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Introduction

Notation

All rings are commutative and with 1. All complete topological groups/rings are Haus-
dorff.
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1 Valuations

1.1 Totally ordered groups

Definition 1.1. A totally ordered group (resp. totally ordered monoid) is a commu-
tative group (resp. commutative monoid) I' (whose composition law is written multi-
plicatively) together with a total order < on I" such that

v<y =90<96,  forally,y,0€T

Let T',TV be totally ordered groups (resp. monoids). A homomorphism of totally or-
dered groups (resp. totally ordered monoids) is a homomorphism f: T' — I of groups
(resp. monoids) such that for all v1,v2 € I one has v < v2 = f(71) < f(72).

We obtain the category of totally ordered groups (resp. totally ordered monoids).
It is easy to see that a homomorphism is an isomorphism if and only if it is bijective.

If T is a totally ordered group, v € I', and H C I' a subset, we write v < H if v < §
for all § € H. Similarly we define “y < H”, “y > H”, “y > H”.

We also define I'c, := {0 € I' ; § < v} and have analogous definitions for I'<.,
I's,, and I's,.

Remark 1.2. Let I, TV be totally ordered groups. A group homomorphism f: ' — I”
is a homomorphism of totally ordered groups if and only if for all v € I with v < 1 one
has f(y) < 1.

Example 1.3. (1) R>? is a totally ordered group with respect to multiplication and
the standard order. (R,+) is a totally ordered group w.r.t. the standard order.
The logarithm R>? — R is an isomorphism of totally ordered groups.

(2) If I' is a totally ordered group, then every subgroup with the induced order is again
totally ordered. It is called a totally ordered subgroup.

In particular if M C I' is a subset, then the intersection of all totally ordered
subgroups of I' containing M is again a totally ordered subgroup, called the totally
ordered subgroup generated by M.

(3) Let I be a well ordered set (e.g. I = {1,...,n} with the standard order) and
let (I';)ier be a family of totally ordered groups. We endow [[,.;T; with the
lexicographic order (i.e. (v;) < (v;) if and only if 7; < 7}, where j is the smallest

element of I such that ~y; # 'yg) Then [[;.; T is a totally ordered group.



The product order on [T,.; T'; (i.e., (vi): < (7j): if and only if 7; < 7] for all i € I)
is not a total order (except if there exists only one index i such that I'; # {1}).
(4) More generally, let I be a totally ordered index set and let (I';);c; be a family of
totally ordered groups. We define the Hahn product H;I'; as the subgroup of those
v = (743)i € I[; T such that suppy :={i €I ; v # 1} is well-ordered. Then H;T;
becaomes a totally ordered group if one defines v = (;); < 1 whenever for the first
element j in the well-ordering of supp~ one has v; < 1.
(5) If T is a totally ordered group, then I'<; and I'>; are totally ordered monoids.

Proposition 1.4. Every totally ordered group is order-isomorphic to a subgroup of a
Hahn product of copies of the totally ordered group R>? over a suitable totally ordered
set I.

Ordered monoids will mainly come up in the following construction.

Remark 1.5. Let I' be a totally ordered group. We add an element 0 to I' and
define on the disjount union I' U {0} the structure of a totally ordered monoid as
follows. Restricted to I' it is the given structure. We extend the multiplication by
0-v:=v-0:=0 for all vy € ' U{0}. The total order is extended by defining 0 <  for
all y e T U{0}. Then I" U {0} is a totally ordered monoid.

Let TV be a second totally ordered group. Every isomorphism of totally ordered
monoids f: TU{0} = I"U{0} sends 0 to 0 and its restriction to I' yields an isomorphism
' 5 T’ of totally ordered groups. Conversely, every isomorphism I' — I of totally
ordered groups can be extended to an isomorphism I'U{0} — I"U{0} of totally ordered
monoids by sending 0 to 0.

In particular " and IV are isomorphic if and only if TU{0} and I"U{0} are isomorphic.

Remark 1.6. Let I' be a totally ordered group, v, € .
1) y<ley >l
(2)

7,0 <1=~§<1, v< 1,6 <1=~6<1,

(1.6.1)
v,0>1=~52>1, vy>1,6>1=~0>1.

(3) T is torsion free.

Proof. If § <1, then v§ < -1 = ~. Similarly if we replace < by >. This shows (2).
(1) and (3) are immediate consequences of (2). O

Remark and Definition 1.7. A subgroup A of a totally ordered group I' is called
isolated or convex if the following equivalent conditions are satisfied for all 4,0’,v €

T.

(i) 0 <y<1landde€ A imply v € A.

(ii) 9,7 <1 and 0y € A imply §,v € A.
(iii) 6 <y < ¢ and 6,0’ € A imply v € A.



Proof. The equivalence of (i) and (iii) is clear. (i) = (i). As d§,7 < 1 one has
9y < <1 and hence v € A by (i). Then § € A because A is a group. (i) = (i).
Let § <y <1 with § € A. Then §y~! < 1 and (§y~!)y = § € A. This implies v € A
by (ii). O

Example 1.8. (1) If T is a totally ordered group, then 1 and I" are convex subgroups.
If ' = Ry (or any non-trivial subgroup thereof), these are the only convex sub-
groups.

(2) Let I'y,...,I', be totally ordered groups and endow I' = [[,I'; with the lexico-
graphic order (where {1,...,n} is well ordered in the standard way). Then for all
r =1,...,n+ 1 the subgroup [[\, T; is a convex subgroup of I". If some I'; for
7 > 1 is non- trivial, then I'; is not a convex subgroup of I.

Remark 1.9. Let I be a totally ordered group, let H be a subgroup. Then the convex
subgroup of I' generated by H consists of those v € T" such that there exist h,h’ € H
with h <~ <A’ (it is easy to check that this is a subgroup of T').

Remark 1.10. Let I' be a totally ordered group and let A, A’ be convex subgroups.
Then A C A’ or A’ C A.

Proof. Assume there exist § € A\ A’ and ¢’ € A"\ A. After possibly replacing these
elements by their inverse we may assume that §,8’ < 1. And after possibly swapping
A with A’ we may assume that § < §’. But then §’ € A because A is convex. O

Remark 1.11. Let I" be a totally ordered group.

(1) If f: T — I is a homomorphism of totally ordered groups, then ker(f) is a convex
subgroup of I'.

(2) Let A CT be a convex subgroup and let f: I' — I'/A be the canonical homomor-
phism. Then there exists a unique total order on I'/A such that f(I'<;) = (I'/A)<.
Then f is a homomorphism of totally ordered groups.

Remark 1.12. Let A C T be a convex subgroup and let f: I' — I'/A be the canonical
homomorphism. For all v € I' one then has

f(T>y) = (L/A)>ya

and hence

FHT/A) <9a) = [ T<rs:

0€A

Definition 1.13. Let I' be a totally ordered group. The number of convex subgroups
# 1 of T is called the height of T: htT' € Ny U {o0}.

Clearly htI' = 0 if and only if I' = 1. The height of Rs¢ or (of any non-trivial
subgroup) is 1.
In fact there is the following converse.

Proposition 1.14. For a totally ordered group I' # 1 the following assertions are
equivalent.



(i) T has height 1.

(ii) There exists an injective homomorphism I' < R<q of totally ordered groups.

(iii) T 4s archimedean, i.e. for all v,0 € I'«q there exists an integer m > 0 such that
oM < .

Proof. [BouAC] VI, 4.5, Prop. 8. O
Remark 1.15. Let A be a convex subgroup of a totally ordered group I'. Then
htI' =ht A +htI'/A

In particular if I' is the lexicographically ordered product of totally ordered groups A
and A/, then
htI' =ht A + ht A’

Definition 1.16. Let I' be a totally ordered group and let H be a subgroup of I'. We
say that v € T'U {0} is cofinal for H, if for all h € H there exists n € N such that
" < h.

Clearly, 0 is cofinal for H for every subgroup of I', and no v > 1 is cofinal for any
subgroup of I'.

Remark 1.17. Sometimes it is convenient to consider for a totally ordered group I'
the following topology on I' U {0}. A subset U of I' U {0} is open if 0 ¢ U or if there
exists v € I' such that I' ., C U.

Then an element v € I is cofinal for T" if and only if 0 is in the closure of {~" ; n €
N}.

Example 1.18. Let I" be a totally ordered group of height 1. As I' is archimedean
(Proposition 1.14), every element v € I with v < 1 is confinal for T'.

Remark 1.19. Let I" be a totally ordered group, v € I with v < 1, and let H be a
subgroup of I'. Then + is cofinal in H if and only if the convex subgroup generated by
v (Remark 1.9) contains {h € H ; h <1} (or, equivalently, H).

Indeed, let v be cofinal in H and let h € H with h < 1. Then there exists n € N
such that v < h < 1 and thus h is contained in the convex subgroup generated by ~.
Conversely, assume that the convex subgroup generated by v contains { h € H; h < 1}.
It suffices to show that for all h € H with h < 1 there exists n € N with 4™ < h. By
hypothesis there exists m € Z such that 4™ < h. One necessarily has m > 1 because
v < 1. Then 4™t < h.

Proposition 1.20. Let I' be a totally ordered group, I' C T' a convex subgroup, let
~ €T be cofinal for TV, and let A C T be a proper convexr subgroup. Then 6 is cofinal
for TV for all § € A.

Proof. Let vy € I be an element with 79 < A and hence A <~y ! Then there exists
n € N with v < 49 and hence (§7)*" < 7&172” < ~™ which implies the claim. O

Corollary 1.21. Let I be a totally ordered group, A C T a proper convex subgroup. If
v € T is cofinal for T, then the image of v in T'/A is cofinal for T'/A.



1.2 Valuations

Definition 1.22. Let A be a ring. A valuation of Aisamap |-|: A — T'U{0}, where
I" is a totally ordered group, such that
(a) |a+b| <max(|al,|b]) for all a,b € A.
(b) |ab| = |al|b| for all a,b € A.
(c) 0] =0and |1| =1.
The subgroup of I' generated by im(|-|) \ {0} is called the value group of |-|. It is
denoted by I'|.
The set supp(| - |) := | - | 7(0) is called the support of | - |.

The second condition shows that |u| € T for every unit u € A* and that | - || 4= : A —
I' is a homomorphism of groups. Moreover | —1|| — 1| = 1 shows that | — 1| = 1 by 1.6.
Thus we have for all a € A
| —al = |al.

Example 1.23. Let A be a ring and p be a prime ideal of A. Then

GH{L a ¢ p;

0, a€p

is a valuation with value group 1. Every valuation on A of this form is called a trivial
valuation.

If F' is a finite field, F'* is a torsion group. Thus on F' there exists only the trivial
valuation.

Remark 1.24. Let |- | be a valuation on A.

(1) Let a,b € A with |a| # |b]. Then |a + b] = max(|al,|b]). Indeed let |a| < |b]
and assume that |a + b] < |b]. Then |b| = |a + b — a] < max(|a + b|,|a|]) < [b].
Contradiction.

(2) Let ¢: B — A be a homomorphism of rings. Then |- | o ¢ is a valuation on B and

supp(| - | 0 @) = ¢~ (supp(| - [))-
Remark 1.25. Let |-|: A — I' U {0} be a valuation of a ring A. Then supp(]-|) is
a prime ideal in A (and of {a € A ; |a|] < 1}). Denote by K the field of fractions of
A/ supp(] - |). Define a valuation

||t K = Tu{o}, = Jallb|

[l

where @,b € A/supp(]-|) are the images of elements a,b € A. [Note that for a € A,
a’ € supp(| -|) one has |a+a'| = |a] by 1.24. This and the multiplicativity of | - | shows
that | - |" is well defined.]

The support of | - | is the zero ideal and Ly =T

Conversely let p C A be a prime ideal and let | -|" be a valuation on #(p). Then
its support is the zero ideal. Composing | -|" with the canonical ring homomorphism
A — k(p) we obtain a valuation |- | on A.



Definition 1.26. Let |- | be a valuation on A. Then

K(| - [) == Frac(A/supp(] - |)),
(resp. A(|- ) :={z e K(|-]); |2 <1},
resp. m(| - ) :={x € K(|-]); [ <1},
resp. #(| - [) == A(l- [)/m(]-]) )

is called the valued field (resp. valuation ring, resp. the maximal ideal, resp. the residue

field) of | - 1.
The height (or rank) of | - | is defined as the height of the value group of | - |.

Proposition and Definition 1.27. Two valuations |- |, and ||, on a ring A are

called equivalent if the following equivalent conditions are satisfied.

(i) There exists an isomorphism of totally ordered monoid f: T U{0} = T U{0}
such that fol -]y =]/,

(i) supp(| - [;) = supp(| - |y) and A(] - [;) = A(] - |5)-

(iii) For all a,b € A one has |alir < |b|1 if and only if |ala < |b|2.

Note that f in (1) restricts to an isomorphism Ly, 5 Ly, of totally ordered groups.

Proof. All three conditions imply that supp(|-|;) = supp(]|-|5) =: p. For a € A the
valuations |a|; and |a|e depend only on the image of a in A/p. Thus we may replace A
by A/p. Then A is an integral domain, supp(| - |;) =0 for ¢ = 1,2, and we can extend
|-]; and | - |, to the field of fractions K of A. Thus we may assume that |- |; and | - |,
are valuations on a field.

Clearly, (i) implies (iii) and (iii) implies (ii). If (ii) holds, then also {a € K ; |a|; >
1} ={a € K; |al2 > 1} and hence |-|;: K* — ' and |-[;: K* — I} are
surjective group homomorphisms with the same kernel. Thus there exists a unique

group homomorphism f: I'.|, = I'|.|, such that fo || =1]1]y. It maps elements <1
to elements < 1 and thus is a homomorphism of totally ordered groups, and we can
extend f to I'|| U {0} by setting f(0) = 0. O
Remark 1.28. Let A be a ring. For a valuation |- | denote by [| -|] its equivalence

class. It follows from 1.25 that |- | ~ (supp(] - |), | -|") yields a bijection

{Il-1]; || valuation on A}

(1.28.1) , , .
~{(p,[|-|']); p€SpecA,|-| valuation on Frac A/p }.

Example 1.29. Let |- | be a valuation on a field k and let I" be its value group. Let
A = k[Th,...,T,] be the ring of formal power series in r variables over k, and endow
the group Ry, x I' with the lexicographic order. Fix some real numbers p1, ..., p, with
0 < p; < 1. Then

|1t A= (RS, x T) U {0},
Z anTyt T = pi™ - pl'|am|, where m =inf{m e Z" ; am #0}

n=(n1,...,nr)

is a valuation on A.



Example 1.30. Every totally ordered group I is the value group of a valuation which
can be constructed as follows. Let k be any field and set C' := k[I'<;] (the monoid
algebra of the monoid of elements < 1 in I'). By definition C has a k-basis () er.,
and its multiplication is given by x5 = 25. Define a valuation on C by [0| =0 and

’ Z a,y:cyl =sup{v; ay#0}.

vel'<y

Then |- | is a valuation on C' with value group I" and support 0.

2 Valuation rings

2.1 Definition of valuation rings

Remark 2.1. Let A and B local rings with A C B. Then we say that B dominates A
ifmpNA=m4. Given a field K, the set of local subrings of K is inductively ordered
with respect to domination order.

Proposition 2.2. Let K be a field and let A be a subring of K. The following conditions

are equivalent.

(i) For every a € K* one hasa € A ora™' € A.

(ii) Frac A = K and the set of ideals of A is totally ordered by inclusion.

(iii) A is local and a mazimal element in the set of local subrings of K with respect to
the domination order.

(iv) There exists a valuation |- | on K such that A = A(]-]).

(v) There ezists an algebraically closed field L and a ring homomorphism h: A — L
which is mazximal in the set of homomorphisms from subrings of K to L (here we
define h < h' for homomorphisms h: A — L and h': A’ — L, where A, A’ are
subrings of K, if AC A" and h = h'| ).

Proof. “(i) < (iv)”. Clearly (iv) implies (i). Conversely if (i) holds, it is easy to check
that
0, if = 0;

[ K= K7 /A" {0}, o] = :
[x] ;== 2 mod A*, ifx e K*,

defines a valuation, where K* /A* is ordered by [z] < [y] :& zy~! € A.

“(i) = (11)”. Frac A = K is obvious. Let a,b C A be ideals. If a is not a subset of
b and a € a\b, then b~'a ¢ A holds for every b € b and thus a~'b € A. This implies
Ab C Aa for all b € b and in particular b C a.

“(i1) = (4ii)”. As the ideals of A are totally ordered by inclusion, A has to be
local. Denote by m,4 its maximal ideal. Let B C K be a subring dominating A. For
x € B\{0} we can write x = ab~! with a,b € A. We have to show that = € A. In case
Aa C Ab it directly follows € A. On the other hand if Ab C Aa we have 27! € A.
But 27! ¢ m4 since B dominates A. This implies z € A*.

“(iti) = (v)”. Let k(A) be the residue field of A, let L be an algebraic closure
of k(A), and let h: A — L the canonical homomorphism. Further let A’ C K be a



subring containing A and let h’': A’ — L be an extension of h. For p = ker i’ we get
pNA=my. Hence A dominates Ay, = A, which shows A = A} and thus A’ = A.

“(v) = (i)”. For this implication we will use the following easy remark: Let R be a
ring, B an R-algebra, and b € B. Then b is integral over A if and only if 5= € A[p~1]*.

Now we are able to prove that (v) implies (i). First we show that A is local with
my = ker h. If h(z) # 0 for x € A we get a natural extension of h to A,. By maximality
of h it then follows A, = A and thus x € A*.

Now let z € K be integral over A. Then A’ := A[z] is a finite extension of A and
there exists a maximal ideal m’ of A’ so that m’ N A = my4. Hence A’/m’ is a finite
extension of A/m and because L is algebraically closed there exists an extension of h
to A’/m’ and thereby to A’. Thus A = A’ and z € A.

Now, if € K is not integral over A we have v~ ¢ A[z~1]* by the above remark.
Hence there exists a maximal ideal m’ of A[z~!] containing z~!. Since A — A[z~!] —
Alz~1]/m’ is surjective, its kernel must be m4 and we obtain a natural extension of h
to A[z~!]. Therefore A[x71] = A and 27! € A. O

Definition 2.3. An integral domain A with field of fractions K is called valuation ring
(of K) if K and A satisfy the equivalent conditions in Prop. 2.2.

Remark 2.4. If A is a valuation ring, then up to equivalence there exists a unique
valuation | - | on K := Frac A such that A = A(] - |) (Proposition 1.27). Its value group
['|.| is isomorphic T'4 := K> /A* with the total order defined by xA* < yA* & ry e
A. The valuation is trivial if and only if A = K.

Remark 2.5. Let A be a valuation ring, K := Frac A, k := A/my, and let 7: A — k
be the canonical map. Then the map

{ B ; B valuation ring of k} — { B ; B valuation ring of K contained in A},
B+ 77 YB)

is (well defined and) bijective.

2.2 Examples of valuation rings

Lemma 2.6. Let A be a local ring whose maximal ideal is generated by one element p.
Assume that (51 Ap™ = 0 (which is automatic if A is noetherian). Define

: AnAn+1,
v A= Z.U {oo). v(x)::{n, if © € Ap™\Ap"T;

o0, otherwise.

