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Annals of Mathematics, 128 (1988), 295-384 

On p-adic Hecke algebras for GL2 over 
totally real fields 

By HARuzo HIDA 

0. Introduction 

The purpose of this paper is to lay the foundation of the theory of p-adic 
Hecke algebras for GL2 over totally real fields. Apart from the flatness of the 
ordinary part of the universal Hecke algebra over the Iwasawa algebra, almost all 
results obtained in our previous papers [12] and [14, ?1] in the case where 
F = Q are generalized to arbitrary totally real fields F. Our result holds without 
any exception for the prime p; thus, the assumption: p ? 5 which we made in 
[12] and [14] is now eliminated. One peculiar feature in the treatment of Hilbert 
modular forms is the existence of multiple weight modular forms; i.e., those 
forms with the automorphic factor: fH0(coz0 + d0)k_ for mutually distinct k0's. 
In order to guarantee the stability of the space of integral cusp forms under 
Hecke operators, we have to modify a little in Section 3 the definition of Hecke 
operators T(n) unless k is parallel (i.e. k0 = k7 for all a, T). When we consider 
the congruence subgroups of the adelized GL2 over F of type 

( | (0 1 )mod p 

the independence of the p-adic Hecke algebras relative to the weight k no 
longer holds. We can recover the isomorphism between the ordinary Hecke 
algebras of different weights k and 1 only when the difference of k and 1 is 
parallel. Thus we have infinitely many distinct Hecke algebras parametrized by 
the classes of weights modulo parallel ones. The presentation of this phenomenon 
is one of the motives of this work. Besides the obvious generalizations to totally 
real fields of the results obtained for Q in [14] on Galois representations, we hope 
to discuss in a future occasion how to unify these infinitely many Hecke algebras 
into the universal one and also to discuss an intimate relation between our results 
and the theory of cyclotomic Zp-extensions over Q. In fact, the construction of 
Galois representations over our big Hecke algebra of parallel weight (i.e. in the 
case of v = 0; see below for details) has already been done by Wiles [40]. His 
result even covers the totally real fields of even degree. 
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296 HARUZO HIDA 

We shall now give a sketch of our result in the simplest case of odd p-power 
level. We fix throughout the paper a rational prime p and a totally real field F of 
finite degree over Q. Let I be the set of all embeddings of F into R. The module 
Z[I] of weights of F is by definition a free module generated by the elements of 
I. Each weight k = Eaka a can be considered as a quasi character of FX 
assigning xk = Hl(xk_), to x E FX. We fix an algebraic closure Qp of the p-adic 
field Qp and take the algebraic closure Q of Q inside C. We fix once and for all 
an embedding: Q - Qp, and hence any algebraic number in Q can be consid- 
ered as a complex number as well as a p-adic number in Qp. Let ?D(k) be the 
subfield of Q generated by the values xk for all x E F, and let d(k) denote the 
valuation ring of ?(k) corresponding to the embedding: @(k) - Qp. In Z[I], 
there is one specific element t = oa corresponding to the norm map: 
FX QX. We write q ~j (resp. ( ? rj) for two elements (, q E Z[1] if 

- q E Z t (resp. q0 - r ? 0 for all a E I). We shall fix one class of 
Z[I]/Z. t and take the smallest non-negative representative v E Z[I] of this 
class. For each 0 < n E Z[I] with n - - 2v, we put k = n + 2t, w = v + k - 
t and tZ = t - v = k - w. Let H be the upper half complex plane. We 
consider the following automorphic factor: 

det(y> Wj(y, z)k = 7(ad0 - b?csO (c zO + d,)ko 
adI 

for y = (( a do)) e GL2(R) and z = (z,), e H'. Let FA (resp. 
F., 

Ff) be 

the adele ring of F (resp. the infinite part of FA and the finite part of FA). Then 
GL2(F.) can be identified with GL2(R),, and its connected component GL2+(F ,) 
with the identity acts naturally on HI. Let CQ be the stabilizer in GL +(F.Q) of 
z= -1,... 0 r- 1 ) E HI. We denote by t the integer ring of F and put 

t = 't ? Z, where Z is the product of the l-adic integer ring Z1 over all rational 
primes 1. Define congruence subgroups of GL2(1) by 

Vi(pa) = {(c d) d GL2()c E pat d - 1 E pa} 

Regarding 4 as a subring of Ff, we consider V1(pa) to be an open-compact 
subgroup of GL2(Ff). We consider modular forms f: GL2(FA) -* C satisfying 

(0.1) f(axu) = f(x)det(u O) &Au00 ZO) k 

for alla E GL2(F) and allu = UfU.x withufE Vi(pa) anduOO e Co,. 

The space of cusp forms S * w(pa; C) we consider consists of functions on 
GL2(FA) satisfying, in addition to (0.1), the holomorphy condition at x and the 
cuspidal condition (for details, see ?2). This space is naturally isomorphic to the 
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ON p-ADIC HECKE ALGEBRAS FOR GL2 297 

space of classical holomorphic Hilbert cusp forms of weight k and of level pa. 
Then we can define Hecke operators To( n) for each ideal n acting on Sk k( pa; C), 
and the Hecke algebra Ak w(pa; 0(v)) is by definition the subalgebra of 
Endc(Sk*,(pa;C)) generated over 0(v) by TO(n) for all ideals n. The precise 
definition of TO(n) will be given in Section 3, which is a slight modification of the 
classical definition when v * 0. Let K/Qp be a finite extension inside Qp and 
suppose that K D ?(v). Then the p-adic integer ring 0 of K contains 60(v). We 
simply put, for A = (0 or K, 

Ak (p; A) = AkW(Pa; 0P(V)) (?5(v) A. 

For each pair of integers /3 > a > 0, it is well-known that there exists a 
surjective (-algebra homomorphism p~: Ak J(P13; 0) Ak, (pa; C0) which takes 
TO(n) to TO(n) for all n. Without having recourse to the theory of p-adic 
modular forms, we can define the p-adic Hecke algebra by 

Ak w(P; 0P) = uM Ak w(Pa; 0) 
a 

which, as will be seen in Section 4, acts naturally on the space of p-adic modular 
forms and is in fact the 0-linear dual space of the space of p-adic modular forms 
(Th. 5.3 in ?5). The ordinary part AXrd(pa; C0) (O < a < x) is the maximal 
algebra direct summand of Ak w(pa; C0) on which the image of TO(p) is a unit. 
Then we have: 

THEOREM I. For any two weights n and n' with n - n' - 2v and 
n ? n' ? 0, there exists an C0-algebra isomorphism: 

Ak, w(p??; (P) Ako'rw'(Po?; (I) 

which takes To(Z) to To(w), where k' = n' + 2t and w' = v + k' - t. 

By this theorem, the ordinary Hecke algebra Ao9rd (p,; (0) depends only on 
the class of v mod Z t; so, we write hojd(1; 0) instead of Akr, W(p?; 0). Similar 
independence of the whole Hecke algebra Ak w,(p'; C0) with respect to the 
weights will also be shown in Section 11 in the case where v = 0 by some results 
of Shimura [30] (see also Ohta [26]). 

Let Z be the Galois group of the maximal abelian extension FI/F 
unramified outside p and ox. Let 3a be the maximal ray class field modulo pa, 

and put 

Za= Gal(Fo/Fa) C Z. 

Let Ztor be the torsion part of Z and decompose Z = W X Ztor for a torsion 
free part W. Then Z1 and W are p-profinite groups and for sufficiently large a, 
Za c W. Let -A, Aa and A be the continuous group algebras over 0I of Z, Za 

and W. respectively. Then, A is isomorphic to the formal power series ring over 
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0 of several variables (if the Leopoldt conjecture holds for F, then A - (P[[X]] 
for one indeterminate X). Let X = Xt: Z -- Z' be the cyclotomic character, 
and for each 1 E Z * t, with 1 = [l]t for [1] E Z. we write XI for X[I]: Z -* Z' 
Since XI: Za -* Z' is a continuous character, we can extend it to an (P-algebra p 
homomorphism XI, a: Aa -C 0. Let Xl a = Ker(Xi a) which is a prime ideal of 
Aa. Let Aa denote the localization of Aa at i a. Then we have: 

THEOREM II. There is a natural s&Walgebra structure on hojd(1; 0) such that 
the natural surjection: hord(l; C0) ,Ao~d( pa; 0) induces an isomorphism: 

hord(l; 60) =A a/?~aa ,4 rd~p;K v V O ( A. A ai, 1/W 1, . A a, I- k , w( p; K ) 

for all n - - 2v (n ? 0) and a > 0, 

where l = n + 2v, k = n + 2t and w = v + k - t. Moreover hojd(1; 0) is a 
torsion-free A-module of finite type and is reduced. 

Let 2' be the quotient field of A, and fix an algebraic closure Y? of Y?. To 
give an absolutely irreducible component of Spec(hojd(1; 0)) is equivalent to 
giving a A-algebra homomorphism X: hord(l; 0) -- J5. We fix such a X. Let X' 
be the quotient field of the image of X and J be the integral closure of A in X'. 
By extending the scalar field if necessary, we may assume that Qp fl J = (0. We 
say that a QP-valued point P in Spec(J)/0 is algebraic if P is over Ea E 
Spec(Aa) for some a > 0 and 0 < 1 E Z * t. We write this 1 as n(P), and the 
minimum of a with the above property as a(P). Regarding algebraic points P as 
an (P-algebra homomorphism: Jo Qp, we can define an 0-algebra homomor- 
phism 

.p = P O AX: hOrd(l; 0) QP- 

Then we have: 

THEOREM III. For each algebraic point P of Spec(J) with n(P) ? 2v, 
Xp(To(w)) is an algebraic number in Q for all ideals W, and there exists a 
non-trivial complex cusp form fp E Sk w(pa(P); C) for k = n(P) - 2v + 2t, 
w = n(P) - v + t such that fpl TO(n) = Xp(TO(w))fp for all ideals n. This cusp 
form fp is determined up to constant multiple. 

In fact, we can specify fp by using the Fourier expansion of fp. Then, this 
correspondence: P > fp can be extended to an algebraic function on 
Spec(J)(Qp) with values in the space of p-adic modular forms. This parametri- 
zation of common eigenforms is universal in the sense that for any given 
common eigenform f e S*W (pa; C) (k ? 2t, k - 2v) whose eigenvalue for 

To(p) is a p-adic unit in Qp, we can find A: hojd(1; 0) -? from which f is 
obtained as in the theorem. 
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These theorems will be restated for arbitrary level in Section 3 and will be 
proved in Sections 11 and 12. We shall also prove the finiteness over A of the 
module of congruence and the module of differentials of X in Section 3, which 
has at least conjecturally an intimate relation with the special values of L-func- 
tions of GL(3) as seen in [14] in the case of F = Q. Our method for proving 
these theorems relies firstly upon the analysis of the structure, as A-module, of 
cohomology groups of arithmetic subgroups of quaternion algebras over F and 
secondly upon the theory of p-adic Hilbert modular forms constructed by 
Deligne, Ribet, Rapoport and Katz. We shall give an exposition of the latter 
theory in Section 4 and will prove the duality between the Hecke algebras and 
the space of cusp forms in Section 5. We then analyse the above mentioned 
cohomology groups in the following Sections 6, 7, 8, 9 and 10 by adopting an 
idea of Shimura which goes back to 1960's [30]. We shall generalize in these 
sections the results obtained in [14, ??3, 4 and 5] on cohomology groups coming 
from M2(Q) to those coming from quaternion algebras over F which are totally 
definite, or indefinite but yield Shimura curves. In the hope of having the same 
type of results for more general quaternion algebras yielding varieties of higher 
dimension, we have included some results which are irrelevant to our present 
purpose but are expected to be useful in the higher dimensional case. 

Contents 

0. Introduction 
1. Modules over quaternion algebras 
2. Spaces of cusp forms and Hecke operators 
3. Results on Hecke algebras 
4. Stability of integral cusp forms under Hecke operators 
5. Duality theorems between Hecke algebras and spaces of cusp forms 
6. A theorem of Matsushima and Shimura 
7. Hecke operators on cohomology groups and proof of Theorems 3.1 

and 4.10 
8. Comparison between cohomology groups of different weights 
9. Controllability of "''r(I(v; U) 

10. Co-freeness of f "r(I(v; N) over A 
11. Proof of Theorems 3.2 and 3.3 
12. Proof of Theorems 3.4 and 3.6 and Corollary 3.7 

Notation. Throughout this paper, we fix a rational prime p and a totally 
real algebraic number field F of finite degree. We denote by Q the algebraic 
closure of Q inside C. We also fix an algebraic closure Qp of the p-adic field Qp 
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and an embedding: Q --* Q,. Thus any algebraic number in Q can be considered 
uniquely as a p-adic number as well as a complex number. The normalized 
p-adic absolute value of x E Qp will be denoted by IxjIP. We denote by Q the 
completion of Qp under the norm I IP 

By a quaternion algebra over F, we mean a central simple algebra over F of 
dimension 4; so, we include the matrix algebra M2(F) in this category. For each 
quaternion algebra B/F, we denote by G = GB the linear algebraic group 
defined over Q such that G(Q) = BX. We denote by GA the adelization of G, 
and Gf (resp. GOe GO +) denotes the finite part of GA (resp. the infinite part of 
GA and the connected component of G., with the identity). Similarly, for each 
finite extension K/Q, we sometimes consider KX (resp. K) as a non-split torus 
(resp. an additive group) defined over Q such that KX(Q) (resp. K(Q)) is 
isomorphic to the multiplicative group (resp. the additive group) of K, and KA' 

KO > Kf and K' denote the adele ring of K, the infinite part of KA' the finite 
part of KA and the connected component of K' of the identity, respectively. 
We denote by P: G -, FX the reduced norm map which can be viewed as a 
homomorphism of algebraic groups. For each place a of F. let F, denote the 
completion of F at a. For each finite extension K/Q, let TK denote the integer 
ring of K. We write simply t for F. For each integral ideal N of a, let 
EN = HlNFN. We denote by XN for x E GA, FA or FA the projection of x in 
G(FN), FN or FN. Especially, xc (resp. x.O, Xf) denotes the a-component (resp. 
the infinite part, the finite part) of x. We denote by TN (resp. tc) the closure of t 
in FN (resp. F0). Then we know that TN = Ho NIO. 

We put Z = H1Z1, where 1 
runs over all rational primes, and we put iK = OK Z Z. We can regard iK as a 
subring of Kf. Each fractional ideal a of K can be expressed as x4tK n K (in 
Kf) for some x E K'. The ideal xIFK <l K will be written as x'LK. 

Let IK be the set of all embeddings of K into Q. When K = F, we simply 
write I for IF' We denote by A[J], for each commutative algebra A and a 
subset J of IK, the A-free module generated by the elements of J. The module 
A[IK] has a natural right action of Gal(Q/Q). For k = Y2_I kc . a E R[I], we 
write k > 0 if ka > 0 for all a el , and k > O if k > O and k * O. This 
positivity on R[I] is extended to an order on R[I] so that k > k' (resp. k > k') if 
k - k' > 0 (resp. k -k' > 0). We define a map k: C' 3 x - xk E C for each 
k=ZOkO au E Z[I] by xk =HEIx When xO > O for all EI,wecaneven 
define xs H H X S- for s E C[I]. Since we can consider F,, as a subspace of C 
naturally, the map k induces a quasi-character: F.' -- CX. We denote by ?(Dk) 
the subfield of Q generated by xk for all x e F. Then (k) is the fixed field of 

{a E Gal(Q/Q) ka = k}. 
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Let e = eF: FA/F -- C be the unique additive character such that 

eF(x) = exp(2 7r 1 ) for x = (Xh) e Fan 

By abusing notation, we write forx = (x) E CI, eF(x) = exp(2v E I-X); 
especially, for E E F and x E CI, eF*(x) = exp(2v - 1 a2,ax0a) is well defined. 
For each x E FAX, we write IXIA for the module of x as in [38]. 

For each finite set A, IA I denotes the cardinality of A. For any two sets X 
and Y. we denote by X Y the set of all functions of Y into X. There is one 
exception for this notation: If we are given a group F and a F-module X, we put 

Xr = H0(F, X) = {x E XIy x = x for all y E F). 

We trust there will be no confusion about this notation. 

1. Modules over quaternion algebras 

We take a quaternion algebra B over F and fix a maximal order R of B. Let 
E be the set of all places of F, and put 

IB =T E I B OF F- M2(F 

r = I'BI EB = {T E E l B ?F FT 7 M2(FT 

We consider I as a subset of E consisting of infinite places. Take a finite Galois 
extension KO/Q (in C) containing F, and denote by to its integer ring. Suppose 
that we have an isomorphism: 

(1. 1) B (?Q Ko M2(KO)' such that (i) the projection Tr: B -4 M2(KO) at 
each T C IB takes B into M2(Ko n R), and (ii) R 9z t0 is sent 
into M2(00)'. 

We can always find an extension Ko and an isomorphism as in (1.1). For 
each th-algebra A, we consider the polynomial ring A [X, Y] with 2111 inde- 
terminates: X = (XO)O E I and Y = (Y)EI. On each polynomial P(X, Y) with 
coefficients in A, we get y = (YJ),EI E M2(40)I act via 

PIy(X, Y) = P((X, Y)ty), 

where (X, Y)ty = ((X,, Y0)tyO) Et I Thus A[X, Y] becomes a right module over 
the multiplicative semi-group R. Let L(n; A) for 0 < n E Z[1] denote the 
A-submodule of A[X, Y] consisting of all polynomials homogeneous for the 
variables (X0, YG) of degree n0 at every a E I. Then L(n; A) is stable under 
the right action of R. For each v E Z[I], we shall now twist the action of R on 
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L(n; A) and define a new action by PIvy = v(y)vPly. The A-module L(n; A) 
equipped with this twisted right R-action will be denoted by L(n, v; A). More 
generally, for each A-module M, we can consider the right R-module 
L(n, v; M) = L(n, v; A) ?A M whose R-action is induced from L(n, v; A). 
This action can be naturally extended to a unique action of GB(A). We can 
convert the right action of GB(A) into a left action by 

Y * P= PIVY'. 

This left GB( A)-module will be denoted by tL(n, v; M). 

2. Spaces of cusp forms and Hecke operators 

Put IB = I- IB = EB n I. For each k E Z[I], we define kB E Z[IB] and 
kB E Z[IB] by k = Y2OEIBk. * or and kB = E IB *. We denote by t E Z[I] 
the special element t= EaZcI. We firstly clarify what kind of conditions we 
shall impose on the weights of cusp forms. For two elements k, k' E Z[I], we 
write k - k' if k -k' E Z t. We fix throughout the paper a class in Z[I]/Z * t 
and choose a representative v E Z[I] of this class such that v ? 0 and v0 = 0 
for some a e I. Such an element v is uniquely determined. We take n G Z[1] 
satisfying n + 2v 0 O and n ? 0 and put 

k= n+ 2t, w=v+k-t and w=t-v=k-w. 
Then, we see 
(2.1) k - 2w, w - w --v and k - n. 

Under our choice of n, the unit group 

E {E t'X IO > Ofor all a E} = I lXn F,,' 

acts trivially on L(n, v; A) for any commutative algebra A over to. 
The isomorphism (1.1) induces an identification: G B = GL2(R)I' x (HX)I, 

where H denotes the Hamilton quaternion algebra over R. Let H be the upper 
half complex plane, and put f = fB = H'B. We can identify H with 
GL2(R)/02(R) . Rx by 

GL2(R) (c d)4 (a - +b)/(c - +d) E H 

if ad - bd > 0 and 

GL2(R)3( c d ) (-a - + b)/(-c - + d) E H 

if ad - bc < 0. 

Thus G. naturally acts on z by g(z) = (g ,(z0)) B. Especially, G.,+ acts on 
-' complex analytically. Put z0 = (-1, . ., -1) e and 

C. = {g e Gxlg(zo) = zo} and C.+= C. n G,+ 
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Then, we can identify 

COO (Rx 02(R))B X (H x)I CO+= (RxS02(R)) x (H x) 

Especially we know that Qx/QC +-(Z/2Z)'B as groups. For each subset J Of 'B 

and x E GOO, we define another subset I' C IB by 

JX = eT IBIT E J and p(x) > 0, orT E J = IB-J and p(x) < 0. 

Then one verifies that this gives an action of G., on subsets of IB; i.e., 

(2.2a) Jxy = (JX)Y for x, y E G. 

For each subset J of IB' we shall define an automorphic factor jJ(x, z) E C'B for 

z E=- YTB andx ( Ca d a)) E b I b 

j1(x, z) = (caz' + d0)OI, 

where 

z a if a E J, 

a Za if or E= J = IB J- 

Then, by definition, we have 

(2.2b) jl(-y Z) = 
jIB(7' Z1), 

and as an element of the semi-simple algebra CIB, j1(y, z) satisfies 

(2.2c) j1(-y, Z) = jp8(y, 8(z))j1(S, Z) for y, 8 E Goo. 

For each function f: GAB-- L(nB, VB; C), we define a transform flk w JU of f 
under u E GAB by 

(2.3a) (f lk, W, JU)(X) = jju( 1U zo)-kBp(U.)wBf(Xu-1) 
. 

where uao acts from the right on the value f(xuG-1) in L(nB, vB; C). By 
(2.2a, b, c), we have the compatibility relation: 

(2.3b) (flk,W, JX) k,w,J 
= flk,w, J(Xy) 

When it is unlikely to cause misunderstanding, we simply write fIx or fIk ,KX 
for the transform f I w ,x. Let U be an open-compact subgroup of GfJ. We now 
denote by Sk w, j(U; B; C) = Sk w, J(U; C) the space of functions f: GAB 
L(n B, vB; C) satisfying the following conditions (2.4a, b, c, d): 

f=flkWJU foralleU-C+, and 
(2.4a)=for allaEGB(Q). 
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For each z E ffB we can choose uo E G?+ so that u,(zO) = z and define a 
function f,,: %'B 

- tL( nB, VB; C) for each x E B out of each function f 
satisfying (2.4a) by 

fX(Z) = j1(u., ZO)kBp(U.)wf(xuX) u-' 

Then fx is well defined independently of the choice of uo by (2.4a) as a function 
on f9B with values in tL(nB, VB; C). Then we impose 

For allxEGf, =O if EJ. and 

(2.4b) df=I 

In the extreme cases: r = 0 (i.e., B is totally definite) or B = M2(F), we need to 
impose some other conditions: 

(2.4c) 

When B = M2(F), then ( ) da = 0 for all X E GA 

for each additive Haar measure da on FA/F. 

(When B = M2(Q), we also add the following condition: IIm(zI)k/2f(z) is 
uniformly bounded on H for all x E GL2(Qf)). When B is totally definite and 
n = 0 (then v = 0), we firstly consider the space S(U) of all functions on GA 
satisfying (2.4a). Let Inv(U) be the subspace of S(U) consisting of functions of 
the form f o v for some function ff: FA< -- C, where v: GAB- FA is the reduced 
norm map. Then we put 

(2.4d) S2t, t (U; B; C) = S(U)/Inv(U) ifn=O and r=O. 

We have now finished defining the space of cusp forms for each B/F. In our 
definition, we have (implicitly) assumed that k ? 2t since n ? 0. It is well-known 
that the space Sk W, J(U; C) is of finite dimension. 

By the approximation theorem, we can find ti E GA (i = 1,..., h) with 
i) = (tN)N = 1 for any given ideal N of t such that GA = H GQti UG +. 

When B is indefinite, the number h is equal to IFX\ FA</v(U)F.+ I and is 
independent of B by the strong approximation theorem. When B is (totally) 
definite, h depends on U and B. We put, by fixing such a decomposition, 

FQ(U) = GQn t 0UGw?t), 
F (u) = FI(U)/FI(U) n Fx. 

Then Fi(U) is a discrete arithmetic subgroup of G.,+, We then consider the 
space of cusp forms with respect to FV(U), which is written as Sk ,, J(F(U); C) 

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ON p-ADIC HECKE ALGEBRAS FOR GL2 305 

and consists of functions f: tB > tL(nB, vB; C) satisfying the following condi- 
tions: 

(2.5a) f(y(z)) = v(7yw) B1j(y, Z)kB(y f(z)) for all y erv) 
df df 

(2.5b) = 0 ifa E, J and =0 if o EJ. 
d Z a daa 

When B = M2(F), we suppose the cuspidal condition: 

(2.5c) f vanishes at all cusps of F'(U). 
(This condition means that for all a E SL2(F), f l a(z) = v(a) "j,(a, z) kf(a(z)) 
has Fourier expansion of the form Z~teL ?a(f)e1(tz) (z E _T = II') for a lattice 
L depending on a, where L+ is the subset of all totally positive elements of L.) 
Then the correspondence: f ' (ft)j gives an isomorphism: 

h 

(2.6a) Sk WJ(U; C) - Sk tV J(rF(U); C) 
i=l 

ifk> 2t (n> 0) orB is indefinite. 
and 

h 

S(U) D S2t t,0(ri(U);C) if k = 2t and Bis totallydefinite. 
i=1 

Note that if B is totally definite, we have the trivial identity 

(2.6b) HO(i(U), L(n, v; C)) = Sk W +(rF(u); C) if k > 2t. 

The assertion (2.6a) follows from the following formula (2.6c): We define for 
f: f9B - tL(nB, VB; C) another function f lk, W, I Y: t(nB, VB; C) for y E 
G B by 

(f Ik, W, JY)(Z) = P(Y) WBj (y Z)-kB(y1 f(y(Z))). 

Put, for each x E Gf C, UX = x 'Ux and decompose 

G= 

H 

GBtif UxGX 

(for example, the choice ti' = tix works well). Then, if tjx E yti'UxG + for 
y E G B, then 

(2.6c) (f I k, IV, IX) til (ftti)k, tv, JY 
For the proof of (2.6c), see for example [29, ?3] and [8, ?1]. 

We shall now define the Hecke operators on Sk w, 1(U; C). Let U and U' 
be two open compact subgroups of G,. For each x E GfCo, we shall define a 
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linear operator [UxU']: Sk W, J(U; C) -S*k S , lx(U'; C) as follows: Decompose 
(UCx +)x(UC +) = H i(UCx+) )xi as a disjoint union of finitely many left cosets. 
Then we define 

fI[UXU'] = 1f~k,WJXi. 

