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1 Introduction

Consider the following three examples of connected complex manifolds: the upper (hyperbolic) half-
plane H1, the affine space A1(C) and the projective space P1(C). Each can be given a hermitian
metric such that the respective actions of PSL2(R), Ga(C) and PU2(C) are isometric and transitive.
We will restrict attention to spaces like H1 of negative curvature (i.e. ’diverging geodesics’) called
hermitian symmetric domains (hsd). If the (Lie-)group of isometries, Iso(D), of such a space D
acts transitively we may ask for an algebraic group GD over R whose real points realize Iso(D). There
are precise conditions for a group to have real points of this kind, placing us in the realm of algebraic
groups. Choosing a point in the space allows to get D back from G.

Taking this axiomatic point of view we define arithmetic subgroups of Γ ⊆ GD(R) and ask when
the quotient is a) compact and b) an algebraic variety. The answer to both these questions is given by
the Baily-Borel theorem: If Γ is torsion-free the quotient space D(Γ) := Γ\D is an open subvariety
in a projective variety D(Γ)∗.

To make full use of this viewpoint, we introduce the circle group U1 := {z ∈ C×with|z| = 1}
and show that the points of a hsd. D correspond to morphisms up : U1 → GD that operate on the
Lie algebra via the characters z, 1, z−1 (and some other conditions). To avoid choosing a base point
in D, we consider instead of a single morphism U1 → G an entire G(R)+-conjugacy class X+ of
morphisms. This pair (G,X+) is called a connected Shimura datum. The connected Shimura
variety Sh◦(G,X+) is the projective system over the spaces Γ\D, where Γ runs over the torsion-free
arithmetic subgroups or, equivalently, it is the adélic quotient G(Q)\(D ×G(Af )).

Coming back to the example of H1 we know that its quotients by arithmetic groups are moduli
spaces: they parametrize elliptic curves with level structure. What do the quotients Γ\D of a Shimura
datum parametrize?

To answer this, note that there is another setting in which morphisms from the circle group come
up: Hodge structures. A Hodge structure on a real vector space V is a Z × Z-grading on its
complexification compatible with conjugation. Equivalently, a Hodge structure can be given by (the
characters of) a representation of the real torus S := Gm/C on V . Now note that the group U1 from

above is the norm 1 subgroup of S. Let VC be the tangent space of the manifold Gad
C obtained from

a connected Shimura datum. A hermitian metric on this space is a smoothly varying pairing on VC,
called a polarization. One can show that every hermitian symmetric domain is a moduli space for
polarized Hodge structures on some vector space.

For arithmetic purposes it is too restrictive to consider only connected domains and the identity
component G(R)+ of a semisimple algebraic group. Hence, general Shimura data (G,X) are built from
certain reductive groups G and G(R)-conjugacy classes X of morphisms S→ GR.
Let S be a scheme over C, then a model for S over a number field k is a scheme S0 over k with an
isomorphism S0 ⊗k C ∼= S. In general we can expect neither existence nor uniqueness of models. For
example, an elliptic curve E over C has a model over some number field if and only if j(E) is algebraic.
The main insight of Shimura is the existence of models of Shimura varieties over number fields. In the
later talks we will discuss existence of canonical models for several families of Shimura varieties.
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2 Talks

The first two talks aim to give a summary of (affine) algebraic groups over a perfect field k with a bias
towards examples.

Talk 1 (Algebraic groups I).
Following [3], define algebraic groups over a field k and explain the statement of the theorem of
Barsotti-Chevalley.
Leaving abelian varieties aside, we focus in the following on affine group schemes (ags). Give some
examples of these: Gm,Ga, µµn,GLn,Spn,Un – not necessary all of these at this stage. Give ways of
constructing further ags: diagonal ags, constant ags – the speaker may skip these if time requires.
Define representations, and very briefly deduce that linear algebraic groups are ags. Discuss connected
components, étale ags, the short exact sequence 1→ G0 → G→ π0(G)→ 1.
Define ags of multiplicative type, character group, tori. Mention the field of definition of tori, the
equivalence of categories between tori and free Galois-modules. Define K/k-forms of ags and give the
correspondence with one cocycles. As examples for K/k-forms give at least (non-split) tori and the
Weyl restriction.
(*)Develop the necessary concepts to define semi-simple and reductive groups – and show their struc-
ture up to isogeny.