Then the only ideals of A are 0 and Ap™ for n > 0. Moreover p is either nilpotent or A
is a valuation ring and its valuation is given by x — v*@) | where y is any real number
with 0 < v < 1.

Proof. Since [,>; Ap"=0 we have v(z) = oo if and only if z = 0. Let a be a non-zero

ideal of A and a € a such that v(a) is minimal. Clearly a € Ap¥(®. Furthermore,
there exists an u € A with a = up¥® and clearly v(u) = 0, i.e., u € AX. This shows

10



p'@ € Aa and thus a = Ap’(@. As we have seen that every element a € A can be
written as a = up®@ with v € A%, it also follows that if p is not nilpotent, A will be
an integral domain with valuation v. O

Proposition 2.7. Let A be an integral domain which is not a field. Then the following
assertions are equivalent.

(i) A is a noetherian valuation ring.

(ii) A is a local principal domain.

(iii) A is a valuation ring and T 4 is isomorphic to the totally ordered group Z.

(iv) A is local, its mazimal ideal m is a principal ideal, and (1,5, m" = 0.

Proof. “(ii1) = (ii),(i)”. Without loss of generality we may assume that I"4 is the
(additive) group Z. Let m € A with |7| = 1. For x € A we have |z| = n = |7"| which
implies © = un™ for a unit u € A*. Now (ii) and (i) follow as in the proof of Lemma 2.6.

“(ii) = (w)”. Let my = Aw. Then 7 is the only prime element of A up to
multiplication with units of A and every non-zero ideal has the form An". As A is
factorial, the only element of A dividing all powers of the prime element 7 is 0, i.e.,
(N> ma =0

“(iv) = (i43)”. This follows directly from Lemma 2.6 with v as valuation.

“(i) = (ii)”. Let a C A be an ideal generated by elements z1,...,x, € A. Since
the ideals z; A are totally ordered by inclusion, a is generated by one of the elements
x;. Thus A is a principal domain. O

Definition 2.8. Let A be an integral domain which is not a field. If the equivalent
properties of Prop. 2.7 are satisfied, A is called a discrete valuation ring and its valuation
is called a discrete valuation. It is called normed if its value group is Z.

Example 2.9. Let A be a factorial ring, K = Frac A. Let p € A be a prime element.
Let v,: K — ZU{oo} be the p-adic valuation. Fix a real number 0 < p < 1 and define
|z| := p*r® for x € K. Then |- | p 18 a valuation (also called the p-adic valuation). Its
valuation ring is A(,. Its equivalence class does not depend on p.

Example 2.10. Let A be a principal ideal domain and K its field of fractions. The
valuation rings of K containing A and distinct from K are the rings A, where p is a
prime element of A.

In particular, every valuation ring of the field Q and distinct from @ is of the form
Z(p) (because every subring of Q contains Z).

Example 2.11. Let k be a field. The only valuations on k(7") whose restriction to k
is trivial are (up to equivalence) the p- adic valuations, where p € k[T is an irreducible
polynomial, and the valuation f/g — pdes@)=dee(f) for f g € k[T], g #0and 0 < p < 1
a real number.

2.3 Ideals in valuation rings

Proposition 2.12. Let K be a field, let | - | be a valuation on K, A its valuation ring,
and let T' be the value group of | -|. Consider the following condition on subsets M of
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T
(*) yeM,§<y=0d¢eM.

Then the map M — a(M) :={xz € K ; |z| € M U{0}} yields a bijection between the

subsets of I' satisfying () and the set of A-submodules of K. Under this bijection one

has the following correspondences.

(1) The ideals of A correspond to those subsets M satisfying () contained in I'<y.

(2) The monogenic (or, equivalently, the finitely generated) A-submodules of K cor-
respond to the subsets of the form I'<, for some v € I'. In this case a(I'<y) is
generated by any element x € K with |z| = 7.

For instance the maximal ideal of A corresponds to I'q.

Proof. For every A-subomdule b of K we define the set M(b) := {|z|;z € b\{0}}.
We note that these sets satisfy (x). We claim that this defines an inverse map to
M +— a(M). Thus we have to show:
(a) M(a(N)) = N for every subset N of I' satisfying ().
(b) a(M(b)) = b for every A-submodule b of K.
Now (a) is obvious, as is b C a(M(b)). On the other hand for = € a(M (b)) we have
|x| € M(b). Hence there exists y € b with |x| = |y| which implies x = uy where |u| = 1.
This finally shows = € Ay C b.

Furthermore (1) is obvious and concerning (2) we observe that for z € K with
|z| = v the relation 27 'a(T'<,) C A holds. O

Remark 2.13. Let K be a field and let A be a valuation ring of K. Then every ring
B with A C B C K is a valuation ring.

Proposition 2.14. Let K be a field, let | - | be a valuation on K, A its valuation ring,
and let T' be the value group of | -|. Define

R :={ B (valuation) ring; AC BC K };
Z:={A; A convexr subgroup of T }.

(1) The maps

Spec A — R, p = Ay,
R — Spec A, B—mp

are well defined mutually inverse inclusion reversing bijections.
(2) The maps
Z—R, AHA(KQF—M“/A),
R — I, B+ |B¥|

are well defined mutually inverse inclusion preserving bijections.

12



Proof. (1). For B€ Rlet #+ € mp. Then 27! € K\ B C K \ A and hence € m4.
This shows mp C m4. Furthermore mp = mpg N A is a prime ideal in A. The map
R — Spec A is inclusion reversing. Now clearly An, C B holds. Conversely for
r € B\A we have 27! € A and 27! ¢ mp, so that x € Ay,. Thus Ay, = B.

On the other hand let p € Spec A and B := A;, then p = mp N A = mp which
finishes the proof of (1).

(2). Let B € R. We may assume I'y = K*/A* and I'p = K*/B*, so that we get
a surjective homomorphism of ordered groups A: I'y — I'g with kernel B*/A* =: Hp.
Furthermore we have |- |p = Ao |- |4 and we can identify I'y/Hp and I'g. Therefore
Hp defines | - |p up to equivalence, hence determines B uniquely. Conversely for every

A € 7 the mapping K ‘—|—> I' - T'/A is a valuation on K whose ring contains A since

the map I' — I'/A is a homomorphism of ordered groups. ]
2.4 Extension of valuation

Proposition 2.15. Let K be a field, let | - | be a valuation on K, and let K’ be a field
extension of K. Then there erists a valuation | -|" on K' whose restriction to K is
equivalent to | - |. In other words there exists a commutative diagram

(2.15.1) ] TA
K—"1, U0},

where X is an injective homomorphism of totally ordered groups.

Moreover, if x1,...,x, are elements in K' that are algebraic independent over K,
and 41, ..., v, are any elements of T. Then |- | may be chosen such that |x;|' = ~; for
alli=1,....n.

Proof. [BouAC] VI, §2.4, Prop. 4. O

Proposition 2.16. Let K be a field, let K' D K be an algebraic extension, let | - | be
a valuation on K' and let | -| be its restriction to K. Let k (resp. k') be the residue

field of A(| - ) (resp. A(|-]))-

(1) T.p/Ty) is a torsion group and ht(T'|/) = ht(L'}).

2) k' is an algebraic extension of k.

(3) | - | is trivial (resp. of height 1) if and only if | -|' is trivial (resp. of height 1).
(4) Let K' be a finite extension of K. Then

(K k(D) :T) < [K': K]

i particular FH’/FH is a finite group and k' is a finite extension of k. Moreover,

- | is discrete if and only if | - | is discrete.
|- Y

Proof. [BouAC] VI, §8. O
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In general, an extension of a valuation on a field K to a field extension K’ is not
unique. In fact, this is never the case if K’ is transcendental over K as the second
assertion of Prop. 2.15 shows. But even if K’ is an algebraic extension we need some
additional hypothesis. In fact this is closely connected to Hensel’s lemma. Thus there
is the following definition.

Proposition and Definition 2.17. Let A be a local ring, k its residue field. Then A

is called henselian if the following equivalent conditions are satisfied.

(i) Every finite A-algebra is a (necessarily finite) product of local rings.

(ii) For every monic polynomial F € A[T| with image Fy € k[T] and for every de-
composition Fy = GoHy into polynomials Gy, Hy € k[T| that are prime to each
other, there exists a unique pair (G, H) of monic polynomials in A[T| such that:
Go and Hy are the images of G and H, respectively, F = GH, and the ideal of A[T)]
generated by G and H is A[T].

(iii) For every smooth morphism of schemes f: X — Spec A the canonical map X (A) —
X (k) is surjective (where, with S = Spec A, X(A) = Homg(S,X) and X (k) =
Homg(Speck, X) = Homy(Speck, X ®4 k) ).

Proof. [EGA] IV (18.5.11), (18.5.13), (18.5.17). 0
Proposition 2.18. Let || be a valuation on a field K. Then A(|-|) is henselian if
and only if for every algebraic extension K' of K any two extensions of |- | to K' are
equivalent.

If these equivalent conditions are satisfied, A(|-|") is also henselian.
Proof. See e.g. [FuSa] II, Theorem 7.3 O

Remark 2.19. Let |- | be a valuation on a field K. By Hensel’s lemma, if A(]-]) is
complete and | - | is of height 1, then A(] -|) is henselian.

But there exist valuations of height 2 such that A(] - |) is complete but there exist two
non-equivalent extensions to a quadratic extension of K ([BouAC] VI, §8, Exercise 1).
In particular A(] -|) is not henselian.

For transcendental extensions we extend valuations almost “arbitrarily”:

Proposition 2.20. Let K be a field, |- | a valuation on K, T its value group. Let T’
be a totally ordered group containing I' and let v € T'. Then there exists a valuation
| -|" on K(T) with values in T" such that |T|' = .

Proof. One easily checks that

(2.20.1) |2 o'l = max{laily'}
7

defines a valuation on K (7T) that extends | - |. O

It is not difficult to construct other extensions than (2.20.1) of | - | to K(T") (e.g. [BouAC]
VI, §3, Exercise 1).

The next two corollaries show that as special cases one can extend a valuation to
K (T) without changing the residue field or without changing the value group.
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Corollary 2.21. Let K be a field, |-| a valuation on K, T its value group. Let T”
be a totally ordered group containing I' and let v € TV be an element whose image in
I'/T has infinite order. Then there exists a unique valuation |-|" on K(T) extending
|- | such that |T|" =~. One has (|- |") = x(| - |) and Ly=T 2.

Proof. We have only to show the uniqueness assertion. But using the hypothesis on ~
this follows easily from |a + b|' = max{|a|’, |b|'} if |a| # |b]’. O

We may also extend | - | by choosing v =1 in (2.20.1).

Corollary 2.22. Let K be a field, | - | a valuation on K, T its value group. Then there
exists a unique valuation | -|" on K(T) extending | -| such that |T|' = 1 and such that
the image t of T in k(|- |) is transcendental over x(|-|). One has (|- |') = w(| - |)(t)
Proof. [BouAC] VI, §10.1, Prop. 2 O

Remark 2.23. Let K be a field, |- | a valuation on K, I' its value group. Let K’ =
K(Ty,...,T,) be a finitely generated purely transcendental extension of K. Arguing
by induction one can therefore find for every all integers r,s > 0 with » + s = n an
extension |- |  of | - | to K’ such that

.
Fl'l' =TI x H Z, lexicographically ordered,
i=1

(1) =R Dt ts)
Conversely there are the following restrictions.

Proposition 2.24. Let K be a field, | -| a valuation on K, T' its value group, k its
residue field. Let K' be an extension of K, |- | a valuation on K' extending |- |, T" its
value group, k' its residue field. Then

trdeg(k'/k) + dimg((I'/T") @z Q) < trdeg(K'/K),
ht(T”) — ht(T) < dimg((I"/T) @z Q)
Proof. [BouAC] VI, §10.3. O

Proposition 2.25. Let K1 — K> be a field extension, let Ay be a valuation ring of Ko
and set Ay := K1 N Ay (which is a valuation ring of K1). Fori=1,2 let G; (resp. S;)
be the set of valuation rings of K; which contain A; (resp. which are contained in A;).
Then B — BN K1 yields surjective maps Go — G1 and Sy — S7.

If K5 is algebraic over K1, then the map Go — G1 is bijective.

Proof. Any valuation on a field can be extended to any field extension (Prop. 2.15). If
we apply this to the extension of residue field of Ay and Ao, the surjectivity of So — &1
follows from Remark 2.5. Applying this to K; — K itself, the surjectivity of Go — G
follows from Proposition 2.14.

Let T'; be the value group (of the equivalence class) of the valuation on K; given by
A;. If K9 D K is algebraic, then the cokernel of I'y < I'y is torsion and A — I'1NAisa
bijection from the set of convex subgroups of I's onto the set of convex subgroups of I'y
(Proposition 2.16). Thus the bijectivity of Gy — G follows from Proposition 2.14. [
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3 Spectral spaces

Similarly as general schemes are obtained by gluing affine schemes, adic spaces will be
obtained by gluing affinoid adic spaces. In both cases the underlying topological spaces
are spectral spaces, which first have been singled out by Hochster ([Ho]).

3.1 Sober spaces

We first recall the definition of irreducible spaces.

Remark and Definition 3.1. Let X be a non-empty topological space. Then X is
called irreducible if X satisfies one of the following equivalent conditions.

(i) X cannot be expressed as the union of two proper closed subsets.

(ii) Every non-empty open subset of X is dense.

(iii) Any two non-empty open subsets of X have non-empty intersection.

A non-empty subset Z of X is called irreducible if Z is irreducible when we endow it
with the induced topology.

Lemma 3.2. Let X be a topological space. A subspace Y C X is irreducible if and
only if its closure Y is irreducible.

Proof. A subset Z of X is irreducible if and only if for any two open subsets U and V
of X with ZNU # 0 and ZNV # () we have ZN(UNV) # 0. This implies the lemma

because an open subset meets Y if and only if it meets Y. O
Remark 3.3. In particular, a subset of the form {z} for = € X is always irreducible.

Remark 3.4. Let X be a topological space. If U C X is an open subset and Z C X
is irreducible and closed, Z N U is open in Z. Hence if ZNU # ), then ZNU is an
irreducible closed subset of U whose closure in X is Z. Together with Lemma 3.2 this
shows that there are mutually inverse bijective maps

{Y C U irreducible closed} <+ {Z C X irreducible closed with Z NU # (0}
(3.4.1) Y =Y (closure in X)
ZNU —Z

Remark and Definition 3.5. An irreducible subset that is maximal w.r.t. inclusion
is called an irreducible component.

The set of irreducibly subsets is inductively ordered. Hence every irreducible subset
is contained in an irreducible component. In particular X is the union of its irreducible
components. By Lemma 3.2 irreducible components are always closed.

A point z € X is called a mazimal point if its closure m is an irreducible component
of X.

Definition 3.6. Let X be an arbitrary topological space.
(1) A point 2 € X is called closed if the set {x} is closed,
(2) We say that a point n € X is a generic point if {n} = X.

16



(3) Let z and 2’ be two points of X. We say that x is a generization of 2’ or that '
is a specialization of z if 2/ € {x}. We write x = 2’ or 2/ < x.

Definition 3.7. A topological space X is called sober if every irreducible closed subset
of X has a unique generic point.

Remark 3.8. Recall that a topological space X is called Kolmogorov (or Ty) if for any
two distinct points there exists an open set containing one of the points but not the
other.

A topological space is Kolmogorov if and only if every closed irreducible subset
admits at most one generic point. Indeed, for z,y € X with x # y one has m % {7}
if and only if there exists a closed subset containing one of the points but not the
other one. By taking complements this is equivalent to the existence of an open subset
containing one point but not the other.

In particular we see that every sober space is Kolmogorov.

Remark 3.9. If X is a sober space (or, more generally, a topological space where every
closed irreducible subset has at most one generic point), then < is a partial order on
X.

Example 3.10. (1) If X is a Hausdorff space, then the only irreducible subsets of X
are the sets {z} for z € X.

(2) Let Z be an infinite set endowed with the topology such that the closed sets # Z
are all finite subsets. Then Z is irreducible but has no generic point. In particular
Z is not sober. If we add a single point 1 without changing the closed subsets
# Z U{n}, then Z U {n} is sober.

In particular we see that there are subspaces of sober spaces which are not sober.

(3) Let X be a topological space in which X and () are the only open subsets. Then

every point of X is a generic point.

3.2 Spectral spaces

Definition 3.11. Let X be a topological space and let f: X — Y be a continuous

map of topological spaces.

(1) X is called quasi-separated if the intersection of any two quasi-compact open subsets
is again quasi-compact.

(2) A subspace Z of X is called retro-compact if the inclusion Z — X is quasi-compact.

(3) fis called quasi-compact if for every open quasi-compact subset V' of Y the inverse
image f~1(V) is quasi-compact.

(4) f is called quasi-separated if for every open quasi-separated subset V of Y the
inverse image f~1(V) is quasi-separated.

We abbreviate the property “quasi-compact and quasi-separated” to “qcgs”.

Definition 3.12. A topological space X is called spectral if it satisfies the following
conditions.
(a) X is quasi-compact.
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(b) X has a basis consisting of quasi-compact open subsets which is closed under finite
intersections.

(c) X is sober.

X is called locally spectral if X has an open covering by spectral spaces.

Remark 3.13. (1) Any locally spectral space X is sober and in particular Kolmogorov
(Remark 3.8).

(2) A locally spectral space is spectral if and only if it is qcgs.

(3) A finite sum of spectral spaces is again spectral.

(4) Every quasi-compact open subspace U of a spectral space is again spectral: By (2),
U inherits from X a basis of quasi-compact open subsets which is closed under
intersection. By (3.4.1) any open subspace of a sober space is again sober.

(5) Every closed subspace of a spectral space is again spectral: This is clear as any
closed subspace of a quasi- compact is again quasi-compact and every closed sub-
space of sober space is sober.

(6) A locally spectral space X has a basis consisting of spectral open subspaces and X
is sober. Note that Example 3.16 below shows that it may happen that such a basis
is not stable under finite intersections (in oher words, X is not quasi-separated).

(7) Every open subspace of a locally spectral space is locally spectral.

Example 3.14. Let A be a ring and endow Spec A := {p ; p prime ideal } with the
usual topology (i.e. the closed sets of Spec A are of the form V(a) :={p; a Cp} for
ideal a of A). Then Spec A is spectral: For f € A set D(f) ={p; f ¢ p}. Then
the (D(f))fea form a basis of open quasi-compact subsets of Spec A stable under finite
intersections.

For two prime ideals p and q of A, p is a specialization of q (or, equivalently, q is a
generization of p) if and only if ¢ C p. For every irreducible closed subset Z of Spec A
there exists a unique prime ideal p € Z such that p C q for all q € Z.

Let X be a scheme. Then the underlying topological space of X is spectral if and
only if X is qcgs.

In fact, Hochster has shown in [Ho|] the converse.

Theorem 3.15. (1) For a topological space X the following assertions are equiva-
lent.
(i) X is spectral.
(ii) X is homeomorphic to Spec A for some ring A.
(ili) X is homeomorphic to the underlying topological space of a quasi-compact

quasi-separated scheme.

(iv) X is the projective limit of finite Kolmogorov spaces.