By (2.4a), this operator is independent of the choice of the representative set 
{ xi} of the left cosets. By (2.2a, c) and (2.6c), the operator [UxU'] takes 
Sk w J(U; C) into Sk w, lx(U'; C). Note that Uxf U' = HiU(xi)f if and only if 
(UCQ0+)x(UC +) = HliU(xi)fx.. Because of this fact, we have used the symbol 
[UxU'] to denote this operator instead of [UCQ+xUCQ+]. Through the oper- 
ator [UxOU] for xx E CQ, the finite group CQJ/CQ,,+ acts on the sum 
(D I C IB Sk, w (U; C). In the extreme case of r = 0 and n = 0, the transformation: 
f '-4 fIx preserves by definition the subspace Inv(U). Thus the operator [UxU'] 
induces a linear operator: 

S2t t O(U; C) -4 S2t, t, O(U; C), 

which is again denoted by [UxU']. 
If U' c U, Sk, w, (U; C) is naturally contained in Sk ,, 1(U'; C). Thus we 

can take the injective limit: 

(2.7) SkwJ(B;C) = lim Sk WJ(U; B;C) 
U 

over the partially ordered set of all open compact subgroups of Gf. By (2.3b), for 
each f E Sk, w, 1(B; C), the transform f k, w X is again contained in Sk w, 1(B; C) 
for x E Gf. Thus Gf naturally acts on Sk w, 1(B; C). When B is unramified at 
every finite place (then r [F: Q]rmod 2), we shall fix an isomorphism of 
R = R ?Z Z with M2(i). Then every open compact subgroup U of GL2(Ff) can 
be regarded as an open compact subgroup of GF. Then, by virtue of a result of 
Jacquet, Langlands and Shimizu, we have: 

THEOREM 2.1. Let B and B' be quatemion algebras over F unramified at all 
finite places. Suppose that n ? 0 (i.e. k ? 2t) and k + 2v 0 O. Then for open 
compact subgroups U of GL2(Ff), there is a system of isomorphisms 

iU: Sk, W, IB(U; B; C) Sk W IB,(U; B'; C) 
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such that (i) for U D U', there is a commutative diagram: 

Sk, w, IB(U; B; C) = Sk w IB'(U; B; C) 

I I 
Sk, w, IB(U; B; C) = Sk W, IB'(U; B'; C), 

and (ii) if i = lim iu: Sk, , IB(B;C) -Skw, IB,(B';C), then i is an isomorphism 
of GL2(Ff )-module; in particular, 

i U o [UxU'] = [UxU']o i U 

for every pair of open compact subgroup (U, U') of GL2(Ff) and every 
x e GL2(Ff). 

This follows from a result in [18, ?16]. An exposition can be found in [8, ?2]. 
As we have already remarked, for each subset J of IB' we can find 

c = c(J) E CQ such that IB jc(J) Since cf = 1, the operator [UcU]: 
Sk, w, J(U; C) -_ Sk w IB(U; C) commutes with [UxU] for all x E G-f. Note that 
[UcU]2 = id, and thus, [UcU] is actually an isomorphism. Namely, we have: 

THEOREM 2.2. For each subset J of IB' the map 

[UC(J)U]: Sk WIJ(U;C) -4 SktvIB(U;C) 

is a surjective isomorphism satisfying 

[UC(J)U] [UXU] = [UXU]?[UC(J)U] for all xe Gf. 

Let t: GA GA denote the involution defined by xxL = v(x). Note that we 
have defined w = t - v = k - w. Thus k - 2w and we may consider the space 
Sk t J(U; C). Put UL = { xL1x E U). For each f E Sk W J(U; C), we define 

f*: GA ->tL(nB, nB vB; C) by f *(x) = f(xL), 

where we have written x-L for (x-1)L = (xL)-l. 

PROPOSITION 2.3. The correspondence: f:> f* induces an isomorphism: 

Sk W J(U; C) - Sk, J(U; C) 

which satisfies (fI[UxU])* = f*I[ULxL-UL] for all x E UCQC. 

Proof The UL-invariance of f* as in (2.4a) follows from a direct calculation. 
The cuspidal condition for f* in (2.4c) is obvious since ( a) = ( - a). We 
shall show the analyticity of f* at infinite places. A straightforward computation 
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shows that (f*)x(z) = f -,(z). This shows the expected analyticity. The last 
assertion follows simply from the definition of the operator [UxU]. 

For each integral ideal N of F disjoint from VB, we may suppose that the 
isomorphism (1.1) induces another isomorphism 

RN= R $' N - M2(N) 

Then we shall define standard open compact subgroups of RX (for R = R ?z Z) 
by 

Uo(N) = (xe R with xN= (C d )c N N} 

U1(N) = {x UO(N) withXN = (a C ) aa-i I N N 

V1(N) = x Uo(N) with XN = ( ) d - 1 N 

UE(N) = E U1(N) and VE(N) = E V1(N), 

where E = {Ec ? X1,O > 0 for all a E I) and the product of E with U1(N) 
and V1(N) is taken in Gf . Suppose that f E Sk tI(Ul(N); C) or 
f E Sk, j(V1(N); C). Then we see from (2.4a) that 

f(XC.) = Cw-kf(X) for c E Fx. 

We know from the fact: 2w - k E Z t that c2w-k = 1 for all c E E. Therefore 
f(x) = f(ex) = f(Xtfye) = f(xef) for c E E. This shows that 

SktvJ(Ul(N);C) = Sk WI (UE(N);C), 

(2.8) Sk, w, J(VL(N); C) = Sk WI (VE(N); C). 

We simply write S,* w 1(N; B; C) for Sk w j(V1(N); B; C) and Sk w, j(N; B; C) for 
Sk WJ( U1( N); B; C). Now we shall define Hecke operators T(n) and T(n, n) on 
these spaces. Put, for R = R ?Z Z, 

X= {E R n GfB withxN= ( d ) a- I NMN, c ? N'6N} and 

A(N) E= F A1(N) 

Then these are semi-groups containing U1(N) or UE(N)), and we can form the 
abstract Hecke ring R(U1(N), A1(N)) and R(UE(N), AE(N)) as in [36, III] (see 
also [7, ?2]). Then the following facts can be verified in exactly the same manner 
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as in [36] and [7]: 

(2.9a) R(U1(N), A1(N)) R(UE(N), AE(N)) _ R(VE(N), AE(N) 

R(V1(N), A1(N) ) 

U,(N)xU,(N) -*UE(N)xUE(N) -*VE(N)x- VE(Nf) -*VE(N)x- VE(N), 

(2.9b) For each ideal M C z disjoint from VB, we have an isomorphism of rings: 

R(Ul(NMa), A1(NMa)) - R(U1(NM/3), A1(NM')) forall a ? / > 0 

U1(NMa)xUL(NMa):> U1(NMI')xU1(NMI'). 

For each ideal 9 C ), put Y(n) = {x ? A1(N)Iv(x)z = 9}. We decompose 
Y(n) into a disjoint union H1U1(N)xjU1(N) of finitely many double cosets, 
which is always possible, and we use the same symbol Y(9) for the element 

Y3jU1(N)xjU1(N) in R(U1(N), A1(N)). By choosing an element mE I n Ffr 
such that m,= and m - 1 E?Ni (then mE Al(N)) if 9 is prime to N and 
disjoint from EB we put 

) ( /U1(N)mU1(N) ifn is prime toNand is disjointfrom EB, 

O otherwise. 

Then Y(n, 9) is determined independently of the choice of m, and we have 

(2.9c) R(U1(N), A1(N)) is isomorphic to the polynomial ring over Z of 
variables Y(te, 1) (t + N, f1O EB) and Y(1') for all prime ideals 
1, 

(2.9d) (()l - ( ) = A'F/Q(1)Y(K 1) for each prime ideal 1' 
outside N and E B. 

Now we identify all the Hecke rings by the isomorphism (2.9a) and write it 
simply as = M(N). Then 

(2.9e) W(N) acts on Sk w J(N; B; C) via U1(N)xU1(N) 
[U1(N)xU1(N)] and on S* w 1(N; B; C) via U1(N)xU1(N) 
[V1(N)x-LV,(N)]. 

The operator corresponding to Y(n), Y(n, n) on these spaces will be denoted 
by Y(n) and Y(n, n). Then by Proposition 2.3, we have a commutative 
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diagram 
Sk, w, J(N; = 

Sk, W j(N;C) 

(2.10) ST(k ) T(n,;C) jT(n), T(n, a) 

Sk W J(N; C) = Sk, j(N; C) 

By our definition of the transformation: f -- fix in (2.3a), the action of T(n) 
and T(n, N) on Sk, W, J(N; C) given here coincides with the Hecke operators on 
the space of holomorphic cusp forms defined by Shimura [29], [34] and Weil [39] 
for a suitable choice of w for each k. For example, in [34, ?2], k/2 is taken as 
w. This choice is not appropriate, when k * 0 mod2Z[I], for the analysis of 
integrality of Hecke operators which will be done in the coming sections. The 
use of integral w was initiated by Shimura in [29] and [30]. 

3. Results on Hecke algebras 

In order to define the Hecke algebra for the space of cusp forms, we shall 
modify a little the Hecke operators T(n) and T(n, N) when v 0 0. The case: 
v = 0 corresponds to the classical parallel weight cusp forms and in this case, 
no modification is necessary. For each ( E Z[I], let 

(() = {a Gal(Q/Q)I|a = 

Then it is easy to see that C(f)= C(q) if ? ?q, since C(t) is the whole 
group Gal(Q/Q). Let ?.(f) = {x E QIxc = x for all a E C(t). We then 
consider a quasi-character I: FX Q x given by x -> x = H. E ,x -f. Then ?(4) 
is the subfield of Q generated by xP for all x E FX, and thus the quasi-character 
( has values in the finite extension ?I(t). Therefore the character ( extends by 
continuity to characters: FAX --> 4(4()j FX< -> Q and FX -> CX We write 
simply z(v) for z(D(V) Let A be an z(v)-algebra inside C, and suppose 

(3.1) For every x E F , the A-ideal xvA = (xv(v))A 
is generated by a single element in A. 

We can find a finite extension Ko/4D(v) such that the integer ring to of Ko 
satisfies (3.1). In fact, by choosing elements { ai ) i= h of Ff such that ait 
gives a complete representative set for all ideal classes of F, we can take ai E? 
so that air = (ai )h . Then, as an example of such an extension, we can take the 

h 
field generated over (>(v) by /a for all i = 1,..., h. As another example of A 
satisfying (3.1), we may of course take the valuation ring of ?( v) at each finite 
place. When v = 0 (i.e. w - 0), the rational integer ring Z satisfies the condition 
(3.1), and thus the condition (3.1) imposes no restriction to the ring A. 
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For each prime ideal 1 of I, we take x E Fx such that 1f= xz and choose, 
once and for all, a generator {xv} = {TV} of xvA. For a general ideal a of F, 
we decompose a = rlefe(e) as a product of prime ideals and put 

{av} = J{fv}e(v ) 

I' 

which gives a generator of the ideal xvA for x E FX with xz = a,. We also write 
{xV) for {av} if a = xz for x E F/. The correspondence: a, {av} gives a 
multiplicative map of the ideal group of F into the quotient field of A but is not 
necessarily a Hecke character. We shall define operators 

(U1(N)xU1(N)): Sk W.J(N; B; C) -> Skw, J(N; B; C) by 

fj(U1(N)xU1(N)) = {v(x)v} 'fj[U1(N)xU1(N)] forx E? A(N) 

Similarly, we define (U1(N)xU1(N)) E Endc(Sk* w, (N; B; C)) by 

fj(U1(N)xU1(N)) = {v(x)v} 'f|[Vi(N)x-LV1(N)] for x E A?(N). 

By decomposing Y(n) = H1jU1(N)xjU1(N) (then, v(x1)z = n for all i), we put 

TO(n) = Z(U1(N)xjU1(N)) = {fv} 'T(n), TO(n N ) = {n2v} 'T(n N) 
I 

as operators on Sk, w (N;C) and S* k, j(N;C). Hereafter in this section, we 
suppose 

(3.2) B is unramified at all finite places (i.e. EB C I), 

and we shall identify R = R ?z Z with M2( I). Then the Hecke algebra 
Ak J(N; A) is by definition the A-subalgebra of End C(Sk, w, (N; B; C)) generated 
over A by the operators TO(n) for all integral ideals n. By Theorems 2.1 and 2.2, 
Ak ( N; A) is determined independently of the choice of the quaternion algebra 
B under (3.2) and the subset J of IB. It is also plain that the A-algebra 
Ak (N; A) is independent of the choice of the map: a {a }. By (2.9d), we 
have the relation: 

-o _ T0(1 2 ) = F/Q( ) TO( X) for prime ideals 1'+ N. 

Thus if XF/Q(1I) is invertible in A, To(,1' 1) is contained in Ak, JN; A) (this 
statement is actually true without the assumption that XF/Q( 1)- E=- A as will 
be seen later in this section). The following fact may be well-known, but we will 
give a proof in Section 7: 
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THEOREM 3.1. In addition to (3.1), suppose one of the following conditions 
for A: 

(i) A is the integer ring of a finite extension of ?!(v), 
(ii) A is a discrete valuation ring of ?!(v), 
(iii) A is a field extension of (I(v). 

Then 

(3 .3a) For any A-algebra D in C, AkW(N; D) AkW(N; A) ?A D, 

(3.3b) Ak ( N; A) is a flat A-module of finite type. 

Let d(v) be the valuation ring of ?( v) corresponding to the fixed embed- 
ding: ?D(v) " Q " Qp. For any ((v)-algebra A not necessarily inside C, we 
put 

(3.4) Ak, w(N; A) = Ak, W(N; (9(v)) (p9(v) A. 

By (3.3a), this definition is compatible with the base change of the ring A. Let 
d(v) be the p-adic closure of ((v) in Qp. Fix a valuation ring ( containing ((v) 
which is finite flat over ZP. We now fix an integral ideal N prime to p. Then for 
a ? /3 > 0, we have a commutative diagram (cf. [36, III], [7, ?2]): 

Sk W J(Np ; C) > Sk W j(Np; C) 

(3.5) {To(-) To(-) 

Sk W J(Np'; C) > Sk W j(Np; C) 

for all ideals N. Thus the restriction of operators in k, w(Npa; A) to the subspace 
Sk, w, 1(NpI; C) induces a surjective A-algebra homomorphism: 

(3.6a) Ak, w(NP'; A) Ak, w(NP; A) for a ? P > 0, 

which takes TO(n) to TO(n). By (3.3b), Ak w( Npa; (9) is a p-adically complete 
semi-local ring and hence is a product of finitely many local rings. Let 
A ord (Npa; () be the product of all local factors of Ak w(Npa; (9) on which the 
projected image of To(p) is a unit. The change of the map: a {a)} affects 
To(p) by multiplication of an (-unit; hence, A jrd (Npa; () is well-defined 
independently of the choice of the map: a { aY }. Let e = ea be the idempo- 
tent of Ak rd (Npa; (9) in the Hecke algebra Xk w(Npa; (9) If one chooses a 
suitable integer y > 0 and put m = pY - 1, ea can be explicitly given by a 
p-adic limit: 

e= lim T0(p ) in Ak, (NpO; (9). 
n -oo 
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By the commutativity of (3.5), if a > /3> 0, e, is sent to ep under the 
projection map (3.6a). Thus (3.6a) induces a surjective 0-algebra homomorphism 

(3.6b) A rd (Npa; (0) -> A rd ( Np A; (9). 

We now take the projective limit of the morphisms (3.6a, b) 

Ak,w(NP; d) = lim Ak J(Npa; (9) 

(3.7)a (7 rd (Npoc; (0) = 1im,9rdw(Npa; (9). 
a 

Put UF(Npa) = Ui(Npca) n Ffx = Vi(Npa) n Ffx and 

ClF(NPa) = FA /Fx UF(Npc)FO,+ C1F(NPW) = FAZ/FxUF(NPc)F,. 
Via the correspondence: x -- x - for x ? Ffx with x Np = 1, we can identify 
these groups with the narrow or usual ray class group of F modulo Npa. We 
shall define p-profinite groups Z = Z(N)-=Jim CIF(Np'), Z = Z(N) 
lim ClF(Npa), and we denote by Zay (resp. Zay) the kernel of the projection a 
map Z -> ClF(Np) (resp. Z -> ClF(Np')). We shall define a continuous char- 
acter: Z -> Ak w(Npa; (0) for a = 1, 2,. .., x in order to regard Hecke algebras 
as algebras over the continuous group algebra of Z. To do this, let I1(M) be the 
set of all integral ideals prime to M for each ideal M of z. Then we have a 
natural map: Il(Np) -> Z with dense image. (There might be a non-trivial kernel 
of the map: Il(Np) -> Z; so, we shall correct the statement in [13], page 140, line 
9 from the bottom as follows: "the set f(Np) is a dense subset" should read 
"the image of the set f(Np) is a dense subset", where we have written f(Np) 
instead of Il(Np) here. This error in [13] does not affect the result obtained 
there.) We denote by [a] the image of a ? Il(Np) in Z. If we write UF(Np') = 

{ x ? UF( N) Ixp = 1), then we have a natural isomorphism 

(3.8) Z(N) = FAx/FxUF(Np )F<+?, 

where "" indicates the closure in FAx. If we write a = xz for each a E? Il(Np) 
with x E Ffx and XNp = 1, then under the isomorphism (3.8), [a] corresponds to 
the class of x-1 on the right-hand side. More generally, if one identifies 
FAx / FXFj x+ with the Galois group over F of the maximal abelian extension Fab 
of F by class field theory, [a] for a E? Il(Np) coincides with the Artin symbol of 
a on the subfield of Fab fixed by FxUF(Np')F<x+/FxFx,+. Let Ilpa be the 
group of all pc-th roots of unity and put IP. = lim pa. The action of Z(N) as 
the Galois group over F on IL P. gives a continuous character 

X: Z(N) e Aut(ch pZ) . tz 
such that X ([ a]= XFIQ(a). For each Z - t, we write =[]t for [] Z, 
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and put xt = XW1: Z(N) --> The groups Z and Z can be decomposed as 
Z = W X ztor and Z=WxZtor for Z -free groups W and W and finite 
groups Ztor and Ztor' Put Wa = W n Za and Wa = W f Z. We may then 
identify W and W under the natural map: Z -> Z. Then for sufficiently large a, 
we have Za = Wa = Wa = Za. This assertion holds if a ? 1 when p is an odd 
prime. We denote by A, - and - the continuous group algebras over ( of W, 
Z and Z, respectively. Namely, 

A = lim C[W/Wa] 

d/= limC([ClF(Npa)I and jV= lim(Q[ClF(Npa)]. 

In order to give an S-algebra structure on the Hecke algebras Ak w(Npa; (9) 
(a I = 1,2,..., x), we let FAx act on Skw .J(Npa; B;C) by f- fIk, Wa for 
a E FAx. This action coincides with the operator [U1(N)aU1(N)] and thus gives 
an action of FAx/UF(Npa)Fx. Since f(ax) = f(x) and f ,kWa. = f by (2.4a) 
for a E Fx, we have that 
(*) f k, Waf = f lkwa = a2w-kf= an+2vf. 

For a ? Il(Np), by taking a e Ffx with az = a and aNp = 1, we define 
( a)n E Endc(Sk w J(Np; B; C)) by 

(3.9) fI(4a), = X-n-2v(a)fIk, wa. 

Then (*) shows that if a, is trivial in ClF(Npa), then fI(a,)n = f; namely, the 
finite group ClF(Npa) acts on Sk w, j(Npa; C) via f -- f I (Ka), As an operator on 
Sk ,V J(Np; C), T(a, a,) = Xn+2Ja)(a)n 

Now we shall show that T(a, a,) and TO(a, a,) is contained in Ak w(Npa; A) 
for arbitrary A (if n ? 0). Since (aK), depends only on the class of a, in 
ClF(Npa), we can choose two prime ideals 1 and y of F such that XF/Q(l') is 
prime to XF/Q(9) but (K)n = K9)n Then we can find integers x, y such that 

Xxn+2v+t(e) + YX?+2v?t(9) 1. 
Then by (2.9d), we have that 

(el)n xx(1)T(1, 1) + yX(9)T(9, 9) 

= x(T( e)2 - T(ie2)) + y(T(q)2 - T(902)) ? Akw(NP"; A). 

Thus for any a E Il(Np), (K)On E Ak, ,(Npa; A) and thus 

T(a a) = X?+2v(4a)(Ka) AkW(Np; A), 

T0(a, a) = { 4a-2v } 4()(a)n ? Ak, jNp ; A) 

because { a-j2v } Xn + 2v(a) is always an element in A. 
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We now know from (*) and (3.9) that the correspondence: Il(Np) ) a 
T a, a ) E Ak, (( NP; (9) factors through the image of Il(Np) in Z(N) and is 
continuous under the topology induced by Z(N). Then, by continuity, this 
homomorphism of the semi-group I1(N) extends to a continuous character: 
Z(N) >Ak, (NP; (9). The image of z E Z(N) or a E Il(Np) under this char- 
acter will be written as (z) or (a) E Ak w(NPa; (9) (a = 1,2,...). This char- 
acter is naturally compatible with the projection map: om a(Np; (9) > 

Ak w(Npf; (9) for a ? / > 0. By taking the projective limit, we have a contin- 
uous character: Z(N) -> Ak, J(Np'; (9). By the universality of the continuous 
group algebra, Ak w(Npa; (9) becomes an algebra over - and A via this 
character for a = 1, 2, ..., cx. 

THEOREM 3.2. For each k E Z t (t = ,Ja) with k ? 2t (i.e. v = 0 and 
n ? 0), there exists an -1-algebra isomorphism: 

A2t, JNPoc (9) - k, k- JNPoc (9), 

which takes T(n) to T(n) for all ideals n of t. 

The implication of this theorem in terms of p-adic modular forms will be 
explained in Section 5. The same type of assertion is also expected to be true for 
k, w(Np; (9) even for general k E Z[I] (or v E Z[I]). The author hopes to 

come back to this problem in the future. As for the ordinary part Aord (Np'; (9), 
we have the following general result: 

THEOREM 3.3. If k and k' in Z[I] satisfy k ? k' ? 2t and k - k' - 2v, 
then there exists an s-algebra isomorphism: 

nPord ( Npoo; ( ) - Akord,( Np"; (9) 

which takes TO(n) to TO(n) for all ideals n, where w = v + k - t and w' = 

v + k' - t. Moreover, Aord (Np'; (9) is a torsion-free A-module of finite type. 

Theorems 3.2 and 3.3 will be proved in Section 11 after the analysis of the 
structure of cohomology groups in Sections 8, 9 and 10, where we shall employ 
Shimura's method in [30] as a key technique. Since Aord (Np??; (9) only depends 
on v mod Z t (w = v + k - t), we hereafter write hord(N; d)for Akr?w(Np; (). 

Let X: W --> be a continuous character. Then we can extend X to an 
algebra homomorphism X: A -> Qp. Let PA denote the point of Spec( A)/(Qp) 
corresponding to this algebra homomorphism. For each finite order character 
c:W -*Qp and m E Z t, we write Pm e for We also define, if Efactors 
through W/Wa and Wa = Za, 

Sk I* (Np, e; C) = {f E Sk w I(Np; C)IfI(w)n = e(w)f for all w E W}. 

Here, note that the action: W 3 w -4 (w). factors through the finite group 

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


316 HARUZO HIDA 

W/Wa* For any (9(v)-algebra A in C containing the values of ?, we define 
4k, W(Npa, E; A) to be the A-subalgebra of Endc(Sk*, W, 1(Np', c; C)) generated 
over A by TO(n) for all ideals n. Let (9(v, e) be the valuation ring of the field 
generated over ?(v) by the values of E corresponding to the embedding: 
Q -b Qp. If E has values in (9, (9 contains (9(v, e). We then put 

k, W(NP, C ; (9 ) = k, w(Np v, ; (95(V, )) ?) ((v' ) (- 

There is natural suriection: 4k ,( Npa; (9) k(> 4k, (NPa, c; (9) which sends TO(n) 
to TO(n). Let K be the quotient field of 9. Then, we can define 

ARd(Np v a, (9) = ea.k 
(Np E; (9), 

4 ord (Npa, ; K) = Aord(Npa E; (9) ?(g K. 

By the following theorem, A4 ord?(Npa, E; K) and hence A4 rd? (Npa, E; (9) is inde- 
pendent of the choice of a such that E factors through W/Wa and Wa = Za 

THEOREM 3.4. Let n be an element of Z[I] with n - 2v and n > 0, and 
let c: W/Wa -(57X be a finite order character. Suppose that Wa = Za Write P 
for PnI2v e, and let Ap denote the localization of A at P. Then there is a 
canonical isomorphism: 

hvjd(N; (9) ?AAp/PAp A4ord (Npa c; K) 

fork = n + 2t and w = v + k - t, 

which takes TO(n) to TO(n) for all N. Especially, hovd(N; (9) ?AAp is free of 
finite rank over Ap, and the dimension of Ak rd (Npa, e; K) over K is independent 
of - and n (or k) and is equal to the dimension of hovd(N; (9) ?A Y over Y for 
the quotient field Y of A. 

This theorem will be proved in Section 12. Let us now indicate an 
important implication of the theorem and the duality theorem (Th. 5.3 below). 
Let Y be the quotient field of A. We fix an algebraic closure Y of Y and 
consider Qp as a subfield of S. We shall fix a A-algebra homomorphism 
X: hord(N; (9) S. Let X be the quotient field of the image of X. Then, by 
Theorem 3.3, JX is a finite extension of Y. Let f be the integral closure of A 
in XY. Then again by Theorem 3.3, X in fact has values in f. Put (9d = QP n S. 
Then (9d, is a valuation ring, finite flat over (9. Let X = X(-f) be the space of all 
Qp-valued points of Spec(f)/7,. Thus 

X{= HomO -alg(') QP) 

Let $Xg(A) = {Pn e E (A)In E Z t, n ? 0 and ?: W QQx be a finite 
order character). We have a natural morphism iT: Spec(J)/ 0 --* Spec( A)/ of 
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schemes over (9. Put faig( f) = ST- '(Xalg(A)). If one considers P E Xg( f) as 
an (9-algebra homomorphism P: Qp, then PIA = Pn E for some n E Z t 
and a finite order character e: W -* Q>. We write this n as n(P) and this ? as 

cp. The minimum of a such that Ker(cp) D Za will be denoted by a(P). For 
each P E 8 ajg(t)) regarding P as an (9-algebra homomorphism P: f Qp, we 
can consider an (9-algebra homomorphism XP: hojd(N; (9) Qp given by Xp = 
P o X. Then X p factors through 

4ko v(Npa(P), p; K) -hvd(N; (9) (?AAp/PAP forP = PIA 

by Theorem 3.4 and can be considered as a K-algebra homomorphism 

X : Aord (Npa(p), cp; K)-> K 

for k = n(P) - 2v + 2t and w=- v + n(P) + t. 

Then we have: 

COROLLARY 3.5. For each P E Xaig(0) with n(P) > 2v, the value Xp(T(N)) 
is contained in Q for all n, and since Xp(T(n)) is a complex number by the 
fixed embedding of Q into C, there is a non-zero cusp form fp E 

Sk W IB(Np(P), p; C) for k = n(P) - 2v + 2t and w = v + n(P) + t such 
that fpIT(N) = Xp(T(n))fp for all ideals n. The cusp form fp is uniquely 
determined by the above conditions up to constant factors. Conversely, 
suppose that there is a common eigenform f of all Hecke operators T(n) in 
Sk W IB(Np; C) whose eigenvalue for To(p) is a p-adic unit in Qp and whose 
weight k ? 2t satisfies k - - 2v. Then there exists a A-algebra homomorphism 
X: hovd(N; 9) y and P E. aig(f) such that 

f I T(n) = Xp(T(n))f for all n prime to p. 

