM 2.1. Let B and B’ be quaternion algebras over F unramified at all
finite places. Suppose that n > 0 (i.e. k > 2¢) and k + 2v ~ 0. Then for open
compact subgroups U of GLy(Fy), there is a system of isomorphisms

iyt Sk w, IB(U; B;C) = Sk,w,la,(U; B’;C)
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such that (i) for U D U’, there is a commutative diagram:

St (Us BLC) £ S, 1 (Us B C)

.

St (U3 BO) £ 8y, 1, (U’ B'5C),
and (i) if i = _I%_H_LiU: Skw, 1,(B;C) = Sy, 1,(B’; C), then i is an isomorphism
of GLy(Fy)-module; in particular,
iy o [UxU] = [UxU] 0 iy,
for every pair of open compact subgroup (U,U’) of GL F;) and every
x € GLy(Fy).

This follows from a result in [18, §16]. An exposition can be found in [8, §2].

As we have already remarked, for each subset J of I;, we can find
c=c(J) € C, such that Iy=J. Since c¢;=1, the operator [UcU]:
Sk, w0, 1(U; €) = 5, 1(U; C) commutes with [UxU] for all x € Gf. Note that
[UcU]? = id, and thus, [UcU] is actually an isomorphism. Namely, we have:

TuEOREM 2.2. For each subset ] of I, the map

[UC(])U] : Sk, w, ](U; C) - Sk, w, IB(U; C)
is a surjective isomorphism satisfying
[Uc(J)U] o [UxU] = [UxU] = [Uc(J)U] forallx € GJ.

Let «: G, —» G, denote the involution defined by xx* = »(x). Note that we
have defined & = t — v = k — w. Thus k ~ 2w and we may consider the space
Sk, e j(U; C). Put U* = {x‘|]x € U}. For each f€ S, , ,(U;C), we define

f*: Gy >'L(n®, —n® — 0% C) by f*(x) = f(z7),
where we have written x™* for (x71)' = (x*) "L
ProposiTioN 2.3. The correspondence: f— f* induces an isomorphism:
S¢.w./(U;C) =8, . ,(U4C)
which satisfies ( f|[UxU))* = f*|[Ux~*U"] for all x € UC,.

Proof. The U“invariance of f* as in (2.4a) follows from a direct calculation.
The cuspidal condition for f* in (2.4c) is obvious since (; ¢)‘ = (é ~1). We
shall show the analyticity of f* at infinite places. A straightforward computation
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shows that ( f*)(z) = f.-(z). This shows the expected analyticity. The last
assertion follows simply from the definition of the operator [UxU].

For each integral ideal N of F disjoint from 22, we may suppose that the
isomorphism (1.1) induces another isomorphism

Ry =R ® 1y = My(2y).

Then we shall define standard open compact subgroups of R* (for R = R ®, Z)
by

UO(N)={xEﬁX With xN=(Z Cbl)

c € N/LN},

U(N) = {x e Uy(N) with x, = (‘C’ Z)

a—1¢€ NaN},

Vi(N) = {x € Uy(N) with x, = ((cl Z)ld -1le NaN},

Ug(N)=E-U(N) and Vg(N)=E: V(N),

where E = {e € +*|¢” > 0 for all 6 € I} and the product of E with U(N)
and V(N) is taken in GpP. Suppose that fe S, . (U(N);C) or
f € Si . )(VI(N); C). Then we see from (2.4a) that

flxc,) = 2 *f(x)  forc € EX.

We know from the fact: 2w — k € Z - t that €2~ % = 1 for all ¢ € E. Therefore
Ax) = flex) = flxese,) = flxey) for & € E. This shows that

Sk,w,](Ul(N);C) = Sk,w,](UE(N);C)’

(2.8) Sk w,/(Vi(N); C) = St.w.1(Ve(N): C).

We simply write S* , (N; B; C) for S, ; (V(N); B;C) and S, ,, ,(N; B; C) for
Sk, w, J(U(N); B; C). Now we shall define Hecke operators T(») and T(7, ) on
these spaces. Put, for R = R ®, Z,

A(N) = {xeﬁmcﬁ with x,, = (‘C’ Z)

a—1€ N2y, ce N/LN} and

AE(N) =E- Al(N)'

Then these are semi-groups containing U;(N) or Uy(N), and we can form the
abstract Hecke ring R(U(N), A(N)) and R(Ux(N), A(N)) as in [36, III] (see
also [7, §2]). Then the following facts can be verified in exactly the same manner
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as in [36] and [7]:

(2.9a) R(UI(N)9 A(N)) = R(UE(N)’ AE(N)) = R(VE(N): AE(N)_L)

In

R(V(N), A(N)™)

U(N)xU(N) = Ug(N)xUg(N) = Vg(N)x™VE(N) = Vg(N)x"Vg(N),
(2.9b) For each ideal M G » disjoint from 3B we have an isomorphism of rings:
R(U,(NM®), A(NM®)) = R(U(NMP), A(NMP))  foralla > B> 0
U(NM*)xU(NM*) ~ U,(NMP)xU,(NMP).

For each ideal » C 2, put I(m) = {x € A(N)|v(x)2 = »}. We decompose
I () into a disjoint union L1,U(N)x;U(N) of finitely many double cosets,
which is always possible, and we use the same symbol 7 () for the element
L, U(N)x,U(N) in R(U(N), A(N)). By choosing an element m € £ N Ff
such that m, = » and m — 1 € N% (then m € A((N)) if » is prime to N and
disjoint from =5, we put

U(N)mU(N) if » is prime to N and is disjoint from =5,

T (m, m) =
( ) {0 otherwise.

Then J (s, ») is determined independently of the choice of m, and we have

(2.9¢) R(U(N), A(N)) is isomorphic to the polynomial ring over Z of
variables (¢, ¢) (£+ N, £ & 28) and T(¢) for all prime ideals
Z,

(2.9d) T(£)* = T(L?) = N, (£)T (£, ¢) for each prime ideal ¢
outside N and =5

Now we identify all the Hecke rings by the isomorphism (2.9a) and write it
simply as # = #(N). Then

(2.9¢) #(N) acts on S, ,(N; B;C) via U(N)xU(N) —
[U(N)xU(N)] and on S¢, (N; B;C) via U(N)xU(N) —
[ViI(N)x™“V(N)].

The operator corresponding to J(#), 7 (7, ») on these spaces will be denoted
by J(») and J(#, »). Then by Proposition 2.3, we have a commutative
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diagram
Sk,w,](N;C) = Sl:w,](N; C)
(2.10) }T(”)’ T(n, ) lT(ﬂ), T(7, »)
Sk,w, ](N; C) = S,:'jw, I(N; C).

By our definition of the transformation: f— f|x in (2.3a), the action of T(#)
and T(#~, ») on S ,(N;C) given here coincides with the Hecke operators on
the space of holomorphic cusp forms defined by Shimura [29], [34] and Weil [39]
for a suitable choice of w for each k. For example, in [34, §2], k/2 is taken as
w. This choice is not appropriate, when k # 0 mod 2Z[I], for the analysis of
integrality of Hecke operators which will be done in the coming sections. The
use of integral w was initiated by Shimura in [29] and [30].

3. Results on Hecke algebras

In order to define the Hecke algebra for the space of cusp forms, we shall
modify a little the Hecke operators T(~) and T(7, ») when v # 0. The case:
v = 0 corresponds to the classical parallel weight cusp forms and in this case,
no modification is necessary. For each § € Z[I], let

g(¢) = {0 € Gal(Q/Q)I¢0 = £}.

Then it is easy to see that 9(§) = 9(n) if £ ~ +n, since ¥(t) is the whole
group Gal(Q/Q). Let ®(¢) = {x € Q|x° =« for all o € 9(§)}. We then
consider a quasi-character & F*— Q> given by x — xf = [1__,x%°. Then ®(¢)
is the subfield of Q generated by x¢ for all x € F*, and thus the quasi-character
¢ has values in the finite extension ®(¢). Therefore the character ¢ extends by
continuity to characters: FJ — ®(§)), F — (—):f and E — C*. We write
simply 2(v) for #4,). Let A be an #(v)-algebra inside C, and suppose

(3.1) For every x € F, the A-ideal x*A = (x*2(v))A

is generated by a single element in A.

We can find a finite extension K,/®(v) such that the integer ring 2, of K,
satisfies (3.1). In fact, by choosing elements {a;},_,  , of F such that a;
gives a complete representative set for all ideal classes of F, we can take a; € »
so that a;2 = (a,2)". Then, as an example of such an extension, we can take the

field generated over ®(v) by }\7&? for all i = 1,..., h. As another example of A
satisfying (3.1), we may of course take the valuation ring of ®(v) at each finite
place. When v = 0 (i.e. w ~ 0), the rational integer ring Z satisfies the condition
(3.1), and thus the condition (3.1) imposes no restriction to the ring A.
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For each prime ideal ¢ of 2, we take x € fo such that /= x2 and choose,
once and for all, a generator {x°} = {£°} of x"A. For a general ideal & of F,
we decompose @ = [1,£%?) as a product of prime ideals and put

() =TTy,

which gives a generator of the ideal x°A for x € F with x2 = 2. We also write
{x°) for {"} if a = x4 for x € F*. The correspondence: z — {2"} gives a
multiplicative map of the ideal group of F into the quotient field of A but is not
necessarily a Hecke character. We shall define operators

(U(N)xU(N)): S, ., ,(N; B;C) - S; , ,(N; B;C) by
FIU(N)2U(N)) = {n(2)") " FI[UAN)2U(N)]  forx € A(N).

Similarly, we define (U(N)xUy(N)) € End(S#,, ,(N; B; C)) by

FIUN)2U(N)) = {p(x)°) " FI[VUN)xVi(N)]  forx € A(N).

By decomposing () = LI,U(N)x,U(N) (then, »(x,)2 = » for all i), we put

To(#) = L(U(N)xU(N)) = (#°)} 'T(n),  Ty(, 2) = (#*) 'T(n, )

1

as operators on S; , (N;C) and S}  ,(N;C). Hereafter in this section, we
suppose

(3.2) B is unramified at all finite places (i.e. = c 1),

and we shall identify R = R ®, Z with M o(%). Then the Hecke algebra
%k, (N; A) is by definition the A-subalgebra of End (S, ,, ;(N; B; C)) generated
over A by the operators T( ) for all integral ideals ». By Theorems 2.1 and 2.2,
% o(N; A) is determined independently of the choice of the quaternion algebra
B under (3.2) and the subset J of Ip. It is also plain that the A-algebra
Ay o(N; A) is independent of the choice of the map: @ — {2"}. By (2.9d), we
have the relation:

Ty(¢)* = Ty(¢%) = N o(€)Ty(¢, ¢)  for prime ideals £+ N.

Thus if A% o(¢) is invertible in A, T(Z, £) is contained in 4, (N; A) (this
statement is actually true without the assumption that A4/, so(£) 7 € A as will
be seen later in this section). The following fact may be well-known, but we will
give a proof in Section 7:
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TuEOREM 3.1. In addition to (3.1), suppose one of the following conditions
for A:
(i) A is the integer ring of a finite extension of ®(v),
(ii) A is a discrete valuation ring of ®(v),
(iii) A is a field extension of ®(v).
Then

(3.3a) For any A-algebra Din C, 4, (N; D) = 4, .(N; A) ®, D,
(3.3b) % (N3 A) is a flat A-module of finite type.

Let 0(v) be the valuation ring of ®(v) corresponding to the fixed embed-
ding: ®(v) = Q = Q,. For any O(v)-algebra A not necessarily inside C, we
put

(3.4) ’ék,w(N; A) = gk,w(N; 0(v)) Bp(vy A-

By (3.3a), this definition is compatible with the base change of the ring A. Let
@(v) be the p-adic closure of @(v) in (_}p. Fix a valuation ring @ containing 0(v)
which is finite flat over Z . We now fix an integral ideal N prime to p. Then for
a > B > 0, we have a commutative diagram (cf. [36, III], [7, §2]):

Sk,w,](NpB§ C) - Sk,w,](Npa; C)
(3.5) To(») To()

Sk.w./(Np#;C) —— S, ,(Np*; C)

for all ideals 7. Thus the restriction of operators in /4, ,(Np®; A) to the subspace
St w. /(Np#; C) induces a surjective A-algebra homomorphism:

(3.6a) % o(Np% A) = 4 (NpP;A)  fora>pB>0,

which takes Ty(#) to Ty(~). By (3.3b), %4, (Np% 0) is a p-adically complete
semi-local ring and hence is a product of finitely many local rings. Let
A (Np*; 0) be the product of all local factors of %, ,(Np* 0) on which the
projected image of T,(p) is a unit. The change of the map: @z — { 2"} affects
T,(p) by multiplication of an O-unit; hence, A"\ (Np®; @) is well-defined
independently of the choice of the map: 2 — {2"}. Let e = e, be the idempo-
tent of £\ (Np* 0) in the Hecke algebra #4, . (Np®; ). If one chooses a
suitable integer y > 0 and put m = p* — 1, ¢, can be explicitly given by a
p-adic limit:
e, = lim To(p)pnm in 4, (Np*; 0).

n— oo
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By the commutativity of (3.5), if « > B3>0, ¢, is sent to eg under the
projection map (3.6a). Thus (3.6a) induces a surjective (-algebra homomorphism

(3.6b) AN 0) = A2 (NpP; 0).
We now take the projective limit of the morphisms (3.6a, b)
fi (Np™5 0) = Tim 4y, (Np 0),
(3.7) “
A4 (Np®; 0) = hm A4 (Np®; 0).

Put Ux(Np®) = U(Np®) N FZ = V(Np*) N F and

CL(Np®) = FZ /F<U(Np*) % ,, CLo(Np®) = E{'/F* Up(Np®) EX
Via the correspondence: x — x4 for x € F with xy, =1, we can identify
these groups with the narrow or usual ray class group of F modulo Np* We
shall define p-profinite groups Z = Z(N) = hm Cl.(Np®), Z=Z(N)=
hm CIF(Np") and we denote by Z, (resp. Z,) “the kernel of the projection
map Z — Cl(Np®) (resp. Z — CIF(Np"‘)) We shall define a continuous char-
acter: Z — £ r. o(Np% O) for @ = 1,2,..., o in order to regard Hecke algebras
as algebras over the continuous group algebra of Z. To do this, let I( M) be the
set of all integral ideals prime to M for each ideal M of 2. Then we have a
natural map: II( Np) — Z with dense image. (There might be a non-trivial kernel
of the map: II( Np) — Z; so, we shall correct the statement in [13], page 140, line
9 from the bottom as follows: “the set #(Np) is a dense subset” should read
“the image of the set #(Np) is a dense subset”, where we have written #( Np)
instead of II(Np) here. This error in [13] does not affect the result obtained
there.) We denote by [2] the image of 2z € II(Np) in Z. If we write Un(Np®) =
{x € Ux(N)|x, = 1}, then we have a natural isomorphism

00+

(3.8) Z(N) = F /F*Ug(Np™)E; .,
where “ " indicates the closure in F*. If we write @ = x for each « € II(Np)

with x € F* and x,, = 1, then under the isomorphism (3.8), [ 2] corresponds to
the class of x~! on the righthand side. More generally, if one identifies
FY/ F*FE), with the Galois group over F of the maximal abelian extension F,,
of F by class field theory, [z] for 2 € II( Np) coincides with the Artin symbol of
@ on the subfield of F,, fixed by F*U.(Np*)Fy,/F*F},. Let p, be the
group of all p*th roots of unity and put p .~ = hm am gy . The action of Z(N) as
the Galois group over F on p . gives a continuous character

x: Z(N) - Aut(p,») = ZX
such that x([2]) = A% o(@). Foreach £ € Z - t, we write § = [{]¢ for [¢] € Z,
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and put x, = x Z(N) - Z,. The groups Z and Z can be decomposed as
Z=WXZ, and Z=WXZ, for Z free groups W and W and finite

groups Z. and Z,. Put W, = W NZ,and W, = WnN Z,. We may then

identify W and W under the natural map: Z — Z. Then for sufﬁmently large a,
we have Z, = W, = W, = Z_. This assertion holds if @ > 1 when p is an odd
prime. We denote by A, &/ and &/ the continuous group algebras over 0 of W,
Z and Z, respectively. Namely,

A = limO[W/W],

o= lim O[Cl(Np®)] and &= lim O[Cl(Np®)].

In order to give an 2Zalgebra structure on the Hecke algebras £, (Np%; 0)
(e =12,...,00), we let F act on S, , ,(Np* B;C) by f= fli ,a for
a € F_. This action coincides with the operator [U(N )aU,(N)] and thus gives
an action of F/Uy(Np*)E}. Since f(ax) = f(x) and f|, ,a, = f by (2.4a)
for a € F*, we have that
(*) flk,waf= flk,wa = azw_kf= an+2vf.

For 2 € Il(Np), by taking a € F* with a2=2 and ay, =1, we define
(@), € End(S; ,, ,(Np* B; C)) by
(39) f|<a’>n = x—n—ZD(a)flk,wa'

Then (*) shows that if  is trivial in Clz(Np®), then f|(), = f: namely, the
finite group Cl z(Np®) actson S, ,, ;(Np* C) via f = f|(a),. As an operator on
Sk /(NP ©), T(a, @) = X, ,0(@){ @),

Now we shall show that T(«, 2) and T( 2, @) is contained in #, (Np* A)
for arbitrary A (if n > 0). Since (), depends only on the class of z in
Clz(Np®), we can choose two prime ideals # and ¢ of F such that A4/ o(?) is
prime to A% o(g) but (£), = (¢),. Then we can find integers x, y such that

xXn+2u+t(/) + an+2o+t(7) =1.
Then by (2.9d), we have that

(£)n=xx(O)T(4,¢) + yx(g)T(g, ¢)
=x(T(¢)* = T(¢%)) + y(T(¢)* - T(42)) € 4. (Np%; A).
Thus for any « € Il(Np), (a), € 4, (Np® A) and thus
T(a,a) = Xn.2a){@), € % (Np% A),
Ty(a, a) = {a "} Xprol@)( @), € Ay o(Np*; A)

because { 272"} x,,5,(@) is always an element in A.
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We now know from (*) and (3.9) that the correspondence: Il(Np) 2 2 —
T(a, a) € %4, (Np®; O) factors through the image of II(Np) in Z(N) and is
continuous under the topology induced by Z(N). Then, by continuity, this
homomorphism of the semi-group II(N) extends to a continuous character:
Z(N) - 4. (Np®; O). The image of z € Z(N) or 2 € Il(Np) under this char-
acter will be written as (z) or () € %, (Np% 0) (a = 1,2,...). This char-
acter is naturally compatible with the projection map: # k’w( Np*; 0) —
% o(Np#; 0) for a > B > 0. By taking the projective limit, we have a contin-
uous character: Z(N) — # x. ol Np*; 0). By the universality of the continuous
group algebra, #, . (Np“% @) becomes an algebra over & and A via this
character for a = 1,2,..., 0.

TueOREM 3.2. For each k € Z - t (t = L,0) with k > 2t (i.e. v =0 and
n > 0), there exists an sfalgebra isomorphism:

42t,z(Np°°; 0) = /Z’k,k—t(NPw§ 0),
which takes T() to T(#) for all ideals » of ».

The implication of this theorem in terms of p-adic modular forms will be
explained in Section 5. The same type of assertion is also expected to be true for
4 o(Np®; O) even for general k € Z[I] (or v € Z[I]). The author hopes to
come back to this problem in the future. As for the ordinary part 4™ (Np>; 0),
we have the following general result:

Tueorem 3.3. If k and k' in Z[1] satisfy k > k' > 2t and k ~ k' ~ — 20,
then there exists an 2falgebra isomorphism:

A (Np™; 0) = A7, (Np™; 0)

which takes Ty(~) to T») for all ideals », where w = v + k — t and w' =
v + k' — t. Moreover, 4}’ ord (Np®; 0) is a torsion-free A-module of finite type.

Theorems 3.2 and 3.3 will be proved in Section 11 after the analysis of the
structure of cohomology groups in Sections 8, 9 and 10, where we shall employ
Shimura’s method in [30] as a key technique. Since 4g™%(Np®; @) only depends
onvmodZ - ¢t (w = v + k — t), we hereafter write h*(N; O) for £ (Np*; 0).

Let A: W — Q>< be a continuous character. Then we can extend A to an
algebra homomorphism A: A — Q Let P, denote the point of Spec(A) /0(Q )
corresponding to this algebra homomorphlsm For each finite order character
e W (—);f and m € Z - t, we write P, , for P, . We also define, if ¢ factors
through W/W,_and W, =Z ,

S¥ . (Np®, &5C) = {f€ S¥, ,(Np*; C)|f|(w), = e(w)f forall w € W}.
Here, note that the action: W w — (w)n factors through the finite group
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W/W,. For any O(v)-algebra A in C containing the values of &, we define
% o(Np®, & A) to be the A-subalgebra of End(Sf, ,(Np® & C)) generated
over A by Ty(~) for all ideals ». Let O(v, €) be the valuation ring of the field
generated over ®(v) by the values of & corresponding to the embedding:
Q- (—)p. If & has values in @, @ contains ((v, €). We then put

Ak,w(Npa’ £; (9) = ék,w(Npa’ € 0(0, 8)) ®0(u‘s) 0.

There is natural surjection: 4, ,(Np%; O) — £, (Np®, & 0) which sends Ty(»)
to Ty(~). Let K be the quotient field of @. Then, we can define

4£f‘fv(Np"‘, e;0) = efir o(Np®, & 0),
A3 (Np®, & K) = A (Np®, &5 0) &, K.

By the following theorem, 4{™(Np® & K) and hence £ (Np®, ¢ 0) is inde-
pendent of the choice of a such that ¢ factors through W/W_ and W, = Z

THEOREM 3.4. Let n be an element of Z[I] withn ~ — 2v and n > 0, and
let e: W/W, — 0% be a finite order character. Suppose that W, = Z_. Write P
for P 5, ., and let A, denote the localization of A at P. Then there is a
canonical isomorphism:

h%4(N; 0) ® Ap/PA, = 42 (Np®, ¢; K)
fork=n+2t and w=v+k—t,

which takes Ty(») to Ty(») for all . Especially, h%%N; 0) ®, A, is free of
finite rank over A ,, and the dimension of 4;™,(Np®, &; K) over K is independent
of € and n (or k) and is equal to the dimension of hoY(N; 0) ®, £ over &£ for
the quotient field % of A.