(2) A topological space is locally spectral if and only it is homeomorphic to the under-
lying topological space of a scheme.

(3) For every continuous quasi-compact map f: X' — X between spectral spaces there
exists a ring homomorphism o: A — A’ such that the associated continuous map is

f.
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Example 3.16. Set X := NU {oco} endowed with the usual (total) order and define
its set of open subsets by { X<z ; v € X }U{X}.

The only open subset containing oo is X itself, in particular X is quasi-compact.
For all x € X the set X<, is open quasi-compact and these sets form a basis of the
topoology stable under finite intersection. The non-empty closed subsets are the sets
X>, for x € X. All of them are irreducible with unique generic point . Thus X is a
spectral space.

In fact, X is the spectrum of a valuation ring with value group [[yZ (ordered
lexicographically).

Note that X, is open and not quasi-compact. If we glue two copies of X along
X, then the resulting space is locally spectral and quasi-compact but it is not quasi-
separated and in particular not spectral.

3.3 Constructible topology

Definition 3.17. Let X be a spectral space.

(1) A subset Z of X is called constructible if it is in the Boolean algebra C of subsets
of X that is generated by all open quasi-compact subsets (i.e. C is the smallest
set of subsets of X that contains all open quasi-compact subsets, is stable under
finite intersections and under taking complements (this implies that C is also stable
under finite unions)).

(2) A subset Z of X is called pro-constructible (resp. ind-constructible) if it is an
intersection (resp. a union) of constructible subsets.

If X is a locally spectral space, a subset Z of X is called constructible (resp. pro-

constructible, resp. ind-constructible) if there exists an open covering (U;); by spec-

tral spaces such that Z N U; is a constructible (resp. pro-constructible, resp. ind-

constructible) subset of U; for all i € I.

Using the quasi-compactness of spectral spaces, it is immediate that the second
definition of constructible subsets in locally spectral spaces X coincides with the first
one if X is spectral.

Lemma 3.18. Let X be a spectral space. Then a subset Z is constructible if and only
if it is a finite union of subsets of the form U \ 'V, where U and V are quasi-compact
open subsets of X.

Proof. This is a special case of the following general principle: Let X be any set and
let B be a Boolean algebra generated by a set S of subsets of X such that S is stable
under finite intersections and finite unions. Then B is the set of finite unions of subsets
of the form U \ V with U,V € S.

Indeed, clearly every such set U\ V is in B. So it suffices to show that the complement
of any finite union of subsets U \ V as above is again such a finite union. But if
C = U, Ui \ V; is a finite union, U;, V; € S, then, denoting complements by —¢,

ce=(UsuV;
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is the union of all sets of the form

(NN v =(N W\ (Uuw), Jcr

el\J i€J eI\J ieJ

As finite unions and finite intersections of subsets in S are again in S, C¢ is again of
the desired form. ]

Proposition 3.19. Let X be a finite Kolmogorov space.
(1) X is spectral.
(2) Ewvery subset of X is constructible.

Proof. (1). Clearly, any open subset of X is quasi-compact. Thus it remains to show
that any closed irreducible subset Z has a generic point. Assume that this is not the
case, i.e. forall ze€ Z, U, := 2 \{7} is a non-empty open subset of Z not containing
z. As Z is finite and irreducible, one has () # (), U.. But by definition, one clearly has
(. U, = 0. Contradiction.

(2). Every subset of a finite Kolmogorov space is locally closed. O

Corollary 3.20. Let X be a spectral space.

(1) Ewvery constructible subspace is quasi-compact.

(2) An open (resp. a closed) subset Z of X is constructible if and only if Z is quasi-
compact (resp. X \ Z is quasi-compact).

Proof. Clearly (1) implies (2). To show (1) it suffices by Lemma 3.18 to show that if
U, V are open quasi-compact, then U \ V is quasi-compact. But U \ V is closed in the
quasi-compact subset U. Hence it is quasi-compact. ]

Remark 3.21. Let X be a locally spectral space.

(1) A subset Z of X is pro-constructible if and only if its complement is ind-constructible.

(2) Finite unions and arbitrary intersections of pro-constructible subsets are pro-constructible.
Finite intersections and arbitrary unions of ind-constructible subsets are ind-constructible.

(3) Every pro-constructible subset of X is retro-compact in X. Conversely, a locally
closed subset of X is retro-compact if and only if it is pro-constructible.

(4) Let (U;); be an open covering of X. Then a subset Z of X is pro-constructible
(resp. ind-constructible) if and only if ZNU; is pro-constructible (resp. ind-constructible)
for all ¢ € I.

Proof. The first two assertions are clear. For the other assertions we may assume by
Hochster’s Theorem 3.15 that X is the underlying topological space of a scheme. Then
all assertions follow from [EGA] I (7.2.3) O

In particular we see that the ind-constructible (resp. pro-constructible) subsets are
the open (resp. closed) subsets of a topology on X:

Definition 3.22. Let X be a locally spectral space. The topology on X where the
open subsets are the ind-constructible subsets is called the constructible topology. X
endowed with the constructible topology is denoted by Xcons.
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Proposition 3.23. Let X be a locally spectral space, T its topology and Teons its con-

structible topology.

(1) The topology Teons s finer than T (i.e., every closed subset of X is pro-constructible).

(2) The constructible subsets are those subsets which are open and closed in the con-
structible topology (i.e., Z C X is constructible if and only if Z is pro-constructible
and ind-constructible).

(3) For every open subspace U of X, the topology of Teons induced on U is the same as
the topology of Uecons (i-e. the inclusion is an open continuous map Ucons — Xcons-

(4) Xcons 18 quasi-compact if and only if X is quasi-compact.

(5) Xcons s Hausdorff if and only if X is quasi-separated. In this case Xcons is locally
compact and totally disconnected.

In particular if X is a spectral space, then X s is a compact totally disconnected
space.

Proof. By Hochster’s Theorem 3.15 we may assume that X is the underlying topological
space of a scheme. Then all assertions follow from [EGA] I (7.2.12) and (7.2.13). O

Corollary 3.24. Let X be a quasi-compact locally spectral space, (Z;)icr a family of
pro-constructible subsets of X and let W be an ind-constructible subset of X such that
(ier Zi € W. Then there exists a finite subset J of I such that (\;c; Z; CW.

Proof. The complement of W is closed in the quasi-compact space X.ons and hence
W is quasi-compact in X¢ons. Thus already a finite number of complements of the Z;
(which are open in X¢opns) suffice to cover the complement of . ]

Lemma 3.25. Let X be a locally spectral space.

(1) Let f: X' — X be a qcqs map of locally spectral spaces. If Z is a pro-constructible
(resp. ind-constructible) subset of X, then f=1(Z) is a pro-constructible (resp. ind-
constructible) subset of X'.

If Z' is a pro-constructible subset of X', then f(Z') is pro-constructible.

(2) Assume that X is spectral. Then conversely a subset Z of X is pro-constructible if
and only if there exists a spectral space X' and a quasi-compact map f: X' — X
such that Z = f(X').

Proof. To prove (1) we may assume that X is spectral. Then X’ is qcqs and hence

spectral.
Thus for the proof of all assertions we may assume that f: X’ — X is associated to a
homomorphism of rings and the assertions are [EGA] I (7.2.1) and [EGA] I (7.2.3) (vii).
O

Definition 3.26. A continuous map f: X — Y of locally spectral spaces is called
spectral if for all open spectral subspaces V. C Y and U C f~1(V) the restriction
f: U — V is quasi-compact.

Proposition 3.27. Let f: X — Y be a continuous map of spectral spaces. Then the
following assertions are equivalent.
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(i) f is spectral.

(i1) f: Xcons — Yeons 1S continuous.

(iii) f is quasi-compact.

(iv) The inverse image of every constructible subset is constructible.

(v) The inverse image of every pro-constructible subset is pro-constructible.

If these equivalent conditions are satisfied, then f: Xcons — Yeons S proper. In partic-
ular the images of pro-constructible subsets are again pro-constructible.

Proof. The implications “(i) = (iii) = (iv) = (v) < (ii)” are clear. Moreover, (ii)
implies (iii) because the open quasi-compact subsets of X are those subsets that are
open in X and open and closed in Xcops.

Thus to show that all assertions are equivalent it suffices to show that (iii) implies (i).
But if f is quasi-compact, by Hochster’s theorem we may assume that f is associated
to a ring homomorphism. Then the restriction of f to open spectral subspaces U and
V' is the underlying topological map of a morphism of schemes between qcgs schemes
and hence it is quasi-compact.

The last assertion is clear as any continuous map between compact spaces is proper
(see below). O

Recall that a continuous map f: X — Y of topological spaces is called proper
([BouTG] Chap. I §10) if it satisfies the following equivalent properties.
(i) For every topological space Z the map f xidz: X x Z =Y x Z is closed.
(i) f is closed and for all y € Y the fiber f~1(y) is quasi-compact.

Example 3.28. Let ¢: A — B be a homomorphism of rings. Then the corresponding
scheme morphism Spec B — Spec A is quasi-compact and hence spectral.

3.4 Construction of spectral spaces

Lemma 3.29. Let X be a quasi-compact Kolmogorov space which has a basis consisting
of open quasi-compact subsets which is stable under finite intersections. Let X' be the
topological space with the same underlying set as X and whose topology is generated
by the open quasi-compact subsets of X and their complements. Then the following
assertions are equivalent.

(i) X is spectral.

(il) X’ is compact with a basis of open and closed subspaces.

(iii) X’ is quasi-compact.

Proof. Assertion (i) implies (ii) by Proposition 3.23 and “(ii) = (iii)” is clear. Let us
show that (iii) implies (i). Let Z be a closed irreducible subspace of X and denote by
7' the subspace of X’ with the same underlying set. As the topology of X’ is finer than
the topology of X, Z' is closed in X’ and hence quasi-compact.

Assume that Z has no generic point. Then @ is a proper subspace of Z for all
z € Z. By hypothesis there exists a non-empty open quasi-compact subset U, of Z
that does not meet {z}. In particular Z = (J,(Z \ U,). By hypothesis Z' \ U, is open
in Z' and as 7’ is quasi-compact, there exist finitely many of the sets Z \ U, that cover
Z. This contradicts the irreducibility of Z. O
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Proposition 3.30. Let X be a spectral space and let Z be a subspace.

(1) Z is pro-constructible if and only if Z is spectral and the inclusion Z — X is
spectral.

(2) Let Z be a pro-constructible subspace of X. The closure of Z is the set of special-
izations of points of Z.

Proof. (1). The condition is sufficient by the last assertion of Proposition 3.27. The

inclusion Z — X is quasi-compact by Remark 3.21 (3). Thus Z is a quasi-compact

Kolmogorov space and admits a basis by open quasi-compact subsets stable under finite

intersections. With the induced topology of Xcons the subspace Z is compact. Therefore

Z is spectral by Lemma 3.29, and the inclusion Z — X is spectral by Proposition 3.27.
(2). We have to show that if 2 € Z then there exists z € Z with z € {z}. Set

F :={U ; U quasi-compact open neigborhood of z } U {Z}.

Then any finite intersection of sets in F is non-empty. Moreover all sets in F are closed
subsets of the compact space Xcons. Thus the intersection of all quasi-compact open
neigborhoods of = in X with Z contains a point z. Thus = € {z}. O

The following proposition will allow us to construct spectral spaces.

Proposition 3.31. Let X' = (Xo,T’) be a quasi-compact space, let U be a set of
open and closed subspaces, let T be the topology generated by U, and set X = (Xo,T).
Assume that X is Kolmogorov. Then X is a spectral space, U is a basis of open quasi-
compact subsets of X, and Xcons = X'.

Proof. We may replace U by the set of finite intersections of sets in /. As the topology
on X is coarser than the topology of X', every quasi-compact subset of X' is also quasi-
compact in X. Every set in U is closed in X’ and thus quasi-compact in X. Thus X
is quasi-compact and U is by construction a basis of open quasi-compact subsets of X
stable under finite intersection. Moreover X is Kolmogorov by hypothesis.

By Lemma 3.29 it remains to show that the topology 7" generated by the open
quasi-compact subsets of X and their complements is equal to 7’. But 7" is Hausdorff
(as X is Kolmogorov there exists for x # y an U € U with, say, x € U and y ¢ U,
then U and X'\ U are open sets of T” separating « and y) and coarser then 7'. Hence
id: X' — X" := (Xy,7T") is continuous and hence a homeomorphism because X' is
quasi-compact and X" is Hausdorff. O

4 Valuation spectra

4.1 The functor A+— Spv A

Definition 4.1. Let A be a ring. The wvaluation spectrum Spv A is the set of all
equivalence classes of valuations on A equipped with the topology generated by the
subsets

/

Spv(A)(L) = {1 [ espv A If < Js| £ 0},
where f,s € A.
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Note for s,t, f € A we have Spv(A)(%) - Spv(A)(f), but in general these sets are
not equal. For instance Spv(A)(1) = Spv A but Spv(A)(£) = {v € Spv A ; v(s) #0}.
If v is a point of Spv A we will often write | - |, instead of v if we think of v as an

v
(equivalence class of an) absolute value on A.

Example 4.2. (1) Let A = Q be the field of rational numbers. Then the only val-
uations on Q are the p-adic valuations | - |p for prime numbers p and the trivial
valuation |- |, (2.10). A set # () is open if and only if it is the complement of a
finite set of p-adic valuations. Hence SpvQ = Spec Z.

(2) Let A =Z be the ring of integers. Then

SpvZ =SpvQU{]|- ‘O,p ; p prime number },

where | [y, is induced by the trivial valuation on F,. For all p is |- |, , a closed

point (SpvﬁZ)(%) is an open complement). Every open set which contains | - |, , also

contains |- |, i.e. |-, is a generization of | - [y . In fact {|-[,} ={[-],,[]o,}-

Remark 4.3. Let ¢: A — B be aring homomorphism and denote by Spv(y): Spv B —
Spv A the map |- | — |- |op. For f,s € A one has

e(f)
(s)

This shows that Spv(y) is continuous. We will see in Proposition 4.7 that Spv(y) is
always quasi-compact.

(431) Spv(e) ! (Spv(4)(D)) = spv(B)(L)

S

Remark 4.4. Let A be a ring. Then (1.28.1) shows:

(1) Let S C A be a multiplicative set and ¢ be the canonical homomorphism A —
S~1A. Then Spv(yp) is a homeomorphism of Spv S~'A onto the subspace {v €
Spv A ; supp(v)NS=10}.

(2) Let a € A be an ideal and let ¢ be the canonical homomorphism A — A/a. Then
Spv(¢y) is a homeomorphism of Spv A/a onto the subspace { v € Spv A ; supp(v) 2

a}
In other words, if B = S~'4 or B = A/a, then

Spv B——Spv A

L

Spec B—— Spec A
is cartesian.

Remark 4.5. Let K be a field. Then Spv K is irreducible and the trivial valuation is
a generic point.

Indeed, let v be a valuation on K. If for f,s € K one has |f|, < |s|, # 0, then
|f|triv < |3|triv =1

Remark 4.6. Let A be a ring. Consider Spv A — Spec A, x + supp(x).
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(1) For s€ Alet D(s) ={p € SpecA; s¢p}. The D(s) form a basis of the topology
of Spec A. One has

(4.6.1) supp~(D(s)) = {v € Spv A ; |s|y # 0} = (Spv A)(g).

In particular, supp is continuous.

(2) Its restriction to the subspace T of trivial valuations on A is a homeomorphism.
Indeed, it is clearly bijective and supp(SpV(A)(é) NT) = D(s).

(3) The canonical map ¢: Spv K (v) — Spv A is by Remark 4.3 a homeomorphism of
Spv K (v) onto {w € Spv A ; supp(w) = supp(v) }. This is an irreducible subspace
by Remark 4.5.

Proposition 4.7. Let A be a ring.

(1) The valuation spectrum Spv A is a spectral space. The sets of the form Spv(A)(<)
for f,s € A are open and quasi-compact. The Boolean algebra generated by them
is the set of constructible sets, and this is also the Boolean algebra generated by the
sets {v 5 [flo < |glo } for f,g € A.

(2) Any ring homomorphism ¢: A — B induces a spectral map Spv(p): SpvB —
SpvA by || — | ]op. We obtain a contravariant functor from the category of
rings to the category of spectral spaces and spectral maps.

Proof. We will use Proposition 3.31 to show Assertion (1).

(i). We first note that the Boolean algebra generated by the sets Spv(A)({) for
f,s € A is the same as the Boolean algebra generated by the sets {v ; |f|, < |g|, } for
fyg € A. Indeed, if ( )¢ denotes the complement in Spv A, then

(05 1fl < gl } = Spv<A><§> U <Spv<A><g> U Spv<A><§i>>c,
Spv(ANL) = (v 171 < Jsle N (s sl < [0l )"

(ii). Let T be the topology defined above on Spv A. For any two points in Spv A
there exists a subset of the form Spv(A)(%) for f,s € A containing one point but not
the other (Proposition 1.27). Thus X := (Spv A, T) is Kolmogorov.

(#i). To the equivalence class v of a valuation an A we attach a binary relation [,
on A by flyg iff |f|y > |glv. We obtain a map p: v — |, of Spv A into the power set
P(A x A) of A x A. It is injective by Proposition 1.27. We identify P(A x A) with
{0,1}**4 and endow it with the product topology, where {0,1} carries the discrete
topology. Then P(A x A) is a compact space.

The image of p consists of those binary relations | such that for all f,g,h € A one
has
(a) flg or glf.

(b) If flg and g|h, then flh.
(¢c) If flg and f|h, then f|g+ h.
(d) If f|g, then fh|gh; and if fh|gh and 01 h, then f|g.
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(e) O11.

Each of these conditions (for fixed f,g,h) defines a closed subset of P(A x A): Let
Trgt {0,134%4 — {0, 1} the projection onto the (f, g)-th component. Then for instance
the elements of {0,1}4*4 satisfying condition (c) is the union of ﬂ;;Jrh(l) and of the

complement of ﬂ;;(l) ﬂw;,ll(l). Hence the image of p is closed. Let 7' be the topology
induced by P(A x A) on Spv A. Then X’ := (Spv 4, T") is compact.

For f,s € A the subset Spv(A)(%) is the intersection of Spv A with the open and
closed subset of binary relations | such that s|f and 01 s. Thus SpV(A)({) is open and
closed in the compact space X'.

Using (i) and (ii), Assertion (1) now follows from Proposition 3.31.

(iv). Assertion (2) follows from Remark 4.3 and Proposition 3.27. O

Corollary 4.8. The continuous map supp: Spv A — Spec A is quasi-compact for every
ring A.

Proposition 4.9. Let p: R — A, ¢b: R — B be ring homomorphisms and let v €
Spv A, w € Spv B with voy = wo1 =: u. Then there exists z € Spv(A @ B) such
that its image in Spv A is v and its image in Spv B is w.

4.2 Specializations in valuation spectra

Remark 4.10. Let v,w € Spv A such that v is a specialization of w. Then suppv D
supp w.

We start by considering specializations within the fiber of supp: Spv A — Spec A.
Recall that supp~!(supp(v)) = Spv(K (v)). Hence we first look at specializations of
valuations on a field.