References: First one needs [3] for the statement of the theorem of Barsotti-Chevalley. Then the
speaker is encouraged to follow [19], Chapter I, §§1–4.2. Certainly one can/should also look at [21],
[14] or [20].
Difficulty: ** – comprehensive but self-contained
Date: April 16, 2014 Speaker: Yujia Qiu

Talk 2 (Algebraic groups II). Finish whatever remains to be explained from last talk’s (*) – if indeed
necessary, we could then start at 9:00 so that the first speaker finishes with her/his definitions and at
9:15 the second speaker continues.
Explain Borel’s result on fixed points (a connected solvable ags acting on a complete algebraic variety
has a fixed point) – which is Lie-Kolchin for G = GLn. Up to here one has gone through [19], Chapter
I, §§1– 4.3.
For the rest of the talk, we do some Lie theory for algebraic groups and then indicate the classification
of semi-simple ags at least for k = R.
For the Lie theory we may follow [14]. Define the Lie algebra of an ags, give examples, mention the
property of the functor Lie when char(k) = 0 for connected ags. Define the adjoint map Ad and the
group Gad. Illustrate that when G is connected, then Gad is precisely (isomorphic to!) the image
of Ad. If G is semi-simple, then Gad is a direct product of simple groups. Finish this discussion by
mentioning the structure of reductive groups ([14, Theorem 15.1]).
The remaining time should be used to explain the classification of semi-simple ags (as done in [19])
via the Γ-diagrams for G (over the reals!). For this, one may reduce the task to simply explain the
definition of a Γ-diagram and then show the corresponding classifying list given in the reference. One
may also list the groups from [20, Chapter 17].
References: For the first part of the talk, as well as the last one, one needs [19] (and also the last
chapter of [20] for the list). For the Lie theory we follow [14].
Difficulty: ** – same as talk 1, few proofs but a lot of material to understand
Date: April 23, 2014 Speaker: Heer Zhao

Talk 3 (Hermitian symmetric domains).
All references are to Milne, [15]. This talk gathers necessary results from riemannian/hermitian geom-
etry. The emphasis here should lie on examples rather than proofs. The must-do proof is Thm. 1.21.
Follow §1 in [15] and explain/define almost-complex structures, hermitian manifolds and hermitian
symmetric spaces, i.e. where Iso(M, g) acts transitively and every point is isolated fixpoint of an
involution. Discuss the examples H1,C/Λ and P1(C) from above and how they fit in the general clas-
sification. Explain the Bergmann metric: state Thm. 1.3 without proof, but give the remarks after it.
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Then consider the automorphism groups of these spaces and discuss the relation to Lie groups and
algebraic groups: 1.5–1.7. Explain the correspondence between points in a hsd and certain represen-
tations of U1 (Thm. 1.9, with sketch of proof, if time permits). Discuss in detail: Cartan involutions
with examples 1.15 and 1.17. Define C-polarization and give the connection to Cartan involution by
Thm. 1.16 and Prop. 1.20. Finally, prove Thm. 1.21. and deduce Cor. 1.22.
Further reference: For an overview and examples, cf. [8], part 1, pp. 11–18.
Difficulty: * – not so difficult if you know your differential geometry
Date: April 30, 2014 Speaker: David Guiraud

Talk 4 (Locally symmetric varieties and their compactifications).
Follow §3 in [15]: Define arithmetic and congruence subgroups (p.42), locally symmetric varieties
and discuss quotients by torsion free discrete subgroups (Prop. 3.1 and Thm. 3.3), give Expl. 3.4
(quaternion groups), state the important Thm. 3.12 (Baily-Borel), explain the proof for H1 (following
Milne), cf. [22] for one more example (Hilbert modular surfaces). Next, give Thm. 3.14, Cor. 3.16
and Thm. 3.21.
Further reference: Milne only gives a historical overview of Thm. 3.12. The speaker is encouraged to
look at/explain some parts of [18] for more background.
Difficulty: ** – a lot of background material; definitely on the difficult side
Date: May 7, 2014 Speaker: Patrik Hubschmidt