This theorem will be proved in Section 12. Let us now indicate an
important implication of the theorem and the duality theorem (Th. 5.3 below).
Let .Z be the quotient field of A. We fix an algebraic closure £ of # and
consider (—)p as a subfield of &. We shall fix a A-algebra homomorphism
A: h7(N; 0) > £. Let X be the quotient field of the image of A. Then, by
Theorem 3.3, X is a finite extension of .#. Let # be the integral closure of A
in . Then again by Theorem 3.3, A in fact has values in £. Put ¢, = 6,, nJs.
Then 0, is a valuation ring, finite flat over 0. Let 2 = Z(#) be the space of all
(—)p-valued points of Spec(.#) ,,. Thus

% = Hom, (£, Q,).

Let Zy(A)={P ,€Z(A)|n€Z-t, n=0 and & W — Q be a finite
order character}. We have a natural morphism 7: Spec(.#) ,, = Spec(A) ,, of
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schemes over 0. Put Z () = w‘l(fl"llg(A)). If one considers P € Z,(#) as
an O-algebra homomorphism P: #— Q_, then P|, = P, , for some n €Z - ¢
and a finite order character &2 W — Q*. We write this n as n(P) and this ¢ as
€p. The minimum of a such that Ker(e,) D Z, will be denoted by a(P). For
each P € %, (), regarding P as an (-algebra homomorphism P: J — (—)p, we
can consider an @-algebra homomorphism A ,: h°4(N; 0) — Q, given by A, =
P o . Then A, factors through

A7 (Np*®), g5 K) = BY(N; 0) ®, Ay/PA;  for P=P|,
by Theorem 3.4 and can be considered as a K-algebra homomorphism
Ap: A2 (NP, &3 K) > K
fork=n(P)—2v+2t and w=-v+n(P)+¢.

Then we have:

CoroLraRY 3.5. Foreach P € %, () withn(P) > 2v, the value A p(T())
is contained in Q for all », and since A (T(~)) is a complex number by the
fixed embedding of Q into C, there is a nonzero cusp form f, €

¥ w1 (Np“D), £p;C) for k=n(P) — 20 + 2t and w =— v + n(P) + ¢ such
that fo|T(2) = A(T(2))fp for all ideals ». The cusp form f, is uniquely
determined by the above conditions up to constant factors. Conversely,
suppose that there is a common eigenform f of all Hecke operators T(~) in

7w, 1A Np% C) whose eigenvalue for T(p) is a p-adic unit in Gp and whose
weight k > 2t satisfies k ~ — 2v. Then there exists a A-algebra homomorphism
A: YN 0) - £ and P € %, (F) such that

fIT(2) = Ap(T(2))f  forall » prime top.

We shall prove in Section 5 a slightly stronger result than the statement of
Corollary 3.5 after proving duality theorems between Hecke algebras and the
space of cusp forms.

Let A\: h%YN; 0) — & be a A-algebra homomorphism. We consider the
set:

(VBN 0) > 2 [N(Ty(4)) = MT(¢))
except for finitely many prime ideals ¢ } ,
where the level N’ varies. Obviously in this set, there exists a A-algebra
homomorphism A,: hY(C; 0) — £ with the smallest level C. This A, is called
primitive or a primitive homomorphism associated with A. The level C is called

the conductor of A. We can make an analogous definition in the finite level case:
Let ¢: 4, (M; 0) - Q, be an (-algebra homomorphism for an +ideal M. We
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consider the set
{¢>’: A (M5 0) - (—)p|¢(T(I)) = ¢/(T(¢)) for almost all prime ideals /}.

Then in this set, we can find a unique ¢,: 4, (C; O) — (_)p with the smallest
level C. This ¢, is called primitive or the primitive homomorphism associated
with ¢. The level C is called the conductor of ¢, which is a divisor of M. This
fact can be deduced from a result of Miyake [23] in view of the equivalence
between the following two conditions:
(3.10a) ¢ is primitive of conductor C,
(3.10b) the cusp form fin Si¥ (C; C) satisfying f|T(=) = ¢po(T(2))f

for all » is a new form of exact level C in the sense of [23].
Note that the existence of f as in (3.10b) will be guaranteed by Theorem 5.3 in
Section 5.

We have decomposed Z(N) = W X Z,.. Let y: Z,, — Q be the combi-
nation: Z,, < Z(N) - ho(N; 0) AQ Then { can be considered to be a
finite order character of F/F*F). . This character ¢ will be called the
character of A. Similarly, for each homomorphism ¢: %4, (M, 0) — (_)p, the
correspondence: II(M) 2 2 — ¢({2),) € Q gives a character of Cl (M). This
character is called the character of ¢. By Corollary 3.5 and (3.9), we have:

(3.11) The character of A, (P € .%"alg(f)) is given by epY - (0o X _,p))>
where w: Z — Q* is the Teichmiiller character. Then we have:

Tueorem 3.6. Let A: h%Y(N; 0) - # be a A-algebra homomorphism.
Then the primitive homomorphism A, associated with A\ is unique, and its
conductor C is a divisor of N. If A itself is primitive, then for all P € Z . (F),
the conductor of Ap= P o) is divisible by N. If the conductor of A, is
moreover divisible by every prime factor of p, then A, itself is primitive.

CoroLLARY 3.7. Let A: h%(N; 0) - Z be a primitive homomorphism,
and let X" be the quotient field of the image of . Then, we can decompose

hoY(N; 0) ® H'=Hd B

as an algebra direct sum so that the projection to the first factor X" coincides
with A on h°Y(N; 0).

Theorem 3.6 together with Corollary 3.7 will be proved in Section 12. Now
we touch briefly on the module of congruence and the module of differentials
attached to A, which have an intimate relation with a certain L-function of cusp
forms at least in the case: F = Q as disclosed in [12], [14] and [15]. Let us define
A: boYN; 0) ® F— F by the combination of A ® id: hY(N; 0) &, S —
J ®, F with the multiplication map: £ ®, £ — #. Suppose A to be primitive,
and let b4 N; 0) ®, H'=H® % be the decomposition as in Corollary 3.7. Let
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pry: h°Y(N; 0) ®, # — % be the projection map, and define
8: h4(N; 0) ®, F— F & pry(hd(N; 0) ®, F)

by the diagonal map of A and prg. The module of congruence %,(A) is defined
by

%,(A) = Coker(d).
The module of differentials €(A) is defined by

(510\) = Q}I/J &, S,
where we havg written simply h for 4 N; 0) ®, # and . is regarded as an
h-module via A\: h - #.

CoroLLARY 3.8. The modules €,(A) and €(\) are torsion F~modules of
finite type. Moreover, we have the identity of support of these modules:

SUPPJ(({O(A)) = SUPPJ(({l(A))-

The author hopes to clarify the relation of these modules with certain p-adic
L-functions of cusp forms on a future occasion.

Proof. Since h = h°™(N; 0) ®, £ is of finite type over .#, the first assertion
is obvious. Write ¥ for prg(h), and let @ be the kernel of A. Then, from
[13, Lemma 1.1], we know that %(A) = o/2®. We take the intersection
a, = Im(8) N & inside £ & &. Then § induces a surjection: « — 2, and hence
we have a surjection: €(A) — ¢,/a2. Note that

C(A) =(F8#)/Im(8) = L+ Im(8)/Im(8) = /N Im(8) = F/a,.
This shows that Supp(%,(A)) D Supp(%,(A)). If we have a vanishing
Bo(A)p = %o(A) & Fp=0
for the localization £, of # at a prime ideal P, then we have a decomposition:
h,=he®, 5,=4,0(¥Q, %)

Thus #, is h-projective and €y(A) ®, £, = Tor?(#p, £p) = 0by [13, Lemma
1.1]. This shows that Supp(%,(A)) D Supp(%,(A)), which finishes the proof.

Let us give here a few words about the filtrations Z, € Z and Z, C Z.
There is a commutative diagram of natural maps:

0—2Z, zZ Cl(Np®) —0

FE

0 —>Za — Z ——»a_lp(Np“) —0.
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Since the morphisms b and c¢ are surjective and their kernels are killed by a
power of 2, a is an isomorphism if « > 1 and p > 2. Since the kernels of b and
c are generated by the image of F, the morphism a is always surjective. The
finiteness of the kernel of b implies that a gives a surjective isomorphism for
sufficiently large a even if p = 2. Especially, a induces a surjective isomorphism
between the Z ;torsion-free parts of Z and Z.

4. Stability of integral cusp forms under Hecke operators

Throughout this section and the next, unless otherwise mentioned, we
suppose that B = My(F). We shall give an exposition of two methods for
proving stability under Hecke operators Tj(#) of the space of rational or even
integral cusp forms. One is due to Shimura’s theory of canonical models [31] and
[34], and the other is derived from the moduli theoretic interpretation of integral
modular forms and the g-expansion principle studied by Deligne and Ribet [3],
Rapoport [27] and Katz [19]. We shall do this because the former method may
be generalized to a vast class of algebraic groups for which canonical models
exist and the latter gives a stronger result concerning integral cusp forms.

Firstly, we shall define rational subspaces of S , ;(N; C) for each ideal N of
2. Let A be a subalgebra of C satisfying (3.1) for the fixed v € Z[I]. For each
ideal @, we choose a generator { 2"} of 2"A as in Section 3. Then the symbol
{ 2"} satisfies the multiplicative relation: { 2" }{£°} = {(a£)"}. For £ € F*, we
write {£°) for {({2)°}. We take n, k, w € Z[I] satisfying 0 < n ~ — 20,
k=n+2t>2t, w=v+k—t and w =k — w=1t— v. For each weight
ne€Q-t, we write n = [n]t for [n] € Q. For the symbols which are not
defined here, see the introduction.

ProposiTION 4.1. Let & be the different of F/Q, and put
Fi={¢(e€F*|£¢°> 0 forallo € 1}.
Then each element f € S} (N; C) has the Fourier expansion of the following
form: ‘
X - v —v
(Y 1)) = ttesd X alud. £){(60d)" )& eV = Tey, Jen(g),
¢€FY

where the function: a — a(a, f) € C is a function on the group of fractional
ideals of F which vanishes unless a is integral.

Proof. For each f as in the proposition, we define another function
fo: G4 = C by

fi(g) =|det(g) [ f(g).
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Then we can easily check that f; is contained in S¥, , ,(N;C), and by [34
(2.18)], fy has the (unique) Fourier expansion of the form:

Ay 3)) = T adeud, Eeu e ity Jente),

§eFY

b

where “z — a(a, f) € C” is a function on fractional ideals of F vanishing
outside integral ideals. If we put

(4.1) a(a, ) = agla, F)Npolad 1) 27 40y
({e) = (") "= {(«)")),

we obtain the result.

The following corollary can be deduced from [34, (2.23)] by (4.1) or from an
easy calculation by use of an explicit decomposition of 7 () into the disjoint
union of left cosets of Uy(N):

CoroLLARY 4.2. For each f € S}, (N;C),
(4.2)  alm, fIT(n)) = X AHijo(l)alnn/e?, fITy(¢, ¢))

llm, {|n
{+N=2

/ Z/ Kol 0)(¢2°) a(mnyt, £1(2)).
m,J:z

For a while, we shall deal with a general quaternion algebra B unramified at
every finite place not necessarily equal to M(F). We fix a complete representa-
tive set {a,},_, ., for Clg(1) = FJ/F*#Fy, such that a, € F* N # and

a, 0

(a;)y = 1. We define ¢, € GLy(Fy) by ¢, = ( 0' ) ) Then, if B is indefinite,

,,,,,

we have a disjoint decomposition:

h h
G} = 112 U(N)GE = TTGRV(NIGE..
i=1 i=1
When B is totally definite, we just choose {¢,},_, , in G} which satisfies the
above type of decomposition; so, in this case, h may be different from the
narrow ray class number of F. Then, we know if B is indefinite,
GP = LIG§tavi(N)x'GE,  forall x € G2.
i=1
Put

(4.3) TE(N) = t7'U(N)GE .t/ N GG = tVe(N)GE . t7' N G§.

oo +"i oo +7i
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Now we return to the analysis of B = M,(F). Then by (2.6a), we have a
canonical isomorphism:

h
Slf,w,l(N§ C) = @ Sk,w,l(ré(N)SC)-

For each f € S, ((N;C), we denote f, by f; as in (2.4b), which is an element
in S; ; (Ti(N); C). Then, by definition of the above isomorphism, we have

CoroLLARY 4.3. Let o, = a2, and put o} = 7' and
af,={£€a¥|t°> 0 forallo e 1}.

Thena fOT e‘ZCh fE Sl:k w, I(N; C)’ f;(Z) € Sk,ci:, I(rlij(N)>C) has the followmg
Fourier expansion.:

f(z) = X albad, f){£°)§ %ep($2),

§€al
where c, ; = 'MF/Q(“i)_l{(“i‘{)v}-
Here note that {£°}£7° is a unit in A.

Now we shall define the space of A-integral cusp forms. To do this, let us
prepare some notation. For each ideal 2, we put
a,={£€a|t° > 0forall o € I}.

Then we consider the formal power series ring

A[[q110={ Y alt)et

f€a,U {0}

a(§) eA}.

Especially, we write A[[q]]; for A[[q]],.. Then, replacing e.({z) by q*, we have
an embedding for each congruence subgroup I' of GL;(F) = GL4(F) N G_ ,:

St,w:1(T5C) = C[[ql].,

for a suitable choice of . By this embedding, we shall regard S, , ,(T;C) as a
subspace of C[[q]],. We then put

Sk,w,l(r; A) = A[[q]]a N Sk,w,l(r; C)’ Sk,w,I(A) = h_nl)sk,w,l(r; A)
T

Then, for any a € GL3(F), f~ f|, ,« gives an endomorphism of S, , ,(C),
where

(4.4) (Fli. 0@)(2) = det(a)“ji(a, z) "*fla(z)).
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As for the spaces of functions on G,, we define

(4-53) I:k,w,I(N; A) = l:k,w,l(N; Mz(F)5 A)
= {fe st (N:C)a(a, f) € Aforall a € II(1)}.

Then the isomorphism (2.6a) induces
h
(4.5b) Coi(NiA) = @ e, S o (TH(N); A).

Now we shall give an exposition of Shimura’s method to prove the stability
of S, (N; K) under Hecke operators for each finite extension K/®(v). Put

(4.6a) .= {x € GLy(F,)|det(x,,) € FX, and det(x) € QJF*F). }.

Since QIF*F)./F*F}. = QX/Q*QX,= Gal(Q,,/Q) canonically for the
maximal abelian extension Q,,/Q, we can let x € ¥, act on Q,, via det(x).
The corresponding element of Gal(Q,,/Q) to x € ¢, will be written as p(x).
Define

(4.6b) 9. (K) = {x € 9, |p(x) acts trivially on K N Q,,}.

One may consider p(x) for x € ¢, (K) to be an element of Gal(KQ,,/K). It has
been shown by [34, Prop. 1.7]:

(4.7a) For each extension K /®(v) inside C, we have a natural isomorphism:

St.0.1(K) =S, & (®(v)) &, K.
This shows especially that if we define an action of o € Gal(Q/®(v)) on
f=Zic. a(®)q* € Qllgll, by f° = L., a(£)°q", then we have

(4.7b)  Gal(®(v)Q,,/®(v)) acts on Sk, (@(0)Q,) via f — f°.

For each positive integer N, we put

x = ((1) 2) mod NM2(5)},

Uy = {x € U|det(x) € QX} - G,,,  Ty=GLy(F) N Uy.

Note that for each y € Ty, det(y) € QX by definition of U,. This implies that
Ty is a subgroup of SL(F), and hence, Iy, is the principal congruence subgroup
modulo N of SL(2). By the strong approximation theorem (cf. [31, Prop. 3.4]),
we know that ¢,= U, - GL;(F). Then, for each x € ¥, we decompose
x =ua for «a € GL;(F) and u € Uy and consider the correspondence:
x — det(a)®. If x =ua =u'e’ for another choice of v’ € Uy and o« €

Uy = Gw+><{x & GL,(4)
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GLy(F), then v’ 'u = a’a™! € T. Especially, det(a) = det(a’). Thus the func-
tion: x — det(a)® € ®(v) gives a continuous quasi-character of %,. Now we
shall present a slight modification of a result of Shimura:

THEOREM 4.4. For each finite extension K of ®(v), there is a continuous
right action of 9,(K) on S, , (KQ,,) which is characterized by the following
properties:

(4.8a) (f+e) =f+e, (F) =5
(4.8b) o= fle o asin (4.4) ifa € GL; (F),

(4.8¢) fr= o ifx= ((1) ‘t)) with t € 7~

Here the continuity of the action means that for each f€ S, ; (KQ,,),
we can find a positive integer N so that
f“= fforallu € (U, N SLy(F,)) - G
It might be necessary to explain how to deduce this theorem from a result of
Shimura in [34, Th. 1.5] where a similar but different action: f— f[*! is given.
The definition of this action is as follows: For each f€ S, . (KQ,,), the
set { f°|o € Gal(KQ,,/K)} has only finitely many elements ([34, Prop. 1.3] or
else (4.7a) in the text); hence, we can find a positive integer N so that
£ € 8 4 1(Ty; KQ,y) for all o € Gal(Q,,K/K). This is possible since Iy is
the principal congruence subgroup of SL,(z) modulo N as already remarked. By
the strong approximation theorem (cf. [31, Prop. 3.4]), for each x € 9_(K), we
can decompose x = ua for u € Uy and a € GL;(F). Then we define

f[x] = fp(x)|k 0.

oo+

Our action is defined by
fx — fp(x)lk)wa = det(a)wf["].
Since as already remarked, x — det(a)® gives a continuous quasi-character of

¢, into ®(v), the action f— f* is well defined. The verification of the
properties (4.8b, c) is left to the reader.

For each open compact subgroup U of GLy(Fy), we put

0
Dy, = Dy N U(K), T, = UG, ,N GL,(F).
CoroLLARY 4.5. Let U be an open compact subgroup of GL(F;), and
suppose that
(i) p: D,G_ .~ Gal(Q,,/Q) is surjective,
(i) D,I',G, . isdensein UG N 9,.
Then we have that S, , (Ty; K) = HA(UK), S, 5 (KQ,,)) and thus,

D, = {(1 (t)) S U‘t c ZX}, U(K) = UG, .n 9.(K),
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St.o.1(Fys K) = 8 5 ((Tys @(0)) B,y K. Especially, for t; as in (4.3),
tVi(N)t ' and tV(N)t ' satisfy conditions (i) and (ii).

Proof. The last assertion is obvious from the definitions of ¢,, V}(N) and
Vi(N), and the second assertion follows from the first and (4.7a); so, we prove
the first assertion. Let ', be the closure of TG, in %,. Then, by the
continuity of the action of Theorem 4.4 and (4.8b), we have

Sk, 1(Tus KQup) = H(T, Sy s 1(KQyp)).
Since U(K) = fUDU( k) by (i), (4.8¢c) shows the result.

For simplicity, we shall write for a moment U, V, V' and G’ for Uy(N),
Vi(N), tVi(N)G_,t;' and Vi N GLy(F), respectively. We shall decompose
for x € A|(N), UxU = L1,Ux; i.e,, Vx~'V = L1,Vx; “. We then find an index i, vy,
and y in GL;(F) such that t;x; € ytVG,, . and t;x* € ytVG,, .. The index i
is determined independently of [ and the correspondence: i < j is bijective.

LEmMA 4.6. Under the above notation, put V(K) = ViN 4, (K). Then
we have a disjoint decomposition:

VIK)y 'VIK) =LIVI(K)y, " ifx € A(N).

Proof. We have that Vx™'V = Vi !ly"'tV, and thus Viy"'V/ =
Vita™'t7'Viand Va; ‘¢ = Vi lyy b that is, Vita~'t; ! = V' L. This shows
that Viy "'VJ = [[,Viy; L. Thus y; ! can be written as vy v’ with v € V' and
v’ € Vi. By the strong approximation theorem, we may suppose that
v € SLy(F;) and therefore v’ € V/(K). In fact, since det(V'N y viy) =
det(Vi), we can find we ViNny 'Viy so that det(w) = det(v). Then
vy W = vw 'y lywy '’ and ywy v’ € VI, vw™! € V. By replacing v by
ow !, we may thus assume that v € SL Fy). This shows that

VI(K)y 'VI(K) > LIV(K)y, .
We shall show the other inclusion:

VI(K)y™'VI(K) c ]7IVi(K)Yz‘l-

For each vy '’ € V{(K)y 'Vi(K), we can find v” € V' such that vy v’ =
v”y; ! for some [l. By taking the determinants, we learn that det(v”) €
det(v'v”)F*FX, and p(v”) fixes K N Q,,; hence v” € V(K). This shows the
assertion.

LemMa 4.7. If x € A(N), then det(VI(K) N yVi(K)y~ ') = det(V{(K)).
Moreover,

ViI(K)y 'VIi(K) = VI(K)y 'T/ and Ty 'Ti= [y "
l
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Proof. The last assertion follows from the first by [31, (2.19.3)]; so, we shall
prove the first assertion. From the definition of A,(N), we see easily that
det(V N x‘Vx~*) = det(V). Then we have that

VinyViy™ =tVert 0t Vet = (Vi xt Ve e
This shows that det(Vi N yViy 1) = det(V/). We shall show that
(VI(K) nyVi(K)y™') o (VinyViy ' n g, (K)).

In fact, if u = yu'y ! for u € VI(K) and u’ € Vi, then v’ = y uy is con-
tained in V'(K). This shows the above inclusion. The other inclusion is obvious,
and hence, we have V(K) N yVi(K)y ! = Vin yViy~! N ¢, (K). Then, we
see that

det(VI(K) N yVi(K)y™!) = det(Vin yViy~' n ¢, (K))
=det(VI N yViy~!) N det(¥%, (K))
= det(V/) N det(%,(K)) = det(VI(K)).
For any field extension K/®(v) (not necessarily inside C), let
Sk,u‘),l(rlfj(N); K) = Sk,w,l(ré(N); ‘I’(U)) Bo(v) Kc K[[Q]]i-
For any z(v)-subalgebra A of K,
Sk,tb,l(rlé(N)§ A) = Sk,w,l(ré(Nﬁ K) N Allql]
For an 2(v)-subalgebra A of K satisfying (3.1) for the given v in Z[I], we choose
the map: 2 — {2°} € A, and put
h
SE . 1(N; A) = iejl Cu,isk,u‘),l(ré(N); A)’

where ¢, ; is the constant defined in Corollary 4.3. We can naturally identify

S . 1(N; K) with S¥ . (N; ®(0)) @y, K by Corollary 45 and S, /(N; A)
with an A-submodule of S, ,(N; K).