We shall prove in Section 5 a slightly stronger result than the statement of 
Corollary 3.5 after proving duality theorems between Hecke algebras and the 
space of cusp forms. 

Let X: hojd(N; (9) ) ? be a A-algebra homomorphism. We consider the 
set: 

{X': hord(N'; ( I) - |X'(TO(t)) = X(TO(t)) 
except for finitely many prime ideals {), 

where the level N' varies. Obviously in this set, there exists a A-algebra 
homomorphism X0 h?vjd(C; (9) - with the smallest level C. This X0 is called 
primitive or a primitive homomorphism associated with X. The level C is called 
the conductor of X. We can make an analogous definition in the finite level case: 
Let 4: Ak w(M; (9) -* Q, be an (9-algebra homomorphism for an u-ideal M. We 
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consider the set 

{ A)' wk (M'; (9) Q- p(T(t)) = 0'(T(1)) for almost all prime ideals If. 

Then in this set, we can find a unique 40: 4k J(C; (9) -Qp with the smallest 
level C. This 40 is called primitive or the primitive homomorphism associated 
with 0. The level C is called the conductor of 4, which is a divisor of M. This 
fact can be deduced from a result of Miyake [23] in view of the equivalence 
between the following two conditions: 
(3.10a) 4 is primitive of conductor C, 
(3. 10b) the cusp form f in Sk ( C; C) satisfying f I T(N) = 00(T(N)) f 

for all n is a new form of exact level C in the sense of [23]. 
Note that the existence of f as in (3.10b) will be guaranteed by Theorem 5.3 in 
Section 5. 

We have decomposed Z(N) = W x Ztor' Let A: Ztor -* Q be the combi- 
nation: Z tor ' Z(N) vhojd(N; (9) -- Y'. Then 4 can be considered to be a 
finite order character of FAx/FXFox,. This character A will be called the 
character of X. Similarly, for each homomorphism 4: 4k w(M, (9) - Qp, the 
correspondence: '1(M) 3 a -*(K a)n) E Q gives a character of Cl F(M). This 
character is called the character of 0. By Corollary 3.5 and (3.9), we have: 

(3.11) The character of XA, (P e Xalg(f)) is given by -Pc' (o ? X-n(P))0 

where c: Z -x Q x is the Teichmiiller character. Then we have: 

THEOREM 3.6. Let A: h?jd(N; (9) be a A-algebra homomorphism. 
Then the primitive homomorphism X0 associated with X is unique, and its 
conductor C is a divisor of N. If X itself is primitive, then for all P E Xalg(,f), 
the conductor of X1 = P o A is divisible by N. If the conductor of AXp is 
moreover divisible by every prime factor of p, then AX itself is primitive. 

COROLLARY 3.7. Let A: h vd(N; (9) Y be a primitive homomorphism, 
and let X be the quotient field of the image of A. Then, we can decompose 

h~vd(N; (9) OA ,= ED 

as an algebra direct sum so that the projection to the first factor Y coincides 
with A on hojd(N; (9). 

Theorem 3.6 together with Corollary 3.7 will be proved in Section 12. Now 
we touch briefly on the module of congruence and the module of differentials 
attached to A, which have an intimate relation with a certain L-function of cusp 
forms at least in the case: F = Q as disclosed in [12], [14] and [15]. Let us define 
A: hord(N; (9) ?A i > by the combination of X ? id: hrd(N; ? A 
_f ?A f with the multiplication map: f OA f -> J. Suppose A to be primitive, 
and let h) d(N; (9) (?A = EDe d be the decomposition as in Corollary 3.7. Let 
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pro: hojd(N; (9) (?A af-> 4 be the projection map, and define 

8: hojd(N; (9) OA afs fE pr(hOd(N; (9) OA f) 

by the diagonal map of X and pro. The module of congruence W6(X) is defined 
by 

Wo(X) = Coker(S). 

The module of differentials W,(X) is defined by 

j1(X) = 2h/J h >v 

where we have written simply h for hojd(N; (9) OA f and f is regarded as an 
h-module via X: h S. 

COROLLARY 3.8. The modules Wo(X) and W,(X) are torsion f-modules of 
finite type. Moreover, we have the identity of support of these modules: 

Supp,( t0(Aox)) = Supp-( 61(eA)). 

The author hopes to clarify the relation of these modules with certain p-adic 
L-functions of cusp forms on a future occasion. 

Proof Since h = h?jd( N; (9) ?)A is of finite type over X, the first assertion 
is obvious. Write YJ for pr_(h), and let a be the kernel of X. Then, from 
[13, Lemma 1.1], we know that W1(X) = a/a2. We take the intersection 
ao = Im(S) n 5" inside d D Y". Then 8 induces a surjection: a -> 

ao and hence 
we have a surjection: W&(X) 4ao/a2 . Note that 

Co(x) = (fe E YJ)/Im(s) = YJ+ Im(s)/Im(s) =- / Jfl Im(S) = 4/ao . 

This shows that Supp(W1(X)) D Supp(60(X)). If we have a vanishing 

o A ) p = 6o(X ) -fr flp = 0 

for the localization f.p of f at a prime ideal P, then we have a decomposition: 
h= h . f,Op = ,Op ( (s??,p fp) 

Thus f.p is hy-projective and &1(X) ,, fp = TorhP(,p, ,p) = 0 by [13, Lemma 
1.1]. This shows that Supp(WO(X)) D Supp(W1(X)), which finishes the proof. 

Let us give here a few words about the filtrations Zoa C Z and Zoa C Z. 
There is a commutative diagram of natural maps: 

0 > Za > Z > ClF(Npa) > 0 

Ja lb Ic 

0 - Za , Z - CIF(NPa )>?. 
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Since the morphisms b and c are surjective and their kernels are killed by a 
power of 2, a is an isomorphism if a 2 1 and p > 2. Since the kernels of b and 
c are generated by the image of FX<, the morphism a is always surjective. The 
finiteness of the kernel of b implies that a gives a surjective isomorphism for 
sufficiently large a even if p = 2. Especially, a induces a surjective isomorphism 
between the ZP-torsion-free parts of Z and Z. 

4. Stability of integral cusp forms under Hecke operators 

Throughout this section and the next, unless otherwise mentioned, we 
suppose that B = M2(F). We shall give an exposition of two methods for 
proving stability under Hecke operators TO(n) of the space of rational or even 
integral cusp forms. One is due to Shimura's theory of canonical models [31] and 
[34], and the other is derived from the moduli theoretic interpretation of integral 
modular forms and the q-expansion principle studied by Deligne and Ribet [3], 
Rapoport [27] and Katz [19]. We shall do this because the former method may 
be generalized to a vast class of algebraic groups for which canonical models 
exist and the latter gives a stronger result concerning integral cusp forms. 

Firstly, we shall define rational subspaces of S k, W( AN; C) for each ideal N of 
a. Let A be a subalgebra of C satisfying (3.1) for the fixed v E Z[I]. For each 
ideal a, we choose a generator { a'} of a0A as in Section 3. Then the symbol 
{ av } satisfies the multiplicative relation: { a'} {6 e} = {(a6)0}. For 4 E FX, we 
write { v} for {($t)v}. We take n, k, w E Z[I] satisfying 0 < n - 2v, 
k = n + 2t > 2t, w = v + k - t and wt = k - w = t - v. For each weight 
/q e Q. t, we write q = [?)]t for [,q] E Q. For the symbols which are not 
defined here, see the introduction. 

PROPOSITION 4.1. Let a! be the different of F/Q, and put 

Fx= { VEFxIa > 0forall a E I}. 

Then each element f E Sk, , A N; C) has the Fourier expansion of the following 
form: 

f((0 1)) IYfIAY0 E a(tyf, f){(tYaf)v})?eF( Y)eF(-) 

where the function: a -4 a(a, f) E C is a function on the group of fractional 
ideals of F which vanishes unless a is integral. 

Proof. For each f as in the proposition, we define another function 
fo: GA -C by 
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Then we can easily check that fo is contained in Sk, k/2, (N; C), and by [34, 
(2.18)], fo has the (unique) Fourier expansion of the form: 

0O( 1) L0 aOt2 ~ e F(itY.c)eF((X)' 

where "a -4 ao(a, f) E C" is a function on fractional ideals of F vanishing 
outside integral ideals. If we put 

(4.1) a(a, f) = ad(a, f)XF/Q(aW1)l-[(k/2)-w]{-av} 

4a-V} 
4 {v)-1 = 

- 

we obtain the result. 

The following corollary can be deduced from [34, (2.23)] by (4.1) or from an 
easy calculation by use of an explicit decomposition of ~T(an) into the disjoint 
union of left cosets of U1(N): 

COROLLARY 4.2. For each f E Sk, w, (N; C), 

(4.2) a(n, fIT0(n)) = L XF/Q(GaV)n/ ,af T0((, ')) 
elm, eln 
(+ N= 

E Q(e) f e2v a1( , e)) 
elm, Aen 
(+ N=4 

For a while, we shall deal with a general quaternion algebra B unramified at 
every finite place not necessarily equal to M2(F). We fix a complete representa- 
tive set {a1}i1.h for ClF(M) = FA</FX9XF'+ such that a E- Ffx n t and 

/a 
f' i 

(ai)N = 1. We define ti E GL2(Ff) by ti = (' - 1) Then, if B is indefinite, 
we have a disjoint decomposition: 

h h 

G = [J GQ tr U1(N) G?+= HJ GQ tiVl(N) G+ 
i=1 i=1 

When B is totally definite, we just choose { tz } i=. in GJB which satisfies the 
above type of decomposition; so, in this case, h may be different from the 
narrow ray class number of F. Then, we know if B is indefinite, 

GAB= HJ Gti xV1(N)x 'G + for all x E GA. 
i=1 

Put 

(4.3) Fk(N) = ttUfE(N)Go +B GB = tiVE(N)G?t q GQ. 
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Now we return to the analysis of B = M2(F). Then by (2.6a), we have a 
canonical isomorphism: 

h 

i=1 

For each f E Sk*, w (N; C), we denote f, by fJ as in (2.4b), which is an element 
in Sk t I( E(N); C). Then, by definition of the above isomorphism, we have 

COROLLARY 4.3. Let a = aIt, and put a = a,7'a?' and 

at*+= {aI*a > 0 foral a I1). 

Then, for each fe Sk*' (N;C), f(z) E Sk I(FE(N);C) has the following 
Fourier expansion: 

f(z) = c, i a( t~aj, f ){v }I veF(tz) 

where cv i = XFIQ(&i) {(air) I 

Here note that { (v } (-v is a unit in A. 

Now we shall define the space of A-integral cusp forms. To do this, let us 
prepare some notation. For each ideal a, we put 

a+= { eajta > Oforall a EI1}. 

Then we consider the formal power series ring 

A [ [q] ] a = ( E a(t)q(|a(() Ez A) 

Especially, we write A[[q]]1 for Arrq]]]*. Then, replacing eF( z) by q4, we have 
an embedding for each congruence subgroup F of GL2+(F) = GL2(F) r Goo+: 

Sk w;I(F;C) C[[q]]-a 

for a suitable choice of a. By this embedding, we shall regard Sk w, (r; C) as a 
subspace of C[[q]]f. We then put 

Sk wIl(F; A) = A[[q]]a n SkWI(]F;C), Sk W I(A) = limSkt, I(F; A). 

Then, for any a E GL +(F), f f Ik, wa gives an endomorphism of Sk I (C) 
where 

(4.4) (fIk,1,a)(z) = det(a)wji(aa Zk) _ f(a(z)) 
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As for the spaces of functions on GA, we define 

(4.5a) Sk* W I(N; A) = Sk, w I(N; M2(F); A) 

= {fES* w I(N; C) Ia(i, f) E A for all a E Il()}. 

Then the isomorphism (2.6a) induces 
h 

(4.5b) Sk, w, I(N; A) CV iSk, I(E((N); A). 

Now we shall give an exposition of Shimura's method to prove the stability 
of Sk, s, A(N; K) under Hecke operators for each finite extension K/?(v). Put 

(4.6a) C9 = {tx E GL2(FA) Idet(xOO) E Foo<+ and det(x) E Q'FXFo?}. 

Since Q X FX FX/FXF.- QA/QXQX +-Gal(Q,1b/Q) canonically for the 
maximal abelian extension Qab/Q, we can let x E C+ act on Qab via det(x). 
The corresponding element of Gal(Qab/Q) to x C g+ will be written as p(x). 
Define 

(4.6b) 9+ (K) = { xe+ I p((x) acts trivially on K n Qab). 

One may consider p(x) for x e 9+(K) to be an element of Gal(KQab/K). It has 
been shown by [34, Prop. 1.7]: 

(4.7a) For each extension K/(D(v) inside C, we have a natural isomorphism: 

Sk, wI(K) Skw, I(D(v)) ?&(D(v) K. 

This shows especially that if we define an action of a e Gal(Q/O(v)) on 
f = E aa(()q4 e Q[[q]]a by f0 = E, aa(t)`q4, then we have 

(4.7b) Gal(40(v)Qab/4(v)) acts on SktI(, I(V)Qab) via f ff. 

For each positive integer N, we put 

UN= GOO+x(X e GL2( ) 0x( *)modNM2(;)}, 

UN = Xe Ukldet(x) e Q }* G + r = GL2(F) UN 

Note that for each y e FN, det(y) e QA by definition of UN. This implies that 
FN is a subgroup of SL2(F), and hence, FN is the principal congruence subgroup 
modulo N of SL2(0). By the strong approximation theorem (cf. [31, Prop. 3.4]), 
we know that 9+= UN GL+(F). Then, for each x e 9, we decompose 
x= ua for a e GL +(F) and u e UN and consider the correspondence: 
x det(a)b. If x = ua = u'a' for another choice of u' - UN and a' e 
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GL2(F), then u'-u = a'a-'1 E FN. Especially, det(a) = det(a'). Thus the func- 
tion: x - det(a)" E ?(v) gives a continuous quasi-character of 'S+. Now we 
shall present a slight modification of a result of Shimura: 

THEOREM 4.4. For each finite extension K of 4?(v), there is a continuous 
right action of C+(K) on Sk w I(KQab) which is characterized by the following 
properties: 

(4.8a) (f+ )X= fx + gx, (fx)Y =fxy 

(4.8b) f,=,fka as in (4.4) if a E GL + (F), 

(4.8c) fx =fp(x) ifx=(O ?) with tE2X. 

Here the continuity of the action means that for each f E Sk, I(KQab), 

we can find a positive integer N so that 
f = ffor all u E (UNn SL2(FA)) GX. 

It might be necessary to explain how to deduce this theorem from a result of 
Shimura in [34, Th. 1.5] where a similar but different action: f f[XI is given. 
The definition of this action is as follows: For each f E Sk , I(KQab), the 
set { fj a E Gal(KQab/K)} has only finitely many elements ([34, Prop. 1.3] or 
else (4.7a) in the text); hence, we can find a positive integer N so that 
f E Sk, &, I(rN; KQab) for all a E Gal(QabK/K). This is possible since FN is 
the principal congruence subgroup of SL2(0) modulo N as already remarked. By 
the strong approximation theorem (cf. [31, Prop. 3.4]), for each x E C+(K), we 
can decompose x = ua for u E UN and a E GL+(F). Then we define 

fix] = fP(X)Ik oa. 

Our action is defined by 
fX = fP(x) I k a det(a) f [X]. 

Since as already remarked, x p-4 det(a)w gives a continuous quasi-character of 
C+ into 4(Dv), the action f - fi is well defined. The verification of the 
properties (4.8b, c) is left to the reader. 

For each open compact subgroup U of GL2(Ff), we put 

Du =( ) t U(K) = UG+ n + (K), 

DU(K) = DU n U(K), u = UGG+ nGL2(F). 

COROLLARY 4.5. Let U be an open compact subgroup of GL2(Ff), and 
suppose that 

(i) p: D ?G + Gal(Qab/Q) is surjective, 
(ii) DFt, JG. + is dense in UG, + n +. 

Then we have that Sk.6, I(Fu; K) = H0(U(K), Sk, I(KQab)) and thus, 
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Sk 
I(FL,; 

K) -Sk,,I(FU; ?D(v)) ($) K. Especially, for t1 as in (4.3), 
tiVE( N )t-' and tiV1(N )t-1 satisfy conditions (i) and (ii). 

Proof The last assertion is obvious from the definitions of ti, V1(N) and 
VE(N), and the second assertion follows from the first and (4.7a); so, we prove 

A 

the first assertion. Let Fu be the closure of FUG.+ in C+ Then, by the 
continuity of the action of Theorem 4.4 and (4.8b), we have 

Sk t I(FU; KQab) = H (Fu Sk, ti I(KQab)) 

Since U(K) = FUDU(K) by (i), (4.8c) shows the result. 
For simplicity, we shall write for a moment U, V, Vi and Gi for UE(N), 

VE(N), tiVE(N)G ,+t-1 and Vi n GL2(F), respectively. We shall decompose 
for x E- A1(N), UxU = HIUx,; i.e., Vx-tV = HIVx-t. We then find an index i, Y, 
and y in GL+(F) such that tax e yX t VG+ and t xt E yt1VGx+. The index i 
is determined independently of 1 and the correspondence: i *-> j is bijective. 

LEMMA 4.6. Under the above notation, put Vi(K) = V i n C+9(K). Then 
we have a disjoint decomposition: 

VZ(K)y-lV-(K) = H1V'(K)yi 1 if x E A JN). 

Proof We have that Vx tV = Vti- 7 -1 V, and thus VY - lV = 

VItxtt- lVi and Vx tt-1 = Vti-y 1; that is, V7t1x.tp' = V yj1* This shows 
that ViyTVi = H ViY7 I. Thus y' 1can be written as vy -1v' with v - V' and 
v' E Vi. By the strong approximation theorem, we may suppose that 
v E SL2(Ff) and therefore v' E VJ(K). In fact, since det(Vi n y-lvJy) = 

det(V1), we can find w E Vi n y-'Vjy so that det(w) = det(v). Then 
vy- lv' = vw-ly- 'ywy-lv' and ywy-vl' e Vi, vw' C- Vi. By replacing v by 
vW-1, we may thus assume that v E SL2(Ff). This shows that 

V'(K)-y-'Vj(K) D uLJV'(K)-y1- 

We shall show the other inclusion: 

V'(K)y-'Vj(K) c Hvi(K)-yi- 

For each vy-1v' E V'(K)-y-'V1(K), we can find v" e Vi such that vy-lv' = 
v'y 5'1 for some 1. By taking the determinants, we learn that det(v") E 
det(v'v")FXF,,?+ and p(v") fixes K n Qab; hence v" E Vi(K). This shows the 
assertion. 

LEMMA 4.7. If x E- A1(N), then det(VJ(K) n yV'(K)y-l) = det(Vj(K)). 
Moreover, 

V'(K)Y-'Vj(K) = VZ(K)y-lFj and Frylf- [Fiy i 
= 
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Proof: The last assertion follows from the first by [31, (2.19.3)]; so, we shall 
prove the first assertion. From the definition of A1(N), we see easily that 
det(V n xtVx-t) = det(V). Then we have that 

V' n 1 = tjVt7' r n tjxtVx -tt-1 = tj(V n xtVx-t)t-1. 7V'7- i I I I I 

This shows that det(VJ n yVi-y-1) = det(VJ). We shall show that 

(Vj(K) n yVW(K)y-1) D (V' r yv nl W (K))r 
In fact, if u = yu'y-1 for u E VJ(K) and u' E Vi, then u' = y-'uy is con- 
tained in Vi(K). This shows the above inclusion. The other inclusion is obvious, 
and hence, we have VJ(K) n yV'(K)-K = VI n ryV y1- n C+ (K). Then, we 
see that 

det(Vj(K) n yV'(K)y-1) = det(Vi r yVn y1 n 9+(K)) 
= det(V' n yViy-1) n det(g+(K)) 

= det(Vi) n det(g+(K)) = det(Vj(K)). 

For any field extension K/I(v) (not necessarily inside C), let 

Sk w I(FE(N); K) = Sk, I( FE(N); 1D(v)) ??(v) K c K[q 

For any t(v)-subalgebra A of K, 

Sk zI(FE(N); A) = SkI,(FE(FN); K) n A[[q]] q. 

For an t(v)-subalgebra A of K satisfying (3.1) for the given v in Z[I], we choose 
the map: a {av } eA, and put 

h 

Sk, w,(N; A) Iffl CViSkW,(FE(N); A), 

where cVj is the constant defined in Corollary 4.3. We can naturally identify 
Sk, W'(N; K) with Sk, 'i(N; (D(v)) ?tD(v) K by Corollary 4.5 and S* , I(N; A) 
with an A-submodule of Sk, , 1(N; K). 

THEOREM 4.8. If K/I(v) is a field extension inside C, then Sk, W, (N; K) 
is stable under the Hecke operator [V1(N)x-tV1(N)] as in Section 2 for all 
x A l1(N). Especially, Sk *W (N; K) is stable under T(n) and TO(n) for all n. 

Proof: With the notation of Lemma 4.6, we have by (2.6c) that 

(f lV1(N) X -V,(N)] j = , tbfYl 1o 

= L(f)YF' 

Since VZ(K)y-LVj(K) = HV'(K)-y-1 by Lemma 4.6, we know from Theorem 
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4.4 and Corollary 4.5 that if f E HO(V1(K), Sk w I(KQab)) = Sk w I(FE(N); K) 
then 

L ( f)'Y is contained in HO(Vi(K), Sk w I(KQab)) 

which coincides with Sk t I(QL(N); K) by Corollary 4.5. This shows the asser- 
tion. 

By this theorem, we can naturally extend the action of the Hecke operators 
T(In), To(In) and T(,n, n) to Sk , I(N; K) for any field extension K/,(D(v) (not 
necessarily in C). The extended operators TO(n) and T(n, n) satisfy the same 
formula as (4.2). 

Now we shall generalize Theorem 4.8 to A-integral cusp forms. We suppose 
that A is a flat t(v)-algebra satisfying (3.1). Firstly we recall the definition of the 
Hilbert-Blumenthal abelian varieties over F. which will be abbreviated as HBAV. 
The details of what follows can be found in [27, ?1]. An HBAV X over a base 
scheme S is an abelian scheme (in the sense of [25]) over S with an algebra 
homomorphism m: t -- End(X/S) making Lie(X/S) into a locally free sheaf of 
rank 1 over t ? zs, where Qs denotes the structure sheaf of S. Then m is 
injective, and the relative dimension of X over S is equal to the absolute degree 
of F. Let X* = PicO(X/S) and define m*(a) E End(X*/S) by the adjoint of 
m(a) for a E a. Then, (X*, m*) becomes naturally an HBAV. The polarization 
module of X is by definition 

9(X) = {X E Homs(X, X*) = m*(a)o= X o m(a) for all a E t}, 

where "*" indicates the adjoint. Then "T 9-> 3(X X sT/T)" is known to be a 
locally constant sheaf on the etale site over S. which has values in the category of 
projective ~-modules of rank 1 ([27, Prop. 1.17]). Let u: X Xs X -> X be the 
multiplication morphism on X and Pl. P2: X Xs X -* X be the two projections. 
Consider the following sheaf on X Xs X made out of each invertible sheaf L 
on X: 

{(L) = M*(L) ? ?l*(L)-l @ p2 

Note that the value at X of the relative Picard functor for X/S is given by 

g?AIX7S(X) 

{ group of invertible sheaves on X Xs X } 
{ subgroup of sheaves of the form p * (M) for an invertible sheaf M/X } 

Then A(L) gives an X-valued point of ?A9cxXs(X). Now suppose that L is 
relatively ample. Then, it is known that A(L) is contained in the connect- 
ed component ?ie /S/(X) ([25, VI.2]). Since ?AijeTS(X) Homs(X, X*) 
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([25, VI]), we have a homomorphism corresponding to {(L): 

A(L): X X* over S. 

By definition, a polarization of X is an S-homomorphism X: X -* X* such that, 
for every geometric point s of S, the induced A: X -* X* for the fibers X 
and X* at s E S is of the form A(L) for some ample invertible sheaf L on X 
([25, 1.2.6.3]). Put 

9+ (X)= {X E 9(X) X is a polarization for X}. 

Then, it is well-known that there is an b-linear embedding i: 97(X) -* F such 
that i induces an isomorphism: 9+(X) - i(3_(X)) n F+. Thus 9+(X) gives a 
notion of positivity on 9(X) ([27, 1.15] [3, ?4]). 

In order to give the definition of the spaces of modular forms in this context, 
we fix a positive integer No and a fractional ideal e. Let d be the absolute 
different of F. We shall consider the moduli problem of quadruples (X, X, W, i), 
where X is an HBAV over a ring A, X: 9(X) - e which induces an isomor- 
phism: 9+(X) co, X is a base of t ?z A-module H0(X, 01/A) and 
i: N41d'/d` 'z uN? I- X is a FOO(No)-structure over A (cf. [3, ?5]). Here UN 
is a finite flat group scheme over Z which is the kernel of the multiplication 
by No on Goal. To give w is equivalent to giving an bilinear isomorphism: 
Lie(X/A) O1 ?z A. Let k, v E Z[r] be as in Section 3, and suppose that A 
is an t(v)-algebra. Then the modular forms for FOO(No) of weight k over A are 
functions f of isomorphism classes of quadruples (X, X, w, i)/A' for all A-alge- 
bras A' such that 

(4.9a) f((X, , c5, i)/A') E A', 

(4.9b) f((X, X, a@, i)/A') = a kf((X, X, O i)/A) 

for a e (t~ z A')X, 

(4.9c) If p: A' -* A" is a homomorphism of A-algebras, 

f((X, A, X , i)/A' X A") = p(f((X, X, C, i)/A')) 

When F= Q. an additional condition on the holomorphy at each cusp is 
necessary. However, the case of F = Q has already been treated in [12, ?1]; so, 
we hereafter assume that F * Q. The space of modular forms over A will be 
denoted by "fh'k(TOO(NO), e; A). 
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An (unramified) cusp on FOO(No) over A is given by the following data 
([3, ?5], [19, 1.1]): 
(4.10a) two ideals a, 6 with a{- = a 

(4.lOb) an t-linear isomorphism 8: NO-14/4- N(O-1a/a-1, 

(4.10c) an t ?z A-linear isomorphism j: a- 1Z A -t ? A. 