Proposition 4.11. Let K be a field and let v and w be valuations on K. Then v is a
specialization of w if and only if A(v) C A(w).
Proof. One has

Av) CA(w) e (Vge A:v(g) <1=w(g) <1)
&V f0£s€ A o(f) <wv(s) = w(f) <w(s))

& (Vf,seAive Spv(A)(%) =we SpV(A)(g)). O

Remark and Definition 4.12. Let v be a valuation on a ring A. A wertical or
secondary specialization (resp. vertical or secondary generization) of v is a specialization
(resp. generization) w of v with supp(v) = supp(w). Let K(v) = Frac A/(suppv) and
let A(v) C K(v) the valuation ring of v.

(1) By Proposition 4.11 one has homeomorphisms

{w € Spv A ; w vertical generization of v }
={w € Spv K(v) ; w generization of v }
>~{ A(v) C B C K(v) ; B (valuation) ring }
~{H CT,; H convex subgroup of I'; }.

(4.12.1)
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Here to H corresponds the vertical generization v/H of v defined as follows

v(f) mod H, if v(f) #O0;
0, ifv(f): )

(2) By Remark 2.5, for the set of vertical specializations one has homeomorphisms

v/H: A—T,/HU{0}, fb—>{

{w € Spv A ; w vertical specialization of v }
={w € Spv K(v) ; w specialization of v }
={B C A(v) € K(v) ; B valuation ring of K (v) }
= Spv(A(v) /m(v)).

To consider specialization with changing support we need the following notion.

(4.12.2)

Definition 4.13. Let v be a valuation on a ring A and let I';, its value group. Then
the convex subgroup of I', generated by the elements I', >1 Nim(v) is called the char-
acteristic group of v. It is denoted by cl',,.

Hence cI'y, = 1 if and only if v(a) < 1 for all a € A.

Example 4.14. (1) Let v be a valuation on a field. Then im(v) \ {0} = I', and
'y, =TY,.

(2) Let A be a valuation ring and let v: A — I',U{0} its valuation. ThenT", >;Nim(v) =
{1} and I', = 1.

Remark 4.15. Let v be a valuation on a ring A. Let H C I'y, be a subgroup. Define
a map

|f‘va if|f|v€H;

[y s A= HU{O}, fr—>{0’ £, ¢ 2.

Then v is a valuation if and only if H is a convex subgroup and contains cI',.

Indeed, one always has v|g(0) = 0, vjg(1) = 1. Assume that v g is a valuation.
Then [fglo ;= [flv,u|glon is equivalent to |flo|glo € H = [flv,|g]o € H, in particular
H is a convex subgroup. Moreover if there existed f € A with |f|, > 1 and |f|, ¢ H,
then | f+1[, = max{|f|v, 1} = [f|, ¢ H and hence 0 = |f + 1y, = max{|f|y ,,1} =1,
contradiction.

Conversely it is easy to see that if H is convex and contains cI'y, then vy is a
valuation.

Remark and Definition 4.16. Let v be a valuation on a ring A with value group
Iy, let ¢: A — K(v) = Frac(A/supp(v)) be the canonical homomorphism, and let
A(v) C K (v) be the valuation ring of K (v). Let H be a convex subgroup of I, and let
p be the corresponding prime ideal of A(v), i.e., p={z € A(v) ; Véd€ H : |z], < }.
Then cI'y, C H if and only if p(A) C A(v)y. Let this be the case now.
(1) The valuation vy is a specialization of v.
Indeed, if |f[y,; < [s]o;y # 0, then [s|, € H and in particular |s|, # 0. Assume
|flo > |slo. Then |f|, ¢ H and hence |f|, < 1 because H contains cI',. Thus
|sly < |flo < 1 and hence |f|, € H because H is convex. Contradiction.
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We call vy a primary or a horizontal specialization of v or v a horizontal gen-

eralization of v|g.

(2) One has supp(v) C supp(v|g) = ¢ (pA(v)p) with equality if and only if p = 0 &
H=T,.

(3) A(v)/p is a valuation ring of A(v),/p, and vy is the composition of the canonical
ring homomorphism 7: A — A(v),/p followed by the valuation given by A(v)/p.
In other words, one has ker(r) = supp(v|y) and 7 induces an extension of valued
fields

(4.16.1) (K (vjm), A(vm)) = (A(v)p/p, A(v)/p)-

Definition 4.17. Let A be a ring and let v be a valuation on A. A subset T of A is
called v-convex if t1,to € T, s € A, and v(t1) < v(s) < v(tz) imply s € T.

A subset T containing 0 is v-convex if and only if for t € T'and s € A with v(s) < v(t)
one has s € T'.

If v is a trivial valuation, the only v-convex sets T" with 0 € T are T = A and
T = suppv.

With this notion we can now describe the horizontal specializations of a given val-
uation.

Proposition 4.18. Let A be a ring and let v be a valuation on A. Let H be the set of
v-convex prime ideals, ordered by reversed inclusion, and let S be the set of horizontal
specializations of v, ordered by being a specialization. Then H and S are totally ordered
and the map

supp: S = {w ; w horizontal specialization of v} — H = {v-convex prime ideal of A}
s a well-defined isomorphism of totally ordered sets.

Proof. 1t is immediate that the support of a horizontal specialization of v is v-convex
and that supp: S — H preserves the order. Moreover, every v-convex ideal clearly
contains supp v.

Let ¢: A — K := Frac(A/supp(v)) be the canonical homomorphism. By definition,
the ordered set S is isomorphic to the set P of prime ideals p of A(v) such that p(A) C
A(v),, endowed with the reversed inclusion order. As the set of ideals in a valuation
ring is totally ordered, P and hence S is totally ordered. Identifying S with P, the map
supp: S — H becomes p — @*1(pAp). It is easy to check that an inverse map is given
by sending a v-convex prime ideal q to the ideal of A(v) generated by ¢(q) U A(v). O

Our next goal is to show that every specialization is the horizontal specialization of
a vertical specialization.

Lemma 4.19. Let w be a horizontal specialization of v.

(1) Letv' a vertical specialization of v. Then there exists a unique vertical specialization
w’ of w such that w' is a horizontal specialization of v'.

(2) Let w' be a vertical specialization of w. Then there exists a vertical specialization
v of v such that w' is a horizontal specialization of v'.
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Indicating by w — v if v is a specialization, a visualization of this lemma is given
by the following diagrams.

v > w v =W
I v v I
v peee Q! = RS E— Tyl

Proof. (1). As supp(w’) = supp(w) for every vertical specialization w’ of w, the
uniqueness of w’ follows from Proposition 4.18. Let H’ be the convex subgroup of I',,
with v = v'/H" and let L be the convex subgroup of I', = T',s/H' such that w = v|r. Let
L’ be the convex subgroup of I, containing H' such that L'/H’ = L. Then cI",y C L'
and we set w’ = v'|/.
(2). Consider the extension of valued fields (K (w), A(w)) <= (A(v),/p, A(v)/p) (4.16.1).

By Proposition 2.25 there exists a valuation ring B of the field A(v),/p with B C A(v)/p
such that BN K(w) = A(w'). Let v/ be the valuation of A with suppv’ = supp v such
that A(v') is the inverse image of B in A(v). O

Corollary 4.20. Let v be a valuation on a ring A and let p be a prime ideal of A with
p C suppv. Then there exists a horizontal generization w of v such that suppw = p.

Jwi >V

lsupp lsupp

p ——— supp(v)

Proof. Let R be the localization of A/p by the image of suppwv in A/p. This is a
local ring whose field of fractions is Frac A/p. Then there exists a valuation ring B of
Frac A/p dominating R (Prop. 2.2). Let w’ be the correspnding valuation on A. Then
suppw’ = p and we have a diagram

'I,U/}Htp

|

v

where t, is the trivial valuation with support p. By Lemma 4.19 (2) we now can fill in
the lower left corner with a valuation w as claimed. O

Proposition 4.21. Let A be a ring, let v be a valuation on A and let w be a special-

ization of v.

(1) Then w is a horizontal specialization of a wvertical specialization of v, i.e., there
exist v € Spv A and convex subgroups H, L C I"yy with L O ¢’y such that w = U/‘L
and v=1v"/H'.

(2) Conwversely, w is a vertical specialization of a valuation w' such that w' is a hor-
izontal specialization of v or cI'y = 1 and w' is a trivial valuation whose support
contains supp(v|1).
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Again we may visualize (1) by a diagram

v

v
Fo > w

Proof. (2). We first consider the case ¢I';, = 1 and v(a) > 1 for all a € A\ supp(w).
Then supp(v|1) = {a € A; v(a) <1} C supp(w) and we may take for w’ the trivial
valuation of A with supp(w’) = supp(w).

Thus we may assume that cI'y, # 1 or v(a) < 1 for some a € A\ supp(w). We first
claim that for all x,y € A we have:

(4.21.1) v(z) <wu(y) and w(z) #0 =w(y) = v(r) =v(y) #0.

Indeed, w(zx) # 0 = w(y) implies w € Spf(A)(£) and hence v € Spf(A)(£) because v is
a generization of w. Thus v(y) < v(x) # 0. This shows the claim.

Next we claim that supp(w) is v-convex. Let z,y € A with y € supp(w) and
v(z) < v(y). Assume that z ¢ suppw. Then we have

(4.21.2) o(@) < v(y), w(z) 0= w(y)

and hence by (4.21.1) v(x) = v(y) # 0.

We now distinguish two cases. First we assume cI', # 1. Then there exist a € A
with v(a) > 1. Thus by (4.21.2) we obtain v(z) < v(ay), w(z) # 0 = w(ay) and hence
v(z) = v(ay) by (4.21.1). But this contradicts v(z) = v(y). The second case is the
existence of a € A\ supp(w) with v(a) > 0. Then again applying (4.21.1) we obtain
v(ax) = v(y) which contradicts v(z) = v(y). Hence we have shown that supp(w) is
V-convex.

By Proposition 4.18 there exists a horizontal specialization u of v such that supp u =
suppw. By the definition of vertical specializations it suffices to prove that w is a
specialization of u. Let f,s € A with w € Spv(A)(%). Then v € SpV(A)(f) and hence
v(f) < wv(s). As u is a horizontal specialization of v, we find u(f) < u(s). As w(s) # 0
and supp w = supp u, one has u(s) # 0. Hence u € Spv(A)(%).

(1). 1If the specialization w is a vertical specialization of a horizontal specialization
of v, then we are done by Lemma 4.19 (2). Thus by (2) and again using Lemma 4.19 (2)
we may assume that cI', = 1, that w is trivial, and that supp(v|1) € supp(w). By Corol-
lary 4.20 there exists a horizontal generization u of w such that suppu = supp(v‘l).

As v)p is trivial, u is a vertical specialization of v|1, which in turn is a horizontal
specialization of v. Thus again by Lemma 4.19 (2) there exists a vertical specialization
v’ of v such that wu is a horizontal specialization of v'. But then also w is a horizontal
specialization of v’. O

4.3 The valuation spectrum of a scheme

Let X be a scheme. A valuation of X is a pair (z,v), where z € X and where v is the
equivalence class of a valuation on the residue field of z. The value group of v is again
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denoted by I',. The set of valuation on X is denoted by Spv X. We endow it with the
topology generated by the sets of the form

{(z,v) € SpvX ; x € Uyv(a(x)) <wv(s(x)) #0},
where U C X is open and a,s € Ox(U).
Definition 4.22. The topological space Spv X is called valuation spectrum of X.

5 Topological algebra

5.1 Topological groups

Definition 5.1. A topological group is a set G endowed with the structure of a topo-
logical space and of a group such that the maps

GxG—G, (9.9)~gf, G—G, grg’

are continuous (where we endow G x G with the product topology).

Remark 5.2. G topological group, a € G. Then left translation g — ag and right
tranlation g — ga are homeomorphisms G — G. In particular the topology of G is
uniquely determined by a fundamental system of neighborhoods of one element of G.

The following trivial remark will be used very often.

Remark 5.3. Let G be a topological group, let H C H C G be subgroups. If H' is
open in G, then H is open in G.

Proposition 5.4. G topological group, H C G subgroup. We endow G/H with the
quotient topology (i.e. if m: G — G/H 1is the projection, U C G/H is defined to be
open if and only if 7= 1(U) is open).

(1) The closure H is a subgroup of G.

(2) If H is locally closed in G, then H is closed in G.

(3) H is open in G (resp. closed in G) if and only if G/H is discrete (resp. Hausdorff).
(4) If H is a normal subgroup, G/H is a topological group.

Proof. Let a: G x G — G be the continuous map (g, h) — gh~!. Then
a(Hx H)=a(HxH)Ca(HxH)=H.

This shows (1).

To prove (2) we may assume that H is open and dense in G (by replacing G by the
subgroup H). Then for g € G the two cosets gH and H have nonempty intersection
hence they are equal, i.e. g € H.

(3): G/H discrete < gH open in G for all ¢ € G < H open in G. If G/H is
Hausdorff, then eH € G/H is a closed point and its inverse image H in G is closed.
Conversely, if H is closed, then H = HeH is a closed point in the quotient space
H\G/H. Hence its inverse image under the continuous map G/H x G/H — H\G/H,
(91H, g2 H) — Hgy ' g1 H is closed. But this is the diagonal of G/H x G/H.

(4) is clear. O
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Corollary 5.5. G topological group, e € G neutral element. Equivalent:
(i) G Hausdorff.

(ii) {e} is closed in G.

(iii) {e} is the intersection of all its neighborhoods.

Proof. The equivalence of (i) and (ii) is a special case of Proposition 5.4 (3). “(i) =
(iii)” is obvious. Assume (iii) holds and let g # e. Then there exists a neighborhood V/
of e such that g=! ¢ V, i.e. e ¢ gV. Hence ¢ is not in the closure of {e}. O

The following example of a topological group will be essential.

Example 5.6. Let I' be a non-empty partially ordered set which is right directed (i.e.,
for all ,~7" € T there exists § € I’ with § > v and § > 7/). Let G be a group and let
(G )~er be a family of normal subgroups of G such that Gs C G if § > ~. Equivalently,
let I' be a set of normal subgroups such that for all G,,G, € I' there exists G5 € I’
such that G5 € G, NG..

Then there exists on G a unique topology making G into a topological group such
that (Gy)yer is a fundamental system of neighborhoods of e (this uses that all G, are
normal). Moreover:

(1) By 5.4 the G, form a fundamental system of open and closed neighborhoods of e.
(2) G is Hausdorfl if and only if (), Gy = {e}. In this case G is totally disconnected

by (1).
Very often we will encounter the following special case.

Example 5.7. Take in Example 5.6 I' = Z, endowed with the standard order. Thus G

is given a descending filtration - -- O Gy, D Gp41 D ... of normal subgroups G,, for n €

7. As explained this defines on G the structure of a topological group. Moreover:

(1) We can endow G with the structure of a pseudometric space as follows. For g € G
set

—oo, if g ¢, Gn;
U(g) =3, if (/S Gn \ Gn+1;
oo, ifge(),Gn.

Fix a real number p with 0 < p < 1 and set

d(g,h) == p"" ) eRsgU {0}, g heG
Then clearly d(g,g) =0, d(g,h) = d(h,g) and
(5.7.1) d(g,h) <sup(d(g,k),d(h,k)), for all g,h,k € G

This a metric if and only if ), G, = {e} and |,, G, = G.

(2) Assume that G is Hausdorff. Then the underlying topological space of G is metris-
able by a metric satisfying (5.7.1). [Define the metric by composing d with the map
R>o U {OO} — R0, u— inf(u, 1)]
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In the sequel we simply say that G is a filtered group, we call (Gy,) its filtration, and
we endow G always with the topology defined above. A metric on G satisfying (5.7.1)
is called a mon- archimedean metric.

Remark 5.8. In general is a topological group G with unit e metrisable if and only if G
is Hausdorff and e has a countable fundamental system of neighborhoods ([BouTG]| IX,
§3.1, Prop. 1). In this case there exist left-invariant metrics (i.e. d(gh,gk) = d(h,k)
for all g, h, k € G) and right-invarint metrics ([BouTG] IX, §3.1, Prop. 2).

Remark and Definition 5.9. Let f: G — H be a continuous homomorphism of
topological groups. We endow G/ ker(f) with the quotient topology induced by G and
f(G) with the subspace topology induced by H. Then f is called strict, if the following
equivalent conditions are satisfied.

(i) The bijective homomorphism G/ ker(f) — f(G) is a homeomorphism.

(ii) The induced homomorphism G — f(G) is open.

(iii) For all neighborhoods U of e in G its image f(U) is a nieghborhood of e in f(G).

Remark 5.10. Let f: G — H, g: H — K be strict homomorphisms of topological
groups. If ker(g) C f(G), then it is not difficult to show that the composition g o f is
again strict.

But in general, g o f is not strict, even if f is injective and g is surjective (e.g., let
x € R be an irrational number, let f be the inclusion Zz — R and let g: R — R/Z be
the canonical projection; use that Z + Zzx is dense in R).

5.2 Topological rings

If Aisaring and S,T C any subsets we denote by S-T the subgroup of (A, +) generated
by the elements st for s € S and t € T.

Definition 5.11. A topological ring is a set A endowed with the structure of a topo-
logical space and of a ring such that (A, +) is a topological group and the map

AxA— A (a,d)+ ad

is continuous.

Let A be a topological ring. A topological A-module is an A-module E endowed
with a topology such that (E,+) is a topological group and such that the scalar mul-
tiplication A x ¥ — FE is continuous.

Remark 5.12. Let A be a topological ring A.

(1) The homethety A — A, x + ax is continuous for all a € A.

(2) The group of units A* with the subspace topology is in general not a topological
group (the map = ~— z~! is not necessarily continuous). Instead we endow A*
usually with the finest topology such that the two maps A* — A, ¢ +— z and
x — x~ ! are continuous. Then A* is a topological group.

Definition 5.13. A topological field is a field K together with a topology that makes
K into a topological ring and such that K* — K*, z + 2! is continuous (i.e. K*
with the subspace topology is a topological group).
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Remark 5.14. Let A be a topological ring and let I be an ideal. Similarly as in
Proposition 5.4 (1) one shows that its closure is also an ideal of A. In particular {0} is
an ideal of A.

Remark 5.15. Let K be a topological field. As the closure of {0} is an ideal, it must
be either {0} or K. Therefore if K does not carry the chaotic topology (where the only
open subsets are () and K), then K is Hausdorff.

Example 5.16. Let I" be a partially ordered abelian group (written additively) whose
order is right directed (e.g. if I" is a totally ordered abelian group). Let A be a ring
and let (Ay),er be a descending family of subgroups A, of (A4, +) (descending means
that As C A, for § > ~) such that A,As C A, for all 4,0 € I' and such that 1 € Ay.

Then Ao is a subring of A and A, is an Ag-submodule of A. The set B = (J, cr Ay
is a subring of A. The set n ={1, A, is an ideal of B (for if a € A, and = € n one has
x € As_ for all § € T" and hence ax € A,A;_, C As for all § € T').