Tueorem 4.8. If K/®(v) is a field extension inside C, then Si*, (N; K)
is stable under the Hecke operator [V(N)x ‘V|(N)] as in Section 2 for all
x € A(N). Especially, S¥, [(N; K) is stable under T(»~) and Ty(») for all ».

Proof. With the notation of Lemma 4.6, we have by (2 6¢) that
(f”Vl( _LV1(N ]) Zflk le

=X
!
Since Vi(K)y 'Vi(K) = LIV/(K)y,; ! by Lemma 4.6, we know from Theorem
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4.4 and Corollary 4.5 that if f, € HY(V{(K), S; 5 (KQ,;)) = Si 4. ((TH(N); K),
then

Z:(fi)”l is contained in HO(Vf(K),Sk’,;),,(KQab))
!

which coincides with S, , (I'#(N); K) by Corollary 4.5. This shows the asser-
tion.

By this theorem, we can naturally extend the action of the Hecke operators
T(#), T(») and T(2, ) to S, (N; K) for any field extension K/®(v) (not
necessarily in C). The extended operators T(#) and T(», ») satisfy the same
formula as (4.2).

Now we shall generalize Theorem 4.8 to A-integral cusp forms. We suppose
that A is a flat 2(v)-algebra satisfying (3.1). Firstly we recall the definition of the
Hilbert-Blumenthal abelian varieties over F, which will be abbreviated as HBAV.
The details of what follows can be found in [27, §1]. An HBAV X over a base
scheme S is an abelian scheme (in the sense of [25]) over S with an algebra
homomorphism m: 2 - End(X/S) making Lie(X/S) into a locally free sheaf of
rank 1 over z ® ;0,, where Oy denotes the structure sheaf of S. Then m is
injective, and the relative dimension of X over S is equal to the absolute degree
of F. Let X* = Pic(X/S) and define m*(a) € End(X*/S) by the adjoint of
m(a) for a € 4. Then, (X*, m*) becomes naturally an HBAV. The polarization
module of X is by definition

P(X) = {A € Homg(X, X*)|XA = A*, m*(a)e A = Aem(a)forall a € 4},

where “*” indicates the adjoint. Then “T — P(X X T/T)” is known to be a
locally constant sheaf on the étale site over S, which has values in the category of
projective #modules of rank 1 ([27, Prop. 1.17]). Let u: X Xg¢ X = X be the
multiplication morphism on X and p,, p,: X Xg X — X be the two projections.
Consider the following sheaf on X X X made out of each invertible sheaf L
on X:

Y(L) = p*(L) ® py(L) " ® p3(L) ",
Note that the value at X of the relative Picard functor for X /S is given by
Picy /S( X )
{group of invertible sheaves on X Xg X }
{subgroup of sheaves of the form pg (M) for an invertible sheaf M/X }

Then (L) gives an X-valued point of Picy ,(X). Now suppose that L is
relatively ample. Then, it is known that (L) is contained in the connect-
ed component Pick o(X) ([25, VL2]). Since Zick ,(X) = Homg(X, X*)
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([25, VI]), we have a homomorphism corresponding to ¢(L):
A(L): X - X* over S.

By definition, a polarization of X is an Shomomorphism A: X — X* such that,
for every geometric point s of S, the induced A: X - X* for the fibers X
and X* at s € S is of the form A(L) for some ample invertible sheaf L on X
([25, 1.2.6.3]). Put

2.(X) = {A € Z2(X)|\ is a polarization for X}.

Then, it is well-known that there is an +linear embedding i: #(X) — F such
that i induces an isomorphism: 2, (X) = i(#(X)) N FX. Thus £, (X) gives a
notion of positivity on 2(X) ([27, 1.15] [3, §4)).

In order to give the definition of the spaces of modular forms in this context,
we fix a positive integer N, and a fractional ideal ¢. Let & be the absolute
different of F. We shall consider the moduli problem of quadruples (X, A, w, i),
where X is an HBAV over a ring A, A: #(X) = ¢ which induces an isomor-
phism: £ (X) =¢,, w is a base of #®, A-module H°(X,Qy,) and
i Ng'd 1 /d ™! ®, py, = X is a Ty Ny)-structure over A (cf. [3, §5]). Here py,
is a finite flat group scheme over Z which is the kernel of the multiplication
by N, on G,,. To give w is equivalent to giving an #+linear isomorphism:
Lie(X ,) =2 ' ®, A. Let k, v € Z[I] be as in Section 3, and suppose that A
is an 2(v)-algebra. Then the modular forms for I'y(N,) of weight k over A are
functions f of isomorphism classes of quadruples (X, A, w, ) .. for all A-alge-
bras A’ such that

(4.9a) (X, A, w, i),a) €A,
(4.9b) XN, a0, i) 0) = a (X, A, 0,) /)

fora € (2 ®, A",
(4.9¢) Ifp: A’ > A” is a homomorphism of A-algebras,

f((X, }\’ w, i)/A' X A”) = p(f((x’ }\’ w’i)/A'))‘

When F = Q, an additional condition on the holomorphy at each cusp is
necessary. However, the case of F = Q has already been treated in [12, §1]; so,
we hereafter assume that F # Q. The space of modular forms over A will be
denoted by A, (T)o(N,), ¢; A).
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An (unramified) cusp on I),(N,) over A is given by the following data
(13, 851, [19, L.1]):

(4.10a) two ideals a, £ with a6 ' = ¢,
(4.10b) an rlinear isomorphism e: Ny '1/2 = Ny a7 /a7 !,
(4.10c) an z ®, A-linear isomorphism j: ' ®, A =1 ®, A.

The evaluation of modular forms at the generalized Tate curve: (Tate, ,(q),
Ao @ean(J)s tean(€)) as in [19, (1.1.13-17)] (or [27, §4]) gives the following
g-expansion of f € M (I,(N,), ¢; A):

fla,é,e,j)= X aléa,t,ej; fg* € Allgll..

teat, U {0}
If A%, o(2) is a unit in A, then we have a canonical isomorphism

d_l®ZAE/L®Z A.

jcan:
For each a € F with 2 = a, we can choose an isomorphism
(4.11) g0 Ny l’z//z = No_li t= N, Y /e % = Ny'e /ot
w w
xH——a .
When A% o(2) is a unit in A, we write f{a) for the g-expansion of f in
M (To(Ny), ¢; A) at (az, ac™, €,, j..n)- Here are the g-expansion principles (cf.
[19, (1.2.15-16)], [3, (5.4-5)]):
(4.12a) If f(a, 4,6 §) =0 for f€M(To(N,y), c; A) at a cusp (a, 4, ¢, j),
then f = 0;
(4.12b)  For each +(v)-subalgebra A, of A, if (a, ¢, ¢, j) is in fact a cusp over
Ay and if fla, £, €, j) € Ayllqll,, for f € M (Ty(N,), ¢; A), then

feM(Tp(Ny), s Ay).

Now we shall clarify the relation between the classical space
St. . ((TH(N); A) and newly defined # (To(N), ¢; A). To do this, for each
integral ideal <, put

I100(No§ ”’)

= {(‘c’ Z) € SL,(F)

Over the complex number field C, to give a quadruple (X, A, w, i) is equiv-
alent to giving a triple (%, A, i) consisting of an +lattice & in F ®,C =
F. (= C"), an #linear embedding i: N, ‘& '/& ' - Ny '¥/¥ and an isomor-

(l,de’l,CENoa,a_1,d—1€N0/L,b€a_l}.
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phism A: ZA, =& %! which is induced by an alternating form
(, ) XL ! such that

(x,y) = alm(xy)  forsome a € F7.

(Here Im(xy) means the imaginary part of xy € F; over F,, = F &, R.) In fact,
as for the differential w on X(C) = F./¥, we take the usual one induced by
du = ¥, ., du, by identifying F, with C’. The alternating form A gives the
polarization of the complex torus X(C) which turns X(C) into an abelian variety
over C. Thus we have the quadruple (X, A, w, i)/C out of (&, A, i) which
exhausts all the isomorphism classes of (X, A, w, i) over C. Then, by (4.9b), we
have

f(ay, (aa) '\, ai) =a *fA(Z,\,i) fora € F([3,(56)]).

For each z € H' C F, we consider a lattice &, = 27i(<4 %~ ! + £z), where we
regard @ and ¢ as +-submodules of F; naturally. Define A, : £, X &, > & %!

by A ((2mi)(a + bz), (27i)(c + dz)) = ad — bc and
i Ng @7V /d7 1 > X, = F /2,
by the composition:
(Ng ‘2l /d ") = (N lo/) ® 47 SQgd(N(fla/a) ® !
=Ny ' fa ' > Ny 'L P C X

The linear fractional transformation z — y(z) induces an isomorphism:
_ -1
(jl(y’ z)"?‘}’(l)’ (]I(Y’ z)jl(Y’ Z)) >\Can’ j[(y’ z)icsa.n) = ("?z’ Acan’ l(fan)
if and only if y € [ (N,; 2% '¢). Therefore the function on H'

f;,&’,s(z) = f("?z’ }\can’ igan) forfe'/lk(FOO(NO)’ C;C)

gives a classical modular form on T' = Ty(N,; o% 7)) satisfying

() f, ;. H' - C is holomorphic,

(i) fo ¢ elkwY =Ff ¢ for y €L
We denote by A (I(Ny; 2)) the space of functions satisfying the above two
conditions for I' = I(;(N,; @). Moreover, we have:

(4.13a) The correspondence: f — f, , . gives an isomorphism:
M (Too(N,), ;C) = M (Too( Ny a% ')

such that the Fourier expansion of f, , . at oo gives the g-expansion of f
at (a, 4, €,, jeu) for a € FY with @ = ax (by replacing e (£z) by ¢°).

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

ON p-ADIC HECKE ALGEBRAS FOR GL, 331

This can be strengthened as follows: Let A be an 2(v)-subalgebra of C and
suppose that A7 () is invertible in A. Then for any A-algebra A’ in C,

(4.13b) The correspondence: f - f, , . induces a g-expansion preserving iso-
morphism:

-/[k(roo(No)’ <5 A’) = //k(roo(Nm “25_1‘/)§ A/)
= //‘lk(roo(N(); “2‘_1‘{)) N A’[[q]] al

Let I' = I'\((Ny; <). By the strong approximation theorem, if we write I
for the closure of T in SLy(F;), then we know that SLy(F;) = SLy(F) - [' =
I' - SLy(F). Thus for each x € SLy(F;), we may choose u €1 and a €
SLy(F) such that x = ua. For f in  (T), put f|,x = f|; . This is indepen-
dent of the choice of a and w (since det(a) = 1) and is determined only by «x.
We shall quote a theorem of Deligne and Ribet [3, 5.8]:

THEOREM 4.9. Suppose that A is a discrete valuation ring of a finite
extension of ®(v). Write a = a+ for a € Ff, and suppose that N o) is
invertible in A. If f € M (Tyo(N,), ¢; A”) for an A-algebra A’ inside C, then

R 0 =A@ Al

Note that f{1) € #(Ty(Ny; ¢ ') and fla) € M (To( Ny o '2)).

TaEOREM 4.10. For any extension K/®(v), if an +(v)-subalgebra A
of K satisfies (3.1), we have a natural isomorphism: S} . (N; K) =
r e 1(N; A) ® K.

This result follows from [32, Th. 1] and [33, p. 683] when k€ Z -t
(i.e., v = 0) in view of Corollary 4.5. The general case can be derived from a
result of Rapoport [27] (see also [3, p. 258]) by algebra-geometric means. We
shall give a proof of this fact in Section 7 by cohomological means.

THEOREM 4.11. Let A be an integrally closed domain containing 2(v).
Suppose that A is finite flat over either of +(v) or Z, and satisfies (3.1) for
v € Z[I]. Then S}, /(N; A) is stable under Ty(») for all integral ideals ».

Proof. By Corollary 4.2, what we have to show is the stability of

% w, 1(N; A) under A7 o(£)T(¢, £) for all ideals £ prime to N. We fix a map:
a— {a°} € A asin Section 3 and define T\(Z, /) with respect to this map. For
each prime ideal £ of A, let A y be the localization of A at #- Then A p is a
valuation ring and A =, A, in the quotient field K of A. We now by
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definition that

S 1(N;A) = NS, (N;A,)  inside SF,, ,(N: K).
7

Then the stability of ¥, ,(N; A) under A/ o €)To(¢, £) follows from that of
S&w.1(N; A,). Thus we may assume that A is a discrete valuation ring of
residual characteristic /. If A is finite flat over Z,, then we can find a finite
extension K,/®(v) inside C such that the quotient field K of A is the closure of
K, in Q,. Then

I:k,w,z(N§ A) = @ Cv,isk,mb,l(rbi?(N); A)
and
Sk,w,l(ré(N); A) = Sk,mb,l(rEi?(N); K) N A[lqll
We put, for each positive integer N,
'///k(FOO(NO; “i_l)§ K) =‘//lk(FOO(N0; di_l); Ko) @, K and
M Too( Nys 2;71); A) = M (Too(Nys 27 1); K) 0 Al[q]].

Now we take a positive integer N, contained in the ideal N. By taking ¢ = 2,
we have the inclusion:

Sk,w,r(r;:(N)§ A) “’//[k(roo(Nm ai_l); A) E//"/k(roo(l\]o): ¢ A)-
(4.14) w w
A1) =-f;,a,-*,sl —f
Note that, for 2 = a2 (a € F;() with (a, Nyl) = 1,

FIT(e, a)(x) = flaa) = (5[4 )(a" )] (re sz,

Write s = (g (31) and r = (a(;z (1)) Then f|T(a, a) = f|; ;sr. Define
a

V(M) = {((cl Z) EVl(M)’bEMIZ} for each ideal M of ».
For the above s and r, we can find a sufficiently small ideal M so that
sV(M)s™' c Vi(N,) and +V(M)r~!c V(N,).
We can also decompose by using the same ¢, as in (4.3)
h
Gy = LIGLy(F)tV(M)G,, ..
i=1

Note that det(s) = 1. Then we can write ¢;sr = ytu, at,u, = t.s and Btu; =
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t;r for uy, uy, u; € V(M) and a, B, vy € GL;(F). Then we have that

- - S T -1
tisr = atju,r = at ;1 uyr = aftusr uor.

Since uyr~'u,r € Vi(N;), by writing f; for f;, we see from (2.6¢) that

(Fliost), = Fle ot =(Fle )| o8-

We may assume that s = a mod MM,(4) and det(a) = 1 by the strong ap-
proximation theorem, since det(s) = 1. Then, we see that

0
filk, o = fj|k(g a‘l) = f,(a) by Theorem 4.9.

On the other hand, we can write Bya,u, = a;a~> for B, € F* and u, € #*F] ..
’[(;)0 (1)) as B. Thus we see that if f,(a) = X.a({)q",

(flT(2, 2)); = é“‘”%a(s)q‘“.

If fe 8¢, ((N;A), then f; € ¢, ;M (Lo Ny), @;; A) by the inclusion (4.14).
Then by Theorem 4.9, we know that
(flT(d, “))i = B(;(_wcu,jsk,uf;,l(rlg(N); A)'

Note that Bz, = a].a—2 and Co,j = ./VF/Q(aj)_l{(ajd)"}. Since N o(@) is
invertible in A (i.e. 2 is prime to ¢), we know from a straightforward calculation
that

Then, we can choose (

‘/VF/Q(‘Z){“_% }B(;(_wco, jA =, A
This shows that if @ is prime to ¢N,,, then
S¢ . 1(N; A) is stable under Ny ,o(a)(2)T(a, 2).
Now write simply m for [t + n + 2v]. Since we know from (3.9) that
-/VF/Q(“)T()(% a) = -/‘/‘F/Q(“)m{“—zux“)w

and (z), only depends on the class of z in Cl(N) as shown in Section 3, we
can take ideals z, £ of # such that 2¢ is prime to N,Z, 2 and ¢ are in the same
cdass in Cly(N) and ANy, o(a)™{a > }A + N} o(£)" (£ 2°}A = A. Then
T(a, a) + Ty(£, £) is a unit multiple of {2 ),. This shows that under the action
of Clx(N), S, i(N; A) is stable. For a general ideal z prime to N but not
necessarily prime to £N,, we know that

-/VF/Q(“)TO(“> “) = /VF/Q(“)m{“izv}<“>n-

Since A% o(2)"{2 ?} is an element in A (even when —t <n <0; ie,
0 <k <2t), §F, (N; A) is stable under A% (2)T( 2, @), which finishes the
proof.
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Here we record a byproduct of the proof of Theorem 4.11.

CoroLLARY 4.12. Let A be an s+(v)-algebra as in Theorem 4.11. Then
¥ . 1(N; A) is stable under the action of the finite group Clp(N) via the
operator { a), for a € II(N).

For the stability of S, ;(N; A) under T(+), the assumption that v (and
w) is integral and n ~ — 2v (and k ~ 2w) is absolutely necessary as otherwise
one can construct counterexamples [34, Remark 2.9].

5. Duality theorems between Hecke algebras and spaces of cusp forms

Let A be a Dedekind domain containing #(v) (inside C or (—)p) satisfy-
ing (3.1). Then by Theorem 4.1, S (N; A) is stable under Ty(+) for all
ideals » C 2 and hence is stable under 4, ,(N; A). We shall define a pairing
()i A o(N; A) X S (N; A) > A by

THEOREM 5.1. The pairing (5.1) induces isomorphisms:
Hom (%, (N5 A), A) =S¢, (N; My(F); A),
HomA(Sl:w,l(N; My(F); A), A) = /i o(N; A).

Proof. Firstly, we shall assume A to be a field. Since Sf*, ;(N; A) and
% o(N; A) are of finite dimension by Corollary 4.5 or Theorem 3.1, we shall
prove the nondegeneracy of the pairing. Suppose ( h, f) = 0 for all h; then from
Corollary 4.2,

(5.2) a(x, f) =als, fITy(2)) = (Ty(»), £) =0  for all ideals 7.

Now f = 0 by Proposition 4.1. Conversely if (h, f) = 0 for all f, then for all
» € II(1),

a(, fIk) = ale, fIRTy(n)) = ale, fITy(n)h) = (b, £Ty(#)) = 0.
This shows that f|h = 0 for all f and hence h = 0 as an operator. This finishes
the proof in the case where A is a field. For the general case, we may assume
that A is a valuation ring by localizing A at prime ideals if necessary. Let L be
the quotient field of A. What we have to show is the isomorphism:

S .. 1(N; A) = Hom (%, .(N; A), A).
By definition, %, ,(N; A)is an A-subalgebra of 4, (N; L). Since %, ,(N; A) is

finite over A, 4, (N; A) ®, L is a subalgebra of 4, (N; L). Thus we can
extend any ¢ € Hom (%4, (N; A), A) to an L-linear map ¢: 4, (N; L) — L.

k, w
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Then by the duality for L already proved, we can find f€ S, (N; L) such
that ¢(h) = (h, f) for all h € 4, (N; A). Then we know that for all ideals
» € (1),

a(n, ) = a(s, f|Ty(#)) = (Ty(#), £) = ¢(Ty(n)) € A,

since Ty(») € 4 (N; A). This shows that f€ S¥  (N; A), and the proof is
completed.
In the same manner as in [15, §0], we get from Th. 5.1:

CoroLLARY 5.2. Let C denote C or 6,, according as A C C or A C Gp.
Then we have bijections:

Spec( 4 (N; A)) ,,(C) = Hom,, (4 (N; A), C)
= {f€ S¢ o (N;O)fITy(#) = a(n, £)f forall =},
Spec(£¢",(N; A)) ,(Q,) = Hom,, ., £5,(N; A),Q,)
= {f€ S, ((N; O)|f|Ty(#) = al(n, £)f with
la(p, )], =1}

Now we fix a finite extension K of Q,, inside (_)p containing ®(v), and let ¢
denote the p-adic integer ring of K. We fix an ideal N prime to p, and define,
for A= 0 or K

S# . ((Np®; A) = lim S, ,(Np%; A).

For each element f € S (Np®; K), we shall define a p-adic norm by
(5.3) |1, = Sup|a(~, f)l,.

By Theorem 4.10, |f|, is a well defined real number. Let S_,j'f w, 1(Np>=; A) for
A = 0 or K be the completion of S, ;(Np®; A) under this norm. By defini-
tion, the function

a: (1) x S¢, ;(Np®; A) - A givenby (2, f) = a(a, f)
is extended by continuity to I(1) X §,§" w, 1(Np®; A), and the norm of each
element f of S ;(Np™; A) is again given by (5.3). By the commutativity
of (3.5) and by Th. 411, 4, (Np>; ) acts naturally and faithfully on

Si w. 1(Np®; 0) and by continuity, its action extends to §,§" w, 1{Np*; @0). Thus
we can define a pairing

() A o(Np®; 0) X S [(Np™; 0) > 0 again by (5.1).
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Tueorem 5.3. The pairing { , ) induces isomorphisms:
A o(Np™; 0) = Homm(g,:w),(pr; 0), 0),
S# o 1(Np™; 0) = Hom,( 4, ,(Np=; 0),0).

One can derive this theorem from Theorem 5.1 in exactly the same manner
as in [11, II, Th. 1.3]; so, we omit the proof.

CoroLLARY 5.4. If v = 0 and k > 2t (k ~ 0), we have a natural isomor-
phism:

S_l?(,w,I(pr§ 0) = §27,¢,1(NP°°; 0)

which preserves the map: (a, f) = a(a, f). Moreover, for the ordinary part,
we have a similar isomorphism for all pairs (k, k') withk ~ k" and k > k' > 2t:

eS¢ o, 1(Np*; 0) = &8 . ((Np™; 0) (w=v+k—-t,w=v+k —t),
which preserves the map: (a, f) = a(a, f).

This follows from Theorems 5.3, 3.2 and 3.3. Hereafter identifying
eSkw,(Np O)foral n>0(k=n+2t, w=v+k—t=n+ov+t), we
write SO“I(N 0) for eS w.1(Np™; 0) and put SJ(N; Q ) = S(N; 0) ®0Q

COROLLARY 5.5. We have a bijection:
Spec(h(N; 0)) 6(Q,) = Hom, o, (B3*(N; 0),Q,)
= (f e 57N Q, )|fITo(#) = a(n. £)f
foralln € 11(1)}.