The evaluation of modular forms at the generalized Tate curve: (Tatea (q), 
Xcant Wcan(I) 'can(8)) as in [19, (1.1.13-17)] (or [27, ?4]) gives the following 
q-expansion of f E 1k(F0O(N0)5 e; A): 

f(a;, 6,8, j) = E a((; a. 6, 8, j; f)q4 E A[[q]]e, 
( E ad+ U (0} 

If XF/Q(a) is a unit in A, then we have a canonical isomorphism 

ican a_ z A =_ t (z A. 
For each a C FAX with a = at, we can choose an isomorphism 

(4.11) 8a: N- 14/t = N(O 7/i _ NO- la- '14/- 1' = NO- 1a- 1/a- 1 

W W 
X a,-x. 

When JV'F/Q(a) is a unit in A, we write f(a) for the q-expansion of f in 
4k( FOO(NO), A; A) at (at, ae- 1 Ea. Ican) Here are the q-expansion principles (cf. 
[195 (1.2.15-16)], [35 (5.4-5)]): 
(4.12a) If f(z, 6,8, j) = 0 for f E A k(rFO(No), e; A) at a cusp (a, 6, 8, j) 

then f = 0; 
(4.12b) For each t(v)-subalgebra AO of A, if (a, 6, 8, j) is in fact a cusp over 

A0 and iff(a, 6, 8, j) C A 0rq]],a for f E A k(FOO(NO), ; A), then 

f EJ1k(roo(NO) 5; A0). 
Now we shall clarify the relation between the classical space 

SkI, (FE(N); A) and newly defined 'kk('Oo(N), e; A). To do this, for each 
integral ideal a, put 

FOO(NO; a) 

={ d (a d) SL2(F) a, d E t c E Nosh a - 1 d-1e No b c a,} 

Over the complex number field C, to give a quadruple (X, X, w, i) is equiv- 
alent to giving a triple (Y. X, i) consisting of an t-lattice Y in F QC = 
Fc (-C'), an B-linear embedding i: No- 14a 1/a? J\To 1 N / 9 and an isomor- 
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phism X: AIt A a-?ziJ1 which is induced by an alternating form 
K , ): x E f-f- *d-'W such that 

(x, y) = a Im(xy) for some a E F +x. 

(Here Im(xy) means the imaginary part of xy E Fc over Foc = F ?Q R.) In fact, 
as for the differential X on X(C) = FC/Y, we take the usual one induced by 
du = XLJE duo by identifying Fc with C'. The alternating form X gives the 
polarization of the complex torus X(C) which turns X(C) into an abelian variety 
over C. Thus we have the quadruple (X, X, a, i)/C out of (S, X, i) which 
exhausts all the isomorphism classes of (X, X, o, i) over C. Then, by (4.9b), we 
have 

f aZ, (aa-) 1AX, ai) = a -f(Y?, XI, i) for a C FCX ([3, (5.6)]). 

For each z E HI C Fc, we consider a lattice Yz = 2+ i(zt'C' ? 6z), where we 
regard a and 6 as 4,-submodules of Fc naturally. Define Xcan Yz x Yz -> W-V' 

by Xcan((27Ti)(a + bz), (27i)(c + dz)) = ad - bc and 

ice n No- 41/' -* X = Fc/z 
by the composition: 

a? id 
(No 

l1 

/d-)= (N(o 'V) ?4 -' (No- a/a) ?1 -' 
= No- 'zf/cla- 1 /a- -1f' N- Yzz C Xz. 

The linear fractional transformation z 4 y(z) induces an isomorphism: 

(Mj(y, Z)2'Y(Z), (i1(&Y z)i1(Y, Z)) Xcan) ji(Y Z)ican) (Yz Xcan' can) 

if and only if y E Too(No; aJ -'a). Therefore the function on HI 

Lt, f, F(Z) = f(z, Acan, jcan) forf k(FOO(NO), ; C) 

gives a classical modular form on F = TOO( NO; acJ-'a) satisfying 
(i) fa 6 e: Hi C is holomorphic, 
(ii) fto, I k, wY =fa, , for yEC. 

We denote by f k(FOO(NO; a,)) the space of functions satisfying the above two 
conditions for F = FOO(NO; a,). Moreover, we have: 

(4.13a) The correspondence: f fa 6, e gives an isomorphism: 

'ffk(rOO( No), 31 ; C) -ffk( OOo(No; z-1)) 

such that the Fourier expansion of f. t at cx gives the q-expansion off 
at (a, 6,l Ca, jn) for a E Ff with a= at (by replacing eF(*z) by q4). 
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This can be strengthened as follows: Let A be an t(v)-subalgebra of C and 
suppose that XF/Q(a) is invertible in A. Then for any A-algebra A' in C, 

(4.13b) The correspondence: f f4 e 
induces a q-expansion preserving iso- 

morphism: 

w4k(FOo(NO), z; A') --/k(FOo(NO; a2z-1d); A') 

= X ( o(No Id- 2) ) n) A' [[q ] ]a 

Let F = FOO(NO; z). By the strong approximation theorem, if we write r 
for the closure of F in SL2(Ff), then we know that SL2(Ff) = SL2(F) - = 

F SL2(F). Thus for each x E SL2(Ff), we may choose u E F and a E 
SL2(F) such that x = ua. For f in k(Fr), put flkx = f Ik, ,a. This is indepen- 
dent of the choice of a and w (since det(a) = 1) and is determined only by x. 
We shall quote a theorem of Deligne and Ribet [3, 5.8]: 

THEOREM 4.9. Suppose that A is a discrete valuation ring of a finite 
extension of 0(v). Write a = at for a e Ff, and suppose that XF/Q(a) is 
invertible in A. Iff e .fk(foo(No), c; A') for an A-algebra A' inside C, then 

A~l) Ik( a 0) f(a) inA'[[q]].2 IC-I 

Note that f( 1) e Ak(FOO(NO; J' /)) and f(a) E f#k(FOO(NO; aiz-'z))' 

THEOREM 4.10. For any extension K/1?( v), if an ( v )-subalgebra A 
of K satisfies (3.1), we have a natural isomorphism: Sk , I(N; K) 
S * z,(N; A) OA K 

This result follows from [32, Th. 1] and [33, p. 683] when k & Z t 
(i.e., v = 0) in view of Corollary 4.5. The general case can be derived from a 
result of Rapoport [27] (see also [3, p. 258]) by algebra-geometric means. We 
shall give a proof of this fact in Section 7 by cohomological means. 

THEOREM 4.11. Let A be an integrally closed domain containing 't(v). 
Suppose that A is finite flat over either of t(v) or Zp and satisfies (3.1) for 
v e Z[I]. Then S~k ( W AN; A) is stable under To0(n) for all integral ideals n. 

Proof. By Corollary 4.2, what we have to show is the stability of 
k, 1 (N; A) under -'F/Q(t)ToV(, 6) for all ideals ( prime to N. We fix a map: 
a -> { /v } ( A as in Section 3 and define To( 6, 1) with respect to this map. For 

each prime ideal A of A, let A/ be the localization of A at A. Then A/ is a 
valuation ring and A = nhAA in the quotient field K of A. We now by 
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definition that 

Sk* W I(N; A) = nSW, I(N;AA) inside Sk* t(N;K) 

Then the stability of Sk, W, (N; A) under -A/'F/Q({)To({, 1') follows from that of 
1k (N; AJ). Thus we may assume that A is a discrete valuation ring of 

residual characteristic 6. If A is finite flat over Z(, then we can find a finite 
extension Ko/F(Dv) inside C such that the quotient field K of A is the closure of 
Ko in Q1. Then 

Sk W I(N; A) = GCv i tSkW I(FE(N); A) 

and 

Sk, I(FE(N); A) = Sk v, I(kE(N); K) n Aq q] i 
We put, for each positive integer No, 

wk(FOO(NO; a7); K) = -k(Foo(NO; CT); KO) OK0 K and 

#k(FOO(NO; a7); A) = -k(FOO(NO; CT); K) n A[[q]] . 
Now we take a positive integer No contained in the ideal N. By taking C =aiX, 
we have the inclusion: 

Sk, &, I(FE(N); A) CJk(FOO(NO; Ct'); A) -k(FOO(NO), c; A). 
(4.14) W w 

f(Al) t * 

Note that, for a = at (a E Ff) with (a, N01) = 1, 

f lIT(& 1 4) (x ) = f(xa) =f (x( a2 ? 
0 a-' ?0 

( f 
E 
Sk*. ,,, I (AT; C)). 

Write s =( a-?) and r= (a2 1?) Then fIT(a, a) = fIk, sr. Define 

V(M) = ((a d) E V1(M) b c Ma} foreach ideal Mof t. 

For the above s and r, we can find a sufficiently small ideal M so that 

sV(M)s-1 c V1(NO) and rV(M)r-1 c V1(NO). 
We can also decompose by using the same ti as in (4.3) 

h 

GA = HGL2(F)tiV(M)GoO. 
i=1 

Note that det(s) = 1. Then we can write tjsr = ytiul, at u2 = tis and 3tiu3 = 
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t-r for u1, U2, U3 E V(M) and a, /3, -y E GL+(F). Then we have that 

tjsr = atju2r = atrr'-1u2r = ajtiu3r-u2r. 

Since u3r-lu2r E V1(No), by writing f for f', we see from (2.6c) that 

(fk, &sr), = fjlk, try = (fjlk, a) k,) 

We may assume that s a mod MM2( ) and det(a) = 1 by the strong ap- 
proximation theorem, since det(s) = 1. Then, we see that 

fIkWa ftilk( 0 a 0) =f (a) by Theorem 4.9. 

On the other hand, we can write /3Oaiu0 = a -a2 for oe EFx and uo < E . 

Then, we can choose (0 1) as /3. Thus we see that if fj(a) = Ea(t)ql, 

(fIT(a, a))i = k`wEa(()q/3ol 

If f e Sk w, i(N; A), then fj E CV j/k(FOO(NO), ajd; A) by the inclusion (4.14). 
Then by Theorem 4.9, we know that 

(ftT(a, a))i 
k 

3 wCv .Sk, I(FE(N); A). 

Note that /30~?z~ = al -2 and c = "F/Q(azj) 1d'ia)v1. Since 
XF/Q(a,) is 

invertible in A (i.e. at is prime to 6), we know from a straightforward calculation 
that 

0 CjA = c, A. 

This shows that if a is prime to eNo, then 

Sk w I(N; A) is stable under XF/Q(a)((a)TO(4a, a). 

Now write simply m for [t + n + 2v]. Since we know from (3.9) that 

XF/Q(a)TO(a, a) = 

and (a)n only depends on the class of a in ClF(N) as shown in Section 3, we 
can take ideals a, 6 of t such that avz is prime to No/, a and 6 are in the same 
class in ClF(N) and ArF/Q(a/) { a-}A + 'F/Q(e)mf{-2v}A = A. Then 
To(a, a,) + To(6, 6) is a unit multiple of (aK), This shows that under the action 
of ClF(N), S*W , 1(N; A) is stable. For a general ideal a prime to N but not 
necessarily prime to (No, we know that 

XFQ(4a)T0(a, 4a) = XFQam{-2} a 

Since XF/Q(a/) {a-2} is an element in A (even when - t < n < 0; i.e., 
0 < k < 2t), S*kt(, AN; A) is stable under XF/Q(a)TO(a, a), which finiishes the 
proof. 
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Here we record a byproduct of the proof of Theorem 4.11. 

COROLLARY 4.12. Let A be an t(v)-algebra as in Theorem 4.11. Then 
1k~w(N; A) is stable under the action of the finite group ClF(N) via the 

operator (a), for a e I1(N). 

For the stability of Sk kW,1(N; A) under To(n), the assumption that v (and 
w) is integral and n - 2v (and k - 2w) is absolutely necessary as otherwise 
one can construct counterexamples [34, Remark 2.9]. 

5. Duality theorems between Hecke algebras and spaces of cusp forms 

Let A be a Dedekind domain containing t(v) (inside C or Qp) satisfy- 
ing (3.1). Then by Theorem 4.1, S k, W (N; A) is stable under TO(n) for all 
ideals n C t and hence is stable under Ak ,(N; A). We shall define a pairing 
K v ): (N; A Xk, i(N; A) -X-A A by 

(5.1) (h, f) = a(t, flh). 
THEOREM 5.1. The pairing (5.1) induces isomorphisms: 

HomA(kJW(N; A), A) Sk wi(N; M2(F); A), 

HomA(S w ,(N; M2(F); A), A) AkW(N; A) 

Proof Firstly, we shall assume A to be a field. Since Sk, , A(N; A) and 

k, W(N; A) are of finite dimension by Corollary 4.5 or Theorem 3.1, we shall 
prove the nondegeneracy of the pairing. Suppose (h, f> = 0 for all h; then from 
Corollary 4.2, 

(5.2) a(n, f) =a(t, fITO(n)) = (TO(n), f) =0 for all ideals n. 

Now f = 0 by Proposition 4.1. Conversely if (h, f) 0 for all f, then for all 
n e Il(l), 

a(n, flh) = a(t, fIhTo(n)) = (t, fITo(n)h) = (h, fITo(n)) = 0. 

This shows that f Ih = 0 for all f and hence h = 0 as an operator. This finishes 
the proof in the case where A is a field. For the general case, we may assume 
that A is a valuation ring by localizing A at prime ideals if necessary. Let L be 
the quotient field of A. What we have to show is the isomorphism: 

Sk ,I(N; A) HomA(AkW(N; A), A). 

By definition, Ak W(N; A) is an A-subalgebra of Ak W(N; L). Since kW (N; A) is 
finite over A, AkW (N; A) ?A L is a subalgebra of Ak W(N; L). Thus we can 
extend any 4 E HomA(Ak t0(N; A), A) to an L-linear map 4: 4k, (N; L) -* L. 
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Then by the duality for L already proved, we can find f E Sk*,,,, ,(N; L) such 
that ?(h) = Kh, f) for all h E AkW(N; A). Then we know that for all ideals 
n E 11(1), 

a(n, f) = a(t, f|TO(n)) = (To(n), f) = O(To(n)) E A, 

since T0(fl) E Ak J(N; A). This shows that f E Sk . (N; A), and the proof is 
completed. 

In the same manner as in [15, ?0], we get from Th. 5.1: 

COROLLARY 5.2. Let C denote C or Q, according as A C C or A c QP. 
Then we have bijections: 

Spec(Ak W(N; A))/A(C) = HomAalg(Ak J(N; A), C) 

{fe SkW'i(N;C)|flTo(n)=a(n,f)f forallw 

Spec( krw(N; A))/A(Qp) = HomA-alg k,(N; ), Qp) 

(fe Sk,wI(N;C)f T|o() =a(n,f)f with 

ja(p,f) 1=,1 

Now we fix a finite extension K of Qp inside Qp containing 4)(v), and let (9 
denote the p-adic integer ring of K. We fix an ideal N prime to p, and define, 
for A = (9 or K 

Sk, W. I(Np??; A) = lim S * w I(Npa; A). 
a 

For each element f e SKt ,(Np?; K), we shall define a p-adic norm by 

(5.3) If lp = Sup Ia(n, f)l1p. 

By Theorem 4.10, If I is a well defined real number. Let Sk, , w(Np?; A) for 
A = (9 or K be the completion of Sk W, ,(Np?; A) under this norm. By defini- 
tion, the function 

a: 11(1) X Si~t ,(Np??; A) A given by (a, f) a(a, f) 

is extended by continuity to 11(l) X Sk W, ,(Np?; A), and the norm of each 
element f of S kt, ,(Np?; A) is again given by (5.3). By the commutativity 
of (3.5) and by Th. 4.11, Ak w(Np'; (9) acts naturally and faithfully on 
Sk W(Np'; (9) and by continuity, its action extends to Sk, , I(Np'; (9). Thus 

we can define a pairing 

K , ): Ak,( NPO C9) Xk, WI(Np; 9) --*W (9 again by (5.1). 

This content downloaded from 129.206.120.85 on Mon, 16 Sep 2013 05:28:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


336 HARUZO HIDA 

THEOREM 5.3. The pairing K ) induces isomorphisms: 

A ,w(Np'; (9)) Hom . Sk z(p?; (9)() 

Sk~w l(p??; (9) H Ho(kw(Np'; (9), (9). 

One can derive this theorem from Theorem 5.1 in exactly the same manner 
as in [11, II, Th. 1.3]; so, we omit the proof. 

COROLLARY 5.4. If v = 0 and k ? 2t (k 0 0), we have a natural isomor- 
phism: 

Sk* W, I (Npo?; (9) _S2t t (Np ; (9) 

which preserves the map: (a, f) 4 a(z, f). Moreover, for the ordinary part, 
we have a similar isomorphism for all pairs (k, k') with k - k' and k ? k' > 2t: 

eSk, WI(Npo?; (9) eS *,1,I(Npo; () (w = v + k-t, w' = v + k' -) 

which preserves the map: (a, f) -4 a(z, f). 

This follows from Theorems 5.3, 3.2 and 3.3. Hereafter identifying 
eS*kW (Np'; (9) for all n ? 0 (k = n + 2t, w = v + k - t = n + v + t), we 
write SV~rd(N; (9) for eSk* 1(Np?; (9) and put S1~rd(N; Qp) = Sord(N; (9) (go QP. 

COROLLARY 5.5. We have a bijection: 

Spec (h d(N; (9)) )/(Q) = Hom 1g(h v (N; (9), Qp) 

- (fE Svrd(N;Qp)f To(n) = a(n, f)f 

for all n E 1l()l)} 

This follows from Theorem 5.3. For the proof, see the proof of the next 
theorem whose assertion is a little stronger than Corollary 3.5. We shall prove 
this by assuming Theorem 3.4 which will be in turn proved in Section 12: 

THEOREM 5.6. Let A: hVd(N; (9) S be a A-algebra homomorphism, XIr 
be the quotient field of the image of X and f be the integral closure of A in X'. 
For each P E Xf() = Hom-Alg(f ,Qp), we define Xp: h?.7'(N;_(9)- Q9 by 
P o X. Then there exists a unique p-adic cusp form fp E S(rd (N; Qp) such that 

fplTO(n) = Xp(To(n))fp and a(n, fp) = Xp(To(n)) for all -ideals n. If P E 
Xalg(f) and n(P) ? 2v, then Xp(To(n)) is an algebraic number in Q for all n, 
and when a(n, fp) = Xp(To(n)) as a complex number by the fixed embed- 
dings: Q Qp and Q " C, fp coincides with a complex cusp form in 

Sk, W(Npa(P), cp; C) for k = n(P) - 2v + 2t, w = n(P) - v + t. Conversely, 
suppose there is a non-zero common eigenform f in Sord(N; (9) of all T0( n). Then, 
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there exist a A-algebra homomorphism X: h?jd(N; (9) -- Y and a point P E 

Spec(f )(Cd) such that f is a constant multiple offp. Iff is a complex cusp form 
of weight k > 2t, then P as above belongs to 9aig( ). 

Proof By definition, X p has values in the p-adic integer ring (9' of a finite 
extension K'/K. Since h'jd(N; (9') = h~jd(N; (9) (o (9' by Theorems 3.1 and 3.3, 
we can extend vX to X': h~jd(N; (9') by the combination: 

Word(;6 X (9 
Aid >al6 hdN; (9) (go X?E1y? (9~ 

W W 

a(b I-* ab 
Let A' be the subfield of Y generated by (9' and X, and let f' denote the 
integral closure of A in A'. Replacing X and f by X' and f', we may suppose 
that X has values in (. Then by Theorem 5.3, we can find fp E SVrd(N; (9) such 
that Xp(h) = (h, fp) for all h E h? d(N; (9). Then we see that a(n, f, ) = 

(To(n), fp) = Xp(To(n)) for each ideal N, and 

a(m, fpT0(n)) = (To(m), fp T0(n)) = (To(m)To(n), fp) = Xp(To(9)TO(n)) 

= Xp(TO(n))a(m, fp) 

for ideals X and N. This shows that fpITO(n) = Xp(TO(N))fp. If P E Xajg 
and n(P) ? 2v, then Xp factors through 4k J(Np (P) cp; K) for k = n(P) - 2v 
+2t and w = n(P) - v + t by Theorem 3.4 and hence factors through 

4k, w(Np(P); K). Since 

4k w(N P ; K) = 4k, w(Npa(P); KO) ?K0 K 

for a suitable finite extension Ko/F(Dv) inside K and 4k, w(Npa(P); Ko) is of finite 
dimension over Q by Theorem 3.1, the restriction of XP to Ak w(Np(P); Ko) has 
values in Q; in particular, Xp(TO(n)) E Q for all N. Then by Corollary 5.2, fp is 
contained in Sk* , (Npa(P), cp; C). 

Now we shall show the converse: If f E S rd(N; (9) is a common eigenform 
of all Hecke operators TO(n), then we can define an (9-algebra homomorphism 
t: h?rd(N; (9) -- (9by fIh = 1(h)f. Then, Ker(j) contains at least one minimal 
prime ideal Ah of ho d(N; (9); namely, there exist a A-algebra homomorphism 
X: hord(N; (9) Y with kernel Ah and a point P E Spec(f)((9) such that 
4 = P o X = X P. Then 

a(n, f) = (TO(n), f) + (To(z)jf TO(N)) = Xp(TO(N))a(t, f) 

= a(n, fp)a(&, f) for all n. 

This shows that f = a(z, f)fp, which finishes the proof. 
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6. A theorem of Matsushima and Shimura 

In this section, we shall give an exposition of a result of Matsushima and 
Shimura [22] which relates the space of cusp forms to the cohomology groups of 
certain sheaves on modular varieties. In this and the following Sections 7, 8, 9 
and 10, we treat general quaternion algebras B/F which may ramify at sonle 
places of F. Fix a maximal order R of B as in Section 1. For each place a of F 
outside 'B, we identify R, = R ?i 'a with M2(0) if a if finite and with MJ(R) 
if a is infinite. Let U be an open compact subgroup of R X. We define a 
subgroup Upof G B by Up = {x E G BIx E U) and UP = {x E Ujx, = 1). We 
shall decompose 

h h 
B Bti G BtjUG B (G B =GBfl G BG B, GA = lGQtHUGoo HGQ? ( GQ Q f z+) 

i=1 i=1 

for ti E GAB such that ti G GE and t1 pE Up. As in Section 2, we put 

Fi(U) = tiUGO+t- n GQ= tUG tr- n GQ+, 

FZ(U) = Fi(U)/FXn Fi(u) 

which are discrete subgroups of Go,+ and Go,+?/Fo. We define a complex 
analytic space Xi(U) = F1(U) \ "B (COB - HIB), which is a manifold if F (U) 
is without torsion and is compact if B is a division algebra. We shall construct 
sheaves on the modular variety X(U) = GQ\ GA+/UC + = GQ \ GA/UCoo+ 
(GA= Gf Goo+) out of a right module M of Up or Go. The case where we 
consider right Go.+-modules M (resp. right Up-modules M) will be referred to as 
Case x (resp. Case p). We suppose that 

(6.1) M is a finite dimensional real vector spaces in Case oo, and M or its 
Pontryagin dual module is a Z P-module of finite type in Case p. 

We let GQ act on GA x M from the left by a * (g, m) = (ag, m) and let 
UC,, + act on it from the right by 

( (gu, mucc) in Case o, 

(gm) 8 l (gu, mup) in Case p. 

Giving M the discrete topology, we consider the covering space of X(U): 

X(U) = GQ\GA X M/UCQ,+ 

We denote by tM the left Up or G., + module whose underlying module is M but 
whose left action is given by u * m = m u-1. Let FV(U) act on tM through the 
natural inclusion: F?(U) " Up in Case p and F'(U) G.+ in Case ox. Giving 
tM the discrete topology, we consider the covering space #&(U) = 
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Fr(U) \ B XtM, where we have let F'(U) act on SB Xtm from the left by the 
diagonal action. 

PROPOSITION 6.1. Put z0 = (- 1 . ., - 1) E 2B Then we have iso- 

morphisms 
(i) X(U) _h=lXj(U) induced by GQtjUGQ,? at u ->tju(ZO) E 

(ii) 1( U ) _Uh>1.#j(U) induced by 

GQt iUG00+X M D (at iu, m) ->(tj, 00uo"(ZO) tj, CUUM) E= -B X'MI 

where a = p or xc according as we are in Case p or in Case ox. 

Proof The assertion (i) is well-known. We shall prove (ii) only in Case p 
because Case x can be treated similarly. Define 4: GQt1 UGOO + X M -2 'B XtM 
as in the second assertion. Then, for /3 E GQ and s E UC +, we know that 

k(fl3at us, m *Sp) = t Ou( t S S- = (tju MO). 

If at u = t u' for u, u' C UGO and a E=- GQ, then a = tju'u-itp-' and thus 
a c r j(U). Writing m = t'f u m and z = t1 ,u(jzO), we have 

4(t u', MO) = (tj uO(zo), tu u/mo) = (a(z), am) 

since a = tju'( t u<) 

This shows that 4 induces the isomorphism in (ii). 
If FP(U) is without torsion and if Fi(U) n Fx acts trivially on tM, Xi(U) 

is locally isomorphic to the manifold Xi(U), and we can consider the sheaf of 
continuous sections of X#i(U) on Xi(U). This sheaf will be denoted by the same 
symbol -#j(U). Let K/Qp be a finite extension in Qp containing Ko as in (1.1). 
Let (9 denote the p-adic integer ring of K. Then, we consider the sheaves on 
X(U) or Xi(U) corresponding to the module L(n, v; A) for any (9-algebra A in 
Case p and any R-algebra A containing Ko in Case co. The corresponding sheaf 
will be denoted by 

?/(n,v; A)/x(u) and ?i(n,v; A)/xi(u) 

(under the condition: n + 2v - 0, Fi(U) n Fx acts trivially on L(n, v; A) 
either if U C U1(p) for odd prime p or if U C U1(4)). For simplicity, we shall 
assume that ti X = 1 for all i, and for f C Sk w, J(U; C) ( C 'B)' we write f for 

A as in (2.4b). Then, we know that f c Sk ,, j(F(U); C). For each subset J 
of IB' we put J={TEIBIT J} and dz1=(A71dz) A (A di ) as a 
differential on rB. For y c C G., 

(6.2a) dz, a y = j(y Z) -2tBp(y)B dZ. 
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We define for n = n, r Z[I], 

nn~(Z) = qT(ZT) H'n(Z) T L(nB, vB; C) for z C 2B by 
7EJ TEJ 

~(z7) =E (~ z7) i ii t 
(( 0 1)( ZT)) ( 

X ) 

i=O I - 0!1j 

where we put (x) = t(Xm, Xmly, . . ., Ym) for 0 < m ( Z. Then we have 

(6.2b) Y rJjY(Z) = J(Y(z))v(Y)nB jJY(Y Z)nB for all y c G~. 

For each f E Sk w J((F(U); B; C), we put 

co(f) = f(z) 1q{(z) dzJ, 
which is a harmonic r-differential form on 92B with values in tL(n, v; C) in the 
sense of [22]. Since n = k - 2t and v = w - k + t, we see easily from (6.2a, b) 
the F'(U)-invariancy of o(f): 

(6.3) O(f)o y= y O(f) for y EF F(U). 