Talk 5 (Variations of Hodge structures).
The aim of this talk is to explain §1.1 of Deligne, [5]. The material is also covered by §2 of Milne, [15].
The following should be explained: Hodge structures (HS) and filtrations, pure HS, rational/integral
HS, examples [15] 2.4-2-6: complex structure↔ (−1, 0)(0,−1) type HS, Tate HS Q(m); examples com-
ing from geometry, in particular abelian varieties, cf. §1-3 of [17]; representations of the Deligne-Torus
S, weight homomorphism wh and µh, category of HS, polarizations of HS, continuous/holomorphic
family of HS, variation of HS (cover flag varieties only as much as necessary). State and prove Thm.
1.1.14 in [5] relating hsd with a variation of HS; cf. Thm. 2.14 in [15].
Further reference: The fact that S-representations come up in this context is part of the general
Tannakian picture: cf. Remarks 2.30,2.31 in [6].
Difficulty: * – self-contained and concrete, but many topics
Date: May 14, 2014 Speaker: Ann-Kristin Juschka

Talk 6 (Adéles and connected Shimura varieties).
All references are to [15].
Recall the finite adéles of Q and the topology on adélic points G(Af ) of an algebraic group (Prop.
4.1). Explain equivalence of Def. 4.4 and Def. 4.22 (axioms SV1-SV3) for a connected Shimura datum.
Sketch the proof of Prop. 4.8 using the theorem from talk 3. Next, define connected Shimura varieties
as in 4.10-4.12. The examples in 4.14 should be explained in detail. Give the strong approximation
theorem, maybe some examples for it, and use it to prove an adélic description of connected Shimura
varieties, Prop. 4.18. At least state Prop. 4.19.
Difficulty: * – not difficult, but needs previous talks 3-5
Date: May 21, 2014 Speaker: Alain Muller

Talk 7 (General Shimura varieties and Tori).
This talk defines general Shimura varieties and their morphisms. It then gives an important structural
result: If Gder is simply connected, π0(Sh(G,X)) is a 0-dimensional Shimura variety. References are
to Milne [15].
First give some results on the real points of an algebraic group over R: In particular state the theorem
of Cartan and real approximation (5.1–5.4). Then give Def. 5.5 of a Shimura datum and check the
assertions for the standard example GL2 (Exple. 5.6). Note that 5.9 follows from 1.1.14 of [5], which
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was proven in talk 5 . Prove 5.13 and finally define the Shimura variety attached to a Shimura datum.
Define morphisms of Shimura varieties and give Thm. 5.16 (without proof).

State and prove Thm. 5.17: The maximal abelian quotient G → T induces an isomorphism of
π0(ShK(G,X)) to a Shimura variety for T . This leads us to introduce 0-dimensional Shimura varieties.
State the additional axioms SV4-SV6 and discuss Expl. 5.24.
Difficulty: ** – needs good understanding of previous talks 4 and 6
Date: May 28, 2014 Speaker: Andreas Maurischat

Talk 8 (Siegel modular varieties).
In the first part of this talk, we describe the complex points of the Shimura varieties associated to
G = GSp(V ), for V a symplectic Q-vector space. The slides of U. Görtz ([8, §3 Talk 2]) may serve as
orientation, and the speaker is encouraged to fill out the necessary details from [10, Chapter 1] and/or
from [7, Chapter 1].
The second part of the talk is more ambitious and aims to roughly explain the construction of the
moduli space of polarized abelian schemes. For this one may summarize the content of [7, Chapter
2] – where we certainly use GIT as a black box, in particular the construction of the Hilbert scheme.
The stress in this second part should be put to make plausible the equivalence in Proposition 2.6.1
and the description of An,N (both on page 19 loc.cit.).
References: For the first part we need [8, §3 Talk 2], [10, Chapter 1] and/or [7, Chapter 1]; and [7,
Chapter 2] for the second one.
Difficulty: *** – Background reading of several sources required, difficult material
Date: June 4, 2014 Speaker: Juan Marcos Cerviño

Talk 9 (Abelian varieties of CM-type).
This talk is independent of all the others. All references are to [15], from which §10–§11 should be
presented.
From §10: Short reminder on abelian varieties (AV), CM-fields and CM-types, every CM-type AV has
an algebraic model, Prop. 10.3 in [15], good reduction of AV, Main theorem of CM-theory: Shimura-
Taniyama formula. From §11: Convention for the Artin map, reflex field of a CM-type; for further
details cf. [16]
Difficulty: ** – independent, but background in CM-theory or considerable reading required
Date: June 11, 2014 Speaker: Tommaso Centeleghe