This follows from Theorem 5.3. For the proof, see the proof of the next
‘theorem whose assertion is a little stronger than Corollary 3.5. We shall prove
this by assuming Theorem 3.4 which will be in turn proved in Section 12:

TuEOREM 5.6. Let A: hY(N; 0) - £ be a A-algebra homomorphism, X’

be the quotient field of the image of A and # be the integral closure of A in X'
For each P € Z(#) = Hom, (5, Q ), we define Ap: h°’d(N 0) - Q by
P o A. Then there exists a unique p—adic cusp form f, € STY(N; Q ) such that
ol T(2) = Ap(To(2)) fp and a(~, fp) = Ap(Ti( 7)) for all udeals n. If P&

Zag(F) and n(P) > 20, then A ,(T(~)) is an algebraic number in Q for all ~,
and when a(»n, fp) = Ap(T(7)) as a complex number by the fixed embed-
dings: Q = Qp and Q = C, f, coincides with a complex cusp form in
¥ o i(Np*®) e C) for k = n(P) — 20 + 2t, w = n(P) — v + . Conversely,
suppose there is a non-zero common eigenform fin ST4(N; O) of all Ty(»). Then,
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there exist a A-algebra homomorphism \: h4(N; 0) » & and a point P €
Spec(F)(O) such that f is a constant multiple of fp. If fis a complex cusp form
of weight k > 2t, then P as above belongs to % ,,(.#).

Proof. By definition, A, has values in the p-adic integer ring O’ of a finite
extension K'/K. Since h%Y(N; 0’) = h%%(N; 0) ®, 0’ by Theorems 3.1 and 3.3,
we can extend A to A: h°(N; 0’) — & by the combination:

h(N; 0) ®, 0" 224, P00 — — @

W w

a®b ———ab
Let " be the subfield of £ generated by @’ and X", and let £’ denote the
integral closure of A in ). Replacing A and # by A’ and #’, we may suppose
that A, has values in 0. Then by Theorem 5.3, we can find f, € S™(N; 0) such
that Ay (h) = (h, f,) for all h € h°YN; O0). Then we see that a(~, f,) =

(Ti(7), fp) = Ap(Ty()) for each ideal 7, and

a(m’fP|T0(”)) = <T0(”’),fP|To(”)> = < o(m) fP> }\ To( ) 0(”))
= }‘P(To(”))a(”” fr)

for ideals 7 and 7. This shows that fp|T(7~) = Ap(Ty(2))fp. If P € Z,,
and n(P) > 2v, then A, factors through %, (Np*"), ¢,; K) for k = n(P) — 2v
+2t and w=n(P)— v+t by Theorem 3.4 and hence factors through
£ o Np*®); K). Since

ék,w(Npa(P); K) = ék,w(Npa(P); KO) ®K0 K

for a suitable finite extension K,/®(v) inside K and #, (Np*?); K,) is of finite
dimension over Q by Theorem 3.1, the restriction of }\ to %, (Np*®); K,) has
values in Q in particular, A ,(T( 7)) € Q for all ». Then by Corollary 5.2, f, is
contained in S¥ , ;(Np*®), ¢p; C).
Now we shall show the converse: If f € S(N; @) is a common eigenform
of all Hecke operators Tj(#), then we can define an (-algebra homomorphism
p: hoY(N; 0) - O by f|h = p(h)f. Then, Ker(p) contains at least one minimal
pnme ideal 4 of h°’d(N 0); namely, there exist a A-algebra homomorphism
A: h7YN; 0) > £ with kernel 4 and a point P € Spec(.#)(0) such that
p=Po)X = A, Then

a(n, £) = (Ty(n), ) + {To(2). FITo(#)) = Ap(Ty()) (2, f)
=a(~, fp)a(s, f)  forall ».
This shows that f = a(z, f)fp, which finishes the proof.
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6. A theorem of Matsushima and Shimura

In this section, we shall give an exposition of a result of Matsushima and
Shimura [22] which relates the space of cusp forms to the cohomology groups of
certain sheaves on modular varieties. In this and the following Sections 7, 8, 9
and 10, we treat general quaternion algebras B/F which may ramify at some
places of F. Fix a maximal order R of B as in Section 1. For each place o of F
outside =B, we identify R, = R ®, 2, with My(2,) if o if finite and with M,(R)
if o is infinite. Let U be an open compact subgroup of R*. We define a
subgroup U, of G? by U, = {x, € G}|x € U} and U” = {x € U|x, = 1}. We
shall decompose

h h
G = 11GatuGgE = 11G§.tUGE  (G§.= GEn GPG? )
i=1 i=1

for t, € G such that ¢, , € G2, and ¢, , € U,. As in Section 2, we put
I(U) = tUG, ,t;7' N Gy = tUGt7' N Gy,
T{(U) =T{U)/F*n Ti(U)
which are discrete subgroups of G, . and G, ./F;. We define a complex
analytic space X,(U) = T{(U)\ &5 (£ = H™), which is a manifold if T'(U)
is without torsion and is compact if B is a division algebra. We shall construct
sheaves on the modular variety X(U) = Gy,\ G,,/UC, ,= G4\ G,/UC_,
(Gy = G4G,, ) out of a right module M of U, or G, ,. The case where we

consider right G, ,-modules M (resp. right U,-modules M) will be referred to as
Case oo (resp. Case p). We suppose that

(6.1) M is a finite dimensional real vector spaces in Case oo, and M or its
Pontryagin dual module is a Z -module of finite type in Case p.

We let Gq act on G, X M from the left by a - (g, m) = (ag, m) and let

UC_ , act on it from the right by

o0 +

(gu, mu,) in Case oo,

(g,m)-u= (gu, mu,) in Case p.

Giving M the discrete topology, we consider the covering space of X(U):
M(U) = Gy\ G, x M/UC, ,.

We denote by ‘M the left U, or G,, , module whose underlying module is M but
whose left action is given by u - m = m - u=%. Let T'{(U) act on ‘M through the
natural inclusion: I'(U) < U, in Case p and I'(U) - G_ , in Case co. Giving
‘M the discrete topology, we consider the covering space # (U) =
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Ti(U) \ 25 X ‘M, where we have let T(U) act on 2 X‘m from the left by the
diagonal action.

PropOSITION 6.1. Put zy= (V—1,...,V/— 1) € Z,. Then we have iso-
morphisms

(i) X(U) ="\ X(U) induced by Got,UG, .3 atju = t; ,u.(zo) €
%5,

(i) A(U) = L1}, # (U) induced by

t
Got;UG,, . X M > (at;u, m) = (t; U7, tj,ouom) e ZyxX'M,
where o = p or oo according as we are in Case p or in Case co.

Proof. The assertion (i) is well.known. We shall prove (ii) only in Case p
because Case oo can be treated similarly. Define ¢: Gt , UG, , X M — 25 X 'M
as in the second assertion. Then, for 8 € Go and s € UC_ ,, we know that

qb(,Bat.us, m, - s ) = (t] woloo(20)5 L), pupsp(s_lmo)) = qs(t].u, my).

If atju =t;u for u,u’ € UG, and a € Gy, then a = t;u'u”'t;" and thus
a e I‘J(U) Wntlng m=t/ um,and z=1t; (z9), we have

i pUp j» ooted

¢(tju ’ mo) = (t] 0 co(zo) js pupm()) = (a(z), cxm)
since a = tju’(t].u) !

This shows that ¢ induces the isomorphism in (ii).

If T{U) is without torsion and if T/(U) N F* acts trivially on ‘M, .# (U)
is locally isomorphic to the manifold X,(U), and we can consider the sheaf of
continuous sections of # (U) on X (U). This sheaf will be denoted by the same
symbol ./ (U). Let K/Q,, be a finite extension in (_)p containing K, as in (1.1).
Let @ denote the p-adic integer ring of K. Then, we consider the sheaves on
X(U) or X(U) corresponding to the module L(n, v; A) for any O-algebra A in
Case p and any R-algebra A containing K, in Case co. The corresponding sheaf
will be denoted by

S’(n,v;A)/X(U) and egi(n,U;A)/Xl-(U)

(under the condition: n + 2v ~ 0, TY(U) N F* acts trivially on L(n, v; A)
either if U C Uy(p) for odd prime p or if U C Uy(4)). For simplicity, we shall
assume that ¢, _ = 1forall i, and for f€ S, , (U;C) (J C Iy), we write f; for
f, as in (2.4b). Then, we know that f, € 5, J(T(U); C). For each subset J
of I, we put J= (relglr &€} and dz; = (A,c;dz,) A (A cjdz,) as a
differential on Z,. For y € G_ _,

(6.2a) dz;oy = j,(v, z) 2 u(y) " dz,.
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We define for n =¥ _n_- 7€ Z[I],
nl(z) = Hn ) TIn.(2,) €'L(ng, vg5C)  forz €%y by
Te]

T€]

z) = Z(_z o ((_(1) é)(zl))();)

T

where we put (Y)m =f{X™, X™"1Y,...,Y™) for 0 < m € Z. Then we have

(6.2b) v u(z) =7(v(2))v(y) "jp(y,2)"  forally € G,.
For each f€ S, , (T'(U); B;C), we put
w(f) = f(z) - 1l(z) dz),

which is a harmonic r-differential form on 2, with values in ‘L(n, v; C) in the
sense of [22]. Since n = k — 2¢ and v = w — k + t, we see easily from (6.2a,b)
the T'(U)-invariancy of w(f):

(6.3) w(fley=v-w(f) foryeTi(U).
Thus if TiU) is without torsion, we can regard w(f) as an r-differential form

with values in the sheaf #(n, v;C) sxuy- Thus by assigning the de Rham
cohomology class of w(f)to f€ S, , (T(U);C), we have a morphism:

Sk, w,/(T(U);C) = H(X,(U), Z(n, v;C)).

When T/U) has non-trivial torsion elements, by choosing a sufficiently small
normal subgroup T of T'((U) of finite index without torsion, with a slight abuse
of symbols, we write, for a field K of characteristic 0,

H(X,(U), Z(n,0;K))  for H(T\ %5, L(n,v; K))" ),

where &(n, v; K) /r\ 2,, is the sheaf on T'\ 2, defined in exactly the same
manner as Z(n, v; K) ,x ). This space is determined independently of the
choice of T. Then, the above map induces a morphism: S, , ,(U;C) —
H'(X(U), Z(n,v;C). If r = 2s (r = |I| = dimcZ}) with 0 < s € Z, we put,
for each J c I with |J| =s,

w, = AIm(z,) *dz, A dz,,

Te]

Inv(X,(U)) = ¥ Coyx ) € H(X,(U),C),
|J|=s

Inv(U) = @ InV(X].(U)).
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When r =0 (ie.,, B is totally definite), we denote by Inv(U) the space
defined in (2.4d) under the same symbol. Then we have the following result of
Matsushima and Shimura:

THEOREM 6.2 ([22, §4]). Suppose that n + 2v ~ 0 and n > 0 and that B is
a division algebra. Put k=n + 2t and w =v + k — t. Then, we have a
canonical isomorphism induced by f — w(f):

H'(X(U), £Z(n, v;C))

Inv(U) @ | @ Sk’w’,(U;C)) if ris even and n = 0,
JclIy

® S, ., ,(U;C) if either r is odd or n > 0.

Jcly

In fact, in [22, §4], the case where B is indefinite is studied, but the totally
definite case follows from (2.6b). This result has already been generalized by
Harder ([5], [6]; see also [7]) even for B = M,y(F) with an appropriate modifica-
tion, but we will not need this general fact later.

We shall now give a definition of sheaves #(n, v; A) for global #(v)-alge-
bras A. Let L be a finite extension of the field K, as in Section 1, and let A be
the integer ring of L. Since Gﬁ naturally acts on L(n, v; L) and hence on
‘L(n, v; L;) (here L, is the finite part of the adele ring L, of L). We can
consider ¢, - ‘L(n, v; A) and

tLi(n, v; A) =t

1

-tL(n, v; A) N'L(n,v; L),
where A denotes the compact ring A ®, Z. Then naturally, T'(U) =

tUG, . t7' N Gq acts on ‘L(n,v; A). If fi(U) is without torsion, then we can
consider the sheaf

L(n,v; A) = T(U)\Zy X'L(n, v; A) over X,(U),

L(n,v;A) = I_hIS’i(n, v; A) over X(U).

i=1
There is a canonical and functorial isomorphism

h
(6.4) H'(X(U), £(n,0; A)) = @ H(T(U),'L(n, v; A)),
i=1
where the right-hand side is the group cohomology group for the T{(U)-module
‘L(n, v; A). Note that the right-hand side of (6.4) is defined without the
assumption of torsion-freeness of I''(U).
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For each A-algebra D, we define the sheaf #(n, v; D) on X(U) by
g(n, U; D)/X(U) = g(n, U, A) ®A D/X(U)

THEOREM 6.3. Suppose that T(U) is without torsion for all i = 1,..., h.

Let D be an A-algebra. Suppose one of the following conditions holds:
(i) D is the integer ring of a finite extension of L;

(ii) D is a field extension of L;

(iii) D is a localization of A.
Then, we have a canonical isomorphism:

H(X(U), Z(n,v; D)) = H(X(U), £(n,v; A)) ®, D,

where H! means the cohomology group with compact support.

By this theorem, the natural image of H(X(U), #(n, v; A)) gives an
A-integral structure on H(X(U), #(n, v; C)) and on H(X(U), #(n, v;Q,)).

Proof. We firstly suppose that D is the localization of A by a multiplicative
set S ¢ A. For each 0 # a € S, we consider an A-module a ‘A C L. Then we
have an exact sequence of A-modules:

0> L(n,v; A) > L(n,v;a 'A) > L(n,v;a 'A/A) > 0.
This gives another exact sequence:
H™YX(U), Z(n,v;a "A/A)) > H(X(U), L(n, v; A))
- H(X(U), Z(n, v;a"'A))
— H(X(U), £(n,v;a"'A/A))
= ...
By taking the injective limit relative to @ € S, we have another exact sequence:
lim H " (X(U), £(n,v;a'A/A))
- HI(X(U), Z(n,v; A))
- H(X(U), Z(n,v; D))
= lim H/(X(U), Z(n,v;a"'A/A)).

a

),
),

Any element in the modules at the extreme right and left of the above sequence
is killed by some element in S. Therefore, their tensor product with D becomes
trivial. Thus by tensoring D to the above sequence, we have
H/(X(U), #(n,v; A)) & D=HJ(X(U), £(n,v; D)) & D

= H(X(U), £(n, v; D)),
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since D is A-flat. Secondly, let 4 be a prime ideal of A, and let A , be the
localization of A at 4. As we have already seen,

H(X(U), £(n,v; A,)) = H(X(U), £(n,0; A)) & A

On the other hand, by the universal coefficient theorem in [2, II, Th. 18.3], for
any flat A ﬁ-algebra D, we have

HY(X(U), £(n, v; A)) ® D = H(X(U), £(n,v; A,)) ®, D
= H(X(U), &(n,v; D)).

This result includes the Case (ii). Finally, assuming the first condition (i), we
have a natural map: H(X(U), L(n,v; A)) ® D — H(X(U), L(n, v; D)).
After localizing this map at each prime ideal s, we get an isomorphism by the
results already proved. Therefore the original map must be an isomorphism since
these cohomology groups are of finite type as modules over A or D (see e.g.
[28]).

The type of sheaves over X(U) discussed here was first considered by
Langlands (see e.g. [21]), but the definition of these sheaves using local action of
U, or G, is newly adopted here under some influence of Harder [6, p. 131]
and the work of Matsushima and Murakami which precedes [22] and is very well
suited to p-adic arguments. We may also note that the definition in Case p
reminds us of a work of Weil [37] in the case of GL(1).

7. Hecke operators on cohomology groups and proof of Theorems 3.1
and 4.10

We shall firstly define Hecke operators on H(X(U), #(n, v; A)) and on
_ H(TY(U), ‘L(n, v; A)). After that, we shall give a proof of Theorems 3.1
and 4.10. Let o be either the place p or co of Q. Let A be a multiplicative
semi-group inside R, =R ®; Z,, and let U and U’ be two open compact
subgroups of GB such that U, C A and U, C A if 0 = p. Suppose that T/(U)
and T/(U") are torsmn-free for all i when we consider sheaf cohomology groups.
Let M be a right A-module or a right G_-module according as o = p or oo
satisfying (6.1). We suppose that E acts trivially on M in order to have the
non-trivial sheaf #(U). Let x € G,C_ such that x, € A if ¢ =p. Write
U* = x;lUxf in Gf, and put V= U N (U)*". Then V" = U*N U'. Now we
shall define a morphism
[x]: G, XM > G, XM by[x](g,m)=(gx,m-x,).
Then we see that, for a € G, and u € VC

00 +2

[x](agu, mu,) = (agux, mu,x,) = (agxu®, mx u¥),
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where u* = x"'ux. Thus the map [x] induces a morphism of sheaves [x]:
M(V) = M (V?), and we then have the induced morphism:
(7.1a) [x]: H(X(V), #(V)) > HY(X(V*), #(V*)).
Let pr: X(V*) - X(U’) be the natural projection, and consider the sheaf
F = (pr)+(p)*(A(U')) = (pr)«( A (V*)). We take a Galois (étale) covering
a: Y = X(U’) which factors X(V*). Put
F' =aa* (A (U)),
g = Gal(Y/X(U))
and
H= Gal(Y/X(V*)).
Since pr is an open map (in fact, it is a local isomorphism), for each open set
O c X(U’), we have that I(O, %) = I(pr Y(O), #(V*¥)). If O is sufficiently
small, then there are disjoint open subsets {O,}, c4 of Y such that 7 induces
O, = O for each 7. Then
F'(0) = &, ,m*(#(U))(O,) = &, ,T(0, #(U"))
and
H%%, #'(0)) =T(0, #(U)).
On the other hand, we have a natural morphism: % — %'. For s € #(0), we
define Tr(s) = ¥, c g, »0(s) € H%¥%, #'(0)). This extends to a morphism of
sheaves Tr: % — A (U’). By definition, HY( X(U"), ) = HY(X(V*), #(V%)),
and we thus obtain the trace map
(7.1b) Try v H(X(V*), #(V*)) — HY(X(U'), #(U)).
We also have the restriction morphism:
(7.1¢) res v HYX(U), #(U)) > HY(X(V), #(V)).

We shall define [UxU’): HYAX(U), #(U)) - HY(XU'), #(U’)) by
(7.2a) [UxU’] = Try  y=o[x] oresy v .

Now we shall extend a little the definition of the module L(n, v; A). Let
K/Q, be a finite extension containing K, as in Section 1 and @ be its p-adic

integer ring. Suppose that N is prime to p and that every prime factor of Np is
unramified in B. Put for 8 > a > 0,

8(N) = (xR

pr= (‘CI Z)Witha_ 1 EpaN’LNp:aE}L;\(/p’

c e pBN¢Np, and x € G/ },

Us(N) = R* N ag(N),  VE(N) = RX0&5(N)', 45 = 85(1),
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where A%(N)' = {x‘|x € AY(N)}. Let A be an O-algebra and A: Z,/Z; > A*
be a character such that A, . ,, induces a character of Z, — A. (This is trivially
true if « is sufficiently large.) We shall now twist the action of A% on L(n, v; A)

by the character A: We let u € A} with u, = (: Z) acton m € L(n, v; A) by
m-u=Na)(m-u,),

where the action of u, in the parentheses of the right-hand side is the usual
action of u, on L(n, v; A). Similarly, we can let u € (A%)" with u, = {° Z
act on L(n v; A) by m - u = A(d)(m - u,). The Ajmodule (resp. (AB) “mod-
ule) L(n, v; A) with this twisted action w1ll be denoted by L(n, v, A; A) (resp.
L*(n, v, A; A)). Thus we can define the action of [Us(N )xUg(N)] for x € A% or
[VE(N)xV5(N)] for x € (A%)" on the corresponding cohomology groups.
The corresponding sheaves to L(n,v,A\; A) and L*(n,v,A; A) on X(U)
(UcC Ug(N) or Uc Vg(N)) will be denoted by Z(n, v, A; A) and
L*(n, v, \; A).

Let U and U’ be two open compact subgroups of A%. We shall now modify
the operators [UxU’] (x € A%) analogously to the deﬁnltlon of Ty(~) out of T(7).
To define the morphism [x] for x € A%, we have used the action of x, on
L(n,v, A; A), which will be written as m — m - x,. Since the underlying
A-modules of L(n, v, A; A) and L(n,0, A; A) are the same, we may use the
action of x, on L(n,0, A; A), which will be written as m — m o x,, to define a
map similar to [x]:

(x): H(X(V), L(n,v,A; A)) » HY(X(V*), L(n,v,\; A)).
Note that for x € A%, m - x, = det(x,)°m o x,. The 0-algebra A always satisfies
the condition (3.1) since @ does. We fix a character: F © a — {a°} € A asin

Section 3. Then {»(x) °}det(x,)" is a unit in A, and thus we can define a
morphism of sheaves

(x): L(n,0,X;5 A) xvy = ZL(n, 0,5 A) xvr)

by the correspondence: (g, m) = (gx,({»(x) °}det(x,)°)(m o x,)) for g € G}
and m € L(n, v, A\; A). This induces a linear map

(x): H(X(V), &(n,v,A; A)) - H(X(V), L(n,v, A; A)).

We then define (UxU’): HY(X(U), L(n, v, \; A)) = HY(X(U’), L(n, v, \; A))
by

(7.2b) (UxU’) = Try jyxo(x)ores .

One can formulate the above definitions for L*(n, v, A; A) and L*(n, v, A; A)
for x € (A%)' and U, U’ C (A%)" in exactly the same manner as above:

(UxU’): HY(X(U), £*(n, v, \; A)) > H(X(U'), L*(n, v, A; A)).
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Then we have the relation
(7.3)  [UxU] = {»(x)°}(UxU")  forallx € A or x€ (A‘};)L.

The operators [UxU’] and (UxU’) depend only on the double coset UC,, ,xU'C,, ,
(and the choice of the map: a — {a®}) and are independent of the choice of x
in UC_ ,xU'C_ ,. Furthermore, one can verify

[U'xU"] - [UyU'] = [UyU’ - UxU"], (UxU”) o (UyU’) = (UyU’ - U'xU"),
where the product on the right-hand side is taken in the abstract Hecke ring as
in [36, III]. By decomposing

{x e My(N)p(x)r=2n}) = ]_[UB )x,Us(N),

we can define Hecke operators T(7) and T(~) by

T(») = L[Us(N)2G5(N)], () = L(Gs(N)x,Us(N))

on HYX(Ug(N)), £(n, v, A; A)).