Thus if Fi(U) is without torsion, we can regard c( f) as an r-differential form 
with values in the sheaf Y'i(n, v; C)/x(u). Thus by assigning the de Rham 
cohomology class of o(f) to f c Sk wj (F(U); C), we have a morphism: 

Sk W J(IF(U); C) - Hr(Xi(U), (n, v; C)). 

When Fi(U) has non-trivial torsion elements, by choosing a sufficiently small 
normal subgroup F of FZ(U) of finite index without torsion, with a slight abuse 
of symbols, we write, for a field K of characteristic 0, 

Hr(Xi(U), Yi(n, v; K)) for H r(F \ -B,, Y(n, v; K )) 

where Y(n, v; K)/(p\,B) is the sheaf on F \ 92B defined in exactly the same 
manner as Yi(nn, v; K)/x,(L). This space is determined independently of the 
choice of F. Then, the above map induces a morphism: Sk t, J(U;C) -_ 

Hr(X(U), (n, v; C)). If r = 2s (r = 'BI = dimc-'B) with 0 < s c Z, we put, 
for each J C 'IB with IJI = s, 

Co = A Im(z) 2dzT A d;ET 

Inv(X,(U)) = E CCJ/X (U) C Hr(Xj (U), C), 
111= S 

Inv(U) = ? Inv(X,(U)). 
j 
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When r = 0 (i.e., B is totally definite), we denote by Inv(U) the space 
defined in (2.4d) under the same symbol. Then we have the following result of 
Matsushima and Shimura: 

THEOREM 6.2 ([22, ?4]). Suppose that n + 2v 0 0 and n 2 0 and that B is 
a division algebra. Put k= n + 2t and w = v + k - t. Then, we have a 
canonical isomorphism induced by f (-> c(f): 

H rfX(U), T(n, v; C)) { Inv(U) @ (? Sk w J(U; C)) if r is even and n = 0, 
~~ <! JCICIB 

? SkW, J(U;C) ifeitherrisoddorn 0. 
VJCIB 

In fact, in [22, ?4], the case where B is indefinite is studied, but the totally 
definite case follows from (2.6b). This result has already been generalized by 
Harder ([5], [6]; see also [7]) even for B = M2(F) with an appropriate modifica- 
tion, but we will not need this general fact later. 

We shall now give a definition of sheaves Y(n, v; A) for global z(v)-alge- 
bras A. Let L be a finite extension of the field Ko as in Section 1, and let A be 
the integer ring of L. Since GfB naturally acts on L(n, v; Lf) and hence on 
tL(n, v; Lf) (here Lf is the finite part of the adele ring LA of L). We can 
consider ti * tL(n, v; A) and 

tLi(n, v; A) = t tL(n, V; A) n tL(n, v; L), 

where A denotes the compact ring A ?Z Z. Then naturally, FZ(U) = 
tiUGO? t7' n GQ acts on tLi(n, v; A). If F (U) is without torsion, then we can 
consider the sheaf 

i(n,, v; A) = ri(U) \ ZB x tLi(n, v; A) over Xi(U), 
h 

(n, v; A) = LHYi(n, v; A) over X(U). 
i=1 

There is a canonical and functorial isomorphism 
h 

(6.4) Hr(X(U), ?6(n, v; A)) _ Hr(FZ(U), 'L1(n, v; A)), 
i=1 

where the right-hand side is the group cohomology group for the Fi(U)-module 
tLi(n, v; A). Note that the right-hand side of (6.4) is defined without the 
assumption of torsion-freeness of rf(U). 
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For each A-algebra D, we define the sheaf Y(n, v; D) on X(U) by 

Y(n, V; D)/x(u) = Y(n, v; A) ?A D/x(u). 

THEOREM 6.3. Suppose that Fz(U) is without torsion for all i = 1,..., h. 
Let D be an A-algebra. Suppose one of the following conditions holds: 

(i) D is the integer ring of a finite extension of L; 
(ii) D is a field extension of L; 
(iii) D is a localization of A. 

Then, we have a canonical isomorphism: 

H r(X(U), Y(n, v; D)) _- Hr(X(U), Y(n, v; A)) OA D, 
where Hc means the cohomology group with compact support. 

By this theorem, the natural image of Hc(X(U), Y(n, v; A)) gives an 
A-integral structure on Hc(X(U), Y(n, v; C)) and on Hc(X(U), Y(n, v; Qp)). 

Proof We firstly suppose that D is the localization of A by a multiplicative 
set S C A. For each 0 = a SI, we consider an A-module a'-A C L. Then we 
have an exact sequence of A-modules: 

0 -* LO(n, v; A) -* Li(n, v; a-A) -* Li(n, v; a-A/A) - 0. 

This gives another exact sequence: 

H r-1 (X(U), Y(n, v; a-'A/A)) H~r(X(U), T(n, v; A)) 

HCr(X(U), Y(n, v; a- A)) 

HCr(X(U), Y(n, v; a- A/A)) 

By taking the infective limit relative to a c S, we have another exact sequence: 

lim H~r-'(X(U), 5(n, v; a-'A/A)) 
a 

Hr(X(U), Y(n, v; A)) 

Hr(X(U), 2'(n, v; D)) 

lim H~r(X(U), _W(n, v; a-'A/A)). 
a 

Any element in the modules at the extreme right and left of the above sequence 
is killed by some element in S. Therefore, their tensor product with D becomes 
trivial. Thus by tensoring D to the above sequence, we have 

Hr(X(U), Y(n, v; A)) ?OAD Hr(X(U), 2(n, v; D)) OAD 
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since D is A-flat. Secondly, let A be a prime ideal of A, and let A,? be the 
localization of A at A. As we have already seen, 

H r(X(U), (n, v; As) _ Hr(X(U), Y'(n, v; A)) PA A. 
On the other hand, by the universal coefficient theorem in [2, II, Th. 18.3], for 
any flat Af-algebra D, we have 

Hr(X(U), Y'(n, v; A)) ?AD Hr(X(U), 5Y(n, v; As)) ?A D 

_ rC(X(U), Y'(n, v; D)). 

This result includes the Case (ii). Finally, assuming the first condition (i), we 
have a natural map: H (X(U), ?f(n, v; A)) ?A D -> Hr(X(U), f'(n, v; D)). 
After localizing this map at each prime ideal A, we get an isomorphism by the 
results already proved. Therefore the original map must be an isomorphism since 
these cohomology groups are of finite type as modules over A or D (see e.g. 
[28]). 

The type of sheaves over X(U) discussed here was first considered by 
Langlands (see e.g. [21]), but the definition of these sheaves using local action of 
Up or Go.+ is newly adopted here under some influence of Harder [6, p. 131] 
and the work of Matsushima and Murakami which precedes [22] and is very well 
suited to p-adic arguments. We may also note that the definition in Case p 
reminds us of a work of Weil [37] in the case of GL(1). 

7. Hecke operators on cohomology groups and proof of Theorems 3.1 
and 4.10 

We shall firstly define Hecke operators on Hr(X(U), Y'(n, v; A)) and on 
ED Hr(ri(U), tLi(n, v; A)). After that, we shall give a proof of Theorems 3.1 
and 4.10. Let a be either the place p or x of Q. Let A be a multiplicative 
semi-group inside R = R ?z Z p, and let U and U' be two open compact 
subgroups of GCB such that Up c A and Up' c A if a = p. Suppose that rF(U) 
and IF(U') are torsion-free for all i when we consider sheaf cohomology groups. 
Let M be a right A-module or a right G.,-module according as a = p or x 
satisfying (6.1). We suppose that E acts trivially on M in order to have the 
non-trivial sheaf A'(U). Let x c GfQC. such that xP e A if a = p. Write 
Ux = Xf'UXf in G , and put V= U n (U')x . Then Vx = Ux n U'. Now we 
shall define a morphism 

[x]: GA X M -e GA X M by [x](g, m) = (gx, m x.) 

Then we see that, for a E GQ and u E VCQ, +, 

[x](tagu, mu,) = (agux, mu x0) = (agxux, mxux), 
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where uX = x-'ux. Thus the map [x] induces a morphism of sheaves [x]: 
XY(V) -* 4(VX), and we then have the induced morphism: 

(7. 1a) [x]: Hq(X(V), X#(V)) ---Hq(X(Vx), _(Vx)). 
Let pr: X(VX) -- X(U') be the natural projection, and consider the sheaf 
Y= (pr)*(pr)*(A#(U')) = (pr)*(AI(VX)). We take a Galois ('tale) covering 
m: Y -- X(U') which factors X(Vx). Put 

,J' = 7T * 7r*(WI)) 

C = Gal(Y/X(U')) 
and 

Xe= Gal(Y/X(Vx)). 

Since pr is an open map (in fact, it is a local isomorphism), for each open set 
o c X(U'), we have that F(0, Y) = F(pr-1(0), #(Vx)). If 0 is sufficiently 
small, then there are disjoint open subsets { 0T}T S of Y such that 7T induces 
07 - 0 for each T. Then 

Y'(0) = *(( U))( OT) e7Cr( #(U")) 
and 

H0(w, Y'(0)) = F(O, #(u')). 
On the other hand, we have a natural morphism: Y '. For s E Y(O), we 
define Tr(s) = Z7T 7a(s) E H0(9, Y'(0)). This extends to a morphism of 
sheaves Tr: Y A(U'). By definition, Hq(X(U'), Y) = Hq(X(Vx), ,I1(Vx)), 
and we thus obtain the trace map 

(7.lb) Tr U71vx: Hq(X(Vx), yk(VX)) Hq(X(U'), _k(U')). 

We also have the restriction morphism: 

(7. 1c) res/vv: Hq(X(U), -#(U)) Hq(X(V), _#(V));. 

We shall define [UxU']: Hq(X(U), 4(U)) -- Hq(X(U,), Y(U')) by 
(7.2a) [ UxU'] = Tru/IVx o [ x ] o res u/v. 

Now we shall extend a little the definition of the module L(n, v; A). Let 
K/QP be a finite extension containing Ko as in Section 1 and (9 be its p-adic 
integer ring. Suppose that N is prime to p and that every prime factor of Np is 
unramified in B. Put for /B ? a > 0, 

4a(N) = (XbE X Np C d with a-1 E aNeNp a Np 

C E p)N4Np, and x E Gf }, 
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where A1(N)L = {xLIx E AI(N). Let A be an (9-algebra and X: Za/Zp Ax 
be a character such that XXn+2v induces a character of Za - A. (This is trivially 
true if a is sufficiently large.) We shall now twist the action of YP on L(n, v; A) 
by the character X: We let u E Y bwith = (a d) acton mc L(n,v; A)by 

m u = X(a)(m up), 

where the action of up in the parentheses of the right-hand side is the usual 
action of u on L(n, v; A). Similarly, we can let u E (- )t with = ( b) 

act on L(n, v; A) by m u = X(d)(m. up). The Yg-module (resp. (La)t-mod- 
ule) L(n, v; A) with this twisted action will be denoted by L(n, v, X; A) (resp. 
L*(n, v, X; A)). Thus we can define the action of [ULi(N)xU;i(N)] for x E Y or 
[Va(N)xV~a(N)] for x E (La)t on the corresponding cohomology groups. 
The corresponding sheaves to L(n, v, X; A) and L*(n, v, X; A) on X(U) 
(U c U(i(N) or U C VX(N)) will be denoted by Y(n, v, X; A) and 
Y*(n, v, X; A). 

Let U and U' be two open compact subgroups of za. We shall now modify 
the operators [UxU'] (x E L') analogously to the definition of To(9z) out of T(nz). 
To define the morphism [x] for x E LA, we have used the action of xp on 
L(n, v, X; A), which will be written as m 4 m xp,. Since the underlying 
A-modules of L(n, v, X; A) and L(n,O, X; A) are the same, we may use the 
action of x on L(n,O, X; A), which will be written as m 4 m o xp, to define a 
map similar to [x]: 

(x): Hq(X(V), Y(n, v, X; A)) -. Hq(X(Vx), Y(n, v, X; A)). 

Note that for x E Yl, m x = det(xp)vm o x p. The (9-algebra A always satisfies 
the condition (3.1) since (9 does. We fix a character: Ffx ) a 4 { a v } E A as in 
Section 3. Then {v(x)-v}det(xp)v is a unit in A, and thus we can define a 
morphism of sheaves 

(x): Y(n, v, A; A)/x(v) --- (n, v, A; A)/x(vx) 

by the correspondence: (g, m) 4 (gx,({v(x)-v}det(xP)v)(m o xp)) for g E GB 
and m E L(n, v, X; A). This induces a linear map 

(x): Hq(X(V), Y(n, v, X; A)) -- Hq(X(V), Y(n, v, X; A)). 

We then define (UxU'): Hq(X(U), Y(n, v, X; A)) -- Hq(X(U'), Y(n, v, X; A)) 
by 

(7.2b) (UxU') = Tru,7vx o (x) ores u/. 

One can formulate the above definitions for L*(n, v, X; A) and L*(n, v, X; A) 
for x E (A )Y and U, U' C (La)t in exactly the same manner as above: 
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Then we have the relation 

(7.3) [UxU'] = {v(x)U)(UxU') for allx E- or x E - 

The operators [UxU'] and (UxU') depend only on the double coset UCO xU'CQ+ 
(and the choice of the map: a > { av }) and are independent of the choice of x 
in UCQ xU'CQ+ . Furthermore, one can verify 

[U'xU"]o[UyU'] = [UyU'. U'xU"], (U'xU")o(UyU') = (UyU'. U'xU"), 

where the product on the right-hand side is taken in the abstract Hecke ring as 
in [36, III]. By decomposing 

{x e Mf(N)Iv(x)t= n} = HU;(N)xjU,;(N), 

we can define Hecke operators T( 9z) and TO(n9z) by 

T(fn) = A3[U,;(N)xjU,;(N)], To0(f) = (U(N)xiU;(N)) 
i i 

on Hq(X(U;(N)), Y(n, v, X; A)). 

So far, we have only considered sheaves defined locally at a. Now we shall 
extend our definitions of operators (UxU') to global rings A. Let L be a finite 
extension of KO, and let A be the integer ring of L. We suppose the condition 
(3.1) for A. Decompose GA = HLGBt VGB+ and GAB = LIGBti, VxG B +. Sup- 
pose that tj = =til = 1. We put tLj(n, v; A) = tj .tLjnv; A) ftL(n v; L) 
and tL'(n, v; A) = ti' tL(n, v; A) n tL(n, v; L), where the intersection is taken 
in 'L(n, v; Lf) and A = A ?z Z c Lf. Expressing t x = yjtj'ux for x E 
(Gf n R)QCo with u E VG, + and yj e GQ, we have that y, = tju'lxtj'-' E 

tiRti'-Iand thus yj induces a linear map: 

tL1(n, v; A) -tL'((n, v; A) 
W ) 
m > y1- m=m .y1. 

Note that 

Fi(Vx) = tj'VxGG,,t'-1 n GQ - 

y7-itVGOC+tp-y1j n GQ = y Frj(V)yj. 

Then we have morphisms of sheaves: 

[x] j: Yj (n, v; A) /x,(v) Y~i'(n, v; A) /x,(vx 

induced by (z, m) 4 (yp (z), lY'm)I 

(x)i: uj(n, v; A)/xb(v) y'zi'(n, v; A)/x((vx) 

induced by (Z, Im) (y -(z), 
{ vPx W }(y -M) 
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Here, actually, {v(x)-v}(yj- lm) = ({ v(x) -v }Iv(yj)v(m o yj)) is a well-defined 
element of tL'(n, v; A) since ({ v(x) -v I v(yj)v) is a unit in A. We also have 
morphisms of group cohomology: 

[x] j: Hq(Fi(V), tL (n, v; A)) Hq(Fi(Vx), tLj(n, v; A)) 

(x) j: Hq(Fi(V), tLj(n, v; A)) - Hq( Ft(VX), tL1(n, v; A)) 

which are given by 

(j[x] j(ao0. ., aq) = yp'l(y7aOyp',.*., yjaqyp'), 

O(x)(a,...,I aq) = ({v(x) v)v(yj)v) (yjaOyj1,..., yjaqyj) oY 

for each q-homogeneous cocycle (: FI(U) -tj( n, v; A). 
In order to compare this definition of [x]j and (x); with those of [x] and 

(x), we denote by A. the complex field C or the closure of A in Qp according as 
a = oo or a = p. We can define the sheaf Y(n, v; AO)/X(U) locally at a as in 
the beginning of this section. By Proposition 6.1, we have natural isomorphisms: 

4: GQ\GQtjVGOC + X L(n, v; Aa)/VCQo+ -Fj(V)\)i8 XtL(nv; Aa) 
W W 

(cxtju, MO) |>(tj, 0ouZOZ), tj, CUUMO), 

/: GQ \ GQtj` VXG., + X L(n, v; A0a)/VXCQ + -Fi(vx) \B X tL(n, v; A,,) 
W W 

LcttiU LU 0O |i (ZO), tilaUaMO) 

Since tjx = ytA ux we have for any u' E VG+I tju'x = yjti'(uu')x and thus 
GQtjVG?+ x = GQti'VXGO, . This means that the map 

[x]: Y(n, v; Ag)/x(v) --- (n, v; A,,)/X(VX) 

induces a morphism [x] .: Y'j(n, v; AO)/x(v) ~Yi(n, v; AO)/x(vx) We shall 
compute 4)' o [x] o 4V'. To do this, write 

z j, 00 0ulo (ZO) 

and 
m = t. U'MO 

Then 

0(g, mO) = (z' m) for g = atju' (a E GQ and u' E VGOO+). 
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On the other hand, we see that 

' ([x] (g, mo)) = 0'(at ju'x, m0x0) 

= ( ayjt (UU 1)x, mOX) 

= ((t (u u 
)x)C(Z0), 

(ti (uu )x) x;'mo) = (Y1'(Z), y17m) 
since t u'x = yjt'(uu')x. This shows 

(7.4a) p' ? [x] = [x] j ? and 4Vo(x) = (x)j o 0. 

Similarly, when 1I(U) and Ft(U') are torsion-free, we have a commutative 
diagram: 

Hq(Xj(V), 9?j(n, v; A)) -Hq(Fi(V), tL(n, v; A)) 

(7.41b) |[xaj (resp. (x)j) |[x Ij (resp. (x),) 

H(Xi(Vx), Yi'(n, v; A)) - H( F'(Vx), tL'(fn, v ) 

where the horizontal isomorphisms are the canonical ones (see e.g. [28, ?2]). 
Since the covering 7x: X(VX) -+ X(U') and 7T: X(V) -- X(U) are etale 

finite and '7Tx*((n, v; A)/x(U,)) = Y(n, v; A)/x(vx), we have 

TrLJ,/Vx: Hq(X(Vx), Y(n, v; A)) Hq(X(U'), Y(n, v; A)), 

res/vv: Hq(X(U), Y(n, v; A)) Hq(X(V), Y(n, v; A)). 
Define [x] and (x): Hq(X(V), Y(n, v; A)) -- Hq(X(Vx), Y(n, v; A)) by 
[x] = je[x]; and (x) = EDj(x)j, and put 

[UxU'] = Tru,/vx o [XI oresu/v, (UxU') = Tru,7vx o (x) o res1v . 

Then we see from (7.4) the compatibility between the previous definition and 
the new one. 

Without assuming the torsion-freeness of Fi(U) and Fi(U'), we can define 

[UxU'] and (UxU'): Hq(Fi(U), tLj(n, v; A)) 

f Hq( Fi(U), tL'(n, v; A)). 

When B is totally definite, the non-trivial cohomology group is obtained only 
when q = 0, and the space of cohomology groups as above is nothing but the 
space of functions on GA with values in L(n, v; A) on G, satisfying (2.4a) by 
(2.6b), and the operators [UxU'] and (UxU') can be defined as ini Sections 2 and 
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3. Thus we may suppose that B is indefinite. We further suppose that v(V) = 

v(U) = v(U'). Then we can choose ti so that 

GAB = u GQtiVxG1 JGQtYGC + GQtiUG+ ?=HGQtiU'GOC+, 
i i ii 

simultaneously. Then Xi(VX) covers Xi(U'), and Fi(Vx) is of finite index in 
Ft(U'). Thus we have the transfer map and the restriction map: 

Triw()/ri(vx): H (Fi(Vx), tLi(n, v; A)) H (Fi(U'), tLi(n, v; A)), 

resri(u)/Ti(V): H (Fi(U), tLi(n, v; A)) H (Fi(V), tLi(n, v; A)). 

We define 

TU7'vx= f Tfi(uL)/(Tj(vx) and resU/V= f resl(L V 
j i 

and 
[UxU'] = TU7VX o[x] o resU/V' (UxU') = TU/VX o (x) o resJ/vv 

Then by (7.4b), we have a commutative diagram: 

Hq(X(U), Y(n, v; A)) f Hq(ri(U),tL,(n, v; A)) 

(7.4c) [UxU'] (resp. (UxU')) {[UxU'] (resp. (UxU')) 

Hq(X(U'), Y(n, v; A)) ff Hq(fi(U'),tLi(n, v; A)). 

To prove Theorems 3.1 and 4.10, we need several lemmas. 

LEMMA 7.1. Put U(N) = {xE U1(N) withXN= ( d Id- 1 EN=N.} for 
each ideal N of t outside EB. Let ( be a prime ideal of t with residual 
characteristic ( outside E B, and let e be the ramification index of ( over Q. Then 
we have 

(i) If s > 2e/(t1- 1), then Fi(U(ts)) is torsion-free for all i. 
(ii) For each ideal N as above, if there exists a prime ideal ( such that (S 

exactly divides N for s > 2e/(e - 1), then the order of every torsion element in 
Fj(N) is a divisor of A/F/Q(t) s-1(F/Q(t) - 1), where Fj(N) stands for 
Ft(U1(N)). 

(iii) There are infinitely many square-free ideal N outside EB, such that 
1o(N) = Fi(UO(N)) is torsion-free for all i. We can choose N so that the residual 
characteristic of each prime factors of N is arbitrarily large. 

Proof. We first prove the third assertion. We shall identify R1, with M2(,). 
If the image of y F 1(-(1) in 17(1) = 17(1)717(1) n FX is of order n, then 
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8 = v(y)-'y2 is of order n or n/2 in FO(1) and v(3) = 1. We suppose for the 
moment that 8 = + 1. Then F(3) C B is a quadratic extension of F. We shall 
choose a prime ideal ( which remains prime in F(3) and so that the (-adic 
integer ring of F(3) is generated by Ad and 3. This condition on 1 depends only 
on the order n but is independent of the choice of the element 8 of order n, and 
there are infinitely many ( with this property. If 8 EF( 17'(), then as an element 
of M2(0 ) = R a, 8 leaves the subspace { t(x, 0) I x E 41e IC ( /1t)2 stable. This 
is impossible because [3]/{ is a quadratic extension of 4/{. Hence 170'() 0 3. 
Here we have implicitly chosen ti so that ti a = 1. This is always possible. For 
each root of unity D such that [F('): F] = 2, we choose distinct prime ideals (G 
such that {D remains prime in F('), (G 0 > and D and te generate the (radic 
integer ring of F('). Since the number of roots of unity D with [F('): F] = 2 is 
finite, we may put No = Hc, where D runs over all such roots of unity. If 
y E To'(No) satisfies yf = C te , then the above argument shows that we may 
assume that n = 2. If E = 2 with 'q E t >, then 8 = -'y is of order 2. Thus 8 
is conjugate to - 0 or - 1) in M2(C) if one embeds B into M2(C). 
Since v(8) = 1, we know that 8 = - 1 and 8 becomes trivial in 1o(No), and y 
also becomes trivial. If Ec (4X)2, then F(y) C B is a quadratic extension of F. 
The number of distinct quadratic extensions of the form F(Vi) for c E tX is 
equal to 14x/(x)21 . For each c E tx/(,x)2, we choose a prime ideal (e, such 
that e , 2 B. 'e remains prime in F(V',), (e is prime to No and the (e-adic 
integer ring of F(V"E) is generated by t. and Vic. Put N = No* H/ti. We can 
choose {, and {e so that their residual characteristics are arbitrarily large. If 
Et 

= 'q2e with q E tx, then t,, + Wt= n( + =EX t= + 6 Thus the 
condition on {e depends only on the class of c in (4X/(4tx)2). Then an argument 
similar to the case {4 prohibits the existence of a non-trivial torsion element in 
Fo(N). This proves the third assertion. 

Now we shall prove the first assertion. Put 

X= ((a d) E GL2(1) C E tS, a d 1mod Is} 

A= (a d) E M2(t) a, C, d E eS 

We consider the exponential map exp: . X and the logarithm log: X -- 
defined by exp(T) = Z' OT'/n! and log(1 + T) = Z' 1(- 1)'+ T/n. Let us 
firstly check the t-adic convergence of these series. We fix a prime element ?r of 
4, and take a quadratic extension A = t [], which is a complete valu- 

ation ring. Put a= (I 7) as an element of M2(A). Then we see that 
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a - 1-Tc FT sM2(A). Thus if s > 2e/l- 1 (2e is the ramification index of 
A/Z(), the convergence of exp: a -1-a ca-'Xa and log: a'Xa --)- a-1-T 
follows from a standard argument (see e.g. [17, ?3, Lemma 3]). Since 

exp(a-txa) = a - lexp(x) a and log(ax - ax) = a - llog(x) a, 
we have well-defined exp: Am -- X and log: X -- A. Since exp and log are 
mutually inverse, we know that (- X. Since log(xf) = n log(x) for each 
integer n, we know that X is torsion-free. One can always decompose 

G= GQtiUGQ o for U = U(' s) with ti satisfying ti = 1; 

thus, Fi(U) can be embedded into X and hence Fi(U) is torsion-free. Note that 
X = X/X n 4 is also an 6-adic Lie group and is torsion-free. Since F (U) is 
isomorphic to the image of F?(U) in X, F?(U) is also torsion-free. By Proposition 
6.1, the torsion-freeness of Fi(U) for all i does not depend on the choice of ti, 
and hence the first assertion follows. 