The ring B together with the topology defined by the family of subgroups (A )
is a topological ring. Indeed, one has to show that the multiplication B x B — B is
continuous. Let by, b, € B and hence by € A, and b, € A, for some v,7" € I'. Let
e € I" be arbitrary and choose ¢,6" € I" such that § > ¢ —+/, 8 > e —~, and §' > ¢ — 0.
Then if b,/ € B with b — by € As and V' — b)) € Ay one has

bY — bobly = (b — bo)bly + bo (b — b)) + (b — bo) (b — b)) € Agyry + Arrsr + Asiy C Ae.

Let E be an A-module and endow (£, +) with the structure of filtered topological
group defined by the filtration (A E),. Then (J, AyE is a topological module over the
topological ring B (use the same proof).

We will also often encounter the following variant.

Example 5.17. Let I" be a set of ideals of A such that for all A,, Ay, € I" there exists
As € I such that As € A, N A,. Then there exists on A a unique topology that
makes A into a topological ring and such that the A, form a fundamental system of
neighborhoods of 0 in A ([BouTG] III, §6.3, Exemple 3). Such a topological ring A is
called linearly topologized and T' is called a fundamental system of ideals.

An ideal I of A is then open if and only if it contains some ideal A, € I'.

If (A,(Ay)) is a linearly topologized ring, then an ideal I of A is called ideal of
definition if it is open and for all A there exists an n > 0 such that I" C A,. Note that
an ideal of definition does not necessarily exist. Even if it exists, I™ is not necessarily
open.

A very important special case is the following.

Definition 5.18. A topological ring A is called adic if there exists an ideal I of A such
that {I" ; n >0} is a fundamental system of neighborhoods of 0 in A. The ideal I is
then an ideal of definition and this topology is called the I-adic topology.

If F is an A-module, the topology defined by (I"E), is called the I-adic topology
on E.
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Warning: Here we deviate from the terminology in EGA, where adic topological rings
are always complete by definition.

The I-adic topology is also a special case of Example 5.16 with I' = Z, A,, = A for
n<0and A4, = I" for n > 0.

Remark 5.19. Let A be a ring and let I and J be ideals. Then the J-adic topology
is finer than the I-adic topology if and only if there exists an integer n > 0 such that
JTC 1.

Remark 5.20. Let A be a ring endowed with the I-adic topology for some ideal I of
A. Then A is Hausdorff if and only if (1, -, I™ = 0. If A is noetherian, then by Krull’s
theorem

(NI"={zcA;Jacl:(1+a)z=0}

n>0
Thus the I-adic topology on a noetherian ring A is Hausdorff if I is contained in the
Jacobson radical of A or if A has no zero divisors and I # A.

The following notion yields also a topological ring.

Definition 5.21. Let K be a field endowed with a valuation |- | of height 1. After

replacing | - | by an equivalent valuation we may assume that |- | takes values in R>g
(Proposition 1.14). A (non- archimedean) normed K-algebra is a unital K-algebra
A # 0 together with a map |- |: A — R2%, called norm, such that

(a) For x € A one has |z| =0 if and only if z = 0.
(b) |z +y| < max{|z], |y|} for all z,y € A.

(c) |Xz| = M|z for all z € A, X € K.

(d) eyl < lzlly] for all z,y € A.

(e) 1] <1.

As usual the norm yields on A the structure of a metric space and in particular that
of a topological space. The properties of | - | ensure that A together with this topology
is a topological ring.

Of course, the notion of a normed algebra is also used over fields with an archimedean
absolute value. In this case one replaces condition (b) by the usual triangle inequation.

Remark 5.22. Let (A, | - |) be a normed algebra over a real-valued field (K, |- |) with

A #0.

(1) Condition (a) implies that |1] # 0 and condition (d) implies |1] < |1]* and hence
I1] = 1 because of condition (e). Thus K — A, A — Al is an isometry.

(2) Ag:=={a € A; |a|] <1} is an open subring of A. It is an algebra over the open
subring O :=={A € K ; |A\| <1} of K.

All of the above examples are a special case of the following type of ring.

Definition 5.23. A topological ring A is called non-archimedean if A has a fundamen-
tal system of neighborhoods of 0 consisting of subgroups of (A4, +).
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Remark 5.24. Let A be a ring and let G be a set of subgroups of (A4,+). Then G is a
fundamental system of neighborhoods of 0 of a (unique) topology that makes A into a
topological ring if and only if G satisfies the following properties.

(a) For all G,G’ € G there exists H € G with H C GNG'.

(b) For all z € A and all G € G there exists H € G with zH C G.

(c) For all G € G there exists H € G with H - H C G.

5.3 Bounded sets and topologically nilpotent elements

For every subset T" of a ring and for n € N we set
(5241) T(n) = {tltg SRS A A T}

Definition 5.25. Let A be a topological ring. An element z € A is called topolog-
ically nilpotent if 0 is a limit of the sequence (2"),en. We denote by A% the set of
topologically nilpotent elements of A.

More generally, we call a subset T of A topologically nilpotent if there exists for
every neighborhood U of 0 an N € N such that T'(n) C U for all n > N.

Clearly x € A is topologically nilpotent if and only if {x} is topologically nilpotent.

Remark 5.26. Let A be a linearly topologized ring. Then x € A is topologically
nilpotent if and only if for every open ideal J of A the image of x in A/J is nilpotent.
Therefore the set A°° of topologically nilpotent elements is an ideal of A.

Assume now that A has an ideal of definition I. Then the following assertions are
equivalent for x € A.

(i) « is topologically nilpotent.

(ii) The image in A/I is nilpotent.

(iii) = is contained in an ideal of definition.

Indeed, clearly one has “(iii) = (i) = (ii)”. Let x € A with 2™ € I. Then I + Ax is
open and (I + Ax)™ C I. Thus I + Ax is an ideal of definition.

In particular we see that A% is the inverse image of the nilradical of A/I and hence
it is an open ideal of A. Moreover, A% is itself an ideal of definition (and then clearly
the largest ideal of definition) if and only if the nilradical of A/I is nilpotent. This is
automatic if the nilradical of A/I is finitely generated (e.g., if A/I is noetherian).

Definition 5.27. Let A be a topological ring. A subset B of A is called bounded if for
every neighborhood U of 0 in A there exists an open neighborhood V of 0 in A such
that vb € U for allv € V and b € B.

An element = € A is called power-bounded if the set { ™ ; n > 1} is bounded. The
set of power- bounded elements is denoted by A°.

More generally, a subset 1" of A is called power-bounded if | J,,cry T'(n) is bounded.

Remark 5.28. Let A be a topological ring.
(1) Clearly, every finite subset of A is bounded.
(2) Every subset of a (power-)bounded subset is (power-)bounded.
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(3) Every finite union of (power-)bounded subsets is (power-)bounded. A finite union
of bounded and topologically nilpotent subsets is again topologically nilpotent.

(4) A bounded and topologically nilpotent subset of A is power-bounded.

(5) If Ty is a power-bounded subset of A and T» a topologically nilpotent subset of A.
Then {t1te ; t1 € Th,ta € Ty } is topologically nilpotent.

Example 5.29. (1) Let A = C. Then a subset B of C is bounded if and only if there
exists C' > 0 such that |z| < C for all z € C. One has A°={z€C; |2/ <1} and
A ={zeC; |z|<1}.
(2) Let A be aring and | - | a non-trivial valuation on A.
Assume that | - | takes values in R~ U{0} (i.e. | - | is of height 1). Endow A with
the structure of a topological ring such that the subgroups {z € A ; |z| < e} for
e € R”? form a fundamental system of neighborhoods of 0 in A (Example 5.16).
Then again a subset B of A of set is bounded if and only if there exists C' > 0 such
that |z| < C for all x € A. One has A° = {z € A; |z <1} and A”° = {z €
Azl <1}
If | - | has height > 2, then there exists a non-trivial convex subgroup A of T'|,.
If x € A is an element with |x| € A then x is never topologically nilpotent even if
|z| < 1.

Proposition 5.30. Let A be a non-archimedean topological ring.

(1) Let T be a subset of A and let T' be the subgroup of A generated by T. Then T’
is bounded (resp. power-bounded, resp. topologcially nilpotent) if and only if T has
this property.

(2) A subset T of A is power-bounded if and only if the subring of A generated by T is
bounded.

(3) The union of all bounded subrings is A°, and this is a subring of A.

(4) A° is integrally closed in A, and A° is a radical ideal of A°.

Proof. (1) follows from the definitions. To show (2), we may assume that 1 € T'. Then
the subring generated by T is the subgroup of A generated by X :=J,,cnyT(n). As X
is bounded, (2) follows from (1).

If A; and As are bounded subrings, then by (1) the subring generated by A; U Ay is
bounded. Thus the union B of all bounded subrings is a subring. Now it follows from
(2) that B = A°.

It remains to show (4). Let a € A be integral over A°. By (3), a is integral over
a bounded subring B of A. Therefore there exists an integer N such that Bla] =
B+ Ba+ -+ Ba¥~!. Thus Bla] is bounded and hence a is power-bounded. For
a € A% the set {a} is bounded and topologically nilpotent, hence it is power-bounded.
Thus A% C A°. By (1) it is a subgroup of A° and by Remark 5.28 (5) it is an ideal
of A°. Let a € A such that a™ € A°°. We want to show that a € A°. Let U be
a neighborhood of 0 in A. Choose a neighborhood V of 0 such that a‘v C U for all
i=0,...,m—1and all v € V. Choose N € N such that (a™)" € V for all n > N.
Then a™ € U for all n > mN. ]
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5.4 Completion of abelian topological groups and of topological rings

Definition 5.31. (1) Let X be a set. A filter basis on X is a non-empty set B of
subsets of X such that () ¢ B and such that for all A1, A € B there exists A € B
with A C A1 N As.

Example: Let (x,), be a sequence in X. Then {{z; ; k>n}; ne N}isa
filter basis on X, called the filter basis of (x,,).

(2) Let X be a topological space, B a filter basis on X, and x € X. Then B converges

to x if for every open neighborhood U of = there exists A € B such that A C U.
Example: The filter basis of a sequence (x,) converges to z if and only if (z,)
converges to x.

(3) Let G be an abelian topological group (written additively). A filter basis B is
called Cauchy if for every open neighborhood U of 0 there exists A € B such that
x—y €U forall z,y € A.

(4) An abelian topological group G is called complete if G is Hausdorff and every
Cauchy filter basis converges.

(5) A topological ring A is called complete if (A, +) is a complete topological group.

Warning: Here we deviate from Bourbaki’s terminology, where complete topological
groups are not necessarily Hausdorff.

Proposition and Definition 5.32. Let G be an abelian topological group (resp. topo-
logical ring). Then there exists a complete abelian topological group G (resp. complete
topological ring) and a continuous homomorphism v: G — G satisfying the following
universal property. For every complete abelian topological group (resp. complete topo-
logical ring) H and every continuous homomorphism ¢: G — H there exists a unique
continuous homomorphism ¢: G — H such that poti=. Clearly (G‘, L) s unique up
to unique isomorphism. Moreover:

(1) ker(t) = {0} =: N, im(¢) is dense in G.

(2) If U is a basis of neighborhoods of 0 in G, then {(U) closure in G ; U €U} is a

basis of neighborhoods of 0 in G.
(3) The formation of G is functorial in G.

Proof. [BouTG] III, §3.4. O

Example 5.33. Let GG be an abelian topological group, where the topology is given by

a family (G.) of open subgroups of G as in Example 5.6. Then G/G.,, is discrete and the

canonical homomorphism G — G/G,, yields by the universal property of the completion

(and of the projective limit) a continuous homomorphism G — 1(31 G/G,. This is an
v

isomorphism of topological groups and the canonical homomorphism ¢: G — G induces

a homeomorphism G/{0} 5 +(G) ([BouTG] III, §7.2). Moreover:

(1) The completion C% of G is identified with the closure of (G5) ([BouTG] 1I, §3.9,
Cor. 1 to Prop. 18). As G is closed in G, one has G, = L_I(CA}V) = L_I(CA}V Nu(G)).

(2) The CAJ7 form a fundamental system of neighborhoods of 0 in G and hence are open
subgroups of G.
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(3) As (@) is dense in G zmdACAl7 is open, G= L(G)ny for all 4. In particular one has
U, Gy =G ifand only if G =, G.

Proposition 5.34. Let G be a filtered abelian group (written additively), (Gp)nez its
filtration. Assume that G is Hausdorff. Equivalent:

(i) G is complete.

(ii) Fvery Cauchy sequence in G converges.

(iii) For every sequence () in G converging to 0 the series ) Tm converges.

(iv) The canonical group homomorphism G — hm G/G,, is bijective.

(v) The canonical group homomorphism G — hm G/G,, is a homeomorphism if we

endow hm G /Gy, with the projective limit topology

Proof. The equivalence of (i) and (ii) follows from the fact that G is metrizable.

(ii) = (iii): For every n > 1 there exists M > 1 such that z,, € G,, for all m > M.
Hence ), .;z; € Gy, for all finite subsets I of N>js. This shows the convergence of
the series.

(iii) = (ii): Standard exercise in non-archimedean geometry.

The equivalence of (i), (iv), and (v) is [BouTG] III, §7.3. O

Proposition 5.35. Let G be a topological group whose topology is metrisable, and let
H C G be a closed subgroup. Then G/H is metrisable. If G is complete, then G/H ‘s
complete.

Proof. [BouTG] IX, §3.1, Prop. 4. O

Example 5.36. Now assume that A is a topological ring whose topology is defined by a
family (A,) of subgroups as in Example 5.16 such that (), A, = A. Let 11 A — A be the
completmn of (A, +) as a topological group. Then there ex1stb a unique multiplication
on A that makes A into a ring and such that ¢ is a homomorphism of rings ([BouTG] III,
§6.5).

For v,+" € T one has t(A4,)u(Ay) C (A1) and hence by continuity 12171217/ C flvﬂl.

Proposition 5.37. Let A be a ring, I an ideal, let A be its I-adic completion, and
1: A — A the canonical homomorphism. For all n > 0 endow I"™ with the I-adic
topology and consider their completion as ideals of A. Assume that T is finitely gener-
ated.

(1) For all n > m > 0 the canonical homomorphism I™/I" — I™/I™ is an isomor-

phism. .
(2) For alln > 0 one has I" = I"™ = i(I")A.
(3) The topology on A is the I-adic topology.

Proof. [BouAC] III §2.12 O

Proposition 5.38. Let A be a complete non-archimedean ring. Let a C A be an ideal
such that every element of a is topologically nilpotent. Then an element x© of A is
invertible if and only if its image in A/a is invertible. In particular a is contained in
the Jacobson radical of A.
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5.5 The topology defined by a valuation

Proposition and Definition 5.39. Let A be a ring and let v be a valution on A.
For v e T'y we set Ay := {a € A; v(a) <~v}. Then (A,)y satisfies the conditions
of Fxample 5.16 and UW A, = A. Thus A becomes a topologcial ring with (Ay) as a
fundamental system of neighborhoods of 0. This topology is called the topology defined
by v. Moreover:

(1) If suppv =0, then A is Hausdorff and totally disconnected.

(2) The group of units A* endowed with the subspace topology is a topological group.

Proof. One has ), Ay = suppv. This shows (1). To show (2) we have to prove that
A 5 A s !
and x € A* one has

is continuous. Let xo € A*. It suffices to show that for all v € T';,

|z — 20y < min{’y|x0|g, [zolv} = ‘3371 - $81|v <7.

But 27! — 25! = 27 (20 — 2)zy " and hence |z7 — x5ty = |z — zolo|x]y ol If
|z — 20ly < |20y, one has |z|, = |zg|y. If |2 — 20|y < y|70|? then

-1

|z —x61|v:\x—mo|v\xo|g2<7. O

Corollary 5.40. Let v be a valuation on a field K. Then the topology defined by v on
K makes K into a topological field.

Remark 5.41. Let v be a non-trivial valuation on a ring A with value group I'. Then
{a€A;va)<~v},{acA; via)>~}, {ac A; v(a) >y} are open and closed in
the topology defined by v.

Indeed, by definition {a € A ; v(a) < 7} is an open subgroup of the subgroup
{a€A; v(a) <y} Thus {a € A; v(a) <~} isopen and (being a subgroup) closed.
The other sets are open and closed by taking complements.

Remark 5.42. Let K be a field and let v be a valuation on K with value group T
Endow I' with the discrete topology. Let K the completion ring. This is a topological
field ([BouAC] VI, §5.3, Prop. 5).

The homomorphism v: K* — I' is continuous and thus can be extended uniquely
to a continuous homomorphism %: K* — I" and by continuity ¢ defines a valuation on
K. For v € T the closures of {z € K ; v(z) <y} and {z € K ; v(z) <~} in K
are {z € K ; o(z) <~} and {z € K ; #(x) < v}, respectively. In particular, the
topology on E_\IS defined by the valuation ©. Moreo/vg, one obtains for its valuation
ring A(0) = A(v) and for its maximal ideal m(?) = m(v).

Moreover A(0) = A+ m(?0) and in particular x(0) = k(v).

Definition 5.43. Two valuations v; and vy on a field K are called independent if K
is the ring generated by A(v;) and A(vg). Otherwise they are called dependent.

The trivial valuation is independent of every other valuation. Clearly two equivalent
non-trivial valuations are dependent. More generally, if A(v1) C A(vy) # K, then vy
and vy are dependent.
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Proposition 5.44. Two valuations of height 1 are equivalent if and only if they are
dependent.

Proof. [BouAC] VI, §4.5, Prop. 6 (c). O

There are examples of dependent non-equivalent valuations which have both height
2 ([BouAC] VI, §8, Exercise 1).

Proposition 5.45. Two non-trivial valuations vi and ve on a field K are dependent
if and only if they define the same topology on K.

Proof. [BouAC] VI, §7.2, Prop. 3 O

Remark and Definition 5.46. Let v be a valuation on a field K and let A its
valuation ring. Then v (or A) is called microbial if the following equivalent assertions
are satisfied.

(i) There exists a height 1 valuation which is dependent to v.

(ii) There exists exists a topologically nilpotent element # 0 in K.

(iii) A equipped with the valuation topology is non-discrete and adic.

(iv) A has a prime ideal of height 1.

(v) There exists a convex subgroup H of ', such that I',/H has height 1.

(vi) There exists a non-trivial homomorphisms of totally ordered groups I';, — R.

Every valuation of finite height # 0 is microbial.

5.6 Examples of non-archimedean rings

For all examples in this section we fix the following notation. Let A be a non-
archimedean topological ring, let I be an index set and fix a family T" = (T;);es of
subsets T; of A such that for all i € I, m € N and for every neighborhood U of 0 in A
the subgroup T;"U is a neighborhood of 0. This condition is automatic if all 7; consist
of units of A, e.g., if T; = {1} for all 4, which is an important special case. For v € N((]])
we set @

="

i€l

Then T”U is a neighborhood of 0 for all v and for all neighborhoods U of 0.

Remark 5.47. We claim that on the polynomial ring A[X;;4 € I] there is a (unique)
topology that makes it into a topological ring and such that the following subgroups
form a basis of neighborhoods of 0.

Uix) ::{ZQVX”; a, € T"U for all v },

where U runs through all open subgroups in A. We denote this non-archimedean
topological ring by A[X]p.