So far, we have only considered sheaves defined locally at 6. Now we shall
extend our definitions of operators (UxU’) to global rings A. Let L be a finite
extension of K, and let A be the integer ring of L. We suppose the condition
(3.1) for A. Decompose G{ =11,G5tVGE, and G =11,G§t/V*GE . Sup-
posethatt =t/ =1 WeputL(nvA)—t tL(nvA)ﬂL(nvL)
and 'Li(n, v; A) =t/ - tL(n v; A) ﬂtL(n v; L), where the 1ntersect10n is taken
in L(n v; L) and A=A ®y ZcC L, Expressing tx = y;t/u for x €
(Gy N R)C, with u € VG_, and Y; € Gy, we have that y, =tu 't/ ' €
t; Rt =1 and thus Y; 1nduces a linear map:

'L](n,v; A) —)IL;(n, v; A)
w v
m — v, 'm =m-y,.

Note that
TH(VF) = VG, /7' N Gy = v, 't VG,, .t 'y, N Go = v, 'TI(V )y,
Then we have morphisms of sheaves:
[x];: Zi(n, 05 A)x,v) > L (n, 03 A) jxovm)
induced by (z, m) — (y].‘ Y(2), y].‘lm),
(x);: Zi(n, v; A) xv) = £/ (n, 05 A) xvr)

induced by (z, m) — (yj_l(z), {v(x)_v}(yj‘lm)).
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Here, actually, {»(x) "}(v; 'm) = ({v(x)"~ “}r(y;) u(moy])) is a well-defined
element of ‘L)(n, v; A) since ({»(x)~ °}»(v,)*) is a unit in A. We also have
morphisms of group cohomology:

[x];: H(TIV),'L(n, v; A)) > HY(T(V*), 'Li(n, v; A))
(x);: H(T(V),'L;(n, v; A)) = HY(T(V*),'Li(n, v; A))
which are given by
§|[x]j(a0,..., aq) = yj‘lg(yjao}'fl,---, Y,-anj—l),

£(x) (agn- o) = ({#(0) " Jr ()" Je(viaer; vyt o,

for each g-homogeneous cocycle & Ti(U) — ‘L i(n, v; A).

In order to compare this definition of [x]; and (x); with those of [x] and
(x), we denote by A the complex field C or the closure of A in Q, according as
o = o or 6 = p. We can define the sheaf #(n, v; A,) x, locally at o as in
the beginning of this section. By Proposition 6.1, we have natural isomorphisms:

¢ G\ GotVG,., X L(n,v; A,)/VC,, =T{V)\Z,x'L(n, v; A,)
v )
(at;u, m,) — (t; Lu(20)s t; UMy,

j»00%00

¢": Go\ Got/V*G,, . X L(n,v; A,)/V*C,,, =T(V))\ 2, X'L(n, v; A,)
v )
(ati/ux’ mO) l_) (t/ (‘ZO) tta o )

10000

Since tx = y;t/u*, we have for any v’ € VG, t;u'x = y;t/(uu’)* and thus
Got VG, . x = Ggt{V*G,, . This means that the map

[x]: Z(n, v; A,) xv) = L(n, 05 A,) v

induces a morphism [x]; Zi(n, v A )/x wy = Zn, 05 A,) x (v We shall
compute ¢'o[x]op ! To do thls write

2=t ul(z,)

] 00 o0
and
J— ’
m =1t ;u;m
Then

o(g,my) = (z,m) forg=atju'(a € Gyand v’ € VG_,).
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On the other hand, we see that
¢'([x](g. mo)) = ¢'(at;u'x, myx,)

= ¢/(ay;t/(uw)*, myx,)

= ((t/(u)™) (z0), (& (ww)"), - . 'mg) = (v, 1(2), v, 'm),
since £;u’x = y;t/(uu)*. This shows

(7.4a) ¢'e[x] =[x]jo¢ and ¢'o(x) = (x);°9.

Similarly, when TiU) and TiU’) are torsionfree, we have a commutative
diagram:

HY(X/(V), Z(n,v; A)) = HY(T{(V),'L(n, v; A))
(74[)) [x]; (resp. (x);) [x]; (resp. (x);)

H(X(V*), &/(n, v; A)) =HY(T(V*), 'Li(n, v; A)),

where the horizontal isomorphisms are the canonical ones (see e.g. [28, §2]).
Since the covering 7: X(V*) - X(U’) and m: X(V) — X(U) are étale
finite and 7X(Z(n, v; A) xr) = ZL(n, v; A) x=), We have
Try v H(X(V®), Z(n, v; A)) - H(X(U'), L(n, v; A)),
res;,y: H(X(U), £(n,v; A)) - HY(X(V), L(n, v; A)).
Define [x] and (x): HYX(V), L(n,v; A) - HY(X(V*), L(n, v; A)) by
[x] = EBj[x]j and (x) = ® (x);, and put
[UxU’] = Tryp=o[x] ores,y,  (UxU') = Try, pu o (x) otesy, .
Then we see from (7.4) the compatibility between the previous definition and

the new one. 3 _
Without assuming the torsion-freeness of T/ U) and I'(U’), we can define

[UxU7] and (UxU"): @ HY(TI(U),'Lj(n, v; A))
- @ H"(fi(U’),'L;(n, v; A))

When B is totally definite, the non-trivial cohomology group is obtained only
when g = 0, and the space of cohomology groups as above is nothing but the
space of functions on G with values in L(n, v; A) on GF satisfying (2.4a) by
(2.6b), and the operators [UxU’] and (UxU’) can be defined as in Sections 2 and
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3. Thus we may suppose that B is indefinite. We further suppose that »(V) =
v(U) = p(U’). Then we can choose t; so that

]_[cQth ]_[GQt VG,..= LIGotUG,, .= L1GotUG,, .

simultaneously. Then X,(V*) covers X(U’), and T{(V*) is of finite index in
T'(U’). Thus we have the transfer map and the restriction map:

Triw, mivsy: H(T(VF), 'Li(n, v; A)) > H(T(U'), L(n, v; A)),
TS Ty Ti(v): H"(I—”(U), 'Li(n, v; A)) - H"(fi(V),tLi(n, v; A))
We define
Ty ye = ? Triw iy and  resy,, = 619 YeS Ty /T V)
and
[UxU’] = Ty, o [x] oresy v, (UxU’) = Ty jy=o(x)oresy,y.
Then by (7.4b), we have a commutative diagram:

HY(X(U), Z(n, v; A)) = @ HYT(U),'L(n, v; A))

In

(7.4¢) [UxU"] (resp. (UxU")) [UxU"] (resp. (UxU"))

HYX(U'), Z(n, v; A))

I

@ HAT(U),Ln, v; A)).

To prove Theorems 3.1 and 4.10, we need several lemmas.

Lemma 7.1. Put UN) = (x € U(N) withxy = (¢ *)|d — 1 € Nay) for
each ideal N of » outside ZB. Let ¢ be a prime ideal of » with residual
characteristic ¢ outside =B, and let e be the ramification index of ¢ over Q. Then
we have

() Ifs > 2e/(£— 1), then T{(U(£®)) is torsion-free for all i.
(ii) For each ideal N as above, if there exists a prime ideal ¢ such that ¢°
exactly divides N for s > 2e/(£{— 1), then the order of every torsion element in
T{(N) is a divisor of N €)™ 1(‘/V'F/Q({’) 1), where f{(N) stands for
T(U(N)).
(iii) There are infinitely many square-free ideal N outside 2B, such that
T{(N) = T{UN)) is torsion-free for all i. We can choose N so that the residual
characteristic of each prime factors of N is arbitrarily large.

Proof. We first prove the third assertion. We shall identify R, with My(2,).
If the image of y € [j(1) in T(1) = Tj(1)/Ty(1) N F* is of order n, then
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8 = »(y) 'y is of order n or n/2 in Tj(1) and »(8) = 1. We suppose for the
moment that 6 # +1. Then F(8) C B is a quadratic extension of F. We shall
choose a prime ideal ¢/ which remains prime in F(8) and so that the Zadic
integer ring of F(§) is generated by #, and 8. This condition on ¢ depends only
on the order n but is independent of the choice of the element § of order n, and
there are infinitely many ¢ with this property. If § € [}(¢), then as an element
of My(2,) = R,, 8 leaves the subspace {(x,0)|x € +/¢} C (2/¢)? stable. This
is impossible because 2,[§]/¢ is a quadratic extension of 2/¢. Hence T)(¢) # 8.
Here we have implicitly chosen t; so that ¢, ,= 1. This is always possible. For
each root of unity { such that [F({): F] = 2, we choose distinct prime ideals e
such that ¢, remains prime in F({), £, € 2% and { and « ,, generate the Z-adic
integer ring of F({). Since the number of roots of unity { with [F({): F] = 2 is
finite, we may put N, = [1;¢;, where { runs over all such roots of unity. If
y € TY(N,) satisfies y" = ¢ € +*, then the above argument shows that we may
assume that n = 2. If ¢ = 9% with n € 2%, then § = 'y is of order 2. Thus §
is conjugate to (‘ (1) ‘1’) or (‘ o (1’) in My(C) if one embeds B into M,(C).
Since »(8) = 1, we know that § = — 1 and & becomes trivial in T, o(N), and vy
also becomes trivial. If & & (2*)2, then F(y) C B is a quadratic extension of F.
The number of distinct quadratic extensions of the form F(Ve) for & € 2* is
equal to [2%/(2*)?|. For each & € +*/(+*)% we choose a prime ideal £ such
that Z, & =P, /. remains prime in F(Ve), £ is prime to N, and the Z-adic
integer ring of F(Ye) is generated by 2 ¢ and Ve. Put N = N, - I1,¢. We can
choose £, and Z, so that their residual characteristics are arbitrarily large. If
¢ = n% with 7 € +*, then 1, + \/e—’fz4 =n(2, + \/g¢4) = ¢,§ + /g¢4. Thus the
condition on ¢, depends only on the class of ¢ in (2*/(2*)2?). Then an argument
similar to the case ¢, prohibits the existence of a non-trivial torsion element in
T3(N). This proves the third assertion.
Now we shall prove the first assertion. Put

X = {(‘C‘ Z) € GL,(1,)

cet",asdslmodﬂ},

7= ([ D) emtn

(o

a,c,de /‘}.

We consider the exponential map exp: £ — X and the logarithm log: X - &
defined by exp(T) = £%_,T"/n! and log(1 + T) = £%_(— 1)"*!T"/n. Let us
firstly check the Z-adic convergence of these series. We fix a prime element 7 of
1, and take a quadratic extension A = 2,[y7], which is a complete valu-
0

‘/;s

1
ation ring. Put a = ( as an element of My(A). Then we see that
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a”%a C Y7 *My(A). Thus if s> 2¢//— 1 (2¢ is the ramification index of
A/Z,), the convergence of exp: a 'Za - a 'Xa and log: a 'Xa - o™ 'Za
follows from a standard argument (see e.g. [17, §3, Lemma 3]). Since

exp(a 'xa) = a 'exp(x)a and log(a™'xa) = a~'log(x)a,

we have well-defined exp: £ — X and log: X — %. Since exp and log are
mutually inverse, we know that Z= X. Since log(x") = nlog(x) for each
integer n, we know that X is torsion-free. One can always decompose

GP = LIGotUG,,,  forU=U(¢*) witht, satisfying t, ,= 1;

thus, I'(U) can be embedded into X and hence I'(U) is torsion-free. Note that
X = X/X N 2% is also an Zadic Lie group and is torsionfree. Since T/(U) is
isomorphic to the image of I'(U) in X, T(U) is also torsion-free. By Proposition
6.1, the torsion-freeness of T(U) for all i does not depend on the choice of t,
and hence the first assertion follows.
Finally we shall prove the second assertion. We have an exact sequence for
U=U?°):1->U/Unas; = UL,/U,N 25 = (2/6%2) > 1.
0] w
a b ad " mod ¢*
(c d )

If T € T{(N) is a finite subgroup, T injects into (2/¢*%)> since U,/U,N 25 is
torsion-free. Thus we see that T is a divisor of /' (£)*~ N (¢) — 1) which is the
order of (v/¢*)™.

Proof of Theorems 3.1 and 4.10. We shall prove the two theorems simulta-
neously. By (2.6c), (6.3) and (7.4a), the isomorphism of Theorem 6.2 is equi-
variant under the abstract Hecke ring R(Uy(N), A(N)). When F = Q, the
assertions of Theorems 3.1 and 4.10 are well-known (see e.g. [36, III]). Thus we
may assume that F # Q. Then we can find a division quaternion algebra B/F
which is unramified everywhere at finite places of F. We fix such a B. Let K, be
the finite extension of Q as in (1.1) for this B. Firstly, we suppose that the
algebra A as in Theorem 3.1 contains the integer ring 2, of K,. Let L be the
quotient field of A. We put for each open subgroup U of GL (%),

S(U) = @ S ,,,(Us B;C)
JCIy

and identify S(U) with the subspace of H X(U), Z(n, v;C)). We take a
normal open compact subgroup U of U,(N) such that I'((U) is torsion-free for all
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i. Then, by using Hochschild-Serre spectral sequence [16], we know

Uy(N)

(75) H(X(U), Z(n, 0; L)Y = ( @ H(T(U),Ly(n, v; L))

= ( @ H(Ti(N),'L,(n, v; L)),
i
where we have written f{(N ) for ff(Ul(N )). Since on
@ H'(T{(N),'L;(n, v; L)),
j

TUl(N)/U °TeSy vy v IS @ multiplication of the degree (X(U): X(Uy(N))), Theo-
rem 6.3 combined with (7.5), shows that

(@ H(TUN). Ln, v; 4))) &,C = H(X(U(N)), Z(n, v;C)).

Let H= H(A) be the image of ® H'(T{(N),'L(n,v; A)) in S = S(U(N))
under the isomorphism of Theorem 6.2. In the same manner as in the proof of
[7, 4.6], we can show that H ®, C = S even when r is even and n = 0. Since H
is stable under the action of R(U(N), A(N)), we know that 4, (N; A) -
End ,(H). Thus 4, ,(N; A) is a flat A-module of finite type. For any A-algebra
D inside C, H ®, D is a D-submodule of S stable under 4, ,(N; D) and hence

4 »(N; D) = End,(H ®, D) = End,(H) ® D
since D is A-flat and H is A-projective. Since 4, ,(N; D) is generated over D
by Ty(#) for all », we know from this fact
4. w(N; D) = 4, (N; A) ®, D.
Before proving Theorem 3.1 in general, we shall prove Theorem 4.10. By the

duality in Theorem 5.1, applying the above identity to D = K, and with A as in
Theorem 4.10 for K = K, we know that
¥ (N My(F); K,) = ¥ w. 1(N; My(F); A) ®, K,.
On the other hand, by Corollary 4.5, we know that
Sl:k,w,I(N; Mz(F); Ko) = l:w,i(N; Mz(F)§ CI)(U)) ®q>(o) Ko'

In order to treat the general case where A is an arbitrary 2(v)-subalgebra of a
finite extension K/®(v), we change the notation and denote by L the quotient
field of A; so, L C K. If there is an element f € Si¥ w. 1(N; L), we can find, by
the above facts, a € L™ such that af € S, ;(N; A). This shows that

Slzk,w,l(N; Mz(F)§ K) = Sl:k,w,I(N; Mz(F)§ L) ®, K
= Szi",w,z(N; Mz(F); A) &, K,

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

ON p-ADIC HECKE ALGEBRAS FOR GL, 353

and thus Theorem 4.10 follows. Replacing H and S by Sf, (N; A) and

& w. 1(N; C), we see that the reasoning which proves Theorem 3.1 in the case:
A D 1 still works well in the general case of A D 2(v); so, we now obtain the
theorem.

Now we shall determine the structure of cohomology groups
H(X(U(N)), &(n, v; K)) as modules over the Hecke algebra when K is a field.

THEOREM 7.2. Let B be a division quaternion algebra over F unramified at
every finite place, and put r = |Ig| = dimZp. For each field extension K /K,
for the field K, as in (1.1), H(X(U(N)), L(n, v; K)) is free of rank 2" over
%y o(N; K) if either k > 2t or r is odd. (Here we have used the notation of
Theorem 6.2 and H'(X(U(N)), &L(n, v; K)) means @iH'(ff(N), ‘L(n, v; K))
when T}(N) has non-trivial torsion elements.)

Proof. Let H = H(A) be as in the proof of Theorems 3.1 and 4.10. Then
H(K,) is stable under the action of [U(N)xU(N)] for all x € GFC,. Put
C = C,/C,_ ., which is isomorphic to { + 1}'# as a group. Then C acts on H(K)
via [U(N)cU|(N)] for ¢ € C,. For each character &2 C — { +1} and for each
subalgebra A of C, we define

H(A) = {m € H(A)|m|c = e(c)m forall c € C}.

Since C acts on the subsets of I transitively via J — J¢ as in (2.2a) and since
the action of ¢ € C induces an isomorphism: S, , (U) =S, , ,(U) by Theo-
rem 2.2, we know that

Sk w, IB(N; B;C) = H(C) = H(K,) ®, C as A o(N; C)-modules
via f— X _-e(s)w(f)|s. We can define a non-degenerate pairing
[, ]: L(n® 0% C) X L(n®, v%,C) > C
such that [xy, yy] = [x, y] for y € Ti(N) (cf. [29, 1I], [36, 8.2], [35, (1.2a, b)]).
Then for f € S, , 1 (N; B;C) and g € §; , ,(N; B; C), we define
(fe)=2L[  [fz),a(2)] - m(2)* du(2),
i “Xi(U(N))

where f, = f, and g, = g, as in (2.4b) and
dp(z) = Im(z) > - [,c,,ldz, A dz,|.

Now let w be an element of G such that wy = (0 0) for v € 4, with
vty = N2y and w, = 1 for all places o outside N. We decompose

Sk,w,](N§ B;C) = ? Sk,w,](N, ¢§ ),
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where ¢ runs over characters of Cl(N) and
Sk s(N.¥:C) = (€S, , (N; B;C)[f[(a),, = ¥(a)f fora € I(N)}.
For each f € S ,, ;(N, ¢; C), regarding ¢ as an idele character, we define
(FIW)(x) = $(v(x)) flxw).

Then it is known that W gives an automorhpism of S, , ,(N; B; C) (see e.g.
[35, Lemma 1.3], [8, 3.9]) and if we put (f,g) = (f, g|W), then it satisfies
(flh, g) = (f, glh) for h € %, (N;C) (e.g. [14, Lemma 6.4], [15, §3]). This
shows that

Sk.w.1,(N; B;C) = Hom(S, ,, 4(N; B;C),C) as an 4, ,(N; C)-module.

On the other hand, S, , (N; B;C) = S, (N; My(F);C) as an 4, (N;C)-
module by Theorems 2.1 and 2.2. and Proposition 2.3. By Theorem 5.1, we know

¥ . 1(N; My(F);C) = Hom (4, ,(N;C),C) asan %, ,(N; C)-module.
These facts show that, as %, ,(N; K,)-modules,
H(K,) & C=S, , (N;C) =4, ,(N;C) = 4, ,(N; K,) &,C.
Hence we know
(7.6) H(K,) = %4, (N; K,) as %4, ,(N; K,)-modules.

Then we conclude the assertion of the theorem by extending the scalar field to K
from K,,.

Remark 7.3. We have proved actually a little stronger result than the
statement of Theorem 7.2. Namely, H(K) for any field extension K/K, is free
of rank 2" over 4, (N; K), even when r is even and k = 2.

We shall record a byproduct of the proof of Theorem 7.2 (cf. [14,
Lemma 6.4]):

CoroLLARY 74. %4, (N; ®(v)) is a Frobenius algebra over ®(v).

8. Comparison between cohomology groups of different weights
Let U be an open compact subgroup of R* and suppose:
(8.1a) Every prime factor of p is unramified in B.
We suppose the following condition when we consider sheaf cohomology groups:
(8.1b) T¥(U) is torsion-free for all i.

Now we shall define several morphisms between cohomology groups. Almost
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all results here will be formulated for the sheaf cohomology groups
HY(X(U), Z(n, v, A; A)) under the assumptions (8.1a,b) but can be natu-
rally reformulated in a standard manner in terms of group cohomology:
@in(I_‘i(U), ‘L{n,v,\; A)), and then the result will be valid without the
assumption (8.1b). The interpretation is automatic and is left to the reader.

By definition, L(n, v, A; A) as in Section 7 is the space of homogeneous
polynomials of variables (X, Y,), ;. We evaluate each polynomial P(X,,Y,) €
L(n,v, A\; A)at (X,,Y,) = (1,0) for all 6 € I, and we then have a morphism of
an A-module:

i: L(n,v,\; A) > A.
Let K be a finite extension of Q, containing K, as in (1.1), and let @ be the
p-adic integer ring of K. Let A: Z,/Z;, > 0 be a character for integers
B = a > 0. For each k € Z[I], we occasionally denote by x, the character:
1y x> xk = [1(x)* € o.

oel

This notation is consistent with the character x,;: Z(N) — Z already defined

in Section 3 when k ~ 0. Since u, = (: Z) (for u € Uyp*)) satisfies the

congruence: u, = (g Z) mod pBM2(¢p) and its action on L(n,v, A; A) for

A = 0/pP0O or p PO/0O factors through the matrix (g Z)e My(2/pPr), we
know that for u € Ug(1),

i(P-u,) =Ax,(a)v(u,)"i(P) forP € L(n,v,\; A).
Then i induces a morphism of sheaves for all U C Ug{(1):
i L(n,0,X; A) xvy = £L(0,0, \x,.; A) xw)
and hence we have, for A = 0/pP0 or p=P0/0,
(8.2a) i,: HY(X(U), L(n,v,A; A)) > HI(X(U), £(0, v, Ax,; A)).

Here we have abused symbols slightly. In fact, Ax, is not necessarily a character
of Z,/Z; with values in 0/p”0, but we can let u € A% with u, (” Z) act on
L(0,v; A) by P-u=Ax,(a)P-u,), where P-u, on the right-hand side
denotes the original action of u, on L(0, v; A). Each element in the center
a € 2, with a =1 mod p%, acts then on L(0, v, Ax,; A) by A(@)Xn.2.(a);
and hence E acts trivially on this module. Thus if the sheaf #(n, v, A; A) is
well-defined on X(U), then £(0, v, Ax,; A) xw, is also well-defined. As with i
above, identifying L*(0, v, Ax,; A) with A (for A = 0/pP0O or p~£0/0), one
can define another Vgi(1)-morphism

j: L*(0, v, Ax,; A) = L*(n, v, A; A)

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

356 HARUZO HIDA

by j(a) = aY" = a - T1, Y. This map induces, for A = 0/pP0 or p=F0/0
(8.2b) j4: HAX(U), £*(0, v, Ax,; A)) = HY(X(U), £*(n, v, \; A))
if U c Vg(1).
0 1
— pﬁ 0
places ¢ outside p. We note the identity inside M(» E

a b _ d —-c
pfc d ©p = @ —pfb a |
Let ¢: L(0, v, Ax,; A) = L*0, v, Ax,; A) be the identity map of the underly-

ing space A. Then if A = 0/pP0 or p=P0/0, $(m - u,) = ¢(m)(w‘luw)p for
u € Ug(1) and m € L(0, v, Ax,; A). Therefore, the map
[w]: Gy X L(0,v, Ax,; A) =G, X L*0, v, Ax,; A)
Y w
(g’ m) — (gw, ¢(M))

Now we take w = wz € G/ such that w, = ) and w, = 1 for all

induces a morphism of sheaves
[w]: .,?(0, 0, AX s A)/X(U) - 2*0, v, AX s A)/X(U“’)
it Uc Ug(1). Thus, if U C Ug(l) and A = 0/pP0 or p~F0/0,
(8.2¢) W = [w]: H(X(U), £(0,v, Ax,; A))
~ HYX(U*), £%(0, v, Ax,; A)).