Finally we shall prove the second assertion. We have an exact sequence for 
U U({s): 1 --U>/Uj 4 U1({s),U, q 4U - (V{St)X, 1 

w w 
(a b) ad-' mod es 
Sc d} 

If T C r1( N) is a finite subgroup, T injects into ( t/l s,) X since UI/U, n is 
torsion-free. Thus we see that T is a divisor of Xi( os - '(AX( A) - 1) which is the 
order of(at/6?)x 

Proof of Theorems 3.1 and 4.10. We shall prove the two theorems sirnulta- 
neously. By (2.6c), (6.3) and (7.4a), the isomorphism of Theorem 6.2 is equi- 
variant under the abstract Hecke ring R(U1(N), A1(N)). When F = Q, the 
assertions of Theorems 3.1 and 4.10 are well-known (see e.g. [36, III]). Thus we 
may assume that F # Q. Then we can find a division quaternion algebra B/F 
which is unramified everywhere at finite places of F. We fix such a B. Let Ko be 
the finite extension of Q as in (1.1) for this B. Firstly, we suppose that the 
algebra A as in Theorem 3.1 contains the integer ring to of K0. Let L be the 
quotient field of A. We put for each open subgroup U of GL2( ), 

S(U) = ( Sk W J(U; B; C) 
J CIB 

and identify S(U) with the subspace of Hr(X(U), _Y(n, v; C)). We take a 
normal open compact subgroup U of U1(N) such that Fi(U) is torsion-free for all 
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i. Then, by using Hochschild-Serre spectral sequence [16], we know 

(7-5) H (XU>Y(n, V; L))u 
( 

( ED Hr(F (U), li(n, v; L)) 

- HrMN), IL(n, v; L) 

where we have written F1(N) for FI(U,(N)). Since on 

iHr F(N), tL,(n, V; L) 

TUL(N)/U oresUL(N)/U is a multiplication of the degree (X(U): X(U1(N))), Theo- 
rem 6.3 combined with (7.5), shows that 

(EDH ((N), li(n, v; A))) OAC _- H (XU1(N)), Y(n, v;C)). 

Let H = H(A) be the image of ED Hr(F1'(N), tLi(n, v; A)) in S = S(U1(N)) 
under the isomorphism of Theorem 6.2. In the same manner as in the proof of 
[7, 4.6], we can show that H ?A C = S even when r is even and n = 0. Since H 
is stable under the action of R(U1(N), A1(N)), we know that Akn (N; A) -* 

EndA(H). Thus Ak W(N; A) is a flat A-module of finite type. For any A-algebra 
D inside C, H ?A D is a D-submodule of S stable under Ak ,,(N; D) and hence 

Ak W(N; D) - EndA(H A D) _ EndA(H) ?A D 

since D is A-flat and H is A-projective. Since Ak W(N; D) is generated over D 
by TO(N) for all n, we know from this fact 

Ak W(N; D) - Ak W(N; A) ?A D. 

Before proving Theorem 3.1 in general, we shall prove Theorem 4.10. By the 
duality in Theorem 5.1, applying the above identity to D = Ko and with A as in 
Theorem 4.10 for K = K0, we know that 

Sk, W. I(N; M2(F); KO) - Sk W I(N; M2(F); A) ?&A K0. 
On the other hand, by Corollary 4.5, we know that 

Sk, w, I(N; M2(F); KO) - S* w i(N; M2(F); 'F(v)) ?0(v) K0. 

In order to treat the general case where A is an arbitrary '(v)-subalgebra of a 
finite extension K/F(v), we change the notation and denote by L the quotient 
field of A; so, L C K. If there is an element f e Sk, WI(N; L), we can find, by 
the above facts, a e LX such that af e Skt , I(N; A). This shows that 

Sk, W I(N; M2(F); K) Sk w Ii(N; M2(F); L) (?L K 

= S, W I(N; M2(F); A) ?&A K, 
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and thus Theorem 4.10 follows. Replacing H and S by SkW, A(N; A) and 
Sk W1(N; C), we see that the reasoning which proves Theorem 3.1 in the case: 

A D 'o still works well in the general case of A D '(v); so, we now obtain the 
theorem. 

Now we shall determine the structure of cohomology groups 
Hr(X(U1(N)), ?(n, v; K)) as modules over the Hecke algebra when K is a field. 

THEOREM 7.2. Let B be a division quatemion algebra over F unramified at 
every finite place, and put r = IIBI = dimc&?B. For each field extension K/Ko 
for the field Ko as in (1.1), Hr(X(U1(N)), Y(n, v; K)) is free of rank 2' over 
Ak w(N; K) if either k > 2t or r is odd. (Here we have used the notation of 
Theorem 6.2 and Hr(X(U1(N)), Y'(n, v; K)) means ED Hr(F(N), tL(n, v; K)) 
when F( N) has non-trivial torsion elements.) 

Proof Let H = H(A) be as in the proof of Theorems 3.1 and 4.10. Then 
H(KO) is stable under the action of [U1(N)xU1(N)] for all x e GfCQo. Put 
C = CQ,/CO, +, which is isomorphic to { ? 1} IB as a group. Then C acts on H(Ko) 
via [U1(N)cU1(N)] for c e COO For each character ?: C { + 1) and for each 
subalgebra A of C, we define 

H,(A) = {m e H(A)ImIc = c(c)m for all c e C). 
Since C acts on the subsets of IB transitively via J -) Jc as in (2.2a) and since 
the action of c e C induces an isomorphism: Sk w, J(U) Sk, W, 1(U) by Theo- 
rem 2.2, we know that 

Sk, w, IB(N; B; C) _ H(C)- H(Ko) ?&K0 C as Ak W(N; C)-modules 

via f S EYA C-(s) w(f)Is. We can define a non-degenerate pairing 

[: L(nB, vB; C) X L(nBvB; C) _*C 

such that [xy, yy] = [x, y] for y e 17(N) (cf. [29, II], [36, 8.2], [35, (1.2a,b)]). 
Then for f e Sk W IB(N; B; C) and g e Sk W, (N; B; C), we define 

(f, g) = f [f1(Z), gi(Z)] .Im(z)kB du(z) 
i Xi(U1(N)) 

where f = ft and gi = gt, as in (2.4b) and 

dA(z) = Im(z)2tB H fjIEdza A dIj. 

Now let w be an element of 
r- 

such that co= (0 - for v e tN with 
V4N= =MN and o< = 1 for all places a outside N. We decompose 

Sk W J(N; B; C) = ( Sk w J(N, ; C), 
'p 
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where A runs over characters of ClF(N) and 

Sky wJ(NN, ; C) = f {e SkW ,J(N; B; C) f I(a) n = (a)f fort e I1(N)} 

For each f E Sk w, 1(N, A; C), regarding 4 as an idele character, we define 

(fIW)(x) = (v(x))f(xCO). 
Then it is known that W gives an automorhpism of Sk w, I,(N; B; C) (see e.g. 
[35, Lemma 1.3], [8, 3.9]) and if we put Kf g) = (f, g W), then it satisfies 

(fIh, g) = (f, glh) for h e Ak W(N;C) (e.g. [14, Lemma 6.4], [15, ?3]). This 
shows that 

Sk, W, IB(N; B; C)- Homc(SkW <,(N; B; C), C) as an AkW(N; C)-module. 

On the other hand, Skw, O(N; B; C)- S,* w,(N; M2(F); C) as an Ak , (N; C)- 
module by Theorems 2.1 and 2.2. and Proposition 2.3. By Theorem 5.1, we know 

1k W I(N; M2(F); C) -Homc(Ak J(N; C), C) as an Ak w(N; C)-module. 

These facts show that, as Ak J(N; K0)-modules, 

HJ(KO) ?K C Sk wIB( N; C) -Ak, W(N; C) - Ak, (N; KO) (?K0 C. 

Hence we know 

(7.6) He(KO) -AkW(JN; KO) as Ak W(N; Ko)-modules. 

Then we conclude the assertion of the theorem by extending the scalar field to K 
from KoI 

Remark 7.3. We have proved actually a little stronger result than the 
statement of Theorem 7.2. Namely, H(K) for any field extension K/Ko is free 
of rank 2r over Ak W(N; K), even when r is even and k = 2t. 

We shall record a byproduct of the proof of Theorem 7.2 (cf. [14, 
Lemma 6.4]): 

COROLLARY 7.4. Ak w(N; (D(v)) is a Frobenius algebra over 4(D(v). 

8. Comparison between cohomology groups of different weights 

Let U be an open compact subgroup of Rx and suppose: 

(8. 1a) Every prime factor of p is unramifjed in B. 

We suppose the following condition when we consider sheaf cohomology groups: 

(8. lb) Fz(U) is torsion-free for all i. 

Now we shall define several morphisms between cohomology groups. Almost 
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all results here will be formulated for the sheaf cohomology groups 
Hq(X(U), Y(n, v, X; A)) under the assumptions (8.la,b) but can be natu- 
rally reformulated in a standard manner in terms of group cohomology: 
ED -Hq(ri(U),tL(n, v, X; A)), and then the result will be valid without the 
assumption (8.1b). The interpretation is automatic and is left to the reader. 

By definition, L(n, v, X; A) as in Section 7 is the space of homogeneous 
polynomials of variables (Xe, Y,9),g e ,.We evaluate each polynomial P(X<, Y,,) e 
L(n, v, X; A) at (X., Y,,) = (1, 0) for all a e I, and we then have a morphism of 
an A-module: 

i: L(n, v, X; A) -* A. 

Let K be a finite extension of Qp containing Ko as in (1.1), and let ( be the 
p-adic integer ring of K. Let X: Z -*/z8 ()< be a character for integers 
/3 2 a 2 0. For each k e Z[I], we occasionally denote by Xk the character: 

tX D X 4X 
k 

=Hn (X( )k 
C 
(q 

apI 

This notation is consistent with the character Xk: Z(N) -* Zx already defined 
in Section 3 when k 0 O. Since up = (a d) (for u c U0(p3)) satisfies the 

congruence: up- ( ) mod p'3M2Q P) and its action on L(n, v, X; A) for 
A = CQ/p 0 or p- 8/O factors through the matrix (g d) C M2(/P6 )I we 
know that for u e U;M I 

i(P . up) = XXn(a)v(up)vi(P) for P e L(n, v, X; A). 

Then i induces a morphism of sheaves for all U C U;(1): 
i: YD(n) v, Xt; A)lx(u) -). (O, vI XXn; A)/X(UI) 

and hence we have, for A = Ol/p C or p - (O/O, 

(8.2a) i*: Hq(X(U), Y'(n, v, X; A)) -) Hq(X(U), y9(O, v, XXn; A)) 

Here we have abused symbols slightly. In fact, XXn is not necessarily a character 
of Z J/Z. with values in C9/p1, but we can let u c with up=(a ) act on 
L(O, v; A) by P u = X~n(a)(P up), where P up on the right-hand side 
denotes the original action of up on L(O, v; A). Each element in the center 

X a c p,, with a 1 mod pep acts then on L(O, v, XXn; A) by X(a)Xn?2v(a); 
and hence E acts trivially on this module. Thus if the sheaf YS(n, v, X; A) is 
well-defined on X(U), then Y(0, v, XXn; A)/x(u) is also well-defined. As with i 
above, identifying L*(O, VI Xn; A) with A (for A = Ol/p:C or p-,O/O), one 
can define another VX(l)-morphism 

j: L*(O, v, XXn; A) L*(n, v, X; A) 
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by j(a) = aYn = a H H IYJ'. This map induces, for A = Ol/p C or p- 6/d 
(8.2b) j*: Hq(X(U), ?9*(0, v, XXn; A)) -* Hq(X(U), Y*(n, v, X; A)) 

if U C V~a(I). 

Now we take X = e E Gf such that p= (_ 0) and a,, = I for all 
places a outside p. We note the identity inside M2(p): 

a bi d -c 
jp 1c dj cp CP - pflb a i 

Let 4: L(O, v, XXn; A) L*(O, v, XXn; A) be the identity map of the underly- 
ing space A. Then if A = O/plC9 or p-,C/O, 0(m tup) = O(m)(co'uo)p for 
u c U;(1) and m e L(O, v, XXn; A). Therefore, the map 

[X]: GA X L(O, v, XXn; A) GA X L*(O, v, XXn; A) 
W W 

(g, m) H-* (go,) (m)) 

induces a morphism of sheaves 

[k]: Y?(0, VI XXn; A)lx(u) Y *(0, vI XXn; A)/x(uO 

if U C U?(1). Thus, if U c U?(1) and A = O9/pI:C9 or p - 8O/O, 

(8.2c) W = [c]: Hq(X(U), 9(0, v, XXn; A)) 

Hq(X(Uw), ?*(o0 v, XXn; A)). 
Let 8 be an element of Gf such that 3p = - 0 and I = 1 for all other 

places a. Then for V = U' n 3US-1, if U c l\:, then V c (AaY)t and V' = 
8-3'Uw n U c l\. We consider the map 

[8]: L*(n, v, X; A) -) L(n, v, X; A) 
defined by m f- O(m. 8), where 8 acts on L(n, v, X; A) through the identifica- 
tion of the underlying space L(n, v, X; A) = L(n, v; A) and 4 is induced 
by the identity map of the underlying space L(n, v; A). Then we see that 
[8](m. u) = ([8](m)) .u for u e V (u3 = 8-'u3). Thus this induces a mor- 
phism of sheaves 

[8]: Y*(n, vI X; A)/x(v) -) Y(n, v, X; A)/x(vs). 
Therefore, we can define 

[U'0U]: Hq(X(Uw), I*(n, v, X; A)) -) Hq(X(U), Y(n, v, X; A)) 

by 

(8.2d) [UwSU] = Tr u/VS a [8] orestlw/v. 
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We now suppose that 

(8.3) Up = R1x and U = Up x UP for Up ={xpx e U} and 

UP = {X e Ux = 1). 

We put US = U qn U(1) for integers / ? a > 0. For each a e p we define 
8 E Ge by (8a),,p = (0 l) and (Sa)a = 1 for a outside p. Then we see 
(8.4) (Up)AU;= H4(U4)'A03a if# > 0, 

a 

where a runs over a complete representative set for 'tP/p ,,y Then we shall 
define morphisms (for A = CQ/p A or p-:6/(): 

IT= 71A: H (X(U;), 9(0o, v, XXn; A)) -* H (X(U;), Y'(n, VI X; A)), 
t = s: Hq(X(UL), _T(n, v, X; A)) -* Hq(X(UL), _T(0, v, XXn; A)) 

by t = i* and 77 = [(U;)'S UL] o j* oW. We fix a character of semi-group: 
11(l) : a {av} e ( as in Section 3 and define operators (ULxiU) for x e l\: 
as in Section 7. Then the importance of the morphisms t and 77 comes from the 
following result: 

THEOREM 8.1. Let A = O/pC or p -,O/O1. For each pair of integers (a, /3) 
with /3 2 a ? 0 and /3 > 0, 

- 0 t pv8 p/8v}To(p/8) on Hq(X(U4;), ?T(n, v, X; A)), 

t - 7 p> -'V pV } To(p/8) on Hq(X(U;), -T(0, v, XXn; A)), 

where TO(p1) = (UxU) for x with xp=( 0 ) and xa= 1 for a outside p. 
Furthermore t is equivariant under the operators (UXyU;) for y e Y on both 
the cohomology groups. These assertions are also valid for cohomology groups 
with compact support. 

We note that pf-3V{ pf3v} is a unit in (9, and therefore, t o 7r and 7r o t are 
unit multiplies of To(pfl). 

Proof We shall prove the assertions only for the usual cohomology groups 
since the case of compact support can be handled in exactly the same manner. 
Let 4: L(n, v, X; A) -) L*(n, v, X; A) be the identity map of the underlying 
space L(n, v; A). Let m - m o X denote the action of X on L(n,0; A). 
Identifying L(n, v, X; A) and L*(n, v, X; A) with L(n,0; A) as A-modules 
naturally, we define 

(co)o: GA X L(n, v, X; A) GA X L*(n, v, X; A) 

by (o)(g, m) = (go,' 4(m o o)). 
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Then we can easily check that (coX) induces a morphism of sheaves 

(Xo)0 YD(n, v, A; A)lx(up -) L*(n) v, A; A)lx((up-)@ 
and a morphism of cohomology groups 

(co)o: Hq(X(U4;), ?(n, v, X; A)) -* Hq(X((L )), Y*(n, v, X; A)) 

Since p = (Y ) on (A')2, we have j(i(m)) = m o cop for m EL(nv,A;A). 
Then we see that 

j*0 W i* = (ao)o: Hq( X(UL), ?(n, v, X; A)) 

- Hq(X((U,;)w), Y*(n, v, X; A)) 

This shows that 

7 = [(U;a)(OU;j| o (O) = (p IN{ p3V })(UIsu ;) 
= 

(p IN {pf8v})To(pf3), 

because x = c3 E l\:. Now we shall prove the second identity about t o 77. We 
have by definition that t 7T = i*o[(U;)'SU;] ]oj*oW. Put V= Uq n xUx-I 
for x as in the theorem. Then we see that Vx = x-'Vx = 8-'(UL;)"' n U?. We 
write simply S for U?. Then by (8.2d), the above expression of t o 7r shows that 

t 0T = i*oTrs/VX O[] oress/vxso*o [o] 

= Trs/vx o i* o[3] oj * oress/vxs o [W]. 

The commutativity of i * and Tr follows from the fact that DA D S D Vx and 
that i is a morphism of 4-modules. Since x = co3, we see that 

V = S n xSx-1 = S n 3S3-l'-=' co(SA qn S3-)(A' = V X 6 -l. 

By definition, we have that ress/vs o [Xc] = [Xo] o ress/v. Thus we have that 
t? T = Trs/vxoi*o[8]oj*o[co]oress/v. 

Note that i(j(m) o 8) = i(mY' o 8) = i(mX') = m for m e L(O, v, XX,; A). 
Thus, as a morphism of sheaves, we see i o [8] o j is given by 

A x L(O, v, XXn; A) - GA X L*(O, v, XXn; A) 

(g, m) (g' O(m)). 
This shows that { p -J8v} p1v(t o 7T) = Trs/vx o (co8) o resS/ v= To(p,8). As for the 
last assertion, for y e A:, we see t o (SyS) = (SyS) o 0 because i is a morphism of 
L#-modules. 

We shall now define the ordinary part of cohomology groups. It is known 
(cf. [28, Propositions 4, 9 and 18]) that 
(8.5) Hq(X(U), YS(n, v, X; A)) is of finite type as an (0-module if A is 

an (9-module of finite type. 
When B = M2(F), the space X(U) is not compact; so, we denote by 
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H1q(X(U), Y(n, v, X; A)) the image of H~q(X(U), 2(n, v, X; A)) inside the 
usual cohomology group Hq(X(U), y(n, v, X; A)). By (8.5), the parabolic 
cohomology group Hpq(X(U), Y(n, v, X; A)) is also an (9-module of finite type. 
Let To(p") be the operator as in Th. 8.1. Since the 0-linear endomorphism 
algebra of the cohomology groups H' or H' over X(U;) with coefficients in 
Y(n, v, X; A) for A = (9/Ofp or p- f(/( is finite and of p-power torsion over 
(9, the limit 

E= lim To(pO)" 
a -*0o 

exists in the endomorphism algebra for a suitable choice of a positive integer m, 
and e = EPn -1 becomes an idempotent. This idempotent is determined inde- 
pendently of the choice of m (cf. [10, p. 236]) and depends only on To(p). 

COROLLARY 8.2. The morphism t in Theorem 8.1 induces an isomorphism: 

eHq(X(U4;), ?(n, v, X; A)) -eHq(X(U;4), _W(0, v, XXn; A)) 

forA = (9/pi' or p -(/(C9. 
The same type of assertion is also valid for parabolic cohomology groups. 

Proof. We have a commutative diagram: 

Hq( X( Ua),Y(n, v, X; A)) t - Hq(X(U;),Sf(0, v, XXn; A)) 

fT jT 

Hq( X(U;),sf(n, v, X; A)) t 4 Hq(X(U;), 7(0, v, XX n; A)), 

where T = ETO(p,) with E = p -v{ p:v } . Note that E is a unit in ( by definition. 
Therefore, if ptm denotes the cardinality of the residue field of (9, then we 'have 
lim a oparn(pnl ) - 1. Thus we know that for a suitable multiple m' 
of m, 

e = lim TP""(P"-l) = lim T(p,8)P"a(P'l) 
a -o a+o 

Thus T is invertible on 

eHq(X(U,;), ?(n, v, X; A)) and Hq(X(Ui), 2r(0, v, XXn; A)). 

This combined with the above diagram shows the result. 

PROPOSITION 8.3. If X is a character of Za/ZI3 for /3 > a > 0 with /3 > 0, 
then the restriction map induces an isomorphism for each y > /3: 

eHq(X(U,;), n e (X , ?t(n, v, X; A)) 

for A = (9, (9,/p 110, p-n /(910 or K/6. 
The same type of assertion also holds for the parabolic cohomology groups. 
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Proof Take x E G) such that xp =O )with 8 =y- and x= I 
for a outside p. Then, we claim that 
(8.6) Uyax U; = U/x U 

We simply write S for Uya and Q for U;4 and put V = Sx n S and V' = Sn f Q. 
Then, we see that 

VP={(a b)eSpbep `4 } 
a b(( d) P P p)bE--p , 

VP = {( c ) E c e p1\p b P p 
Thus QP= H, od , 8V (1 U) and Sp = l u mod 8 r1V (0 UThis shows that 

xP SpxpQ = H xp sxP( 1 ) 
u mod p tp 

Xp- SpXpSp = LI Xpspxp( I U), 
u mod p tp 

which proves the claim (8.6). We have a commutative diagram by the above 
proof of (8.6): 

H (X(V'), -T(n, v, A; A)) Tr ,H(X(Q),, -(n, v,, A; A)) 

(8.7) {res res 

H (X(V), ?T(n, v, X; A)) > H (X(S), ?(n, v, X; A)). 
This combined with (8.6) shows the commutativity of 

Hq(X(Q)y S(n" v" A; A)) res Hq(X(S) (n A A)) 

(8.8) {(QXQ)= TO(P8) (SxQ) (QXQ) = TO(p8) 

Hq(X(Q) y(n" v, A; A)) res >Hq(X(S),y (n, V, A; A)). 

We verify this as follows: 

resQ,/S o (SxQ) = resQ/s o Trj/v, o (x) o ress/vx-1 

= Trs/v o res v, v o ( x ) o ress/vx- 1 by (8.7) 

= Trs/v o (x) o resVx-1/vx-1 o ress/v,x-1 = (SxS). 

Similarly we can check that (SxQ) oresQW/s = (QxQ). Then an argument similar 
to that in the proof of Corollary 8.2 derives the result from (8.8). 
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COROLLARY 8.4. There is a Hecke operator equivariant isomorphism: 

t ores: eH (X(U4a), ?(n, v, X; A)) -eH(X(U) (0( v, XXn; A)) 

(y > /3 ? a > 0) 
for A = (9/p Y or p - YO/O1 if Zft C Ker(X). The same type of assertion also holds 
for the parabolic cohomology groups. 

This is a combination of Proposition 8.3 and Corollary 8.2. 

Definition 8.5. Let U be an open subgroup of R x such that U = t X x UP. p 
For each n E Z[I] (n > 0) with n - - 2v, 

(8.9) Yq(n, v; U) = rim H (X(U -T), ?(n, v; K/C)) 
a 

= im ( 3Hq( F'( Ua ), aI( n, v; K/6 )) 

yord(n v; U) = urn eHq(X(Uc), ?t(n, v; K/C)) 
a 

lim e( H$ Hq( rfUc'), a ~n, v; K/61)) 

Yq(O1 VI, Xn; U) =lmH(X(Uaa)S0vtX;Pa/) a 

-lim( 3Hq 
F'(Uc')L,(0, 

~np a (59/(59) 

q (01 vI, Xn; U) = rn eHq(X(Ua), ?T(0, v, Xn; PaO/O)) 

a 

lim ( e Hq(F i(Ua ), tL (O, v, X n; p -aO/ ))) 

where the infective limit is taken relative to the restriction maps. XVhen U= 

U(N),, we write Klq(n, v; N) and Yqord(n, v; N) etc. for these modules. Since 
v(U,') = v(U) for all a, if B is indefinite, we can choose ti e GfB so that 

i= H Q 1G~tU GB? independently of a, and thus in this case, we can 
interchange lima and Eli in the above definition; but when B is definite, one 
cannot choose ti independently of a, and the order of lima and EDi must be as 
above. The terms on the extreme right of the above definition work well without 
assuming (8.lb). On these modules Yq(n, v; N) and Oq(0 vI, Xn; N), Hecke 
operators To( n) and To(l n,-) naturally act because the restriction maps are 
compatible with To(nl) and To(l, n) (cf. (2.9a, b) and (3.5)). 
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THEOREM 8.6. Let U be an open subgroup of R x such that U = R x x UP. p 
If n - n' - 2v and n > n' > 0, then there is a canonical isomorphism: 

vord U) v yord(0 V, X; U) - (ord( v, Xn; U) n ( 
When U = U1(N) for an ideal N prime to p, this isomorphism is equivariant 
under Hecke operators TO(w) and TO( n, w) for all n. 

By this theorem, the module Sqord(n, v; U) depends only on v modZ Zt 
and thus we write it as oq rd(v; U) and q ;rd(v; N) when U = U1(N). 

Proof By definition, we have a commutative diagram: for all /B > a > 0, 

Hq(X(Uaa), y(n, v; p-,(g/()) re 
> Hq X (TI), (n v; O p-A6/ () 

{La 41 
Hq(X(Uaa,(0, V , X n; P - 0191()) es H ',-'IO) -T(0 VI, Xn; P V /) 

Thus we see that 

/,s/ord(n v; U) = lim eHq(X(U,,) ?9(n, v; K/C9)) 
a 

= lim lim eHq(X(U,"),S f(n, v; pm-ik/)) 

= lim eHq( X(YU) ?9(n, V; p - aO/O)) 
a 

lim eHq(X(U) 9(O, VI, Xn; pO/(O))) (by Cor. 8.2) 
a 

= yord(0v, V, Xn; U). 

As L.-modules, L(0, v, Xn; p-a(Q//(Q) and L(0, v, Xn; p-a0,,) are the same 
and are equal to L(0, v; p-a0/0). Thus we know that 

qr (O V, Xn; U) = vq , Xn; U) _ ord(nt V U) 

The equivariance under Hecke operators follows from that of ta in Theorem 8.1. 
The maps 

1. o res: Hq(X(U,"), ? (n, v; p 'C/060 )) -- Hq(X(U7), _W(o, v, X n; P -f0/0)) 
are compatible with the restriction map resU/UY for any y > /3. Thus we can 
take the limit 

(8.10) t = lim t ores: Hr(X(U aa), ?T(n, v; K/0)) -> Y/j (O, v, x,; U) 

forr = II = dimcffB. 
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The following result is essentially due to Shimura [30]: 

THEOREM 8.7. Suppose that r = IIBI = 0 or 1. Then the kernel of l in 
(8.10) has only finitely many elements. 

Proof Let 4 = F'(U ) in the case of r = 1 and 4D = (Ua )p in the case of 
r = 0. First we shall show that if an 0-submodule V in Ker(i) (C L(n, v; K/C)) 
is stable under the action of (D, then we can find a positive integer y so that 
pIV = 0. In fact, by the strong approximation theorem, the closure of 4 in Up is 
a p-adic Lie group containing SL2(4p) n U, if r= 1. Thus the ?-module 
L(n, v; K) is absolutely simple. Let M be the subalgebra of EndK(L(n, v; K)) 
generated over (9 by the action of D. Then the simplicity of the ?-module 
L(n, v; K) shows that M go K coincides with EndK(L(n, v; K)). Thus there is 
an element Ej e M such that the coefficient of Ej(O <i<na iXiyn-i ) in Xn = 
H a X . is equal to p'Ya for all Lia 1 C L(n, v; K) for each 0 < j < n. If 
P = EiaiXiYn-i c- L(n, v; K/6) is contained in V, then E * P e V by the 
stability of V under M. Since 0 = i(Ej * P) = pla j, we know that pYP = 0 and 
hence p"V = 0. Especially, the order of V is finite. 