The inclusion ¢t: A — A[X]|r is continuous and the set {¢(t)X; ; [ € I,t € T; } is
power-bounded. These properties characterize A[X]r: Let B be a non-archimedean
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topological ring, f: A — B a continuous ring homomorphism und sei (z;);c; a family
of elements z; € B such that the set { f(t)z; ; I € I,t € T;} is power-bounded in
B. Then there exists a unique continuous ring homomorphism ¢: A[X|pr — B with
f=goiand g(X;) =x; for alli € I.

Proof of the claim. We use Remark 5.24. For any open subgroup V in A there exists
an open subgroup U of A such that U -U C V. Then Ujx) - Ujx) € Vix. Let a € A[X]
and U an open subgroup of A. It remains to show that there exists an open subgroup
V' of A such that aVix; C Ux]. As T"U is a neighborhood of 0 of A for all v and as
ay = 0 for almost all v, there exists a neighborhood V of 0 in A such that a,V C T"U
for all v. Then aVix) C Upx- O

Remark and Definition 5.48. We consider now the ring of formal power series

AX]=A[Xgiel]={ Y aX';a cA}

Z/EN(()I)
We define a subring of A[X] as follows

o y ~a, € TV - U for all open subgroups
(5-48.1) AlX)r = {ZV:%X € AT U of A and for almost all v }
We endow A(X)r with the (unique) structure of a topological ring such that the sub-
groups (for U open subgroup in A)

Uxy ={> anX” € AX)r; ay € T” U for all v € Ni }

form a fundamental system of neighborhoods in A(X)7. We also write simply A(X) if
T; = {1} foralli e I.

Proof. Easy (note that it is not entirely clear that A(X)p is multiplicatively closed in
A[X]). 0

Proposition 5.49. (1) A[X|r is a dense subring of A(X ), and the inclusion A[X ] —
A(X) is a topological embedding.

(2) If A is Hausdorff and T; is bounded for all i € I, then A[X|r and A(X)r is
Hausdorff.

(3) If A complete and T; is bounded for all i € I, then A(X)r is the completion of
AlX]r.

Proof. Assertions (1) is clear. Let us show (2). The boundedness of the T; implies that
Ny T”-U C Ny U = {0}, where U runs through all open subgroups of A. This shows
Mo Vi) = {0}

To show (3) it suffices to show that A(X )y is complete. For a subset B of A(X)p
let B, be the subset of A consisting of the v-th coefficients of elements in B. Let B
be a Cauchy filter basis of A(X)p. Then for all v € Né[) the set B, :={ B, ; B€ B}
is a Cauchy filter basis of A. As A is complete, B, converges to a unique element
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any € A. Let a := ZVGN(I) a, X" € A[X]. We want to show that a € A(X)r and that
B converges to a. ’

Let U be an open subgroup of A. Choose B € B such that b — ¢ € Uy, for all
b,ce B,ie. b, —c, €TV U for all v and all b,c € B. Then

*) a, —b,eT"-U for all b € B and all v.

For any fixed b € B C A(X)r, one has b, € T” - U for almost all v. Hence (*) implies
that a, € TV - U for almost all v. This shows a € A(X)7. Moreover, (*) also shows
that a —b € Uixy for all b € B. As U was an arbitrary open subgroup of A, this shows
that B converges to a. O

Corollary 5.50 (Universal property of A(X)r). Let A be complete and let T; be
bounded for alli € I. Then the canonical homomorphism v: A — A(X)7 is continuous
and {(t)X; ; i € I,t € T; } is power-bounded in A(X)r. If B is a complete ring,
f:+ A — B a continuous homomorphism of rings and (x;); a family of elements x; € B
such that { f(t)z; ; i € I,t € T; } is power-bounded in B, then there exists a unique
continuous ring homomorphism g: A(X)r — B with f = go . and g(X;) = z; for all
1el.

The next class of examples are topological localizations of non-archimedean rings.

Proposition and Definition 5.51. Let S = (s;)ier be a family of elements of A and
let R C A be the multiplicative subset generated by {s; ; i € I'}. Then there exists on
R A a non-archimedean ring topology making it into a topological ring
Ag) = A€ D

such that {St—z ;i€ I,t € T} is power-bounded in A(%) and such that A(%) and
the canonical continuous homomorphism p: A — A(%) satisfy the following universal
property. If B is a mon-archimedean topological ring and f: A — B is a continu-
ous homomorphism such that f(s;) is invertible in B for all i € I and such that the
set {f(t)f(si)~t; i € I,t € T;} is power-bounded in B, then there exists a unique
continuous ring homomorphism g: A(%) — B with f = go .

The completion of A(%) is denoted by A(L) = A(Z—Z’\z el).
If I consists of one element and T' = {t1,...,t,} is finite, we also write A(
and A("tn) instead of A(i{tl"‘s"t”}) resp. A(i{tl";’t”})

t1,...,t
lzsvn)

Proof. In the localization R™'A consider the subsets E; := {5% ;teTforiel
and E := |J, E;. Let D be the subring of R™1A generated by E. Endow R™'A with
the group topology such that the subgroups { D - U ; U open subgroup of A} is a
fundamental system of neighborhoods of 0. It is easy to check that this defines a
ring topology on R~'A using as usual Remark 5.24. The canonical homomorphism
¢: A — R7'A is continuous as 1 € D. Moreover we have D - D = D which implies
that D is bounded in R~ A. In particular, E is power bounded in R~'A.
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We claim that (R~ A, ) satisfies the desired universal property. Thuslet f: A — B
as in the proposition. Let F' be the subring generated by the power-bounded set
{f@W)f(s;)™t ; i € I,t € T;}. Then F is bounded by Proposition 5.30 (2). Let
g: R"'A — B be the ring homomorphism such that f = go . Then g(D) C F.
Let U be a neighborhood of 0 in B. As F is bounded, there exists a neighborhood
Vof 0in C with FF-V C U. As f is continuous, there exists a neighborhood W
of 0 in A such that f(W) C V. Then D - W is a neighborhood of 0 in R~'A and
g(D-W)=g(D)-f(W)CF-V CU. Therefore g is continuous. O

Remark 5.52. We keep the notation of Proposition 5.51.

(1) Let J be the ideal of A[X]r generated by {1—s;X; ; i € [ }. We endow A[X|p/J
with the quotient topology of A[X|r. Then A — A[X|r/J satisfies the universal
property of A — A(%) which shows that A[X]7/J = A(%).

(2) One has A(%]z el)= A(Tlusif‘%}h € I). Thus one may always assume that s; € T;.
The last example class in this section is the following construction.

Remark 5.53. Consider the following subring of A[X] = A[X;|i € I]

A(X) g = A(Xili € I 1
= {ZaVX” € A[X] ; 3K C A bounded: a, € TV - K for all v }.

For every open subgroup U of A define a subgroup of A{(X)), by

Ugxy ={>_aX" € A(X))y; a, € T" U for all v},

Then the Uy xy form a fundamental system of neighborhoods of 0 of a ring topology on
A(X)p. If T; = {1} for all i € I, we write A(X))= A{(X;|i € I)) instead of A(X)).

5.7 Tate algebras

In this subsection we let k be a field which is complete with respect to a valuation
|- |: & = R>p. Its valuation ring is then Henselian (Remark 2.19), and we endow any
algebraic extension k' of k with the unique extension of |- | to k¥’ (Proposition 2.18).
This extension is again called | - |.

Example 5.54. Consider the special case A =k, I = {1,...,n}, and T; = {1} for all
i =1,...,n of Definition 5.48. Then

Tyi=Tonp = k(X1,...,Xn) :{ZQVXV; a, — 0 for ZVZ‘—>OO}
v i

and the topology on k(Xi,..., X)) is induced by the norm

1> a,x7) = max [ay |
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which makes T, into a Banach algebra over k (i.e. a complete normed algebra over k).
It is called the Tate algebra of strictly convergent power series in n variables and the
norm | - | is called the Gauf§ norm. It contains the polynomial algebra k[X1,..., X,]
as a dense k-subalgebra.

Lemma 5.55. Let k be an algebraic closure of k and let
B"(k) :=={(21,...,2n) €K"; |zg| <1 foralli=1,...,n}

be the unit ball in k™. Then a formal power series f = > a, X" € k[X1,...,Xn]
converges on B"™(k) if and only if f € k(X1,..., Xp,).

More generally, for i = 1,...,n let T; = {t;} for some element t; € k*. Then a
formal power series f =Y a, X" converges on {x € k™ ; |x;| < |t:|~'} if and only if

feRX) (1, tn)-

Proof. It suffices to show the special case. For x € B"(k) let k C k’ C k be a finite
subextension such that = € B"(k’). Then |a,2z"| < |a,| so that the summands converge
to zero, hence a,x, converges in k' because k' is complete. Conversely, if f converges

on B™(k), then f(1,...,1) converges so (|a,|), converges to zero. O
Lemma 5.56. T,, is noetherian.
Proof. [BGR] 6.1.1 Proposition 3. O

Definition 5.57. A topological k-algebra A is called topologically of finite type over k
if there exists a continuous open surjective k-algebra homomorphism 7, — A.

Thus every k-algebra A topologically of finite type is of the form T),/a, where a is a
closed ideal, and where the topology on A is the quotient topology of the topology on
T,. Conversely:

Proposition 5.58. Let a be an ideal of T,,. Let w: T,, — T,/a be the canonical pro-
jection. Then a is closed in T,,. Endow the k-algebra A := T,,/a with the quotient
topology. Then A is a complete k-algebra and its topology is induced by the norm

la|x :=1inf{|f|; f e T, withn(f)=a}.
The canonical projection m is open and contractive.

Proof. If A is any commutative noetherian Banach k-algebra, then any finitely gener-
ated ideal is closed and A/a is complete. Thus a is closed in T}, and T},/a is complete.
Then clearly 7 is continuous. It is not difficult to check that |- | is a norm, and it is
immediate that 7 is contractive. Further by Banach’s theorem, any continuous k-linear
surjective map of Banach spaces is open. In particular 7 is open. ]

Lemma 5.56 implies:

Proposition 5.59. FEvery k-algebra topologically of finite type is noetherian.
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Proposition 5.60. Every k-algebra homomorphism between k-algebras topologically of
finite type is continuous.

Proof. [BGR] 6.1.3 Theorem 1. O

Proposition 5.61. Let A be a k-algebra topologically of finite type. Then for every
mazximal ideal m the quotient A/m is a finite extension of k.

6 f-adic rings and Tate rings

6.1 f-adic rings

Proposition and Definition 6.1. A topological ring A is called f-adic if the following

equivalent assertions are satisfied.

(i) There exists a subset U of A and a finite subset T C U such that {U™ ; n > 1} is
a fundamental system of neighborhoods of 0 in A and such that T -U = U? C U.

(ii) A contains on open subring Ao such that the subspace topology on Ay is I-adic,
where I is a finitely generated ideal of Ag.

A subring Agy (resp. a pair (Ao, I)) as in (ii) is called a ring of definition (resp. a pair

of definition).

Clearly any f-adic ring is non-archimedean.
Proof. We prove the equivalence together with the following lemma. O

Lemma 6.2. Let A be an f-adic ring. Then for a subring Ay of A (endowed with the
subspace topology) the following assertions are equivalent.

(a) Ag is a ring of definition.

(b) Ag is open in A and adic.

(c) Ag is open in A and bounded.

Proof. Let A be a topological ring. We first remark that every open adic subring
clearly is bounded. In particular (b) implies (c) for an arbitrary topological ring. The
implication “(a) = (b)” is trivial.

If A satisfies (ii) in Proposition 6.1, then we set U := I and let T be a finite system
of generators of I and see that A satisfies (i).

From now on let us assume that there exists a subset U of A and a finite subset
T C U such that {U™ ; n > 1} is a fundamental system of neighborhoods of 0 in A
and such that 7 -U = U? C U. Let W be the subgroup of (4,+) generated by U.
Then W is open because U is open. As U™ C U, Z -1+ W is an open subring of A. It
is also a bounded (Remark 5.30).

Thus we have shown all equivalences if we can prove that (c) implies (a). Let Ay be
an open and bounded subring of A. For every n € Nput T'(n) = {tita-- -ty ; t; €T }.
Choose k € N such that T'(k) C A and let I be the ideal of Ay generated by T'(k). Let
! € N such that U' C Ay. Then we have for all n € N

I" = T(nk)Ag D T(nk)U' = Uk,
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Thus I™ is an open neighborhood of 0. Let V be any neighborhood of 0. As Ay is
bounded, there exists m € N such that U™ Ay C V. Then I"™ C V. Therefore (I"),en
is a fundamental system of neighborhoods of 0. O

Remark 6.3. The topology of an f-adic ring A is metrisable (Remark 5.7). Thus
Proposition 5.35 shows that if A is complete and a C A is a closed ideal, then A/a is
complete.

Corollary 6.4. Let A be an f-adic ring.

(1) If Ao and A1 are rings of definitions, then AgNAy and Ag-Ay are rings of definitions.

(2) Every open subring C of A is f-adic.

(3) A° is a subring of A and it is the union of all rings of definitions of A.

(4) Let B be a bounded subring of A and let C be an open subring of A with B C C.
Then there exists a ring of definition Ay with B C Ay C C.

(5) A is adic if and only if it is bounded.

Proof. Assertions (1) is clear, because if Ag and A; are open and bounded, then AyNA;
and Ap - A; are open and bounded. Assertion (2) is obvious, and (3) follows from
Proposition 5.30 (3). To show (4) one may assume A = C by (2) and if Ay is any ring
of definition, then Ag - B is a ring of definition containing B. Finally Assertion (5)
follows immeditately from Lemma 6.2. 0

Example 6.5. (1) Every adic ring with a finitely generated ideal of definition is f-adic.

(2) Let k be a field endowed with the topolopgy defined by a valuation v. Then k is
f-adic if and only if v is trivial or v is microbial.

(3) A field k£ whose topology is defined by a microbial valuation v is called a non-
archimedean field. Then the topology is also given by a nontrivial valuation |- |
with values in RZ?. Then k° = {z € k ; || < 1} and k° =: m is its maximal
ideal. The subring k° is open in k£ and it is an [-adic ring, where I is an ideal
generated by some element 7 with || < 1.

If | - | is a discrete valuation, then we may take for I the maximal ideal. But in
general k° does not carry the m-adic topology (e.g., if I'| = Q, then m" = m for all
n>1).

The valuation ring of v is contained in k°.

(4) Let k be a non-archimedean field and let T), := k(X1, ..., X,,) be the ring of con-
vergent power series. Then T, is an f-adic ring. For the ring of power-bounded
elements we have

T2 =k%(Xy,...,Xn),

and T} is a ring of definition whose topology is the I x)-adic topology (see Propo-
sition 6.21 below).

(5) Let A be a ring, let I be a finitely generated ideal of A, and define for n > 0 the
following subgroup of the polynomial ring A[T]

U, = {Zaka ap € I"TR)
k
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Then U,U,, C Upi+m. Hence if we endow A[T] with the topology such that the
(Up)n is a fundamental system of neighborhoods of 0, A[T] is a topological ring.
Then A is an f-adic ring but it is not an adic ring if I™ # I"™*! for all m.

Lemma 6.6. Let A be an f-adic ring and let n be the ideal of A generated by the
topologically nilpotent elements of A. Then an ideal a of A is open if and only if
n C rad(a).

Proof. If a is open, then for every topologically nilpotent element f € A there exists
n € N such that f € a, hence n C rad(a). Conversely, assume that n C rad(a). Let Ay
be a ring of definition of A and let I be a finitely generated ideal of definition of Ajp.
Then I C n C rad(a) and thus there exists some power I"™ contained in a. But I™ is
open again and therefore a is open. O

In particular one has for an f-adic ring A and all ideals of definition I of a ring of
definition
{p €SpecA; popenin A} =V(A”)=V(I),

i.e., a prime ideal is open if and only if it contains every ideal of definition of every ring
of definition of A.

Remark 6.7. Let A be an f-adic ring, let B be a topological ring and let 7: A — B
be a continuous surjective open homomorphism. Then B is f-adic.

Remark 6.8. Let A be a f-adic ring, B a ring of definition of A, and I a finitely
generated ideal of definition of B. We consider the completion B as an open subring
of A. By Proposition 5.37, B is adic, and IB is an ideal of definition of B. Hence A is
an f-adic ring.

Proposition 6.9. Let A be a f-adic ring, B a ring of definition of A.

(1) The canonical ring homomorphism A ®p B — A is an isomorphism.

(2) If B is noetherian, then A — A is flat.

(3) If A is a finitely generated B-algebra and B is noetherian, then A is noetherian.

Proof. Assertion (1) is [Hu2] Lemma 1.6. The remaining assertions follow immediately.

O

6.2 Tate rings

Definition 6.10. A topological ring is called Tate ring if it is f-adic and has a topo-
logically nilpotent unit.

Remark 6.11. An adic ring A is a Tate ring if and only if its topology is the chaotic
topology.

Example 6.12. Let k be a field endowed with a non-trivial valuation v. Then k with
the valuation topology is a Tate ring if and only if v is microbial (Definition 5.46).
Then A(v) is a ring of definition.
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Example 6.13. Let k be a field endowed with a non-trivial valuation |-|. Assume
that | - | takes values in R=?. Every normed k-algebra (A, |- |) is a Tate ring: Ag :=
{a€ A; |a| <1} is an open subring and if € k* is any element with v(r) < 1, then
(r"Ao)nen is a fundamental system of neighborhoods of 0 in Ay.

In particular every algebra topologically of finite type over k (Example 5.54) is a
Tate ring.

Proposition 6.14. Let A be a Tate ring and let B be a ring of definition. Then B
contains a topologically nilpotent unit s of A. For any such s one has A = Bs and sB
is an ideal of definition of B.

Proof. As B is an open neighborhood of 0 there exists for every topologically nilpotent
element t an n € N such that t" € B. This shows the first assertion.

For every a € A there exists n € N such that as™ € B, hence A = B;. Multiplication
with s™ is a homeomorphism A — A. This shows that s B is open. Moreover, as B is
bounded, for every neighborhood V of 0 there exists n € N such that s"B C V. O

Corollary 6.15. Let k be a topological field whose topology is given by a valuation of
height 1. Let w € k™ be a topologically nilpotent element and let A be a topological
k-algebra. Then A is a Tate ring if and only if it contains a subring Ao such that
(7" Ap)n 1s a fundamental system of open neighborhoods of 0 of A.

Proof. The condition is necessary by Proposition 6.14. Conversely, if Ag is a subring
such that (7" Ap), is a fundamental system of open neighborhoods of 0 of A, then A
is an open subring and as linearly topologized ring it is bounded. Thus Ay is a ring of
definition. O

6.3 Banach’s theorem for Tate rings

Recall the following version of Banach’s theorem:

Theorem 6.16. Let A be a topological ring that has a sequence converging to 0 con-
sisting of units of A (e.g., if A is a Tate ring). Let M and N be Hausdorff topological
A-modules that have countable fundamental systems of open meighborhoods of 0. As-
sume that M is complete. Let u: M — N be an A-linear map. Consider the following
properties.

(a) N is complete.

(b) w is surjective.

(¢c) u is open.

Then any two of these properties imply the third.

The proof will show that u is already open and surjective if N is complete and u(M )
is open in N.