Let 8 be an element of Gf such that §, = (‘1) - (1)) and §, = 1 for all other

places o. Then for V.= U® N 8US™Y, if U C A%, then V C (A%)" and V° =
87'U“6 N U c A%. We consider the map

[8]: L*(n, v, A; A) > L(n, v, \; A)
defined by m — ¢(m - §), where 8 acts on L(n, v, A; A) through the identifica-
tion of the underlying space L(n,v,A; A) = L(n,v; A) and ¢ is induced
by the identity map of the underlying space L(n, v; A). Then we see that
[61(m - u) = ([8](m)) - u® for u € V (u® = § 'w8). Thus this induces a mor-
phism of sheaves
[8] Z*(n, v, >\; A)/X(V) - ,?(n, v, >\; A)/X(Vs).
Therefore, we can define
[U°sU]: H(X(U®), £*(n,v,A; A)) > HY(X(U), L(n,v, \; A))
by
(8.2d) [U“sU] = Try,ys o [8] ores .y .
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We now suppose that

(83) U,=RY and U=U,xU? forU = {x,|Jx€U} and
Ur = (x€ Uz, = 1).

We put Ug' = U N Ug(1) for integers B > a > 0. For each a € 2,

8, € GfB by (6,), = ((1) ’;) and (6,), = 1 for o outside p. Then we see

(8.4) (Us) Uz = T1(Us)“s8,  ifB >0,

a

where @ runs over a complete representative set for 2,/p B/zp. Then we shall
define morphisms (for A = O/pP0 or p= A0/ 0):
7 =m: H(X(Us), £(0, v, Ax,; A)) = HY(X(Ug), £(n, v, \; A)),
=1 HY(X(Ug), £(n,v,\; A)) > H(X(Ug), £(0, v, Ax,; A))
by =i, and 7 = [(Us)“8Ug]o j.oW. We fix a character of semi-group:
I(1) ® @ = { 2"} € 0 as in Section 3 and define operators (UgxUy) for x € A%

as in Section 7. Then the importance of the morphisms ¢ and 7 comes from the
following result:

we define

TueoreM 8.1. Let A = O/pP0 or p=P0/0. For each pair of integers (a, B)
with B> a >0and B > 0,

o= p_ﬁv{pBU}TO(pB) on Hq(X(UBa), g(’h v, }\; A))’

vom =p P pP ) T(p”) on H(X(Us), £(0, v, Ax,; A)),

0

1
where Ty(pP) = (UsxUg") for x with x,, = 0 pﬁ) and x, = 1 for o outside p.

Furthermore 1 is equivariant under the operators (UgyUyg") for y € A% on both
the cohomology groups. These assertions are also valid for cohomology groups
with compact support.

We note that p~#°{ p#*} is a unit in @, and therefore, 1o 7 and 7 o ¢ are
unit multiplies of Ty(p”).

Proof. We shall prove the assertions only for the usual cohomology groups
since the case of compact support can be handled in exactly the same manner.
Let ¢: L(n, v, A\; A) = L*(n, v, A\; A) be the identity map of the underlying
space L(n,v; A). Let m —» mow denote the action of w on L(n,0; A).
Identifying L(n, v, A; A) and L*(n, v, A; A) with L(n,0; A) as A-modules
naturally, we define

(w)g: Gy X L(n,v,A\; A) » G, X L*(n, v, \; A)

by (w)o(g, m) = (gw, ¢(m °w)).

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

358 HARUZO HIDA

Then we can easily check that (w), induces a morphism of sheaves
(@)o: Z(n, 0, A5 A) x) = L*(n, 0, A5 A) xe )
and a morphism of cohomology groups
(@)o: HY(X(Uy), £(n, 0,A; A)) > H(X((U5)"), £*(n, v, A; A)).
Since wp(;)= (g) on (A")%, we have j(i(m)) = mow, for m € L(n, v, A; A).
Then we see that
froWeiy = (w): H(X(Us), Z(n, v, A; A))
- HY(X((U)"), £*(n, v, \; A)).
This shows that

mou= [(U)"8Us] o (@)o = (p~#{pP})(UswdUz) = (=5 pP}) Ty(p?),
because x = w8 € A%. Now we shall prove the second identity about ¢ 7. We
have by definition that 1o 7 = i, o[(Us)“0Us]o jooW. Put V = Uy N xUsx~*
for x as in the theorem. Then we see that V* = x~'Vx = § {(U;)“6 N Us. We
write simply S for U. Then by (8.2d), the above expression of ¢ o 7 shows that

tom = iyoTrg yxo [8] OTESgu /s © 4 © [w]
= Trs/vx o 'i*O [8] o j*oreSSu/sz o [w] .
The commutativity of i, and Tr follows from the fact that A% > S > V* and
that i is a morphism of A%-modules. Since x = w8, we see that
V=SNnaxSx '=5SNwdSé o' =w(S*N8S§ ! = wVP% L
By definition, we have that resg. v« °[w] = [w]oresg . Thus we have that
toq = TrS/Vin*O[S]Oj*O[w] oresg ,y .
Note that i(j(m)o8) = i(mY"o8) =i(mX") =m for m € L(0, v, Ax,; A).
Thus, as a morphism of sheaves, we see i °[8]° j is given by
A X L(0,v,Ax,; A) > G, X L*(0, v, Ax,; A)
(g,m) — (g8, ¢(m)).
This shows that {p~#°} p#*(1o ) = Trg,yx o(w8)oresg ,, = Ty(p”). As for the
last assertion, for y € A%, we see ¢ °(SyS) = (SyS) < ¢ because i is a morphism of
A%-modules.

We shall now define the ordinary part of cohomology groups. It is known
(cf. [28, Propositions 4, 9 and 18]) that

(8.5) HYX(U), Z(n, v, \; A)) is of finite type as an O-module if A is
an O-module of finite type.
When B = My(F), the space X(U) is not compact; so, we denote by

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

ON p-ADIC HECKE ALGEBRAS FOR GL, 359

HYX(U), L(n, v, \; A)) the image of HYX(U), L(n,v, A\; A)) inside the
usual cohomology group HYX(U), #(n,v, \; A)). By (8.5), the parabolic
cohomology group HY X(U), &L(n, v, A; A)) is also an ¢-module of finite type.
Let T,(p?) be the operator as in Th. 8.1. Since the O-linear endomorphism
algebra of the cohomology groups H™ or Hy over X(Ug) with coefficients in
L(n, v, \; A) for A = 0/pP0O or p~BO/0 is finite and of p-power torsion over
0, the limit

E= lim T,(p#)""

exists in the endomorphism algebra for a suitable choice of a positive integer m,
and e = E”"~! becomes an idempotent. This idempotent is determined inde-
pendently of the choice of m (cf. [10, p. 236]) and depends only on T(p).
CoroLLARY 8.2. The morphism « in Theorem 8.1 induces an isomorphism:
eH(X(Ug), Z(n, v, \; A)) = eHY(X(Ug), £(0, 0, Ax,; A))
forA = 0/pPO or pP0O/0.
The same type of assertion is also valid for parabolic cohomology groups.

Proof. We have a commutative diagram:

HY(X(Ug),ZL(n, v, A A) ——— HYX(Ug),Z(0, v, Ax,; A))

T d T

HIYX(Ug),Z(n, v, \; A)) ——— HYX(U),£(0, v, Ax,; A)),

where T = ¢T,(p#) with e = p #*( p#*}. Note that e is a unit in € by definition.
Therefore, if p™ denotes the cardinality of the residue field of @, then we have

lim, , _e*™®" "D = 1. Thus we know that for a suitable multiple m’
of m,

. ma, m . macm’ )
e= lim TP""®" D = lim T,(p?)® @ =h

a— 00 a— o0

Thus T is invertible on
eHY(X(Ug), £(n, v, \; A)) and HYX(Ug), £(0, v, Ax,.; A)).
This combined with the above diagram shows the result.

ProposiTion 8.3. If A is a character of Z,/7; for B > a > 0 with > 0,
then the restriction map induces an isomorphism for each y > B:
eH(X(Ug), £(n, v, \; A)) = eH(X(U2), £(n, v, \; A))
forA=0,0/p"0, p "0/0 or K/0.
The same type of assertion also holds for the parabolic cohomology groups.
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Proof. Take x € Gf such that x, =
for o outside p. Then, we claim that
(8.6) foljﬁa = UBaxUBa.

We simply write S for Uy and Q for Uy and put V.= $*N Sand V' = S* N Q.
Then, we see that

(1) :s)with8=y—ﬁandxo=l

wefle a)esper),
A {(‘CI Z) €Q,lceph,, be p8¢p}.
Thus Q, = 11, 10,7 V’((l) T) and S, =11, .04 psapr((l) Y) This shows that
x,'8,x,0,= 1l x;Iprp((l) 11‘),
u mod p’2,,
x,'S,x,S, = ];['s x;Iprp((l) 11‘),
u mod p%,

which proves the claim (8.6). We have a commutative diagram by the above
proof of (8.6):

HY(X(V'), £(n,v,A; A)) —— HY(X(Q), £(n, v, \; A))

(8 7) Jres Jres

HY(X(V), Z(n,v, A; A)) —r, HY(X(S), L(n, v, A; A)).
This combined with (8.6) shows the commutativity of
HYX(Q),Z (n, v, \; A)) —=— HYX(S),Z (n, v, \; A))

(5xQ)

(8.8) (QxQ)=Ty(p%) (QxQ)=Ty(p")

HY(X(Q),Z (n,v, \; A)) —=— HIYX(S),L(n, v, \; A)).
We verify this as follows:
resg s © (SxQ) = resq, s 0 Tr v 0 (x) ores a1
= Trg,y otesy, ,y ©(x)oress ,y-1 by (8.7)
= Trs,y o(x)oresyx1t,ytoresg, a1 = (Sx8).

Similarly we can check that (SxQ) ores g = (QxQ). Then an argument similar
to that in the proof of Corollary 8.2 derives the result from (8.8).
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CoroLLARY 8.4. There is a Hecke operator equivariant isomorphism:
Lores: eH"(X(UB"‘), L(n, v, \; A)) = eH"(X(UY“), ZL(0, v, Ax,; A))
(y=2B8=a>0)

for A = 0/p"0 orp~*0/0 if Zy C Ker(A). The same type of assertion also holds
for the parabolic cohomology groups.

This is a combination of Proposition 8.3 and Corollary 8.2.
Definition 8.5. Let U be an open subgroup of R* such that U = R} X UP.
For each n € Z[I] (n > 0) with n ~ — 20,

(89)  #(n,5;U) = lim H(X(Uy), Z(n, v; K/0))

a

im (@ HY(FA(UL). Lin, o K/0))),

I

7,7(n, v; U) = 1£nqu(X(Uj), Z(n,v; K/0))

a

line( ® HY(T(U2), "L(n, v; K/@))),

In

7,0, 0, x,5U) = lim HY(X(U), (0, v, X,,; p~°0/0))

a

m ( EB HY(TY(U?),"'L(0, v, X ,; p_"‘(ﬂ/@))),

a

lim eH"(X(U:), 3(0, U, X3 p_"‘(ﬂ/(ﬂ))

—
a

[N

ord
7,740, v, x,; U)

n

lim e @ H(T(U2),'L(0, 0, x, p~°0/0))),

where the injective limit is taken relative to the restriction maps. When U =
U\(N), we write ¥ (n, v; N) and Vq°'d(n, v; N) etc. for these modules. Since
V(U:) = v(U) for all @, if B is indefinite, we can choose ¢, € Gf so that

=L GBt U*GE, independently of «, and thus in this case, we can
mterchange hm and @, in the above definition; but when B is definite, one
cannot choose ¢ ¢ 1ndependently of @, and the order of lim, and @, must be as
above. The terms on the extreme right of the above deﬁ?tlon work well without
assuming (8.1b). On these modules 7 (n,v; N) and ¥(0, v, x,; N), Hecke
operators Ty(») and Ty(», ~) naturally act because the restriction maps are
compatible with T(~) and Ti( 7, ) (cf. (2.9a,b) and (3.5)).

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

362 HARUZO HIDA

THEOREM 8.6. Let U be an open subgroup of R* such that U = R , x U
Ifn ~n" ~—2vand n > n’ > 0, then there is a canonical isomorphism:

ord . ~ ord . ~ ord . ~ ord( .7 .
7, (n,0;U) = 7,240,0, x,;U) = 7,740, v, X, U) = 7,70, v; U).

When U = U(N) for an ideal N prime to p, this isomorphism is equivariant
under Hecke operators Ty(») and Ty(», ») for all ».

By this theorem, the module ‘//q°'d( n, v; U) depends only on v modZ - ¢,
and thus we write it as ¥,°“(v; U) and ¥,°(v; N) when U = U(N).

Proof. By definition, we have a commutative diagram: for all 8 > a > 0,

HY(X(Uy), Z(n, v;p°0/0)) —=> HI(X(Uf), £(n, v; p~£0/0))

HI(X(U2), 2(0, 0, x5 p~*0/0)) == HY(X(U), 2(0, v, x, p"0/0)).

Thus we see that

%lord(n, o;U) = hi,n eHY(X(U2), Z(n,v; K/0))

lim lim eHY(X(U?), Z(n, v; p 20/0))
-
= lim eHY(X(U*), L(n, v; p~°0/0))

—
o

lim eHY(X(U?), £(0, v, x,.; p %0/0))  (by Cor. 8.2)

a

I

— ord .
= 770, 0, x,; U).
As A%-modules, L(0, v, x,; p*0/0) and L(0, v, x,; p *0/0) are the same
and are equal to L(0, v; p~ %0/ ). Thus we know that
fq‘ord(O, 0, X3 U) — V;ord(O, 0, X U) = V;ord(n/’ v; U)

The equivariance under Hecke operators follows from that of ¢, in Theorem 8.1.
The maps

tpores: HI(X(Up), £(n, v; p~£0/0)) > HI(X(Ug), £(0, v, x,; p#0/0))
are compatible with the restriction map res ;. uy for any y > B. Thus we can
take the limit

(8.10) = li_n} wgeres: H'(X(UZ), £(n,v; K/0)) - ¥, (0,0, x,; U)

B
forr = |I;] = dim 2.
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The following result is essentially due to Shimura [30]:

THEOREM 8.7. Suppose that r = |Iz| = 0 or 1. Then the kernel of  in
(8.10) has only finitely many elements.

Proof. Let ® = I'(Uy) in the case of r = 1 and ® = (Uy),, in the case of
r = 0. First we shall show that if an ¢-submodule V in Ker(i) (C L(n, v; K/0))
is stable under the action of ®, then we can find a positive integer y so that
p"V = 0. In fact, by the strong approximation theorem, the closure of ® in U, is
a p-adic Lie group containing SLy(2,) N Uy if r=1. Thus the ®-module
L(n, v; K) is absolutely simple. Let M be the subalgebra of End ;(L(n, v; K))
generated over O by the action of ®. Then the simplicity of the ®-module
L(n, v; K) shows that M ®, K coincides with End x( L(n, v; K)). Thus there is
an element E; € M such that the coefficient of E,(X,_; ,a,X'Y""") in X" =
[T,X7° is equal to p'a; for all £,a,X'Y""" € L(n, v; K) for each 0 < j < n. If
P=7%,a,XY" "€ L(n,v; K/0) is contained in V, then E,-PeV by the
stability of V under M. Since 0 = i(E; - P) = p”a;, we know that p"P = 0 and
hence p*V = 0. Especially, the order of V is finite.

Next we shall deal with the proof in the case of r = 0. Let S be the space of
functions f: Gf — L(n, v; K/0) satisfying flaxu) = f(x)u, for u € UG,
and a € Gg. Then S = HY(X(UY), L(n, v; K/0)). If i(f(x)) =0 for all x €
G2 (f € S) (this is equivalent to supposing that f € Ker(t)), then f must have
values in Ker(i) in L(n,v; K/0). Since f(xu) = f(x)u, for u € Uy, the
subspace in Ker(i) generated by the values f(x) for all x € G2 is stable under
®. As already seen, we then know that p”f = 0 for a positive y independent of
f. This shows the result in the case of r = 0.

Now we suppose that r = 1. In this case, we can take the decomposition
Gf = ]:[f'= Gt UEG,, . independently of B. For simplicity, we hereafter write
® for TY(U?) for a fixed i. Put

T, ={yel(U)|ly=1modp”R,}, T,=T,/T,NnF"
Then H'(T},'L(n, v; p~#0/0)) = Hom(T}, 'L(n, v; p~#0/0)). By virtue of a

theorem of Shimura, which is given in [26, Th. 3.1.3], the injective limit of the
restriction maps

I: H(®,'L(n, v; K/0)) = lim HY®,'L(n, v; p~#0/0))
B
— lim Homq,(fﬁ, ‘L(n, v; p_B(ﬂ/(ﬂ))
B

is known to have a finite kernel. On Ohta’s article [26], he made an assumption
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that B is a division algebra to assure (in [26, p. 27]) the vanishing of
HY(A,'L(n, v; C)) for a congruence subgroup A of (B ®, F’) for totally real
fields F’ # Q by the result of Matsushima and Shimura [22, Th. 7.1]. However,
by works of Harder ([5] and [6],) this vanishing has been proved even for M,(F’)
for F’ # Q. Thus, this division assumption can be eliminated without affecting
the original proof, and the fact: |Ker(I)| < oo is valid even for B = M4(Q). For
(e Homq,(fﬁ,tL(_n, v; p P0/0)), we know that &(udu') = ué(8) for every
u€ ® and § €T If iof =0, then for all u € @, i(u§(5)) = 0. Thus the
value of ¢ is contained in a ®-submodule of Ker(i) in L(n, v; K/0). Thus
we can find y > 0 independently of B so that p¥€ = 0. Especially, if
¢ e HY(®, L(n, v; K/0)) and if £ € Ker(¢), then p*¢ is contained in Ker(I).
Therefore Ker(t) € p~*Ker(I) has only finitely many elements.

9. Controllability of ¥ °(v; U)

By definition, we can identify for each O-module A, H°X(U),
Z(n, v, \; A)) with the space of functions f: G& — L(n, v, A; A) satisfying
flaxu) = f(x)u, for all a € Gg and u € UC_ ,. Thus, if we define for each
normal subgroup V of U, the action of U/V on HY(X(V), #(n, v, A; A)) by

fllul(x) = flau) - u,
then we have
(9.1) HO(U/V, H(X(V), £(n, v, A; A)))
= H(X(U), Z(n, v, \; A)).

We shall generalize this controllability to general cohomology groups of dimen-
sion 1. Thus we may assume that B is indefinite. We fix an open compact
subgroup U of R* with U = R} X UP. Then we choose the decomposition
independently of « and S:

h

Ge=11G8tUsG2,  witht,€e Gf and ¢, ,=1.

i=1
Fix integers 8 > a > 0 and one index i (= 1,..., h), and write simply I' = I}
for TY(Uy') and M for ‘L(n, v, A\; A) (for a fixed O-module A). For a general
group ® and a left ®-module X, let C9®, X) be the space of all functions on
®7*! with values in X. We shall define as usual the coboundary operator § = §;:
CY®, X) > Ci"{(®, X) by

qg+1

(92) 8f(Y0""’¥q+l) = Z (_ ]-)if(yo"""?i""’Yqul)'

i=0
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Then
HY(®, X) = Kex(8,: CY(®, X)® > C**\(®, Xx)*)/
Im(8,_,: C7" Y, X)* —» CY(®, X)),
where @ acts on f€ CY®, X) by (f-¥)(Yor---»Y) =Y S (¥Y0s- -5 YYq)-
Now we write down explicitly the action of [UgxUg] and (UgxUy) on the
cohomology group HT', M) by using homogeneous cochains. For each x € G,
we can decompose I'xI" = [1,I'x; as a disjoint union of finitely many left cosets.