Next we shall deal with the proof in the case of r = 0. Let S be the space of 
functions f: GA -B L(n, v; K/O) satisfying f(axu) = f(x)up for u E UaGB 
and a C GQB. Then S _ H0(X(U,), ?(n, v; K/O)). If i(f(x)) = 0 for all x E 
GA (f c S) (this is equivalent to supposing that f C Ker(t)), then f must have 
values in Ker(i) in L(n, v; K/O). Since f(xu) = f(x)u, for u E Ua, the 
subspace in Ker(i) generated by the values f(x) for all x E GB is stable under 
(F. As already seen, we then know that pYf = 0 for a positive y independent of 
f. This shows the result in the case of r = 0. 

Now we suppose that r = 1. In this case, we can take the decomposition 
GB= H h jG?BtiU T,8G independently of /3. For simplicity, we hereafter write 
(F for IF(U.") for a fixed i. Put 

8 -= {ye- Fi( Ua)|Y- l mod p'3Rp} F '=Fr,/FrnFX 

Then Hl(Ft, tL(n, v; p-,O/O1)) _ Hom(IF tL(n, v; p-0/0)). By virtue of a 
theorem of Shimura, which is given in [26, Th. 3.1.3], the injective limit of the 
restriction maps 

I: H'(D, tL(n, v; K/O)) lim H'(4F, L(n, v; pVkQ/O)) 

i im Hom artcl [26], he md V; a a su/mp i 

is known to have a finite kernel. On Ohta's article [26], he made an assumption 
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that B is a division algebra to assure (in [26, p. 27]) the vanishing of 
H1(A, tL(n, v; C)) for a congruence subgroup A of (B ?F F') for totally real 
fields F' # Q by the result of Matsushima and Shimura [22, Th. 7.1]. However, 
by works of Harder ([5] and [6],) this vanishing has been proved even for M2(F') 
for F' # Q. Thus, this division assumption can be eliminated without affecting 
the original proof, and the fact: I Ker(I)I < ox is valid even for B = M2(Q). For 

E c Hom,,(J7, tL(n, v; p-Ad(9/)), we know that ~(u8u-) = ua(S) for every 
u c (D and 8 c r. If iof 0, then for all u c 4, i(ut(S)) = 0. Thus the 
value of t is contained in a 4-submodule of Ker(i) in L(n, v; K/(3). Thus 
we can find y > 0 independently of /3 so that p'y = 0. Especially, if 
( E H1((F, L(n, v; K/6))) and if ( E Ker(t), then p'y is contained in Ker(I). 
Therefore Ker(t) C p- Ker(I) has only finitely many elements. 

9. Controllability of Y// ord( v; U) 

By definition, we can identify for each (-module A, H?(X(U), 
?(n, v, A; A)) with the space of functions f: GA' -- L(n, v, X; A) satisfying 
f(axu) = f(x) u for all a E GQ and u E UCQ?+. Thus, if we define for each 
normal subgroup V of U, the action of U/V on H?(X(V), ?/(n, v, X; A)) by 

f [IU](x) = f(xU) - 

then we have 

(9.1) H?(U/V, H?(X(V), ?(n, v, X; A))) 

_ H?(X(U), ?(n, v, X; A)). 

We shall generalize this controllability to general cohomology groups of dimen- 
sion 1. Thus we may assume that B is indefinite. We fix an open compact 
subgroup U of R x with U = R x X UP. Then we choose the decomposition 

p 

independently of a and /3: 
h 

G= HGtiU; G+ with t eG) and tip = 1. 
i=l 

Fix integers / ? a > 0 and one index i (= 1,..., h), and write simply F = IF 
for Fi(ULi) and M for tL(n, v, X; A) (for a fixed (9-module A). For a general 
group 4 and a left 4-module X, let Cq(D, X) be the space of all functions on 
(D q + 1 with values in X. We shall define as usual the coboundary operator 8 = 8q 
Cq((D, X) _> Cq+l((D, X) by 

q+1 

(9.2) Sf(Y0. ,Yq + 1) = i (- 1) f(yo,..., Yj,* ,Yq+i). 
i=O 
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Then 

Hq(4D, X) = Ker(8q: Cq(4D, X)? Cq +1(, x)+)/ 

Im(Sq-1: Cq-l( X)4' _)? Cq(0, x)?), 

where (D acts on feC4((,X) by (f*)(Yo0...Yq)=Y'f(Y 7ov** 7Yq) 

Now we write down explicitly the action of [ULix(41 ] and (ULixiU;) on the 
cohomology group Hq(r, M) by using homogeneous cochains. For each x E GQ, 
we can decompose FxF = LHiFxi as a disjoint union of finitely many left cosets. 
Write for each y E F, xiy = y(i)xY(i) for some index y(i) (= 1,..., h) and 
y 7 F. Then 

( * ) X- l(i) - YXj) 

Then we shall define the action of FxF on Cq(r, M) by 

f [FXFI(Yo,...,Yq) = EX'1 .f(y i).....yqi)) and 

(9.3) 
f Fx)(y0,F . . , 7q) = ({v(xi) v } v(xi)(xi o ?f(yi), Y(i))) 

where we have implicitly supposed that x is contained in (Y) to have its action 
on M and in the second formula, we have let x7-' act on f(y i),..., yqi)) as an 
element of tL(n, O. X; A). Note that {fv(x) v}v(x )v is a unit in (9, and hence, 
the operator (FxF) is well defined. Actually, the above definition of the action of 
Fx F depends on the choice of the representatives { xi. We shall see later that 
the action induced on the cohomology groups is independent of the choice of 
{ xi}; so, for a moment, we fix the decomposition: FxF = Hi Fxi. Now we have 
by the definition: 

(9.4a) 8(f [FxF]) = (&f) [FxF], 6(fI(FxF)) = (&f) (FxF). 
If f E Cq(r, M) is F-invariant, then 

(9.4b) f |[FrxF] (y-y0 ... ., YYq) = E xi If 7(i) -0Ygr7i)Y~(i)), 

- YXi y(j)f(yYo ) **,,Y ) by(*) 

- Y(f [FXF](Yo ...,Yq)) 

Therefore, (FxF) and [FxF] give an operator on C(r, M) = E qCq(r, M) 
compatible with the action of F and coboundary operator 8, and hence, they act 
naturally on cohomology groups. We shall now show the independence of the 
operator [FxF] and (FxF) on Hq(rF M) from the choice of the decomposition: 
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FxF = LHiFxi. Since the proof is the same for (FxF) and [FxF], we only deal 
with [Fx F]. Let F' be a subgroup of finite index of F. We decompose 
F = HiF'xi and define, similarly to FxF, an operator Tr,7r: Cq(r', M) 
Cq(F, M) by 

flTpjp(Yo,...,.q)=.. 

where for each y E y, y(I) E F' is defined by (*). Then it is known by Eckmann 
[4, Th. 7] that T]7]r: Hq(Fr, M) -> Hq(r, M) is defined independently of the 
decomposition F = HiF'xi. Writing F' for F fl x-'Fx and F" for xF'x-1, we 
see easily that 

(9.4c) [FxF] = res /,, I[X]oTry7r, (FxF) = res/,,, o(x)oT,, 

where 

f [x] (yo0..., Yq) = x-lf(xyoxl,..., XyqX-), 

f1(x)(y0,..., Yq) = ({ V(X)v } V(X)v)X1 o f(xyOx',..., Xyqx'). 

Thus [FxF] and (FxF) are also independent of the decomposition. Similarly to 
the above argument, we can define the left action of double coset FxF on the 
homology group Hq(r, M) by using the left coset decomposition FxF = LHiFxi. 
Especially, on Hoff, M) = M/DM (DM = YEY - 1)M), FxF acts by m 

ix- m. 
Now we recall briefly the construction in [16] of the Hochschild-Serre 

spectral sequence in order to study the action of the double coset on the spectral 
sequence. We write F = F;3 and F' = J7' ford ? a' > a ? 0 (3 > 0) (thus F' 
is a normal subgroup of F). Put C = EqCq(r, M), C]' = EqYCq(r, M)', Lp q = 
CP(IJ, Cq(r, M)l) for H = F/F', L = ,pq Lp, L7q = ,Lp, q Li = 
EZ oL9. Then Li gives a filtration of L. On L' q we define a differential 
operator ASu: L" p q L p' q relative to El as in (9.2), and for f E Lp q put 

-r(ff)(, ** *, Y = 7 * p)) for 7i El1 by applying the coboundary 
operator relative to F to the value ft 7O,..., qrp). Define 8 = 8r- + (- l)PS ] on 
Lp q. Then 8 gives a differential operator preserving the filtration (cf. [16, II]). 

Let x E Gf be an element such that xp = (P p) and x0 = 1 for a outside 
p. Then, for sufficiently large m divisible by the order of FX\ FA</V(U)Fc,O we 
have 

t xm E y ti (u;') GB+ with y E G . 

This follows from the strong approximation theorem. Next, we can choose the 
decomposition F'yF' = HiF'-yi. Then we have another decomposition Fyr = 
LI Fyj for the same representatives yi. This fact follows from [31, (2.19.3)] (see 
also Lemma 4.7 in the text). Then by (9.4b), (FyF) preserves Cq(r, M)', the 
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filtration { L } and the double filtration { Lq }. Moreover, by (9.4a), (FyF) 
commutes with S. and by definition commutes with Sr,. Thus, by the construc- 
tion of the spectral sequence of Hochschild and Serre [16, 1.7], the operator 
(FyF) gives an endomorphism of the spectral sequence: 

(9.5) HP(FIF f, Hq(rf, M)) ,* Hn(r, M). 
That is, (FyF) is compatible with the filtration of each term of (9.5) and 
commutes with all the differential maps of (9.5). Especially, (FyF) acts on 
Hq(rf, M) by (F'yF'), and this action gives an endomorphism of Hq(r, M) 
compatible with the action of II = F/F'; therefore, it induces an endomorphism 
of HP(I, Hq(rf, M)). By [31, (2.19.3)] (or else, as already seen in ?7 in the text), 
the action of (FyI) coincides with TO(pm) as in Theorem 8.1. When M = 
'L(n, v, X; A) with A = p-1C/C9 or (9/p1(9, a finite power of (FyF) thus gives 
the idempotent e as in Section 8 on each HP(F/F', Hq(rf, M)) or H'(F, M). 
Therefore the idempotent e gives the endomorphism of the spectral sequence 
(9.5) for A as above. By taking the injective limit relative to j, this fact is also 
true for A = k/C9. Thus one knows: 

THEOREM 9.1. Suppose that r = 'IBI > 0. Then, for the idempotent e associ- 
ated with To(p), (9.5) gives the following spectral sequence for A = (9/p 'Y, 
p-ZC/(9 and K/IC: 

Hi(J ';/T ', eHi( F,', tL(n, v, X; A))) = eHq( F,, tL(n, v, X; A)) 

for each ,B ? af' ? a ? 0 with / > 0. 

LEMMA 9.2. Suppose that r = IIBI > 0. Then the idempotent e annihilates 
H0(F, M) and HO(F, M) for M =tL(n, v, X; A) with A = (9, (9/pM(9, p -L(/(9 

and K/IC. 

Proof We shall prove the assertion only for H0(F, M) since the other 
case can be treated similarly. We may assume that A = C /p Y9. For any given 
p ? p, by making m large, we can finds Yu E GQ for each u E tp so that 
tixm( u E) yutjU(pI)Go?+, where U(PP) = {u E UIuP 1 mod pPRpI}. 

Then yu- ( M mod pPRP and FyF = ILU modpmFyu by (8.6). 

Thus, for P = LOY<j na jXiY-i in L(n, v, X; A), 

PI(Fyr) =({v(y)V}v(y)V)an. ( J)X n-Yy u 

((j) n 

(Y ) ,JI\ja 
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For sufficiently large m, we always have EUZ Ptu = 0 mod p', and the 
lemma follows. 

COROLLARY 9.3. Let M ='L(n, v, X; A) for A = C9/pMC, p-y?O/O9 and 
K/C9 and assume that r = ' BI > 0. Suppose that Hi(F;/F;', eHj(F;', M)) = 0 
for 0 < i < q andj < q - 1 (/3 a' ? a ? 0 and / > 0). Then the restriction 
map induces an isomorphism: 

eHq(]F, M) I =eHq(F, M) for F = F; and F' = F;'. 

Proof Put E~i~ = eHi(fI, Hj(F', M)) and Eq = eHq(r, M). By Theorem 
9.1, we have the spectral sequence: E2' i=> E . We have a canonical filtration: 
Eq= Eq I I Eq :D 0 with E q/Eq_ Eu>q-i. We have differentials d' : 

-' E?kk - and by definition 

Ek, +i = Ker( dk' i )/Im( d k- k j + k-1 I 

Since E2'i =0 for i < 0 or 1 < 0 by Lemma 9.2, we know that E "I = O for 
i < 0 or j < 0. Thus if i - k < 0 and j -k + 1 < 0 (i.e. k > i and k ? j + 1), 
then Ek' - Ek', Thus E q/Et - Ek for k ? i + 1 and k ? q + 1. If 
0 < i < q and j < q - 1, by assumption 

( * * ) E, i = Hz (1I, eHi(]F, M)) _ eHz(F, Hi(F' , M)) = 0. 

By the construction (*), we see by induction on k that E' q-, = O if i > 0. 
Then we have that eHq(rF M) E2O?1. Now for k with q + 1> k > 2, assume 
that 

eHq(]r, M ) _ , E?q -Eq~q -EO q. 

Then E? 0q = Ker(d? ql) and d 0 ql E 0,- q E k - 1? q-2. Since k > 2, 
Ek-i'q-k+2 = 0 by (* *), and thus Ek'q- Ei'1q. By induction on k, we 
conclude that 

eHq(r, M)- E' - eH0(F, Hq(rF' M)) _ H0(F, eHq(r', M)), 

which was to be shown. 

Let U be either U1(N) or U1(NL) n V1(L) for an ideal L outside : B 

and Np. Note that U n FAZ is then equal to UF(N) or UF(NL). Then for 
each /3 a2 ' > a ? 0 (/3 > 0), we have an isomorphism F4/7F4 
'tXtjU'ti- /'tXtjU;'ti-1 by the strong approximation theorem. Thus the group 
Za/Zat naturally acts on Hq(rF', M) for M =tL(n, v, X; A) if Ker(X) ID Z, 
since 
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(Strictly speaking, when U = U1(NL) n V1(L), Za,(NL)/Za,,(NL) acts on the 
cohomology group, but we know that if a > 0 Wa,(NL) = Wa,(N).) If a is 
sufficiently large so that Ker(X) D Za, then as U?-module, L(n,v, X; A) = 

L(n, v; A). Thus we know that 

Yq-rd(v; U) rim eH (X(U ), ?(n, v, X; K/O)) 

- 1i e~(X(U."a), Y(n, v; K/?))). 
a 

However, the action of Z on the extreme right module and that of the middle 
term is different. We let Z act on fqord(v; U) by identifying it with 
lim eH (X(U,), ?(n, v; K/?)) via the character I1(N) 3 a T(a , a ). This is 
independent of the choice of n with n - - 2v by Theorem 8.6. We write this 
standard action on qford(v; U) as ( (I~z) (z E Z), and the action induced by 
the middle term as ( -> K z ) z . The latter action factors through the finite 
group Za/ZI3 on eHq(X(UL), Y(n, v, X; K/?)). Then by definition (cf. (3.9)), 
we have 

(9.6) Kz) = Xxn?2v(z)(z)n v X for z E Za if X is a character of Z a 
such that XXn?2v factors through ZaW 

For each character X: Z1 ' 0X, we put 

/ord(V; U)[X] = x e sord(v; U) x|(z) = X(z)x for all z E Z1}. 

THEOREM 9.4. Let U be as above. Suppose that 0 < q < 1. Then, for each 
/ > 0, the restriction map induces an isomorphism: 

it = 

for each finite order character X: Z1/ZJ (9x such that XXn+2v factors 
through Z1 for each n ? 0 with n - - 2v. 

Proof By Lemma 9.2, the assumption of Corollary 9.3 is satisfied for q = 1, 
and thus we have by (9.6) that 

eHq IFi U1l) tL(n v, V ; K10)) 

(x Ee eH (ri(UT), tL(n, v; K/O)) x Kz) = XXn+2v(Z)X for all z e Z,} 

On the other hand, the left-hand side of the above formula is isomorphic to 
Yqord(V; U)[x?n+2v] under the restriction map. The case: q = 0 follows from 
Proposition 8.3 and (9.1). 
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Remark 9.5. The proof of Theorem 9.4 shows a little more general result for 
0 < q < 1 and for each /3 2 a > 0: 

et ff Hq ri( U;), tL(n, v, A; K/d )) 

{x E sK d(v; U)IxI~z) = XX+2v(Z)x for all z E Za}. 

10. Co-freeness of sqord (v; N) over A 

Let U be either U1(N) or U1(Ne) n V1(e) for an ideal N outside p and DB 
and for a prime ideal 6 outside Np and V B. For each finite order character 
E: ZOa Q x, let K(Ec) denote the subfield of Qp generated by the values of - 
over K, and let (9(,-) be the p-adic integer ring of K(Ec), and let /3(E) denote the 
minimal integer such that Ker(c) D Z. and Z. -- Zfl. In this section, we always 
suppose that B is a division algebra. 

THEOREM 10.1. Let a be a positive integer and suppose that rF(Ua) is 
torsion-free for all i. Let q = 0 or 1. If eHq(X(bU7), ?t(n, v, X; K(X)/(9(X))) is 
p-divisible for all finite order characters X: Za -, Q X such that XXn 2v factors 
through Za. and for all pair of integers y, /3 with a < y < /3 and /3 ? /3(X), then 
the Pontryagin dual module Vqord(v; U) of 1q~rd(v; U) is free of finite rank over 
the continuous group algebra (9[[Zj]] of Za. 

Before proving the theorem, we prepare: 

LEMMA 10.2. Let C be a topological group isomorphic to a product of 
finitely many copies of Zp and a finite group. Let (9[[9]] be the continuous 
group algebra of C. For each finite order character E: C- QX, let P,: (9[[9]] 
Qp be the induced (9-algebra homomorphism. Then the subset of Spec((9[[]]) 
consisting of the points P, for all finite order characters - of C is Zariski dense. 

Proof. What we have to show is that nlKer(P,) = {0}. Let C(Q, (9) denote 
the space of all continuous (9-valued functions on C. Let Meas(g, (9) be the 
(9-linear dual of C(Q, (9); i.e., Meas(g, (9) = Hom (C(Q, (9), (9). We can iden- 
tify Meas(9, (9) with the space of bounded p-adic measures on C with values in 
(9. Let Meas(g, i2) be the space of all bounded p-adic measures on C with 
values in the p-adic completion 92 of Qp. Meas(g, (9) is an (9-algebra under the 
convolution product and is isomorphic to (9[[9]] (e.g. [20]). Especially, for each 
finite order character E: B- Q X, the map: Meas(g, (9) 3 u fc du E Q 
coincides with the algebra homomorphism P,: (9[[9]] -, i2. Since the subspace 
of locally constant functions on C is dense in C(Q, (9), if Jgo du = 0 for all 
locally constant 4, then u = 0. Note that every locally constant function 4 can 
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be written as a linear combination of finite order characters E: -> Qp over Qp. 
Thus, if u E f nKer(Pj), then fCE du = 0 for all locally constant 4) and hence 
u = 0. Q.E.D. 

Proof of Theorem 10.1. By Theorem 6.3, without losing generality, we may 
replace K by its finite extension. Thus we may assume that we have a finite 
order character E: Za/Zy -> ( such that EXn?2v factors through Zoo We write 
VqOrd(v; U) sometimes as V/C to indicate its dependence on (. We have an 
exact sequence 
(*) eHq(X(Ua), ( K 

eHq(X(Uy), ?(n, v, E; K/C)) 
eH ~~~~~~~ eH(Yu) Y~n, v, E; K)) 

Since the middle term of (*) is p-divisible by assumption and the last term is of 
finite type as an (9-module (cf. [28, ?2]), 6 must be suriective. Hence the (9-rank 
of the Pontryagin dual of the middle term is finite. We write it as s. Let Z act on 
)/ord(v; U) via the action (z), v as in (9.6). We write A for (9[[Za]]. Then by 
Theorem 9.4, V ?A A/PidA for the identity character id: Z -> Q is isomorphic 
to the Pontryagin dual module of the middle term of (*). Thus we know that 
V/PjdV- Cs. Thus V is generated over A by s-elements, and we have a 
surjective morphism of A-modules 4: As V which induces an isomorphism 

(1O. la) (Al/mA) = V ?A Al/mA for the maximal ideal n of A. 

Note that A X = ((X)[[Za]] A ?op (9(X). We write K/(9(X) for K(X)/(9(X). By 
using the same type of exact sequence as (*), we know 

eHq X( ),I . (n, V, E; KI(9(Xt)) 

_ eHq((/ ) (n, V, E; ()(X))) (smw( (K/ (9()) 
and by Theorem 6.3, 

eH %(Ui3,# . (n, v, ?; KI(9(X))) _ Y(() (n, van -; K/C)) 00C(X). 
Therefore, we see 

(10. lb) V/dC~z C(go R) -- V/d O@A Ax V/6)(R) X 

Then for any finite order character X: Za > Q , we know from the assumption 
that 

V/6) ?A Ax/PxAx - (9(X)s for some integer s'. 
Then by (10.la,b), s' must be equal to s. Thus we have a surjection induced 
by 4: 

(Fr() 
- 

(Ate/PxAac V/) Ker 4') -- A A V/(9 - (9,(w ) ci 
From the exact sequence: 0 --3 Ker(+) ---As --,V/d ?7- , we conclude in view 
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of the flatness of (9(X)/(9 the exactness of 
0-> Ker( A 2) ( X A() -> - V/6(9X) -0. 

Thus we know that Ker(A) ?0.(9(X) c (PA x)S = Px(A ). Since (9(X) is faith- 
fully flat over (9, we conclude that Ker(4) c (P. n A)AS for all finite order 
characters X: Za -> Q . Then by Lemma 10.2, we know the vanishing Ker(4) 
- 0, which proves the theorem. 

COROLLARY 10.3. We suppose that r = IIBI = 0 or 1. Then Vord(v; N) is a 
free module offinite rank over (9[[Z ]], if one of the following two conditions is 
satisfied: 
(10.2a) For a primitive p-th root of unity Dp in C, [F(DO): F] > 2, 
(10.2b) J'l(Np) is torsion free for all i. 

Proof Firstly, we suppose that (10.2b) is satisfied. We write U for U1(Np). 
When r = 0, the triviality of F'(Np) means that 

H?(X(Ua), Y(n, v, X; K10)) _- L(n, v, X; KI(9)l 

and thus it is p-divisible for all 0 < a < ,B and X. Hence we can apply Theorem 
10.1 and get the result. When r = 1, it is known by [36, Propositions 8.1 and 
8.2], if Fr(Np) is without torsion, then 

H (X (U;3), F(n , v , X; (9))) Ho F'(U;a) ,I(n v, V ; ?))), 

and hence by Lemma 9.2, eH2(X(Ub), ?6'(n, v, X; (9)) = 0. From the exact 
sequence: 

eH'(X(U(4), ?{(n, v, X; K)) eH'(X(U,fl , (n, v, X; K/()) 

eH2(X(U;), f(n, v, X; (9)) = 0, 

we know the p-divisibility of the middle term, and hence, the result follows from 
Theorem 10.1. Now we shall suppose (10.2a). On F(Dp), the Frobenius element 
at each prime ideal 6 of t prime to p acts by p -> for the norm map 
A': F Q. Since [F(~p): F] > 2, we can find a prime 64 N unramified over Z 
such that A(e) ? ?1 mod p. Since the degree d of X(V)/X(U) for V = 
U1(Nep) n V1(6) divides (A(6) + 1)(A(6) - 1), d is prime to p. By Lemma 
7.1, fi(V) is torsion-free. The similar argument as in the case where (10.2b) is 
satisfied shows that Vord(v; V) is free of finite rank over (9[[Z1( Nt]]. Since 
Z= Z1(N) can be identified with a subgroup of ZI(Ne) (because the covering 
degree of ZI(N6)/Z1 is prime to p), Vord(v; V) is free over (9[[Z1]]. For the 
trace map Tr(L/V = Tr: Y/rd(v; V) v> )rd(v; N) and the restriction map 

resU/V = res: rord(v; N) -ord(v; V), we know that Trores is the multiplica- 
tion by d. Thus Vord(v; N) is a direct summand of the (9[[Z1]]-free module 
f'ord(v; V) and is hence free over (9[[Z1]]. 
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As for the structure of the A-module, we have: 

COROLLARY 10.4. Suppose that r = IIBI = 0 or 1. Let P be the product of 
all distinct prime factors of p in t. Suppose that p > 2 and further assume either 
(10.2a) or the following condition: 

(10.2c) IF(NP) is torsion firee for all i. 
Then yord( v; N) is A-free of finite rank, where A = (9 [[W]] is the continuous 
group algebra of the torsion-free part W of Z(N). 

Proof We shall prove the assertion only in the case r = 1, since the other 
case can be treated more easily. So far, we have worked with the filtration 
Za c Z(N), but we can define another filtration of subgroups Za of Z(N) given 
by the kernel of the natural map: Z -. CIF(NPa). Since p is odd, even if one 
defines Za by the kernel of "Z -- CI(NPa)," we can identify Za with Za 
naturally. Hereafter we always identify these two groups. These two filtrations 
are cofinal; i.e., Za D Za and Za D z"a if p divides Pm. If p is unramified in , 
then the two filtrations coincide. We can define A(a) similarly to AA by replacing 
p by P in the definition of Yin Section 7 and define U( by U N for U as 
in Theorem 9.4. By scrutinizing every step ascending towards the proof of 
Theorem 9.4, one can check that the corresponding statement to Theorem 9.4 
for U((') is true. Put 

V(i )= lim eHl(F (NPa), tL(n, v; K/O))) 
a 

= lim eHl(Fi(Np), tL(n, v; K/O)) 
a 

by choosing n ? 0 with n - - 2v. Then in exactly the same manner as in the 
proof of Theorem 10.1 and Corollary 10.3, we can prove that Vord(v; N) = 

ED V(i) is ([[Zl]]-free, where V(i) is the Pontryagin dual of *"(i). Put W1 = 
W n Z'. Since [Z?: Z'] is prime to p, the natural projection: W -. ClF(l) 
induces an injection: W/W1 -. ClF(1). We can identify the set of connected 
components of X(U) for U = U1(Npa) (for, any a) with the group Cl F(1) via the 
correspondence: GQtiUGOO + F XV(ti)xFx+. Thus we can write yord( v; N) = 

ECl(l)Y(i). Then the action of w c W/W' c Cl,(l) interchanges the 
connected components according to the multiplication of v(w) = w2 in Cl F(1). 
If p > 2, the map: w - w2 gives an automorphism of the image W of W in 
CIF(l). By taking a coset decomposition ClF(l) = HjW j, put V( = e,,V(j). 
Then V0 is O[[W']]-free, and vrord(v; N) _ Indw1(VX,))= Vo (11v 11 A is A-free. 