Talk 10 (Canonical models of Shimura varieties).
In this talk we define the notion of a canonical model for a Shimura variety. We proof its uniqueness
by the following argument1 A variety over a field k is determined by the Galois action on the base
change to kac. We then show, that there exists a dense set of ’special’ points whose combined Galois
action exhausts G(kac/k) and hence uniquely determine a model over k.
First recall the central statements of class field theory and fix a convention for the Artin map, §11 in
[15], 0.8 in [5]. From §12 in [15] cover: models, reflex fields of Shimura data, Remark 12.3b, examples
12.4 (c-d) and 12.7, special points, canonical model of ShK(G,X) and Sh(G,X).
Show uniqueness as in §13 of [15], see 5.1-5.5 of [5] for the proof of the key lemma.
Difficulty: **(*) – needs CM-theory plus a working understanding of previous talks 6–7
Date: June 18, 2014 Speaker: Thomas Krämer

Talk 11 (Canonical models for Siegel and elliptic modular varieties).
This is possibly a shorter talk presenting the first full examples of the theory.
For canonical models of elliptic modular curves cf. [13], pp. 1–32. This should pose no problems
and need not be overly long. The more difficult Siegel case is in pp. 110–115 of [15]. One should
in particular prove Prop. 14.10 (using Mumford, where ’Hodge group’ refers to the Mumford-Tate

1See also ’Where we are headed’ in §10 of [15].
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group of today’s terminology). The fundamental theorem for CM-algebras (as opposed to fields) can
be found in [16]
Difficulty: ** – moderately difficult, detailed sources
Date: June 25, 2014 Speaker: Sundeep Balaji

Talk 12 (Example: Picard surfaces I).
This and the next talk introduce arithmetic quotients of the open unit-ball in C2, so called Picard
modular surfaces. All references are to Gordon [9].
Following §1, recall the necessary notations of signature and maximal compact subgroup of unitary
groups, then give the various descriptions of the symmetric domain X for G′ ∼= SU(2, 1), and sketch
the Baily-Borel and smooth compactifications of SΓ(C) := Γ\X. In §2, introduce the similitude norm
µ and the reductive group G/Q, such that G′ = ker(det/µ). Explain the splitting 2.1.1 and 2.1.2.
Describe the Shimura datum (G,X), the complex structure on X and the connected components of
the Shimura variety SK(G,X)(C), Lemma 2.4. In the third part, we give a moduli interpretation of its
points: Define the signature of a polarized CM abelian variety A and level-K structures on A. Proof
the main result of this talk: Prop. 3.2.
Difficulty: ** – self-contained but not very detailed source
Date: July 2, 2014 Speaker: Konrad Fischer

Talk 13 (Example: Picard surfaces II).
Following §4 of Gordon [9], recall the reflex field E(G,X) of h ∈ X and show Lemma 4.2, i.e. E(G,X) =
E. Definitions 4.4 and 4.5 already appeared in talk 10, so just give a short reminder and then proof
Prop. 4.6, the existence of a model over E. Give the Shimura reciprocity law r and proof Thm 4.9.
From §5 one can give some remarks on the compactifications and their moduli interpretation, but
anything more would be a considerable effort, cf. Larssen [12].
In the remaining time sketch the generalization from an imaginary quadratic to a CM field E, including
the moduli interpretation of ShK(G,X)(C) by weak polarizations, Prop. 6.3.2. Determine the reflex
field (6.4.1.) and proceed as in Thm 4.9 or [5],5.7, to show existence of a canonical model.
Difficulty: ** – same as previous talk
Date: July 9, 2014 Speaker: Gebhard Böeckle

Talk 14 (Possible Example: Shimura curves).
This would be an ambitious endpoint to the seminar. Whether we will have time enough (and people
willing to prepare a talk) remains open for now.
4 sources: Milne’s article [13] introduces only the modular curve case. Carayol’s (difficult) article [1]
is the ultimate reference. To get starting with this matter, maybe Jarvis [11] can be of help. Finally,
Buzzard has an article, where he deals with the (easier) exceptions to Carayol’s Theorem.
Difficulty: *** – difficult
Date: July 16, 2014 Speaker: ??

Talk 15 (Continuation of previous talk or Make-up day).
Date: July 23, 2014 Speaker: N.N.
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