Write for each y € I', x,y = y"x_,, for some index y(i) (=1,...,h) and
v € T. Then

(*) x D = yxlg).
Then we shall define the action of I'xI" on CY4 T, M) by

f|[FxF](y0,...,yq) =Y x! -f(yé”,...,yfl”), and
(9.3) ‘

FITED) (Hos -0 v,) = L ({w(x) Yol ) (7 o £(¥"s - 7))
where we have implicitly supposed that x is contained in (A%) to have its action
on M and in the second formula, we have let x; ! act on f(y{",...,v{") as an
element of ‘L(n,0, A\; A). Note that { »(x;) "} »(x;)" is a unit in ¢, and hence,
the operator (I'xT') is well defined. Actually, the above definition of the action of
I'xT depends on the choice of the representatives {x,}. We shall see later that
the action induced on the cohomology groups is independent of the choice of
{x,}; so, for a moment, we fix the decomposition: I'xI" = LI;T'x;. Now we have
by the definition:

(94a)  8(fI[TxT]) = (8F)I[TxT],  8(fI(TxT)) = (8f)|(TxT).
If f€ CYT, M) is T'-invariant, then

(9.4b)  FI[TxT] (4, vY,) = L7 (Y9, ¥y )
i
= T Oy, L4 ®)
i
= T F O, ) by (4)
i

T

Therefore, (I'xI") and [['x['] give an operator on C(I', M) = & CYT, M)
compatible with the action of T" and coboundary operator §, and hence, they act
naturally on cohomology groups. We shall now show the independence of the
operator [T'xI'] and (I'xI") on HYT', M) from the choice of the decomposition:
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I'xI" = LI,T'x,. Since the proof is the same for (I'xI') and [I'xI'], we only deal
with [['xI']. Let I'” be a subgroup of finite index of I We decompose
I' =11,T"x; and define, similarly to I'xT, an operator Tp,: CYI’, M) —
CYT, M) by

f'Tr/r'(Yo,--w Yq) = Zx:lf(Yéi),---’ Y;l)),

where for each y € v, y' € I'" is defined by (*). Then it is known by Eckmann
[4, Th. 7] that Ty, H(I", M) - HYT, M) is defined independently of the
decomposition I' = II,T"x,. Writing T for I N x !'Tx and T for xI"x !, we
see easily that

(9.4c) [TxT] =resp poo[x]eTr r,  (TxT) =resp poo(x)o T p,

where

fllx](vo -0 ¥,) = x‘lf(xyox_l,..., xyqx_l),

f[(x)(yo, e Yy) = ({ u(x)_"}u(x)v)x‘l ° f(xyox_l, e, xyqx_l).
Thus [T'xI'] and (I'xT") are also independent of the decomposition. Similarly to
the above argument, we can define the left action of double coset I'xI" on the
homology group H (T', M) by using the left coset decomposition I'xI' = I1,I'x;.
Especially, on Hy(I', M) = M/DM (DM =% _(y — )M), I'xT acts by m —
Tx;l-m
Now we recall briefly the construction in [16] of the Hochschild-Serre
spectral sequence in order to study the action of the double coset on the spectral
sequence. We write ' = I¢ and I" = I} for 8 > « > a > 0 (B > 0) (thus I
is a normal subgroup of T). Put C = £ C«T, M), C" = L CYT, M)", L»? =
C(II, CYT, M)™) for =T/, L=Y%, L»9, Li=Y _LP9 L, =
_oL9. Then L, gives a filtration of L. On L?9, we define a dlfferential
operator 8;: LP9 —» LP*%9 relative to II as in (9.2), and for f€ L™ put
8c(f N7y, ..., m,) = 8x(flm,...,m,)) for m, € Il by applying the coboundary
operator relative to I' to the value f(m,,..., n,). Define § = 8;; + (— 1)”6r on
L?9 Then 8 gives a differential -operator preserving the filtration (cf. [16, IIJ).

Let x € GB be an element such that x, = ((1) 0) and x_, = 1 for o outside

p. Then, for sufﬁcwntly large m divisible by the order of F*\ FJ /v(U)E}
have

o+ W

tx™ e yti(UB"")GfZJr with y € Gg.
This follows from the strong approximation theorem. Next, we can choose the
decomposition I'"yI'" = I1,I'"y,. Then we have another decomposition I'yI" =

LI,Ty, for the same representatives vy;. This fact follows from [31, (2.19.3)] (see
also Lemma 4.7 in the text). Then by (9.4b), (I'yT) preserves C4 T, M)"', the
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filtration { L;}, and the double filtration {L?}. Moreover, by (9.4a), (I'yI')
commutes with 8 and by definition commutes with 8 ;. Thus, by the construc-
tion of the spectral sequence of Hochschild and Serre [16, 1.7], the operator
(I'yT") gives an endomorphism of the spectral sequence:

(9.5) H»(T /T, H(T’, M)) = H(T, M).

That is, (I'yI') is compatible with the filtration of each term of (9.5) and
commutes with all the differential maps of (9.5). Especially, (I'yI') acts on
HYTI', M) by (I'"yI"), and this action gives an endomorphism of HY(I’, M)
compatible with the action of IT = T’ /T"”; therefore, it induces an endomorphism
of HP(II, HY(T", M)). By [31, (2.19.3)] (or else, as already seen in §7 in the text),
the action of (I'yI') coincides with T(p™) as in Theorem 8.1. When M =
'L(n, v, \; A) with A = p~i0/0 or O/pi0, a finite power of (I'yT') thus gives
the idempotent e as in Section 8 on each H?(T /T, HY(T’, M)) or H(T, M).
Therefore the idempotent e gives the endomorphism of the spectral sequence
(9.5) for A as above. By taking the injective limit relative to j, this fact is also
true for A = k/0. Thus one knows:

THEOREM 9.1. Suppose that r = |I;| > 0. Then, for the idempotent e associ-
ated with T(p), (9.5) gives the following spectral sequence for A = 0/p*0,
p *0/0 and K /0:

Hi(l“,;’/l““', eHi(Tg,'L(n, v, \; A))) = eH(Tg,'L(n, v, \; A))
foreach B > o’ > a > 0 with B > 0.

LEmma 9.2. Suppose that r = |I5| > 0. Then the idempotent e annihilates
HT, M) and H(T, M) for M ='L(n, v, \; A) with A = 0, 0/p"0, p~*0/0
and K /0.

Proof. We shall prove the assertion only for H)T, M) since the other
case can be treated similarly. We may assume that A = ¢/p*0. For any given
p > p, by making m large, we can find vy, € Gg for each u €2, so that
t,.x'"(é ‘l‘)e 1.tU(p?)G,, ., where U(p®) = {u € Ulu, = 1 mod p*R,}.
(1) pu,,, mod p’R, and TyI =11
Thus, for P = ZOS]-S"a].XfY"‘f in L(n, v, \; A),

PI(TYT) = (1) " po(1))a, - X |

0<j<n

Then v, = Iy, by (8.6).

u modp

n

])xn—iyj. Z ul

ucsr/p™

(5= 1))
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For sufficiently large m, we always have Y
lemma follows.

werpmt! =0 mod p*, and the

CoroLLaRY 9.3. Let M ='L(n, v, \; A) for A = O/p*0, p *0/0 and
K /0 and assume that r = |I| > 0. Suppose that H(Tg /T, eH(Tg', M)) = 0
for0<i<qandj<q—1(B>=d >a>0and B > 0). Then the restriction
map induces an isomorphism:

eHY(T',M)" = eHY(T,M)  for T =Tgand I' = Iy

Proof. Put ELi = eH(II, H(T’, M)) and E? = eHYT, M). By Theorem
9.1, we have the spectral sequence: E5/ = E? We have a canonical filtration:
E9=EJ> --- D E? >0 with E"/E,+l = E-97". We have differentials d}
Epi — Ejtki=k+1 and by definition

(%) EpJ, = Ker(d}/)/Im(dj*7*%1).
Since E;7 =0 for i <0 or j <0 by Lemma 9.2, we know that E./ = 0 for
i<Oorj<0 Thusifi —k<Oand j—k+1<O0(e k>iandk>j+1),

then E}j, = E}J. Thus Ef/E! = E;9 ' for k>i+1and k>q+ 1 If
0 <i<gqand j<q — 1, by assumption

(% %) Eii= H(II,eH(T', M)) = eH'(T, HI(T’", M)) = 0.

By the construction (*), we see by induction on k that Ep7 ' =0 if i > 0.
Then we have that eHY(T', M) = Eq+l Now for k with g + 1 > k > 2, assume
that

eHY(T,M) =E}% =E)?= --- = EQ".

g+1
Then E? = Ker(d}%) and d} EY9 — Ef-Lak*2  Gince k > 2,

Ef~1a k2 =0 by (**), and thus qu =EX. By induction on k, we
conclude that

eH (T, M) = EQ9 = eH(T, HY(T’, M)) = HYT, eHY(I", M)),
which was to be shown.

Let U be either U(N) or U(NL) N V(L) for an ideal L outside =*
and Np. Note that U N F is then equal to Uy(N) or Ug(NL). Then for
each B>a >a>0 (B>0), we have an isomorphism FB/PB =
Ut /2t Ut by the strong approximation theorem. Thus the group
Z,,/Za, naturally acts on H"(I’B"", M) for M ='L(n, v, A\; A) if Ker(\) D Zg,
since

U U = U U = (U 0 FR) (U N ) = 2,/
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(Strictly speaking, when U = U(NL) N V(L), Z(NL)/Z_(NL) acts on the
cohomology group, but we know that if a« > 0, W (NL) = W(N).) If «a is
sufficiently large so that Ker(A) > Z,, then as Ugmodule, L(n,v, A; A) =
L(n, v; A). Thus we know that

7.2 (v;U) = hi,n eH(X(U%), #(n, v, \; K/0))
lim eHY(X(U*), #(n, v; K/0)).

—
a

However, the action of Z on the extreme right module and that of the middle
term is different. We let Z act on Vq"'d(v; U) by identifying it with
l_il_n_)eH"(X(Ua“), ZL(n, v; K/0)) via the character II(N) 3 2 — T(a, ). This is
independent of the choice of n with n ~ — 20 by Theorem 8.6. We write this
standard action on Vq"’d( v; U) as £ > £|(z) (z € Z), and the action induced by
the middle term as & — £|(z), , \. The latter action factors through the finite
group Z,/Z, on eHU(X(Ug), £(n, v, \; K/0)). Then by definition (cf. (3.9)),
we have

n

(9.6) (2) = AXpi00(3){2)n or fOr z € Z, if X is a character of Z,
such that \x,,,,, factors through Z,.

For each character A\: Z, — 0%, we put
703 U)[A] = {x € #,7(0; U)[xl(z) = \(2)x forall z € Z,}.

THEOREM 9.4. Let U be as above. Suppose that 0 < q < 1. Then, for each
B > 0, the restriction map induces an isomorphism:

h
e( @ HY(T(U;). 'Lin, v, A; K/O))) = 7,70 U)[AX s
i=1

for each finite order character \: Z,/Z; — 0 such that \x,,,, factors
through Z, for each n > 0 with n ~ — 2v.

Proof. By Lemma 9.2, the assumption of Corollary 9.3 is satisfied for g = 1,
and thus we have by (9.6) that

eH(T/(U}), 'L(n, v, \; K/0))
= {x € qu(I_“"((]BB),tL(n, v; K/@))'x‘(z) = AXns0.(2)x forall z € Zl}.

On the other hand, the left-hand side of the above formula is isomorphic to
“//q“"(v; U)[AX,,2,] under the restriction map. The case: q = 0 follows from
Proposition 8.3 and (9.1).
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Remark 9.5. The proof of Theorem 9.4 shows a little more general result for
0<qg<1andforeach 8 >a>0:

h
e( a5 Hq(f"(U;),‘L(n, v, \; K/@)))
i=1
= {x € 7,7 0; U)|x|{2) = AXps9.(2)x forall z € Za}.

10. Co-freeness of 7,(v; N) over A

Let U be either U(N) or U(N¢) N Vy(¢) for an ideal N outside p and =B
and for a prime ideal ¢ outside Np and 2. For each finite order character
e Z, — Q% let K(¢) denote the subfield of Qp generated by the values of &
over K, and let O(¢) be the p-adic integer ring of K(¢), and let B(e) denote the
minimal integer such that Ker(e) O Z; and Z; = ZB' In this section, we always
suppose that B is a division algebra.

TreEOREM 10.1. Let a be a positive integer and suppose that I_“i(Ua“) is
torsion-free for all i. Let q = 0 or 1. If eHY(X(Ug), #(n, v, A; K(X)/O(N))) is
p-divisible for all finite order characters \: Z, — Q™ such that \x,, ., factors
through Z, and for all pair of integers v, B with a < y < Band B > B(N), then
the Pontryagin dual module V;*(v; U) of ¥,"%(v; U) is free of finite rank over
the continuous group algebra O[[Z,]] of Z,.

Before proving the theorem, we prepare:

LemMa 10.2. Let 9 be a topological group isomorphic to a product of
finitely many copies of Z, and a finite group. Let O[[9]] be the continuous
group algebra of 4. For each finite order character e: 9 > Q, let P.: 0[[9]] —
Q,, be the induced 0-algebra homomorphism. Then the subset of Spec(O[[¢]])
consisting of the points P. for all finite order characters € of 9 is Zariski dense.

Proof. What we have to show is that N Ker(P,) = {0}. Let C(¥, O) denote
the space of all continuous @-valued functions on . Let Meas(¥, ¢) be the
O-linear dual of C(¥, 0); i.e., Meas(¥4, 0) = Hom ,(C(¥, 0), ©). We can iden-
tify Meas(¥, @) with the space of bounded p-adic measures on ¢ with values in
0. Let Meas(9, 2) be the space of all bounded p-adic measures on ¢ with
values in the p-adic completion © of (-)p. Meas(¥, 0) is an (-algebra under the
convolution product and is isomorphic to O[[¥]] (e.g. [20]). Especially, for each
finite order character & ¥ — 6;, the map: Meas(¥4, 0) > u — [yedu € Q
coincides with the algebra homomorphism P: O[[¥4]] — Q. Since the subspace
of locally constant functions on ¥ is dense in C(9, 0), if [4,¢ du = 0 for all
locally constant ¢, then u = 0. Note that every locally constant function ¢ can
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be written as a linear combination of finite order characters & ¥ — (_): over (_)p.
Thus, if u € N Ker(P,), then [4¢ du = O for all locally constant ¢ and hence
u=0. QED.

Proof of Theorem 10.1. By Theorem 6.3, without losing generality, we may
replace K by its finite extension. Thus we may assume that we have a finite
order character &: Z,/Z. — O such that ex,,,, factors through Z,. We write
Vq"'d(u; U) sometimes as V/0 to indicate its dependence on . We have an
exact sequence

()  eHY(X(U?), Z(n,v, & K)) — eHI(X(U?), Z(n, v, & K/0))
— eH(X(U?), £(n, v, ¢ 0)).

Since the middle term of (*) is p-divisible by assumption and the last term is of
finite type as an ¢-module (cf. [28, §2]), # must be surjective. Hence the O-rank
of the Pontryagin dual of the middle term is finite. We write it as s. Let Z act on
¥,°%(v; U) via the action (z),, , , as in (9.6). We write A for 0[[Z,]). Then by

Theorem 9.4, V ®, A/P,A for the identity character id: Z — Q' is isomorphic

to the Pontryagin dual module of the middle term of (*). Thus we know that
V/PV = 0°. Thus V is generated over A by s-elements, and we have a
surjective morphism of A-modules y: A®* - V which induces an isomorphism

(10.1a) (A/mA)’ =V ®, A/mA for the maximal ideal » of A.

Note that A, = O(M[[Z,]] = A ®, O(\). We write K/0O(\) for K(X)/0O(\). By
using the same type of exact sequence as (*), we know

qu(X(UBB), P(n, v, K/(O()\)))
= eH(X(Uf), Z(n, v, & O(N))) @, (K/O(X))
and by Theorem 6.3,
eH(X(Uf), Z(n, v, & K/O(N))) = eHY( X(UF), Z(n, v, & K/0)) @ 0()).
Therefore, we see
(10.1b) V/0®,0(\)=V/0®, A, =V/O()\).

Then for any finite order character \: Z, = Q*, we know from the assumption
that

V/0®, A,/P,A, = O(\)*  for some integer s’.
Then by (10.1a,b), s’ must be equal to s. Thus we have a surjection induced
by :
O(N)" = (A\/PA,) = V/0 8, A\/PA, = O(N)".

From the exact sequence: 0 = Ker(y) = A®* - V/0 — 0, we conclude in view
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of the flatness of O(A)/0 the exactness of

0 - Ker(¢) & 0(N) - A, - V/O(X) - 0.
Thus we know that Ker(¢) ®, O(A\) C (P,A,)* = P,(A%). Since O(X) is faith-
fully flat over @, we conclude that Ker(y) C (P, N A)A° for all finite order

characters A\: Z, —» Q*. Then by Lemma 10.2, we know the vanishing Ker(y)
= 0, which proves the theorem.

CoroLLary 10.3. We suppose that r = |Iz| = 0 or 1. Then V°"Y(v; N) is a
free module of finite rank over O[[Z,]), if one of the following two conditions is
satisfied:

(10.2a) For a primitive p-th root of unity §, in C, [F({,): F] > 2,
(10.2b) Ti(Np) is torsion free for all i.

Proof. Firstly, we suppose that (10.2b) is satisfied. We write U for U)(Np).
When r = 0, the triviality of T';(Np) means that

H(X(Ug), £(n, v, \; K/0)) = L(n, v, \; K/0)"

and thus it is p-divisible for all 0 < @ < 8 and A. Hence we can apply Theorem
10.1 and get the result. When r = 1, it is known by [36, Propositions 8.1 and
8.2], if Tj(Np) is without torsion, then

HA(X(Us), Z(n,0,X;0)) = @ Hy(T(Us),'L(n, v, ; 0)),

and hence by Lemma 9.2, eHX X(Ug), #(n, v, A; 0)) = 0. From the exact
sequence:

eH'(X(Ug), £(n, v, \; K)) - eH(X(Ug), £(n, v, \; K/0))
- eH(X(Ug), £(n,v,X; 0)) =0,

we know the p-divisibility of the middle term, and hence, the result follows from
Theorem 10.1. Now we shall suppose (10.2a). On F({,), the Frobenius element
at each prime ideal £ of » prime to p acts by {, — () for the norm map
A F — Q. Since [F({,): F] > 2, we can find a prime £+ N unramified over Z
such that A7°(¢) # +1 mod p. Since the degree d of X(V)/X(U) for V=
U(N¢p) N V(¢) divides (A(£) + 1)(A(£) — 1), d is prime to p. By Lemma
7.1, T{V) is torsion-free. The similar argument as in the case where (10.2b) is
satisfied shows that V°(v; V) is free of finite rank over @[[Z (N¢)]]. Since
Z,=2Z (N) can be identified with a subgroup of Z (N¢) (because the covering
degree of Z(N¢)/Z, is prime to p), Vo v; V) is free over O[[Z,]]. For the
trace map Tr,,y=Tr: 7] ~ord(p: V) - ¥7°v; N) and the restriction map
res; y = res: ¥, ~od(p; N) - ¥7.°(v; V), we know that Trores i is the multiplica-
tion by d. Thus V°Y(v; N) is a direct summand of the O[[Z,]]-free module
¥,°"(v; V) and is hence free over 0[[Z,]].
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As for the structure of the A-module, we have:

CoroLLARY 10.4. Suppose that r = |Iz| = 0 or 1. Let P be the product of
all distinct prime factors of p in ». Suppose that p > 2 and further assume either
(10.2a) or the following condition:

(10.2¢c) Ti(NP) is torsion free for all i.

Then V°(v; N) is A-free of finite rank, where A = O[[W]] is the continuous
group algebra of the torsion-free part W of Z(N).

Proof. We shall prove the assertion only in the case r = 1, since the other
case can be treated more easily. So far, we have worked with the filtration
Z,C Z(N), but we can define another filtration of subgroups Z* of Z(N) given
by the kernel of the natural map: Z — Cl (NP®). Since p is odd, even if one
defines Z° by the kernel of “Z — Cl A NP%),” we can identify Z* with Z¢
naturally. Hereafter we always identify these two groups. These two filtrations
are cofinal; i.e., Z* > Z_ and Z, D Z™* if p divides P™. If p is unramified in »,
then the two filtrations commde We can define A}, similarly to A% by replacing
p by P in the definition of A% in Section 7 and define U§) by U N A(( ), for U as
in Theorem 9.4. By scrutimzmg every step ascending towards the proof of
Theorem 9.4, one can check that the corresponding statement to Theorem 9.4
for U§) is true. Put

¥(i) = lim eHY(T{(NP*),'L(n, v; K/0))

= hm eHl( {(Np®), 'L(n, v; K/@))
by choosing n > 0 with n ~ — 2v. Then in exactly the same manner as in the
proof of Theorem 10.1 and Corollary 10.3, we can prove that V%(v; N) =
® V(i) is O[[Z']]Hree, where V(i) is the Pontryagin dual of ¥7(i). Put W' =
W N Z'. Since [Z°: Z'] is prime to p, the natural projection: W — CI (1)
induces an injection: W/W! — Cl(1). We can identify the set of connected
components of X(U) for U = U}(Np®) (for any «a) with the group Cl (1) via the
correspondence: Got,UG,, ,— F*»(t;)4"F . Thus we can write 7] od(p; N) =
D, a0’ (i) Then the action of w e W/W! c Cl.(1) interchanges the
connected components accordmg to the multiplication of »(w) = w? in Cl(1).
If p > 2, the map: w — w? gives an automorphism of the image W of W in
Cl.(1). By taking a coset decomposition CI (1) =[] ,.W - j, put V, = @ V(j).
Then V, is O[[W!']Hree, and V"(v; N) = Ind} (V) = V, &y, A is Aree.

11. Proof of Theorems 3.2 and 3.3

When we consider the field F # Q, we always fix here and in the following
section a quaternion algebra B over F unramified at all finite places and
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r = |Ig| < 1. Therefore B is a division quaternion algebra and X(U) is always
compact. Such a quaternion algebra always exists if [F: Q] > 1, and we have a
relation: [F: Q] = r mod2. When F = Q, we take M,(Q) as B.

Proof of Theorem 3.2. Firstly we suppose that F # Q. Let K be a finite
extension of Q,, containing K, as in Section 1. Let @ be the p-adic integer ring
of K. It is sufH01ent to prove the result over @ since A o Np=; 0) =
%y o Np™; O(v)) ®j) O for the p-adic closure O(v) of O(v) in Q,- We consider

7, (0; N) = lim H(X,, K/0)  for X, = X(U,(Np®)).

We have an exact sequence: H(X,, K) - H{(X,, K/0) - H%X,, 0), When
r=1, HXX, 0) = 0; thus, H(X,, K/0) is p-divisible. Writing ¥, for
HY(X,, K/0), we can identify #,, (Np® 0) with the subalgebra of End oA72)
generated over O by T(») for all ~ by Theorem 6.2 (in this case: v = 0,
To(n) = T(#) for all ~). Now we consider the case: r = 0. In this case, let S,
(resp. T') be the space of functions f: G — K/0 (resp. f: F} — K/0) such
that f(axu) = f(x) for a € G and u € U(Np*)G, (resp. a € F* and
u € £*F).). Since the reduced norm map »: G, — F induces an injection
: T — §,, the quotient ¥, = S_/v*(T) is p-divisible, and therefore, we can
identify, by Theorem 6.2, #,, (Np® 0) with the subalgebra of End (%)
generated by T(»). For each a € FX= F*N FX,, we consider the quadratic
extension F(V— a), which is totally i imaginary. Since B is unramified at all finite
places of F, F(Y— a) can be embedded into B ([36, (9.2.6)]), and hence
a= v(\/_) € »(B*). That is, »: GB — F% is surjective. For a € F7,
FY,= FYFZ, and ¢ € #*F}, wechoose beG§ xeGfandu e U(Np“)GolZ
such that v(b) =a, v(x) =y and »(u) = c. If f€S, is of the form »r*(¢)
for ¢: F{,—> K/0, then ¢(ayc) = ¢(v(bxu)) = f(bxu) = f(x) = ¢(y) and
thus f € p*T. That is if f€ ¥, becomes trivial in ¥y for 0 > B> a>0,
then f must be zero in 7. Therefore the natural map: ¥, — Y3 is injec-
tive. When r = 1, by virtue of a result of Shimura as in Theorem 8.7, the natu-
ral map: ¥, > ¥} (a < B < o) has a finite kernel. Then in either case: r = 0
or 1, the natural O-algebra homomorphism pf: 4, (Np”; 0) — 4,, (Np* 0)
(a < B < o) can be defined by the commutative diagram:
v, ——— ¥

a

lpﬁ(h) ‘lh

res
Yo
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where we understand that 7, = 11m o Especially Z,, (Np*; 0) acts faithfully
on ¥ and hence is naturally embedded into End ,(¥,). Now we consider the
morphlsm defined in (8.10) for n ~ 0 (n > 0):

i @ H'(T}{(Np®),'L(n,0; K/0)) > ¥, (0; N).