Proof. Missing O
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Proposition 6.17. Let A be a complete Tate ring, and let M be a complete topological
A-module that has a countable fundamental system of open neighborhoods of 0. Then
M is noetherian if and only if every submodule of M is closed. In particular A is
noetherian if and only if every ideal is closed.

Proof. Missing O

Proposition 6.18. Let A be a complete noetherian Tate ring.

(1) Ewvery finitely generated A-module has a unique A-module topology that is complete
and that has a countable fundamental system of open neighborhoods of 0.

(2) Let f: M — N be an A-linear map of finitely generated modules that are endowed
with the topology from (1). Then f is continuous and the map f: M — f(M) is
open.

Proof. Missing O

Remark 6.19. Let A be a complete noetherian Tate ring, Ay a ring of definition and
s € Ay a topologically nilpotent unit of A (such that Ay has the sAp-adic topology).
Let M be a finitely generated A-module and choose a finitely generated Ag-submodule
My of M such that A - My = M. Then {s"My ; n € N} is a fundamental system of
open neighborhoods of 0 in M for the topology defined in Proposition 6.18.

6.4 Examples

Lemma 6.20. Let A be an f-adic ring and let T be a subset such that ideal of A
generated by T is open in A. Then T™ - U is a neighborhood of zero in A for alln € N
and for all open subgroups U of A.

Proof. Let U and n be given. As T - A is a neighborhood of zero, T" - A = (T - A)"
is a neighborhood of zero. Let Ay be a ring of definition and I an ideal of definition
of Ag such that I CT™- A. Let L be a finite system of generators of I and let K be
a finite subset of A such that L € T" - K. Choose m € N with K - I"™ C U. Then
mtl=r./mc(T-K)-Im=T"-(K-I™)CT"-U. O

Proposition 6.21. Let A be an f-adic ring, let B be a ring of definition and let I a

finitely generated ideal of definition of B. Let A be a set, and let T = (T\)xep be a

family of subsets of A such that the ideal of A generated by T is open for all \.

(1) Then A[X]|r is an f-adic ring, B(x) is a ring of definition, and Ix) = I - B|x] is a
finitely generated ideal of definition. If A is a Tate ring, then A[X]r is a Tate ring.

(2) Assume that A is finite. Then A(X)r is an f-adic ring, B xy is a ring of definition,
and I\xy =1 Bxy is a finitely generated ideal of definition. If A is a Tate ring,
then A(X)r is a Tate ring.

(3) Let S ={sx; A€ A} be a family of elements of A. Then the topological localiza-
tions A(%) and A<%> are f-adic rings. If A is a Tate ring, then A(%) and A(%)
are also Tate rings.
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By Lemma 6.20 the topological rings A[X]r, A(X)r, A(%), and A(L) are defined.
Assertion (2) also holds for arbitrary index sets A if one assumes in addition that A
is Hausdorff and that T is bounded for all A € A.

Proof. The inclusions Ijx) = I - Bjx) and I - Bixy C Ix) are clear. Let us show that
Iixy € I-Bixy. Let iy,...,iy be generators of I. Then every a € T" - I* (v e N},
k € N) can be written as a = i1a1 + - - - + Gy, With a; €T - IF=1 As {Ik ; ke N}
is a fundamentalsystem of neighborhoods of zero of A, every u € I x) can be written
as u = 11Uy + -+ + iUy, With uj; € B(X>.

Clearly the rings Bjx) and By, are open subrings of Ax] and A x,, respectively.
Moreover, if I is an ideal of definition of B, then I" is also an ideal of definition of B.
Thus we have shown that (I")x) = I - Bix) and (I"™)xy = I"™ - B(x). This shows
that Bpy) and B x, are adic rings. Thus we have seen that A[x) and Ay are f-adic
rings.

Moreover, it is easy to see that A(%) is f-adic. Then A(%) is f-adic by Proposi-
tion 6.9.

Finally, there are continuous homomorphisms A — A[X]|p, A(X )T,A(%),A<%>.
Thus if A contains a nilpotent unit, all the other rings contain a nilpotent unit as
well. O

Remark 6.22. Let A be an adic ring. Then A(X)y is in general not adic. In fact one
can show that A(X)p is adic if and only if A(X)p is isomorphic to A(X). An analogous
remark holds for A[X]r.

Moreover, A(%) is adic if and only if A(%) is isomorphic to A(%]r € R), where R
is some subset of A.

6.5 Adic homomorphisms

Definition 6.23. Let A and B be f-adic rings. A ring homomorphism ¢: A — B
is called adic if there exist rings of definitions Ay of A and By of B and an ideal of
definition I of Ay such that p(Ag) C By and such that ¢(I)Bj is an ideal of definition
of B().

Any adic ring homomorphism is continuous. Conversely, for every continuous ho-
momorphism ¢: A — B there exist always rings of definitions Ag of A and By of B
and finitely generated ideals of definition I of Ag and J of By such that ¢(A4g) C By
and such that ¢(I) C J. But in general ¢(I)By is not an ideal of definition of By.

Example 6.24. Let A be a discrete ring. Then A is adic with ideal of definition I = 0.
Any homomorphism ¢: A — B to an f-adic ring B is continuous. It is adic if and only
if B also carries the discrete topology.

Proposition 6.25. Let ¢: A — B be a continuous ring homomorphism between f-adic
rings. Assume that A is a Tate ring. Then B is a Tate ring, ¢ is adic, and for every
ring of definition By of B one has p(A) - By = B.
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Proof. Let Ag (resp. By) be rings of definition of A (resp. B) such that ¢(A4g) C By.
Let s € Ay be a topologically nilpotent unit of A. Then ¢(s) is a topologically nilpotent
unit of B and hence B is a Tate ring. Replacing s be some power, we may assume that
s € Ap. Then sAy is an ideal of definition of Ay and ¢(s)By is an ideal of definition of
By (Proposition 6.14). This shows that ¢ is adic. Let By C B be an arbitrary ring of
definition. Replacing s by some power we may assuume that ¢(s) € By. Moreover one
has A = (Ag)s and B = (Bp),(s) by Proposition 6.14 and hence ¢(A) - By = B. O

Proposition 6.26. Let p: A — B and v»: B — C be continuous ring homomorphisms
of f-adic rings.

(1) If ¢ and 1 are adic, then 1 o ¢ is adic.

(2) If ¥ o v is adic, then 1 is adic.

Proof. [Hu2| Corollary 1.9 O

Remark 6.27. Let p: A — B be a continuous ring homomorphisms of f-adic rings.
Let A’ C A and B’ C B be open subrings (then A’ and B’ are again f-adic rings by
Corollary 6.4) such that ¢(A") C B’. Then if ¢ is adic, its restriction A’ — B’ is also
adic.

6.6 Homomorphisms topologically of finite type

Definition 6.28. Let A be an f-adic ring. A ring homomorphism ¢: A — B to a
complete f-adic ring B is called strictly topologically of finite type if there exist n € Ny
and a surjective continuous open ring homomorphism

7 A(Xy,...,X,) > B
of A-algebras.

Proposition and Definition 6.29. Let A be an f-adic ring. A ring homomorphism

p: A — B to a complete f-adic ring B is called topologically of finite type if the

following equivalent conditions are satisfied.

(i) There exist n € Ny, finite subsets Th, ..., T, of A such that T; - A is open in A for
all it =1,...,n, and a surjective continuous open ring homomorphism

.....

of A-algebras.

(ii) The homomorphism ¢ is adic, there ezists a finite subset M of B such that A[M]
is dense in B, and there exist rings of definition Ag C A and By C B and a finite
subset N of By such that ¢(Ag) C By and such that Ag[N] is dense in By.

(iii) There exist rings of definition Ay C A and By C B with ¢(Ay) C By such that By
is an Ag-algebra strictly topologically of finite type such and such that B is finitely
generated over A - By.

(iv) For every open subring Ao of A there exists an open subring By of B with ¢(Ag) C
By such that By is an Ag-algebra strictly topologically of finite type and such that
B is finitely generated over A - By.
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Remark 6.30. If Ay is a ring of definition of A in (iv), then By is automatically a
ring of definition in B. Indeed, if Ay is adic, then Ag(X7,...,X,,) is adic and hence
the existence of a continuous surjective open homomorphism Ay(Xy,...,X,,) — By
implies that By is adic.

Proof. “(i) = (iii)”. Let (Ag,I) be a pair of definition of A. Then A(X)r is the
completion of A[X]r (Proposition 5.49). By Proposition 6.21, ((Ao)x7, [(Ao)x] is a
pair of definition of A[X]r. Moreover (Ao)(x) = AoltiXi; i € {1,...,n},t; € T;]. Hence

if we set By := ’R’((A/O-Eq), then there exists 7" as desired. Now by Proposition 6.9 we

have A(X)p = A[X]r ®(A0)x) (A/oﬁq. As A[X]r is of finite type over A - (Ao)(x], this
implies the claim.

“(iti)) = (iv)”. [Hul] 2.3.25

“(iv) = (i) = (ii)”. The fact that (iv) implies that ¢ is adic follows from
Proposition 6.21. All other implications are clear.

“(iv) = (i)”. We may assume that A is complete. By hypothesis ¢ factors through
a continuous open homomorphism o: A(Xi,...,X,) — B such that B is generated
as A(Xy,...,X,)-algebra by finitely many elements b1,...,bs. Let Ay be a ring of
definition of A and let L C Ay a subset which generates an ideal of definition of
Ag. Choose k € N such that Ikbj is power-bounded for all j = 1,...,s. We set
T:=(T1,...,Tys) with T; ;= {1} fori=1,...,mand T; = [* fori = m+1,...,m+
s. Then the universal property of A(Xi,..., X;1s)r (Corollary 5.50) implies that
there exists a continuous homomorphism of A-algebras p: A(Xy,..., Xjmys)r — B
such that p(X;) = o(X;) for i = 1,...,m and p(X;4m) =0bj for j =1,...,s. Then p
is surjective. Moreover, for every open subgroup Uof A the image of U/x, . x,..) C
A(X1,. .., Xpnys)T under p contains the image of Uiy, . x,,) € A(X1,..., Xs,) under
0. Therefore p is open because ¢ is open. O

(X

The same argument also shows the following strict variant.

Proposition 6.31. Let A be an f-adic ring. Let p: A — B be a ring homomorphism

to a complete f-adic ring B. Then the following conditions are equivalent.

(i) ¢ is strictly topologically of finite type.

(ii) There exist rings of definition Ay C A and By C B with ¢(Ap) C By such that By
is an Ag-algebra strictly topologically of finite type such and such that B = A - By.

(iii) For every open subring Ao of A there exists an open subring By of B with ¢(Ag) C
By such that By is an Ag-algebra strictly topologically of finite type and such that
B=A-By.

Example 6.32. (1) A ring homomorphism between discrete topological rings is topo-
logically of finite type if and only if it is of finite type.

(2) Let A be an f-adic ring, s1,...,s, € A and T; C A finite subsets such that T; - A is
open in A for i = 1,...,n. Then the canonical homomorphism A — A(f—ll, e f—:)
is topologically of finite type.

Indeed, this follows from Proposition 6.29 (ii) by taking (with the notation there)
N={Lt;ie{l,....n},teT;}and M = NU{i}

S,L"
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Proposition 6.33. Let A be an f-adic ring, let B, C be complete f-adic rings, and

let p: A — B and v: B — C be continuous ring homomorphisms.

(1) If ¢ and ¢ are (strictly) topologically of finite type, then 1) o ¢ is (strictly) topolog-
ically of finite type.

(2) If ¢ o v is topologically of finite type, then 1) is topologically of finite type.

Proof. The properties (iv) in Proposition 6.29 and (iii) in Proposition 6.31 imply (1).
Assertion (2) is clear. O

Proposition 6.34. Let A be a Tate ring and let B be a complete f-adic ring. Then
a homomorphism ¢: A — B is topologically of finite type if and only if it is strictly
topologically of finite type.

Note that if these equivalent conditions are satisfied, then B is a Tate ring and ¢ is
adic.

Proof. Let By be aring of definition of B. Then Proposition 6.25 shows that A-By = B.
This implies the claim by Proposition 6.29 and Proposition 6.31. O

Proposition 6.35. Let A be an f-adic ring and let B be an f-adic A-algebra topolog-
ically of finite type. If A has a noetherian ring of definition, then B has a noetherian
ring of definition.

Proof. We may assume that B = A(X)p. Let Ay be a noetherian ring of definition
of A. Then (Ap)x] is a ring of definition of A[X]r which is finitely generated of Ag
by {t:X; ; i € {1,...,n},t; € T; } and hence noetherian. Its completion is a ring
of definition of A(X)r and as the completion of a noetherian adic ring it is itself
noetherian. O

6.7 Strongly noetherian Tate rings

Proposition and Definition 6.36. A Tate ring A is called strongly noetherian if the
following equivalent conditions are satisfied.

(i) A(Xy,...,X,) is noetherian for all n € Ny.
(ii) Every Tate ring topologically of finite type over A is noetherian.

Proof. The equivalence of both assertions follows immediately from 6.34. O

Remark 6.37. (1) If A is a strongly noetherian Tate ring, then every Tate ring topo-
logically of finite type over A is strongly noetherian by Proposition 6.33.

(2) Every completely valued field (k,v), where v is of height 1 (or, more generally,
microbial), is strongly noetherian ([BGR] 5.2.6 Theorem 1). Hence every Tate ring
topologically of finite type over k is strongly noetherian as well.

(3) Every Tate ring that has a noetherian ring of definition is strongly noetherian.
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Example 6.38. Let A be an f-adic ring, let s1,...,8, € A and T1,..., 7T, C A
finite subsets such that 7; - A is open for all ¢ = 1,...,n. Then the canonical ring
homomorphism ¢: A — A(%, e %> is topologically of finite type.

Indeed, ¢ is by definition adic, and if we set M = {S% ;i=1,...,n;t € T; }, then
A[M] is dense in A(Z—ll, e Z—Z) and Ag[M] is dense in AB(%, ce %’Z% if Ag is a ring of
definition of A.

If A is a strongly noetherian Tate ring, we may represent A(f—ll, oy b

;) as a quotient
of a ring of restricted power series. Set C' = A(th|z =1,...,n,t € T;) and let a be
the ideal of C' generated by {t — s;X;; ; ¢ = 1,...,n;t € T;}. By hypothesis, C
is noetherian and hence a is a closed ideal (Proposition 6.17). As A is a Tate ring,
T; - A = A by Remark 7.30 (2). Hence the image of s; in C/a is a unit. Now it is
easily seen that the homomorphisms A — A(f—ll, e %> and A — C/a satisfy the same
universal property.

In particular, A(%, ot

,52) is again strongly noetherian.

Example 6.39. Let A be a Tate ring and let A(X , X1 be the ring of all formal series
> nez @n X" such that a, € A for all n € Z and such that for every neighborhood U of
zero in A there exist only finitely many n € Z with a,, ¢ U. Note that the product of
two such series is well defined:

O an XM b X" = en X,

nez nel nel

where ¢, is the convergent series ), ;. apb. We endow A(X, X1 with the ring
topology such that the sets

{ZanX” € AX, X1 a, €U foralln e Z}

neL

form a basis of neighborhoods of zero if U runs through all open neighborhoods of zero
of A.

Then fl(X , X~ 1) is an A-algebra topologically of finite type. More precisely, it is
isomorphic to A(X,Y)/(XY —1). In particular we see that, if 4 is strongly noetherian,
then A(X, X~!) is a strongly noetherian Tate ring.

Indeed, it is not difficult to check that both algebras are initial objects in the category
of homomorphisms from A to complete Tate rings B together with a distinguished unit
w € B* such that u and v~! are power-bounded.

7 The adic spectrum of an affinoid ring as topological
space

7.1 The space Spv(A,I)

In this subsection we denote by A a ring and by I an ideal of A such that there exists
a finitely generated ideal J of A such that VI=+J.

Recall from Definition 1.16 that an element ~ of a totally ordered group I is called
cofinal for a subgroup H if for all h € H there exists n € N with v < h.
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Lemma 7.1. Let v: A — I', U {0} be a valuation on A. Let H C T', be a convex
subgroup such that cI'y C H. Then ¢:= {a € A ; v(a) is cofinal for H} is an ideal of
A and rad(c) = c.

Proof. If a € ¢ and b € A with v(b) < v(a), then b € ¢. Hence if a,b € ¢, then
v(a +b) < max{v(a),v(b)} shows that a +b € ¢. Let b € A, a € ¢. If v(b) <1 then
v(ba) < v(a) and hence ba € ¢. If v(b) > 1, then v(b) € cI', and hence v(ab) = v(a)v(b)
is cofinal for H because cI', C H (Remark 1.20). The property rad(c) = ¢ is clear. [

Lemma 7.2. Let v: A — T, U {0} be a valuation on A with v(I) N el = 0. Then
there exists a greatest convex subgroup H of ', such that v(a) is cofinal for H for all
a € I. Moreover, if v(I) # {0}, then H O cI'y, and H is the smallest convex subgroup
of T'y such that v(I) N H # (.

Note that v(I) N el = 0 is equivalent to v(a) < Iy, for all @ € I (if v(a) > 1 then
v(a) € cI'y and if 1 > vw(a) > ~ for some v € cI'y, then v(a) € cI', because cI'y is by
definition convex).

Proof. 1f v(I) = {0}, we may choose H = I',. Thus we may assume that v(I) # {0}
and hence cI'y, # T',,.

Note that for any subgroup H of T, one has v(I) N H = § < v(v/I) N H = (.
This and Lemma 7.1 shows that we may assume that [ is finitely generated. Let T be
a finite set of generators of I and let H be the convex subgroup of I', generated by
h:=max{v(t) ; t € T}. Asremarked above v(h) < 1 and hence h is cofinal for H and
hence v(t) is cofinal for H for all ¢t € T. Moreover h < cI', < h™! as remarked before
the proof and hence ¢I', C H because H is convex. Thus Lemma 7.1 shows that v(a)
is cofinal for H for all @ € I. If H' is any other convex subgroup of T', such that v(a)
is cofinal for H' for all a € I. Then in particular A is cofinal for H’ which implies that
H CH.

Clearly one has v(I)NH # (. Let H' be a convex subgroup of ', with H' Nv(I) # (.
We show that H C H'. As the set of totally convex subgroups is totally ordered and
as 'y, Nv(I) = (), we necessarily have cI';, C H’. Choose a € I with v(a) € H' and
write a = ), ast with a; € A. Hence

v(a) < max{v(ay)v(t); t€T}.

Let t' € T with v(a) < v(ay)v(t'). If v(ay) < 1, then v(a) < v(t’) < 1 which implies
v(t') € H' (as H' is convex). If v(ay) > 1, then v(ay) € 'y € H' and hence H' >
v(ay) tv(a) < v(t') < 1 which again shows that ¢ € H. By definition of h and again
by the convexity of H' we get h € H'. Thus H C H'. O

The lemma allows us to define for every valuation v on A the following subgroup of
I,.

Definition 7.3. Let c¢[',(I) be the group cI'y if v(I) N cl, # 0. Otherwise let ¢y (1)
be the greatest convex subgroup H of I', such that v(a) is cofinal for H for all a € I.

Then cI'y(I) is a convex subgroup of I';, which always contains cI'y,.
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Lemma 7.4. The following conditions are equivalent.