11. Proof of Theorems 3.2 and 3.3 

When we consider the field F # Q. we always fix hler and it tle following 
section a quaternion algebra B over F unramified at all fittite pulaces aid 
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r = IIBI < 1. Therefore B is a division quaternion algebra and X(U) is always 
compact. Such a quaternion algebra always exists if [F: Q] > 1, and we have a 
relation: [F: Q] r mod 2. When F = Q, we take M2(Q) as B. 

Proof of Theorem 3.2. Firstly we suppose that F # Q. Let K be a finite 
extension of Qp containing Ko as in Section 1. Let ( be the p-adic integer ring 
of K. It is sufficient to prove the result over ( since Ak w(NpO; (9) 
Ak w(Np; 6(v)) ?O(v) ( for the p-adic closure ((v) of ((v) in Qp. We consider 

Yr (O; N) = lim Hr(Xa,, K/6)) for Xa = X(U1(Npa)). 
a 

We have an exact sequence: H'(Xa, K) -H H'(Xa, K,/) -) H2(X a, (9), When 
r = 1, H2(X a (9) (- 9; thus, H'(Xa, K/6)) is p-divisible. Writing fY for 
H'(Xa,, K/C)), we can identify A2t t(Npa; (9) with the subalgebra of End0(Yi?) 
generated over ( by T(n) for all X by Theorem 6.2 (in this case: v = 0, 
TO(n) = T(n) for all x). Now we consider the case: r = 0. In this case, let Sa 
(resp. T) be the space of functions f: GB - K/6) (resp. f: FAX - K/6)) such 
that f(axu) = f(x) for a E GB and u E U1(Npa)GQ (resp. a E FX and 
u E tXFx?). Since the reduced norm map I': GA - FAX induces an injection 
v*: T -. S., the quotient Y, = Sa,/V*(T) is p-divisible, and therefore, we can 
identify, by Theorem 6.2, 42t, t(Npa; (9) with the subalgebra of End(<i) 
generated by T(n). For each a E Fx= FXn Fl X+, we consider the quadratic 
extension F( -a), which is totally imaginary. Since B is unramified at all finite 
places of F. F( -a) can be embedded into B ([36, (9.2.6)]), and hence, 
a = v( -a) E P(BX). That is, i': GB-- F+1 is surjective. For a E F+, y C 
FX = Ffx Fx+ and c E X x + + we choose b E G x, XE GABand u e U1(Npa)G 
such that v(b) = a, v(x) = y and v(u) = c. If f E S. is of the form v*(+) 
for 4): FAX+ -K/(, then O(ayc) = O(f(bxu)) = f(bxu) = f(x) = +(y) and 
thus fe v*T. That is if fe <, becomes trivial in AA for x > /3> a > 0, 
then f must be zero in I'd. Therefore the natural map: f -AA is injec- 
tive. When r = 1, by virtue of a result of Shimura as in Theorem 8.7, the natu- 
ral map: Yl AA (a < / < xi) has a finite kernel. Then in either case: r = 0 
or 1, the natural (9-algebra homomorphism pp: A2t t(NpO; (9) -. A2t t(NPa; (9) 
(a < / < xi) can be defined by the commutative diagram: 

res 

{pe(h) jh 

, res >, 
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where we understand that YOO = limpidK-. Especially A2t t(Np'; (9) acts faithfully 
on YOO and hence is naturally embedded into EndA(Yf/). Now we consider the 
morphism defined in (8.10) for n 0 0 (n > 0): 

/: (DHr(T r(Npa),tL(n, O; K/6))) -- Yr (0; N). 

When r = 0 and n - 0, the space on the left-hand side can be identified with 
the space Sk k- t, O(Npa; K/6) (k = n + 2t) of functions f: GA' - L(n, 0; K/6) 
such that 

f(axu) =f(x) up for a E G' and u E U1(Np)Goo+. 

Write f(x) = LO<<nf((x)X2Yn-. Then the map t: Sk k-t +(Np; K/C) -S 
- limaSa can be defined by t(f) = fn. Since for u E U1(Np)Goo+ with 

Up O b ) 

fn(xu) =fn(x)a, 

we know that if t(f) E v*(T), then the value of fn is annihilated by an - 1 for 
all a E tp with a 1 mod pap. Thus we can choose / > 0 independently of f 
so that p1f e Ker(t) if t(f) E v*(T). Then by Theorem 8.7, the map induced 
by t: 

Ia: ($ 3 Hr(T(Npa), L(n,0; K/6))) -I 

is of finite kernel. This fact is also true by Theorem 8.7 in the case: r = 1 
since [F Q] 1 mod 2 in this case. Let Y/an be the image of 
flHr( l;(Npa), tL(n,0; K)) in (D Hr(TI"(Np), tL(n,0; K/6))). Then roan is the 
p-divisible part of the latter module. Then, by Theorem 6.2, for each n 0 0 
(n ? 0), Ak k-t(Npa; (9) (k = n + 2t) can be identified with the (9-subalgebra 
of End0(fi?) generated by T(n) for all x. Since I,: a2in I(Y7) C f is an 
isogeny, Ak k-t(Npa; (9) can be also identified with the (9-subalgebra of 
End (Ia( K)) generated by T(w) for all x. The restriction of operators in 
A2t t(Np?; (9) c Endo( ??,) to the subspace Ia( o/Q) induces a surjective (9-alge- 
bra homomorphism I*: A2t t(Npo; (9) - Ak k- t(Npa; (9) which takes T(X) to 
T(w) because of Theorem 8.1. Thus we have a commutative diagram for 
0 <a </ P< x: 

A2t, t(NP; (9) > Ak k-t(NPa; (9). 

1, / 

Akk-t(NP; (9) 

where pA is the natural projection map given in Section 3. These maps are 
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surjective morphisms in the category of compact rings where the projective limit 
of surjective morphisms is always surjective. By taking the projective limit of I1*, 
we have a surjective so&algebra homomorphism 

I*: A2t t(Npo; (9) 0Ak k-t(Npo; (9) fork ? 2tandk - O, 

which takes T(n) to T(n). When F = Q. we have to replace H' by the 
parabolic cohomology groups H' defined in [36, Chap. 8] (see also [14, ?4]). 
Then every step in the above argument for F # Q can be checked for H' and 
we obtain the result even for F= Q. 

Now we shall prove the injectivity of I * when f # Q. Put 1l,2 = limon. 
We consider the map I, = limaia: Y -T By definition, we have a com- 
mutative diagram: for all h E7= 2Np; (9), 

l I *(h) jh 

Thus if 10 is surjective, I * must be injective since A2t t(Npoc; (9) c EndA( fib). 
If r = 0, by identifying WOO with Sl0/v*(T) and cajn with the p-divisible 
subspace of limaSk k- t, (Npa; K/d), we see easily the surjectivity of I... and the 
result follows. Thus we shall prove the surjectivity of 10 in the case of r = 1. Put 
Yn= DiH'l(J'(Npa), tL(n, 0; K/()). Then we have an exact sequence for 
n > 0: 

0 - 

_ n-- H2F( Npa),tL(n,0; 9)) 0. 
Then, by [36, Prop. 8.1 and 8.2], there is an isogeny 

f t: H2 (r( Npe) 5 L( n . ; d)) Ln . ; O ) /Da, 

go: tL(n,0; (9)/D, H2(;( Npa),tL(0, n; (9)) 

such that fa o g,, = g fa = M id, where M is the least common multiple of 
the order of all torsion elements in F'(Npa) and 

Da'= (y -1) L(n, 0; ). 
yF'(Npa) 

Thus by taking the injective limit relative to a, we have an exact sequence: 
0 -*A- Y (K2 -- --i- 0, where X = lima(EDiH2(ri(Npa), L(n, 0; O)). We 
shall define a map 

4pt : tL(n, 0; (9)/Da' tL(n, 0; 69)/DD for /3> a 
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by the transfer map given by the correspondence: x - y- x for a decomposi- 
tion Jri(Npa) = H iFz(Npfl)y. Then the injective limit for T is compatible with 
the injective limit A' = lim(?DitL(n, 0; (9)/D,') relative to 4p under fa and ga. 
(This follows from the proof of the existence of fa and ga given in [36]). Thus 
we have f: T (--9i' and g: A' '--9i such that f o g = g o f = M id for a 
suitable positive integer M. Let F't be the closure of T'( Npa) in GP= GL 
Note that D' is a closed submodule of tL(n, 0, (9). Therefore for any y E rai 

we know that (y - 1)tL(n, 0; (9) c D,'. Especially, for every a E <' with 

a 1 mod patP, put Ya = 0 a )E GL2(Fp); then, lya E F'. Thus Da D Da 

- Zy(Y, - l)tL(n, 0; (9), where a runs over all elements in 4' congruent to 1 
mod pa. Note that y. acts on the monomial X' as y,,X' = a'X'. Therefore, on 
the image of Xn in tL(n, 0; (9)/Da, every element y of J';(Npa) acts trivi- 
ally since y (O ) mod paRr. Therefore we know that i(4p(x)) = 
[1F(Npa): Fr(Np A )] i(x). Since [ F(Npa): if(NpfA)] is a p-power whose exponent 
increases accordingly to /3, 1., is the zero map on A'. Therefore, we have the 
commutative diagram: 

0 T 

0 ~ I Y/. Y- 1Ix 
o - f -* -* @'- 0 t > 

and a' is annihilated by M. Since 3' is a surjective image of the p-divisible group 
,,,5 it must be trivial. This shows the surjectivity of I., Kx1 - C, which 

finishes the proof when F # Q. When F = Q. as seen in [14, Lemma 7.2], we 
already have a surjective inverse map of I*: 4k k - t(Npo; (9) --> A (NP; (), 
and hence I * must be an isomorphism (in [14], we made the assumption: p ? 5, 
but this condition is not necessary for the proof of [14, Lemma 7.2]). 

Proof of Theorem 3.3. It is sufficient to prove the assertion over (9 since 
Aord (Np00; (9) 'A rd(Npd ; (9(v)) ?Ck(v) (. Fix v as in Section 3, and define 
k = n + 2t, w = v + k - t for each n ? 0 with n - - 2v. We firstly suppose 
that F # Q. Let f Y n =K (N) be the image in e(?~jHr(F'(Npa), 
tL(n, v; K/69))) of e( ? Hr( Fr(Npa), L(n, v; K)). By definition, the restriction 
map takes f into AA for / > a. Put Y0O n(N) = limfK n(N) We know 
that ' n C ord( v; N). We choose another ideal M prime to p such that N 
divides M and T'(M) is torsion-free for all i. Such an ideal M exists by Lemma 
7.1. Then WKO .(M) coincides with F/'rd(v; M). Note that the trace map of 
D -Hr(J;(Mpa), tL(n, v; K)) to (D Hr(F (Npa), tL(n, v; K)) is always surjective 
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by Theorems 6.2 and 6.3 and is compatible with the injective systems { a n( N)) a 
and {1 jn(M)},. Thus YOO n(N) is the suriective image of fOO n(M) = 
Y' 

ord (v; M) and is independent of n if n - - 2v because the trace map is 
independent of weight n by Theorem 8.1. Since A Ord (Np'; (9) can be identified 
with the subalgebra of EndA( / n(N)) and the restriction map Ya n(N) 
OO n( N) is injective by Remark 9.5, ~A~rd (Npoo; 09) can be identified with the 

subalgebra of EndA(Y/' n(N)) generated topologically over A by To(X) for all 
X E 11(1). Since the Pontryagin dual module Vord( v; N) is a A-module of finite 
type by Theorem 9.4, the Pontryagin dual module V., n(N) of YOO n(N) is also of 
finite type, and hence A'd (Np'; (9) is a A-module of finite type since A is 
noetherian. Since Vord(v; M) is (9[[W1]]-free by Corollary 10.3 and A is finite 
and faithfully flat over d9[[ W1]], Vrd( v; M) is A-torsion-free. Since 

V., 
( N) can 

be identified with a A-submodule of Vrord(v; M), V., n(N) is A-torsion-free, and 
hence EndA(V., n(N)) is A-torsion-free (even, in fact, A-reflexive). Therefore 
Aord (Np?; (9), which is a A-submodule of EndA(V., n(N)), is A-torsion-free. 
Since V., n(N) is independent of n and AOrd (Npoo; (9) is generated over A by 
TO(n) for al n, AOrd(Npoo; (9) is independent of n and only depends on v 
mod Z. t. This shows the assertion when F # Q. The case: F = Q can be 
handled in exactly the same manner as above, replacing the usual cohomology 
groups H' by the parabolic ones H1. The case: F = Q under an additional 
assumption: p > 5 has already been treate[14, ?1]. However, by carefully 
analyzing the proof of [14, Th. 3.1], one finds that the assumption: p > 5 can be 
removed if F'(N) is torsion-free. Then the above argument in the case where 
F # Q works well even for F = Q. 

12. Proof of Theorems 3.4 and 3.6 and Corollary 3.7 

When r = IIBI = 1, CQ/QCO is an abelian group of order 2. By the result 
in Section 7, we can let CQ/QCO act on 1 vrd(v; N). We write simply Y for 
yord( V; N ) and put Yl"_= {x ? (x I c) I x E Y } for the generator c of CQo/QC. + 
If l'f is p-divisible, then Y_ is also p-divisible and Yl"= F++ ? Y'. When 
p > 2, Y'= + E '. Before proving Theorem 3.4, we shall show: 

THEOREM 12.1. Let K be a finite extension of Qp containing Ko as in 
Section 1 and (9 be its p-adic integer ring. When r = 1, let V denote the 
Pontryagin dual module of one of Y? and when r = 0, let V denote the 
Pontryagin dual module of %ord(v; N). Then we have an isomorphism of Hecke 
modules: 

VP= VOAAP hoNd(N;9) OAAP for allP E.?iaIg(A) with n(P) ?2v, 

where Ap is the localization of A at P. Especially ho d(N; (9) AA Ap is free of 
finite rank over AP for all P E XaIg(A) with n(P) ? 2v. 
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Proof. For simplicity, we write hp for h?jd(N; (9) ?AAp. Firstly suppose 
that Q1(NP) is torsion free for all i for P as in Corollary 10.4. We also suppose 
that p > 2 or r = 0. Then V is free of finite rank over A by Corollary 10.4. Let 
A' = (9[[W1]] and put Q = P n A'. Then Q corresponds to the restriction of the 
character Xn(P)P to W1. Let A'0 be the localization of A' at Q and put 
VQ = V ?A' A'. By Theorem 9.4, we know from (7.6) that 

VQ/QVQ ?- od (Npa(P), E; K) 

for k = n(P) - 2v + 2t and w = v + k -t 

where E runs over all characters of W whose restriction to W1 coincides with -p. 
This shows that Vp/PV -A krw(Np(P) c1; K). By definition, we have a natural 
surjection: hp/Php -* A rd(Npa(p), -p; K). Let x- be the element in Vp/PVp 
corresponding to the identity of Ahrd (Npa(p), cp; K). Take x E Vp such that x 
mod P = x-, and define A: hp -* Vp by 0(h) = hx. Then, by Nakayama's lemma, 
c is surjective. It is clear from the proof of Theorem 3.2 and 3.3 that h acts 
faithfully on Vp and hence 4 is an isomorphism. For general N, we take an ideal 
M prime to p such that F'(MN) is torsion-free for all i. Let us consider 
Tr: Yl-rd (v; MN) y~rd(V; N) and res: yord(V; N) yord(V; MN). Then 
Trores coincides with the multiplication of a positive integer d. Therefore, if 
p > 2 or r = 0, we conclude from the result for level MN that Vp is A p-free and 

Vp/PVp- Ak~od(Npa(P), vp; K). 

Then the same argument as above shows the assertion. When p = 2 and r = 1, 
the kernel of the natural map: YK+ Yl- -* Yl is annihilated by 2, and thus for 
the Pontryagin dual modules V+, V- and V* of ?+, *'i and Y, respectively, 

(V ?AAp) G (V- ?AAp) =_V ?)AAP. 

This combined with the above argument shows the result. 

Proof of Theorem 3.4. By Theorem 12.1, if K contains Ko as in (1.1), we 
know from Theorem 9.4 and (7.6) that 

hoj(N; (9) (?AAP/PAp Vp/PVp Af? r(Npa(P), ep; K) 

as in the theorem. By Theorems 3.1 and 3.3, we know that hord( N; (9) 
h?vd(N; (9(v)) ?c!(v) (9. Then the general case follows from the result for (. 

Before proving Theorem 3.6 and Corollary 3.7, we prepare some lemmas. 

LEMMA 12.2. Let Ai be a prime factor of p in t and N be an ideal 
prime to $i. Let X: flak w(Nha;Q) Q be a primitive homomorphism with 
character A: ClF(Nla) QX and C(+) be the conductor of 4. We write /3 
for the exponent of Ai in C(+) and let 40 denote the primitive character 
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A0: ClF(C(4')) -* QX associated with 4. Then we have 

(12.1a) jX(T(Az)) 12 = X (/ [n+2v]+)if 0 <a = /, 

(12.lb) X(T(A#))2 = XF/Q(A#)4[n+2v]O( A) if a = 1 and 3 = 0, 

(12.1c) X(T(A)) = Oif a 2 2 and / > a, 

where n + 2v = [n + 2v]t stands for [n + 2v] E Z. 

This fact is well-known; so, we give a sketch of a proof. We shall give a 
representation theoretic proof. An elementary proof in the case of F = Q can be 
found in [24]. We write fX for the unique cusp form in Sk *, i(N I; M2(F); C) 
such that a(N, fX) = X(TO( N)) for all N. Let '7(X) be the automorphic represen- 
tation attached to fx, and let 7/,(X) be the i-component of '7T(X). Suppose firstly 
that 7/,(X) is a principal series representation 7( , 7q) for quasi-characters -, 'q of 
F X. If ( and r, are both ramified, then a 2 2 and a > /3 and X(T(A)) = 0. If 
one of ( and 7q, say (, is unramified, then 41 x = 41Lx, a = /3 and X(T(A)) = ('7) 
for a prime element 7 of t. N t ( for a ([n + 2v] + 1)/2 is 
a unitary representation for o(x) = Ixl,. Then, by the classification of unitary 
representations of GL2(F/7), ' a is a unitary character, or otherwise, 'qw"' is also 
unramified. The latter case cannot happen when a > 0. Then I X(T(lA)) 12= 
I{(7r) 2 = rF/Q(A)[n+2l+ 1. Secondly, we suppose that 7/,(X) is a special repre- 
sentation a(t, 7q). If ( is ramified, then -q is also ramified, a > 2, a > /3 and 
X(T(A)) = 0. If ( is unramified, then as above, we know that a = 1, ,B = 0 
and (12.1b) holds. When 7/,(X) is absolutely cuspidal, then a > 2, a > /3 and 

X(T(lA)) = 0. This shows the result. 

For each ideal 9 of tl, we can define a linear map 

[]: Skw, I(N; M2(F); C) S- IS L(NM; M2(F); C) 

by a(N,fI{n]) = a(fnm-, f) (cf. [23]). 

Then we see from (4.2) that To(A) o [A] is the identity map on S,* L' J(NIa; C) for 
a > 0. For each (9-algebra homomorphism A: Ak L(Npa; (9) -QP, we put for 
any field extension L/K 

SOrd(Npa, X; L) = {g E eSk, V, (Npa; M2(F); L) g|Te) = (TO(e))g 

except for finitely many prime ideals t ) 

and let fX denote the cusp form in S tV I(Npa; M2(F); C) satisfying a(N, f1) = 
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X(To( n)) for all n E 11(1). Then the same argument which proves [11, I, Prop. 
4.4 and Lemma 3.3] combined with Lemma 12.2 shows: 

PROPOSITION 12.3. Suppose that N is prime to p and k ? 2t. Let 
X: Akrd (Npa; 09) -e 0 be an 09-algebra homomorphism of conductor C and 
X 0: 'q k( C; (9) -) 09 be the primitive homomorphism associated with X. Decom- 
pose C = COC1 such that C1 divides pa and CO divides N. Then f = fx, Ie is 
non-zero and Sord(Npa, X; K) = Y-IN/COK * (fIH]) Moreover, let V= 
E ASord(Npa, X; Qp), where the sum is taken over all 0-algebra homomorphisms 
X: w(Npa; 0) -* Qp with conductor divisible by N. Then the subalgebra .XYv 
of End -(V) generated over K by Hecke operators To(N) for all N is semi-sim- 
ple. 

We say that X: A krdw(Npa; 0) -Qp is p-adically primitive if 
Sord(Npa, X; Qp) is of dimension 1 (or equivalently, the conductor of X 
is divisible by N). This notion coincides with the primitivity of complex cusp 
forms if the conductor of X is divisible by every prime factor of p. Put 
Sord(N; K/C9) = S ord(N; K)/S ord(N; 09) _ S ord(N; 09) go K/0. Then the follow- 
ing fact easily follows from Theorem 5.3: 

LEMMA 12.4. The pairing h , ): 9jd(N; 0) X S(rd(N; K10) K/(9 in- 
duced by the pairing of Theorem 5.3 gives isomorphisms: 

hvjd(N; 09) - Homc(So(N; K/0), K/0), 

S ord(N; K/0) Hom v (h (N; 09), K/0). 

Proof of Theorem 3.6 and Corollary 3.7. For each divisor D of N, the map 
[D]: Sk, w, (NpiD; 09) - Sk* w (Np'; 09) preserves the norm (5.3), and since 
D is prime to p, [D] commutes with To(p) and hence with e. Therefore, it 
induces a map [D]: S ord(N/D; 09) S ord(N; 09) by continuity and also an 
injection [ D]: S ord(N/D; K/0) _ S ord(N; K/0). Then, by Lemma 12.4, it gives 
a surjective morphism of A-modules [Dil*: h?vd(N; 0) v Wjd(N/D; 0). The 
natural inclusion ID: Sord(D; K/0) Sord(N; K/0) induces a surjective mor- 
phism of A-modules ID*: h?vd(N; 0) -* hojd(D; 0). Put P(N) = PJ(N; 9) = 
nfDDN(Ker([D]) fn Ker(I *7D)), and write h(N) for h?jd(N; 0) for simplicity. 
Put 

S(A) = (S ord(N/D; A) [D] + Sord(N/D; A)) forA = 0 and K/0. 
tLDDN 

Then S(A) is stable under Hecke operators To( n) for all n, and therefore, the 
A-module P(N) is in fact an ideal of h(N), since P(N) is the annihilator of 
S(K/0). Since P(N) is the Pontryagin dual module of A-divisible module 
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Sord(N; K/CO)/S(K/0O), it is without A-torsion. Suppose that h E P(N) is 
nilpotent. Then the image ha in A rd (Npa; 0) for every a > 0 and every 
n -2v (n ? 0) is also nilpotent. Since h annihilates S(C), ha annihilates old 
forms in S *W, I(Npa; M2(F); K). Thus ha must vanish by Proposition 12.3. This 
shows that h = 0 and thus P(N) has no nilpotent elements. Now consider 
9 = 9(N) = h(N) OA Y for the quotient field Y' of A, which is a finite 
dimensional artinian algebra over Y'. Since 9(N) = P(N) OA Y has no nilpo- 
tent elements, it is actually a semi-simple subalgebra which is a direct factor of 
9. Thus we can decompose 
(12.2a) 9(N) = 9(N) e3 2(N) as an algebra direct sum. 
Now we choose an 0-valued point P of Spec(A) in Xalg(A) with n(P) ? 2v. 
Considering P as an ideal of A, we write MP for the localization at P of each 
A-module M and put M[P] = {m e MIam = 0 for all a e P}. Since we know 
that 

h(N)p/Ph(N)p A, d (Npa(P), Ep; K) 
(k = n(P) - 2v + 2t, w = v + k - t) by Theorem 3.4, 

the kernel of the natural surjection p: h(N)/Ph(N) __, ho.rd (Npa(P), _p; (0) is 
annihilated by QE= A - P. Then P + (A contains a power m P of the maximal 
ideal n of A. Thus pJ8 annihilates Ker(p). By Theorem 5.3, this implies 

(12.2b) Sord(N; o)[P] = S ord (Npa(P), ep; (9). 
Similarly we know 

(12.2c) S(0)[P] = (S? rd(Npa(P)/D, Ep; (9) [D] 
,z~DDN 

+ Sor (Npa( )/D, Ep; (9))) 
Let V = E SXrd(Npa(P), X; Qp)L where X runs over all 0-algebra homomor- 
phisms: Xkrd (Npa(P), Ep; () -) Qp with conductor divisible by N, and let .X"v 
be the Hecke algebra for V as in Proposition 12.3. Then (12.2c) implies 
(12.2d) YXv - P(N)p/PP(N)p, cwhich is an algebra direct factor of 

A ord (Npa(P), Ep; K). 
This implies that the idempotent of 9(N) is in fact contained in P(N)p and thus 
(12.2e) h (N) p = P(N) p a B (N) p for the complementary algebra 

direct summand B (N) p. 

We now define two divisors C, D of N with CD D N, a map 

iC [ D: h(N)p P(D)P 

byr the ombina~tion: h(Nt 1KA[ h(NCt h(D) / ht P(D P. ,n 
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where pr denote the projection map of the decomposition (12.2e). We consider 
the map 

i= EiC,D:h(N)p 3 ? P(D)p, 
C, D DIN CI(N/D) 

where (C, D) runs over all pairs of divisors of N with CD D N. By (12.2d), 
Proposition 12.3 shows that i induces an isomorphism: h(N)p/Ph(N)p = 

E DIN e CI(N/D) P( D)p/PP(D)p. Therefore i induces an isomorphism: h(N)p = 
e D E DP(D)p. Then the set of p-adically primitive homomorphisms: 
A rd (Npa(P), ep; (9) - Qp consists of homomorphisms factoring through 
P(N)p/PP(N)p _ .v Thus we have a bijection: 

HomA(h(N)P, i) - HomK(Ak H(Npa(P), co; K p ) 
and the set of primitive homomorphisms: h?jd(N; () -? consists of A-algebra 
homomorphisms factoring through P(N)p and corresponding to the set of 
p-adically primitive homomorphisms of Akrj(Npa(P), ep; K) into QP. This shows 
the theorem in view of [23]. Corollary 3.7 also follows from the above proof 
(especially (12.2e)). 
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