When r = 0 and n ~ 0, the space on the left-hand side can be identified with
the space S, ,_, (Np®% K/0O) (k = n + 2t) of functions f: Gf — L(n,0; K/0)
such that

flaxu) = f(x) - u, fora e G§ and u € U,(Np*)G,, ,

Write flx) = X4, ., fi(x)X'Y""". Then the map «: S, ,_, (Np* K/0) = S
= lim S, can be defined by « f) = f,. Since for u € U(Np*)G_, with

Uy, = ((a) l:)’
fulzu) = f,(x)a”

we know that if «( f) € v*(T'), then the value of £, is annihilated by a™ — 1 for
all @ € +;; with @ = 1 mod p%,,. Thus we can choose 8 > 0 independently of f
so that p#f € Ker(1) if «( f) € »*(T). Then by Theorem 8.7, the map induced
by

I, & H(T{(Np*),'L(n,0; K/0)) > ¥,

is of finite kernel. This fact is also true by Theorem 8.7 in the case: r =1
since [F:Q] =1 mod2 in this case. Let ¥," be the image of
® H'(T{(Np®),'L(n,0; K)) in & H(Ti(Np®),'L(n,0; K/0)). Then ¥" is the
p-divisible part of the latter module. Then, by Theorem 6.2, for each n ~ 0
(n>0), £ ,_(Np% 0) (k=n + 2t) can be identified with the ¢-subalgebra
of End (V ) generated by T(») for all ». Since I : ¥," = I(¥,") C ¥, isan
isogeny, %, ; (Np® O0) can be also 1dent1ﬁed with the O-subalgebra of
End (I (7.")) generated by T(#) for all »~. The restriction of operators in
%y (Np*; O) C End ,¥,,) to the subspace I (¥,") induces a surjective O-alge-
bra homomorphism I*: %, (Np>; 0) - 74, ,_(Np® O) which takes T(z) to
T(») because of Theorem 8.1. Thus we have a commutative diagram for
0<a<pB<oco:

*

42:,t(NPw§ 0) — ék,k—t(Nth; 0).

ék,k—t(NpB; @)

where p; is the natural projection map given in Section 3. These maps are
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surjective morphisms in the category of compact rings where the projective limit
of surjective morphisms is always surjective. By taking the projective limit of I *,
we have a surjective 2£algebra homomorphism

1X: 4y (Np™;0) > 4y o (Np®;0)  fork>2tand k ~ 0,

0

which takes T(#) to T(»). When F = Q, we have to replace H' by the
parabolic cohomology groups H} defined in [36, Chap. 8] (see also [14, §4]).
Then every step in the above argument for F # Q can be checked for H} and
we obtain the result even for F = Q.

Now we shall prove the injectivity of I* when f# Q. Put ¥ = lim »_".
We consider the map I = lim I : 7," — 1/ By definition, we have a com-
mutative diagram: for a]l h E—Zzt {(Np>; 0),

I
n oC
Vo 7%

llo’é(h) jh

Vo T
Thus if I is surjective, I ¥ must be injective since 4,5, (Np™; @) C End (7).
If =0, by identifying ¥, with S_/»*(T) and 7,* with the p-divisible
subspace of lim S, , , .(Np% K/0), we see easily the surjectivity of I_, and the
result follows. Thus we shall prove the surjectivity of I, in the case of r = 1. Put
w," = @& ,H (T|(Np*), ‘L(n,0; K/0)). Then we have an exact sequence for
n > 0:
0 - 7" > #,* > HYT}(Np*),'L(n,0; 0)) > 0.
Then, by [36, Prop. 8.1 and 8.2], there is an isogeny
f,: H(T{(Np*),'L(n,0; 0)) >'L(n,0; 0)/D;,
g.: 'L(n,0; 0)/Di - HYT{(Np*),'L(0, n; 0))

such that f,cg, =g,°f, =M -id, where M is the least common multiple of
the order of all torsion elements in T'j( Np®) and

D,= Y (y-1)L(n,0;0).

y€T{(Np®)

Thus by taking the injective limit relative to «, we have an exact sequence:
0->v "> W —>%—>0, where &“—llm(@ HXTi(Np%),'L(n,0; 0)). We
shall deﬁne a map

8 'L(n,0;0)/D; ~'L(n,0,0)/D;  forp > a
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by the transfer map given by the correspondence: x — Ly~ 'x for a decomposi-
tion Ti(Np®) = L1 F‘( Np#)y. Then the injective limit for & is compatible with
the injective limit ft‘” " = lim (®/L(n,0; 0) /D;) relative to ¢3 under f, and g,.
(This follows from the proof of the existence of £, and g, given in [36]). Thus
we have fi > %' and g ¥’ = % such that feg=gof=M-id for a
suitable positive integer M. Let I} be the closure of T'j(Np®) in G, = GLy(F,).
Note that D/ is a closed submodule of ‘L(n,0, 0). Therefore for any y € T,
we know that (y — 1)'L(n,0; 0) C D;. Especially, for every a € v, with
a =1 mod p*%,, put v, = g‘aol 2) € GLy(F,); then, y, € T. Thus D} > D,
= LY, — D'L(n,0; 0), where a runs over all elements in 2% congruent to 1
mod p® Note that y, acts on the monomial X" as y,X" = a"X". Therefore, on
the image of X" in 'L(n,0; 0)/D,, every element y of Tj(Np®) acts trivi-
ally since y = ( (1) :) mod p°R,,. Therefore we know that i(¢g(x)) =
[Ti(Np®): Ti(Np#)]i(x). Since [Ti(Np®): T'(NpP)] is a p-power whose exponent
increases accordingly to 3, I_ is the zero map on Z’. Therefore, we have the
commutative diagram:

0— ¥ — #) — T —>0

-

0— I (V) > —%—0

I

<

and % is annihilated by M. Since % is a surjective image of the p-divisible group
¥, it must be trivial. This shows the surjectivity of I_: 7" — ¥, which
finishes the proof when F # Q. When F = Q, as seen in [14, Lemma 7.2], we
already have a surjective inverse map of I*: 4, ,_(Np>; 0) — 4,, (Np=;0),
and hence I * must be an isomorphism (in [14], we made the assumption: p > 5,

but this condition is not necessary for the proof of [14, Lemma 7.2)).

Proof of Theorem 3.3. It is sufficient to prove the assertion over (@ since
AR Np>; 0) = £ (Np®; O(v)) ®,, 0. Fix v as in Section 3, and define
k=n+2t, w=v+ k —t for each n > 0 with n ~ — 20. We firstly suppose
that F # Q. Let 7., = ¥, (N) be the image in e( ® H'(T{(Np*),
‘L(n, v; K/0))) of e(®,H'(T{(Np®), L(n, v; K)). By definition, the restriction
map takes ¥, , into ¥, for B> a. Put ¥ (N) —hmY/ AN). We know
that ¥ C V Ord(u N). We choose another ideal M pnme to p such that N
divides M and Ti(M) is torsion-free for all i. Such an ideal M exists by Lemma
7.1. Then ¥, (M ) coincides with ¥ °rd(v M ) Note that the trace map of
®D. H'(Fl(Mp") ‘L(n, v; K)) to @, H'(Fl(Np“) ‘L(n, v; K)) is always surjective
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by Theorems 6.2 and 6.3 and is compatible with the injective systems { Y, (N},
and {7, (M)},. Thus ¥, (N) is the surjective image of Vo (M) =
¥,°%(v; M) and is independent of n if n ~ — 20 because the trace map is
independent of weight n by Theorem 8.1. Since £ (Np*®; @) can be identified
with the subalgebra of End (7, ,(N)) and the restriction map Yo n(N) >
¥, n(N) is injective by Remark 9.5, 42" (Np>; @) can be identified with the
subalgebra of End \(7,, (N)) generated topologically over A by Ty(~) for all
» € 1I(1). Since the Pontryagin dual module V>"4(v; N) is a A-module of finite
type by Theorem 9.4, the Pontryagin dual module V. (N) of ¥, (N) is also of
finite type, and hence 4" (Np™; 0) is a A-module of finite type since A is
noetherian. Since V,"%(v; M) is O[[W,]]-free by Corollary 10.3 and A is finite
and faithfully flat over O[[W,]], V°"(v; M) is A-torsion-free. Since V. o(N) can
be identified with a A-submodule of V,(v; M), V,_ (N) is A-torsion-free, and
hence End,(V, (N)) is A-torsionfree (even, in fact, A-reflexive). Therefore
A3 (Np™; 0), which is a A-submodule of End AV, o(N)), is A-torsion-free.
Since V, (N) is independent of n and é,‘(’f‘fv( Np®; 0) is generated over A by
Ty(n) for al n, £ (Np®; 0) is independent of n and only depends on v
modZ - t. This shows the assertion when F # Q. The case: F = Q can be
handled in exactly the same manner as above, replacing the usual cohomology
groups H' by the parabolic ones Hj. The case: F = Q under an additional
assumption: p > 5 has already been treate[14, §1]. However, by carefully
analyzing the proof of [14, Th. 3.1], one finds that the assumption: p > 5 can be
removed if T{(N) is torsion-free. Then the above argument in the case where
F # Q works well even for F = Q.

12. Proof of Theorems 3.4 and 3.6 and Corollary 3.7

When r = |Iz] =1, C_/C_, is an abelian group of order 2. By the result
in Section 7, we can let C,_/C_, act on ¥ "(v; N). We write simply ¥~ for
¥7"Y(v; N) and put ¥",= {x £ (x|c)|x € ¥"} for the generator c of C_/C, ,
If ¥ is p-divisible, then ¥, is also p-divisible and "= ¥, + ¥_ . When
p > 2, ¥'=79,_® ¥_ . Before proving Theorem 3.4, we shall show:

TrEOREM 12.1. Let K be a finite extension of Q,, containing K, as in
Section 1 and O be its p-adic integer ring. When r =1, let V denote the
Pontryagin dual module of one of ¥, and when r =0, let V denote the
Pontryagin dual module of 7,°%(v; N). Then we have an isomorphism of Hecke
modules:

Vp=VA, =b}'(N;0) & A,  forall P € %, (A) withn(P) = 2o,

where A, is the localization of A at P. Especially h(N; 0) ®, A, is free of
finite rank over A for all P € %, (A) with n(P) > 2v.
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Proof. For simplicity, we write h, for h°¢(N; 0) ®, A,. Firstly suppose
that f{(N P) is torsion free for all i for P as in Corollary 10.4. We also suppose
that p > 2 or r = 0. Then V is free of finite rank over A by Corollary 10.4. Let
A" = O[[W,]] and put Q = P N A’. Then Q corresponds to the restriction of the
character x,,ep to W,. Let A{, be the localization of A’ at Q and put
Vo=Ve, A’Q. By Theorem 9.4, we know from (7.6) that

Vo/ OV, = @ A2 (Np™®), ; K)

fork=n(P)— 20+ 2tand w =0 + k — ¢,

where ¢ runs over all characters of W whose restriction to W, coincides with .
This shows that V,,/PV, = 42"\ (Np*®), &,; K). By definition, we have a natural
surjection: h,/Ph, - £ (Np*®), e,; K). Let x be the element in V,/PV,
corresponding to the identity of A" (Np*®), ¢,; K). Take x € V, such that x
mod P = x, and define ¢: h, — V, by ¢(h) = hx. Then, by Nakayama’s lemma,
¢ is surjective. It is clear from the proof of Theorem 3.2 and 3.3 that h, acts
faithfully on V, and hence ¢ is an isomorphism. For general N, we take an ideal
M prime to p such that T{(MN) is torsionHfree for all i. Let us consider
Tr: ¥;(v; MN) - ¥,°Y(v; N) and res: #,°%(v; N) > ¥,"Yv; MN). Then
Trores coincides with the multiplication of a positive integer d. Therefore, if
p > 2 or r = 0, we conclude from the result for level MN that V,, is A ,-free and

Vio/PVp = 47, (Np*®), £p; K).

Then the same argument as above shows the assertion. When p = 2 and r = 1,
the kernel of the natural map: ¥, ® ¥~ — ¥  is annihilated by 2, and thus for
the Pontryagin dual modules V*, V™ and V* of ¥, ¥~ and ¥", respectively,

(Ve ,Ap) ® (V- @ Ap) = VX @, A,.
This combined with the above argument shows the result.

Proof of Theorem 3.4. By Theorem 12.1, if K contains K, as in (1.1), we
know from Theorem 9.4 and (7.6) that

h(N; 0) &, Ap/PA, = V,/PV, = 42 (Np®), &,; K)

as in the theorem. By Theorems 3.1 and 3.3, we know that h®(N; 0) =
hY(N; O(v)) ®4(0) 0. Then the general case follows from the result for 0.
Before proving Theorem 3.6 and Corollary 3.7, we prepare some lemmas.

Lemma 12.2. Let 4 be a prime factor of p in 2 and N be an ideal
prime to 4. Let \: /4 (NA*% Q) — Q be a primitive homomorphism with
character §: Cl(Ns*) —» Q> and C(y) be the conductor of . We write B
for the exponent of 4 in C(y) and let , denote the primitive character
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Yo: Cl(C(¢)) = Q associated with . Then we have
(12.12) NT(p)[* = Ao £)" 2 Nif 0 < a = B,

(12.1b) )\(T(/z))2 = ./VF/Q(/t)["+2”]¢O(ﬁ) ifa=1land B =0,
(12.1c)  NT(4)) =0ifa > 2and B > a,
where n + 2v = [n + 20|t stands for [n + 2v] € Z.

This fact is well-known; so, we give a sketch of a proof. We shall give a
representation theoretic proof. An elementary proof in the case of F = Q can be
found in [24]. We write f, for the unique cusp form in S (N£%; My(F);C)
such that a(#, f,) = A(T\(#)) for all ~. Let m(A) be the automorphic represen-
tation attached to f,, and let wﬁ()\) be the /-component of 7(A). Suppose firstly
that wﬁ()\) is a principal series representation 7(§, 1) for quasi-characters &, 0 of
F;‘. If £ and 7 are both ramified, then « > 2 and a« > B8 and AM(T(£)) = 0. If
one of § and 7, say &, is unramified, then §|,« = 4/|¢; ,a = Band MT(£)) = &(7)
for a prime element 7 of +,. Note that wﬁ(X) ® w fora = ([n+ 2v] + 1)/2is
a unitary representation for w(x) = |x|,. Then, by the classification of unitary
representations of GLQ(Fﬁ), £w? is a unitary character, or otherwise, nw’ is also
unramified. The latter case cannot happen when a > 0. Then |N(T(4))|® =
|&(7)|* = Ao £)1" 291 Secondly, we suppose that 7)) is a special repre-
sentation o(&, 7). If £ is ramified, then 7 is also ramified, a > 2, « > B and
MT(f)) = 0. If § is unramified, then as above, we know that a =1, B =0
and (12.1b) holds. When 7/(X) is absolutely cuspidal, then a > 2, a > 8 and
A(T( £)) = 0. This shows the result.

For each ideal » of 2, we can define a linear map
[]: Szi",w,z(Ns My(F);C) - SI:IL-,I(N”’; My(F); C)
by a(#, fl{»]) = a(#m™', f)  (cf. [23]).

Then we see from (4.2) that Ty( £) °[ £] is the identity map on Si¥ . ;(Nz*; C) for
a > 0. For each (-algebra homomorphism A: %,  (Np*; 0) — 61)’ we put for
any field extension L/K

SN, s L) = {g € oS, ((Np*; My(F); L)[g|T(£) = MTy(¢))g
except for finitely many prime ideals ¢ }

and let f, denote the cusp form in S , ,(Np® My F);C) satisfying a(», f,) =
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A(Ty(#)) for all » € Il(1). Then the same argument which proves [11, I, Prop.
4.4 and Lemma 3.3] combined with Lemma 12.2 shows:

Prorosition 12.3. Suppose that N is prime to p and k > 2t. Let

Ay (Np® 0) - O be an O-algebra homomorphism of conductor C and
)\0 M. o(C; @) = O be the primitive homomorphism associated with X. Decom-
pose C = CC, such that C, divides p* and C, divides N. Then f = f, |e is
non-zero and S°‘d(Np A K) = XK - (fll~]). Moreover, let V =
EB WS Np®, A Q ), where the sum is taken over all 0-algebra homomorphisms

A4 (Np*; 0) > Q with conductor divisible by N. Then the subalgebra ¥,
of Ende(V) generated over K by Hecke operators Ty(») for all » is semi-sim-
ple.

We say that A: é"‘d(Np ; 0) - Q is p-adically primitive if
Sord( Np®, A; Q ) is of dimension 1 (or eqmvalently, the conductor of A
is divisible by N). This notion coincides with the primitivity of complex cusp
forms if the conductor of A is divisible by every prime factor of p. Put
S(N; K/0) = S(N; K)/S(N; 0) = STY(N; 0) &, K/0O. Then the follow-
ing fact easily follows from Theorem 5.3:

Lemma 124. The pairing { , ): h%YN; 0) X S*(N; K/0) - K/0 in-
duced by the pairing of Theorem 5.3 gives isomorphisms:

hX(N; 0) = Hom,(S(N; K/0), K/0),
S(N; K/0) = Hom o(W(N; 0). K/0).

Proof of Theorem 3.6 and Corollary 3.7. For each divisor D of N, the map
[D]: Si .. ((Np®/D; 0) - S, (Np*®; 0) preserves the norm (5.3), and since
D is prime to p, [D] commutes with Ty(p) and hence with e. Therefore, it
induces a map [D]: S(N/D; 0) —» S™(N; @) by continuity and also an
injection [ D]:S*(N/D; K/0) — S™(N; K/0). Then, by Lemma 12.4, it gives
a surjective morphism of A-modules [D]*: h>%(N; 0) — h>YN/D; 0). The
natural inclusion I,: S D; K/0) — SY(N; K/0) induces a surjective mor-
phism of A-modules I%: hoYN; 0) -» h>%D; 0). Put P(N) = P(N; 0) =
N,5 - y(Ker([D]*) N Ker(I¥, 1)), and write h(N) for h3%(N; 0) for simplicity.
Put

S(A)= ¥ (S™(N/D; A)|[D] + S*(N/D; A))  for A = 0 and K/0.
+2DDN

Then S(A) is stable under Hecke operators Tj(#) for all », and therefore, the
A-module P(N) is in fact an ideal of h(N), since P(N) is the annihilator of
S(K/0). Since P(N) is the Pontryagin dual module of A-divisible module
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SoY(N; K/0)/S(K/0), it is without A-torsion. Suppose that h € P(N) is
nilpotent. Then the image h, in A (Np? @) for every a > 0 and every
n ~ — 2v (n > 0) is also nilpotent. Since h annihilates S(@), h, annihilates old
forms in S, (Np% My(F); K). Thus h, must vanish by Proposition 12.3. This
shows that h = 0 and thus P(N) has no nilpotent elements. Now consider
2=29(N)=h(N) ® &L for the quotient field £ of A, which is a finite
dimensional artinian algebra over #. Since Z(N) = P(N) ®, £ has no nilpo-
tent elements, it is actually a semi-simple subalgebra which is a direct factor of
2. Thus we can decompose

(12.2a) 2(N)=2(N) ® #(N) as an algebra direct sum.

Now we choose an O-valued point P of Spec(A) in %, (A) with n(P) > 2v.
Considering P as an ideal of A, we write M, for the localization at P of each
A-module M and put M[P] = {m € M|am = 0 for all a € P}. Since we know
that

h(N)p/Ph(N), = 47 (Np™®, &3 K)

(k=n(P) — 20+ 2t,w=v+k —t) byTheorem 3.4,
the kernel of the natural surjection p: h(N)/Ph(N) — £ (Np™D), &5 0) is
annihilated by Q € A — P. Then P + QA contains a power »* of the maximal
ideal 7 of A. Thus p# annihilates Ker(p). By Theorem 5.3, this implies

(12.2b) Se(N; 0)[P] = S (Np“®), e, 0).

Similarly we know

(12.2¢) S(0)[P] = X (S¢.(Np®/D, ep; 0) D]
212DDN

+87 (Np*P)/D, & 0)).
Let V= @,SYNp*®), \; (—)p),_ where A runs over all (@-algebra homomor-
phisms: #£7(Np™P), e,; 0) - Q, with conductor divisible by N, and let 5,
be the Hecke algebra for V as in Proposition 12.3. Then (12.2¢) implies
(12.2d) #y = P(N)p/PP(N)p, which is an algebra direct factor of
/‘)I?,ri(Npa(P)’ ep; K).
This implies that the idempotent of 2(N) is in fact contained in P(N), and thus
(12.2¢) h(N),=P(N), & B(N), for the complementary algebra
direct summand B(N ).
We now define two divisors C, D of N with CD D N, a map
ic. p: h(N)p — P(D),

* [6‘ r
by the combination: h(N), LI h(N/C), — h(D), = P(D),,
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where pr denote the projection map of the decomposition (12.2¢). We consider
the map

i= @icoph(N), > @ @ KD),.

DIN C|(N/D)

where (C, D) runs over all pairs of divisors of N with CD D N. By (12.2d),
Proposition 12.3 shows that i induces an isomorphism: h(N),/Ph(N), =
®D|N EBCKN/D)P(D)P/PP(D)P. Therefore i induces an isomorphism: h(N), =
®, ®.P(D),. Then the set of p-adically primitive homomorphisms:
A (NP, &y O0) — 610 consists of homomorphisms factoring through
P(N),/PP(N), = 5#,. Thus we have a bijection:

Hom ,(h(N),, £) = Hom(£7"%,(Np*®, &: K),Q,,).

and the set of primitive homomorphisms: h(N; 0) — & consists of A-algebra
homomorphisms factoring through P(N), and corresponding to the set of
p-adically primitive homomorphisms of £g"(Np*®, e,; K) into Q,,. This shows
the theorem in view of [23]. Corollary 3.7 also follows from the above proof
(especially (12.2€)).
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