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In this seminar we want to study the theory of local G-shtukas.

Local G-shtukas are an analogue over local function fields of p-divisible groups with
additional structure. Ome can construct moduli spaces of local G-shtukas — the
analogues of Rapoport—Zink-spaces.

There are many more results that parallel the theory in mixed characteristics: The
generic fibers of the moduli spaces allow a period morphism. Their special fibers have
interesting connections with affine Deligne-Lusztig varieties. Via an analogue of the
Serre-Tate theorem one can relate local G-shtukas to global &-shtukas. Moduli
spaces of global &-shtukas are the function field analogues of Shimura varieties and
have been used in the work of V. Lafforgue to construct L-parameters of automorphic
representations. Through uniformization morphisms, the cohomology of moduli
spaces of global &-shtukas can be linked to the cohomology of the moduli spaces of
local G-shtukas.

We will start the seminar with some background material on reductive groups, loop
groups, affine Grassmannians and local GL,-shtukas. Then we will study the general
theory of local G-shtukas following the material from [V] and the references therein.
When preparing one of the later talks please start from [V] and consult further
references for details and proofs.

Talks

1) Parahoric subgroups and the Kottwitz map
References: [HR],[RR]. Define parahoric subgroups ([HR]). Explain the Kottwitz
map B(G) — 71 (G)r as in [RR, Section 1].

2) Loop groups and affine Grassmannians

References: [G, Section 2], [Zhu, Lecture 1]. Recall the notion of ind-schemes. De-
fine the loop group LG and the positive loop group LTG of a reductive group G
over a field k. Show that LG has the structure of an ind-scheme, and that LTG
is a scheme. Define the affine Grassmannian as well as the affine flag variety and
show that both are ind-schemes over k. Explain the Cartan decomposition of the
affine Grassmannian and the Iwahori-Bruhat decomposition of the affine flag variety.

3) Torsors for loop groups

References: [HV1, Section 2]. Explain the background on torsors for loop groups
from [HV1, Section 2], in particular Proposition 2.2 showing the equivalence of cat-
egories for LT G torsors defined using different topologies.
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4) Local shtukas

References: [HS], [P]. Define local shtukas and z-divisible local Anderson modules as
in [HS]. Explain the equivalence between effective local shtukas and z-divisible local
Anderson modules ([HS, Theorem 8.3]). For that explain the analogue of Dieudonné
theory ([P], cf. [HS, Theorem 5.2]). (As a black box you may use that there is an
equivalence of finite locally free strict Fq-module schemes over an F,-scheme S, and
balanced finite locally free Fy,-module schemes over S that can locally on S be em-
bedded into G2 for some set N.)

5) Local G-shtukas

References: [V, Section 2], [HV1]. Define local G-shtukas. Explain the equivalence
of categories of local GL,,-shtukas and local shtukas ([HV1, Lemma 4.2]). Introduce
the Newton point. Explain the notion of a bound of local G-shtukas. Discuss the
important class of examples of bounds given by Schubert varieties ([V, Example 2.6]).

6) Deformations

References: [V, Section 3] and [HV1, Section 5]. Define deformations of local G-
shtukas and show that the formal deformation functor is pro-representable ([V, The-
orem 3.2]). Explain the explicit description of the deformation space from [HV1,
Section 5] for split G and bounds given by Schubert varieties. Discuss [HV1, Ex-
ample 5.10] showing non-smoothness of the deformation space.

7) Moduli spaces of local G-shtukas

References: [V, Section 4], [AH, Section 4]. Introduce moduli spaces of local G-
shtukas. For that define the functors M and show that they are representable [V,
Theorem 4.3].

8) Generic fibers of moduli spaces and level structures

References: [HV2, Sections 5 and 7]. Define étale local G-shtukas over analytic
spaces and introduce their dual Tate module. Define level structures and construct a
corresponding tower of coverings of the analytified moduli spaces of local G-shtukas.

9) Affine Deligne-Lusztig varieties

References: [He], [G, Section 4]. Briefly recall usual Deligne-Lusztig varieties (cf. [G,
Section 4.1]). Then give an overview of the study of affine Deligne-Lusztig varieties,
focussing on whatever you like.

10) The geometry of the special fiber
References: [V, Section 5]. Show that the special fibers of moduli spaces of local
G-shtukas are given by certain affine Deligne-Lusztig varieties ([V, Theorem 5.3]).

11) Global &-shtukas
References: [V, Sections 6.1 and 6.2]. Define global ®&-shtukas and their moduli
spaces. Prove the analogue of the Serre-Tate theorem ([V, Theorem 6.5]).
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