(i) ely(I) =T.

i) cl’y
ii) v(a) is cofinal for Ty for all a € I, or T, = cI',.

T

(i) o

(iii) v(a) is cofinal for T, for every element a in a set of generators of an ideal J such
that /J = \ﬁ, or 'y = cl'y,.

Indeed, the equivalence of (i) and (ii) follows from the definition of ¢I'y(I). For the

equivalence of (i) and (iii) follows from Lemma 7.1.

With this definition we set
(7.4.1) Spv(A,I):={veSpvA; I',(I)=T,}

and endow it with the subspace topology induced by Spv A. We get the same subspace
if we replace I by any ideal J with /T = v/J. Moreover the map

(7.4.2) r: Spv A — Spv(A, 1), V> Vler, (1)
is a retraction (i.e., r(v) = v for all v € Spv(A4,I)).

Lemma 7.5. Let A be an f-adic ring and let I be an ideal of A such that there exists

a finitely generated ideal J of A with /I =+/J.

(1) The topological space Spv(A, I) is a spectral space and the set R of the following sets
form a basis of quasi-compact open subsets of the topology, which is stable under
finite intersections.

SpV(A,I)(g) ={veSpv(A,I);v(t) <wv(s)#0 forallt € T},

where s € A and T C A finite with I C /T - A.
(2) The retraction r: Spv A — Spv(A, I) is a continuous spectral map.
(3) For v € Spv A with v(I) # 0 one has r(v)(I) # 0.

Proof. We may assume that [ is finitely generated.
(i). As we endowed Spv(A, I) with the topology induced by Spv(A), it is clear that
each set in R is open in Spv(A,I). For s and T as above one has

TU{s}

S

Spv(A, 1)(1) = R(-),

Thus we may always assume that s € T. If s1,s9 € A and let 17,75 C A finite subsets
such that I C /T; - A for i = 1,2. Setting T := {t1t2 ; t; € T; }, the ideal VT - A still
contains I. Moreover, if we assume that s; € T;, then

Spv(A, 1)) NSpV(A D () = Spv(A. ().

Therefore the intersection of two sets in R is again in R.
(7). We now show that R is a basis of the topology of Spv(A, I). Let v € Spv(A, I)
and let U be an open neighborhood of v in Spv A. Choose gg, ..., g, € A such that

veW :={weSpvA;w(g) <w(g)#0fori=1,...,n} CU,
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which is possible because the sets as W form a basis of the topology of Spv A.
Assume that T'y, = ¢I"y,. Then there exists d € A with v(god) > 1. Hence

gid, ..., gnd, 1

ve W' :=Spv(A4, I
pe(4, 1) (S5

) S W.

Now assume that I';, # cI',. Let {s1,..., s} be a set of generators of I. By Lemma 7.4
there exists k € N with v(s;)* < v(go) for alli =1,...,m. Then

k k
gl,...,gn,sl,...,sm)cw

v € Spv(A, I)( p
0

(iii). Let s € A, T C A finite with I C VT -A. Set U := Spv(A,1)L and
W := Spv(A)(L). We claim that W = r~1(U).

Since U C W and since every point * € 7~ (U) is a horizontal generization of
r(xz) € U, one has r~}(U) C W because W is open in Spv A. Conversely, let w € W
be given. It remains to show that r(w) € U. If w(I) = 0, then I',(I) =T, and hence
r(w) = w. Thus we may assume that w(I) # 0. As r(w) is a horizontal specialization
of w, one has r(w)(t) < r(w)(s) for all t € T. It remains to show that r(w)(s) # 0.
Butr(w)(s) = 0 would imply that ¢ € p := supp(r(w)) for all ¢t € T" and hence I C p as
I CV/T-A. But by Lemma 7.2, w(I) # 0 implies that ¢I'y,(I) Nw(I) # 0, i.e., there
exists a € I with r(w)(a) # 0. Contradiction.

We also have just seen that (3) holds.

(). Let R be the Boolean algebra of subsetes of Spv(A, I) generated by R and let
X be the set Spv(A, I) equipped with the topology generated by R. It follows from (iii)
that for every subset C' in R the preimage r~1(C) is constructible in Spv A. Hence
7: (Spv A)cons — T is continuous. Since (Spv A)cons is quasi-compact (Proposition 3.23)
and r is surjective, T' is quasi-compact. By definition, every set of R is open and closed
in T. Moreover, Spv(A,I) is Kolmogorow as a subspace of the Kolmogorow space
Spv A. Hence we can apply Proposition 3.31 to deduce that Spv(A,I) is a spectral
space and that R is a basis of open quasi-compact subsets. Moreover, (iii) then shows
that r: Spv A — Spv(A4,I) is spectral. O

Remark 7.6. The inclusion Spv(A,I) < Spv(A) is not spectral in general

7.2 The spectrum of continuous valuations

Definition 7.7. Let A be a topological ring, let v be a valuation on A and let I' be its
valuation group. Then v is called continuous if it {a € A ; v(a) <~} is open in A for
all v € I' (i.e., the topology of A is finer than the topology defined by v).

We denote by Cont(A) the subspace of Spv(A) of continuous valuations on A

Remark 7.8. Let A be a topological ring.

(1) A valuation v on A is continuous, if and only if the map v: A — T, U {0} is
continuous, where I';, U {0} is endowed with the topology defined in Remark 1.17.

(2) If A carries the discrete topology, then Cont(A) = Spv(A).

o8



(3) A valuation v on A is continuous if and only if for all v € I, the set A<, :={a €
A ; v(a) >~} is open in A.
Indeed, if v is continuous, then the subgroup A<, contains the open subgroup
A,. Conversely, A., = U6<7 A<s.

Remark 7.9. Clearly any continuous homomorphism ¢: A — B of topological rings
induces a continuous morphism Cont(B) — Cont(B) by composition with ¢.

Theorem 7.10. Let A be an f-adic ring. Let I be an ideal of definition of a ring of
definition of A. Then

Cont(A) ={v e Spv(A,1-A);v(a) <1 forallael}.

Proof. Let v € Cont(A). Every element a € I is topologically nilpotent and hence for
every v € I there exists n € N such that " € {f € A; v(f) <~} te. v(a)" <.
Hence v(a) is cofinal for I'y,. This shows v(a) < 1 and that ¢[',(I - A) = T'y, by
Lemma 7.4 (iii). Hence v € {v € Spv(A,I-A) ;v(a) <1 forall a € I}.

Conversely, let v € Spv(A,I - A) with v(a) < 1 for all @ € I. We claim that
v(a) is cofinal for Ty, for all @ € I. Indeed, if cI', # Ty, then the claim follows from
Lemma 7.4. Thus we may assume that cI'y, = I'y. Let a € I and v € T, be given.
By our assumptions there exists t € A with v(¢) # 0 and v(¢)~! < 7. Choose n € N
such that ta™ € I (this exists because {t} is bounded). Then v(ta") < 1 and hence
v(a)™ < ~y. This proves the claim.

Let v € T be given. Let T be a finite system of generators of I and set § :=
max{v(t) ; t € T'}. By the claim above there exists n € N such that §” < . Then
v(a) < forall @ € T™ - I = I""1. Hence v is continuous. O

Remark 7.11. Let A be an f-adic ring, I an ideal of definition of a ring of definition

of A.

(1) The proof of Theorem 7.10 shows that a valuation v on A is continuous if and only
if v(a) is cofinal for I, for all a € I.

(2) Let v be a continuous valuation on A and let H C T, be a proper convex subgroup.
For a € I the image of v(a) in I',/H is cofinal for I',/H (Corollary 1.21). This
shows that the vertical generalization v,y of v is still continuous.

Corollary 7.12. Let A be an f-adic ring. Then Cont(A) is a spectral space.

Proof. Let I be the ideal of A generated by an ideal of definition of a ring of definition of
A. Then Cont(A) is the complement of the open subset | ;. Spv(4, I)(%) of Spv(A,I).
Hence Cont(A) is closed in Spv(A,I) and hence a spectral space because Spv(A4,I) is
a spectral space by Lemma 7.5. ]

Example 7.13. Let K be a field, let v be a valuation on K and endow K with the
topology induced by v. Then Cont K = {w € Spv K ; w dependent on v }.
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7.3 Affinoid rings

For a subring B of a ring A we denote by B™ the integral closure of B in A.

Definition 7.14. (1) Let A be an f-adic ring and let A° be the subring of power-
bounded elements. A subring B of A is called ring of integral elements if B is open
and integrally closed in A and if B C A°.

(2) An affinoid ring is a pair (A, AT), where A is an f-adic ring and where AT is a ring
of integral elements. Often we will simply write A instead of (A4, AT).

(3) An affinoid ring (A4, A1) is called complete (resp. adic, resp. Tate, resp. ...) if A
has this property.

(4) A morphism of affinoid rings (4, A™) — (B, B") is a ring homomorphism ¢: A —
B such that p(AT) C BT. It is called continuous (resp. adic) if p: A — B is
continuous (resp. adic).

Remark 7.15. Let A be an f-adic ring.

(1) Then A° is a ring of integral elements (Proposition 5.30). It is clearly the largest
ring of integral elements.

(2) If A is any subring of A which is integrally closed in A, then A° C A if and only
if A is open in A. Indeed, if A is open in A, then for all @ € A% there exists an
n € N such that a™ € A. But then a € A because A is integrally closed in A. If A
contains A%, then for every ring of definition Ag of A and any ideal of definition /
of Ag one has I C A% C A. Hence A is open.

Thus if A’ is the integral closure of Z -1+ A% in A, then A’ is the smallest ring

of integral elements of A.

(3) If A is an subring of A with A°° C A C A°, then its integral closure AT in A is a
ring of integral elements by (2).

Example 7.16. Let A be an adic ring which has a finitely generated ideal of definition.
Then (A, A) is an affinoid ring.

Example 7.17. Let K be a field endowed with the topology given by a microbial
valuation v on K and let v; be the unique equivalence class of a height 1 valuation
dependent on v. Then (K, A(v)) is a Tate affinoid ring and K° = A(v1).

Let A be an f-adic ring. For every subset X C A we set

Sx :={v e Cont(4) ; v(a) <1 forall a e X}.

As Sy = SpV(A,I)(lia) N Cont(A) (I an ideal of definition of a ring of definition of
A) is constructible for all @ € A, Sy is pro-constructible for all subsets X C A.

Proposition 7.18. We set
SAZ:{S)(; XQA}

and denote by Ra the set of subrings of A which are open and integrally closed in
A.
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(1) The maps

0: R4 — S, Al {veContA; v(f) <1 foral feAY},
7:84 = Ra, S—={feA;v(f)<1forallveS}

are mutually inverse bijections.

(2) Let AT be an element of Ra with AT C A°, i.e., A" is a ring of integral elements.
Then every point of Cont(A) is a vertical specialization of a point in o(AT) . In
particular, o(A™") is dense in Cont A.

(3) If A is a Tate ring and has a noetherian ring of definition, then also the converse

of (2) does hold: if A’ € Ry such that o(A’) is dense in Cont A then A’ C A°.
Proof. [Hu2] Lemma 3.3 O

Proposition 7.19. Let A = (A, A") be an affinoid ring and let (T;);c; be a finite
family of subsets of A such that T; - A is open for all i. Then (A{X)r, (AT (X)7)") is
an affinoid ring which we denote by A(X)r.

If A is complete and Tj is finite for all ¢ € I, then A(X)p is complete by Proposi-
tion 5.49.

Proof. As AT is open in A, then A?X) is open in A(X)r. Hence (A?SQ
remains to show that (Azr)o)int is contained in A(X)%. As A(X)9 is integrally closed
in A(X)r, it suffices to show that ATX) is contained in A(X)%. This follows from the
following lemma. O

)" is open. It

Lemma 7.20. Let A be a f-adic ring and let (T;)icr be a family of subsets of A such
that T; - A is open in A for all i. Then (A°)xy C (A(X)r)°.

It is not difficult to see that one has equality in Lemma 7.20 if [ is finite and 7; = {1}
for all 4.

Proof. Let a € (A°)x) and write a = b+ ¢, where b € (A°)x] and ¢ € Jix), where J
is an ideal of definition of A. Then b and ¢ are both power-bounded. Therefore a is
power-bounded. 0

Remark 7.21. With the notation of Proposition 7.19 the canonical homomorphism
t: A — A(X)r has the following universal property. Let ¢: A — B a continuous
homomorphism to a complete affinoid ring B and let b; € B for i € I such that p(t)b; €
BT for all i € I and t € T;. Then there exists a unique continuous homomorphism
Y A(X)r — B of affinoid rings such that ¢ = ¢ o and (X;) = b;.

Remark and Definition 7.22. Let A = (4, A1) be an affinoid ring and let I be an
ideal of A. Then A/I := (A/I,(A*/(AT NI))") is an affinoid ring, if A/I is endowed
with the quotient topology. If Ag C A is a ring of definition, its image in A/I is a ring
of definition in A/I. The canonical morphism A — A/I is an adic morphism of affinoid
rings.
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7.4 The adic spectrum as topological space

Definition 7.23. Let A = (A, A™) be an affinoid ring. The adic spectrum of A is the
subspace
SpaA = {ve€ Cont(A); v(f) <1lforal fe AT}

of Cont(A).

If Ais an f-adic ring and A’ is the integral closure of Z -1+ A° in A, then one has
Spa(A, A’) = Cont A.

Remark 7.24. Let A be a ring, let A C A be any subring, and let AT be its integral
closure in A. Then for any v € Spv A one has

v(a) <lforallae AT ©v(a)<1lforallac A

Indeed if a € AT, then a” + b,_1a” '+ --- + by = 0 with b; € A. Assume v(a) > 1
but v(b;) < 1 for all i. Then for all i < n one has v(a") = v(a)® > v(a)’ > v(b;a’) and
hence v(a™) > v(b,—1a™ ! + -+ + b); contradiction.

Thus if A is f-adic and A is a subring of A such that its integral closure A satisfies
A% C AT C A° (i.e., AT is a ring of integral elements), then

Spa(A, AT) = {v € Cont(A) ; v(a) <1 for all a € A}.

Remark 7.25. Let (A, AT) be an affinoid ring. Then Proposition 7.18 shows that for
every point v of Cont(A) there exists a vertical generization x which is in Spa(A, A™).
In fact, if supp v is open we can simply take for x the trivial valuation with suppx =
suppv. If supp v is not open, then it follows from Remark 7.11 (2) and Proposition 7.41
below that there exists a vertical generization x of v of height 1 (necessarily unique by
Remark 4.12) such that x € Spa(A, A™).

Example 7.26. Let A be a discrete topological ring and let AT any subring of A
which is integrally closed in A (e.g., AT = A). Then (A, AT) is an affinoid ring and
Spa(A,AT) ={veSpvA; via) <1forallaec A" }.

Remark 7.27. Let A be an affinoid ring. For x € Spa A and f € A we sometimes
write |f(z)| instead of z(f).

Remark and Definition 7.28. Any continuous morphism ¢: A — B between affinoid
rings defines via composition a continuous map Spa(p): SpaB — Spa A. Thus we
obtain a contravariant functor from the category of affinoid rings to the category of
topological spaces.

Definition 7.29. Let A be an affinoid ring. The subsets of the form

R(z) ={veSpad; VteT:v(t) <wv(s)#0},

S

where s € A and T C A is a finite subset such that T'- A is open in A, are called rational
subsets.
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By definition of the topology of Spa A as subspace topology of Spv A, all rational
subsets are open in Spa A.

Remark 7.30. Let A be an affinoid ring.

(1) Let I be the ideal of A generated by the topologically nilpotent elements of A. Let
T be a finite subset of A. Then T - A is open in A if and only if I C rad(T - A)
(Lemma 6.6).

(2) Assume that A is Tate. Then (1) implies immediately, that the ideal T'- A of A
generated by a finite subset T" of A is open if and only if T'- A = A.

(3) For s € A and T C A finite with 7'+ A open in A one has

R(E) =R

S S

).

Thus we may always assume that s € T
4) For s € A* a unit and 7' C A an arbitrary finite subset, R(Z) = R(ZHs} ig
(4) - y , R(5 S
always a rational subset. In particular,

/
Ry = (zespaas s <1)
is an open rational subset for all f € A.

(5) Let s1,s2 € A and let T7,T5 C A finite subsets such that 7; - A is open in A for
1 =1,2,ie. T;- A contains I™, where I is an ideal of definition of A and n; € N.
Setting T := {t1to ; t; € T; } we see that T - A contains I™1*"2 hence it is an open
ideal.

Moreover, if we assume that s; € T;, then
T T

R N R(2) = R(——).
S1 59 51892

Therefore the intersection of two rational subsets is again a rational subset.

Lemma 7.31. Let A = (A, A") be an affinoid ring, X C Spa A a quasi-compact subset
and f € A such that |f(x)| # 0 for all x € X. Then there exists a neighborhood of zero
I in A such that |a(x)| < |f(x)| for allz € X and a € 1.

Proof. Let T be a finite subset of A% such that T"- A% is open (e.g., one may choose
T as a system of generators of an ideal of definition). For every n € N set

Xy ={xzeSpad; |t(x)] <|f(x)] #0forallt € T"}.

Then X, is open in Spa A, and X C J,, X;,. Hence X C X,,, for some m € N. Then
I:=T™. A% has the desired properties. O

Corollary 7.32. Let A = (A, A") be a Tate affinoid ring, Y C Spa A a quasi-compact
subset and s € A such that |s(y)| # 0 for ally € Y. Then there exists a unit m € A
such that |m(y)| < |s(y)| for ally € Y.
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Proof. Let I C A be a neighborhood of zero I such that |a(y)| < |s(y)| for all y € ¥
and a € I. As A is Tate, there exists a unit 7 of A in I and thus we have |7 (y)| < |s(y)]
forally €Y. O

Remark 7.33. Let A be Tate, T' C A finite with T-A = A, s € A. Let x € Spa A with
|t(z)| < |s(z)| for all t € T. Then there exists a unit 7 of A such that |7 (x)| < |s(x)|.
In particular

R(%) —{weSpad; VieT: [ta)] < |s(@)| ).

Indeed, let T'={f1,..., fu} and g1,...,9n € A with . ¢;f; = 1. As AT is open in A,
there exists a topologically nilpotent unit = € A such that 7g; € AT for all i. Then we
have

()] = IZ(ng)(w)fi(w)\ < max [(mg;)(2)|| fi(2)] < [s(2)].

Proposition 7.34. Let A be a complete affinoid ring, s € A, T = {t1,...,t,} C A
finite with T - A open in A. Then there exists a neighborhood J of 0 in A such that for
all s € s+ J, t, € t; + J the ideal of A generated by ty,...,t., is open in A and such
that

) gy th

S s )

Proof. [Hu2| 3.10 O

Theorem 7.35. Let A be an affinoid ring.

(1) Spa A is a spectral space.

(2) The rational subsets of Spa A form a basis of quasi-compact open subsets of Spa A
which is stable under finite intersection.

Proof. (1). Let I be the ideal of A generated by (A)°. Then Cont(A) is a closed
subspace of Spv(A,I). For all a € A the subset Spv(A,I)({) = Spv(A,I)(“T’l) is an
open constructible subset of Spv(A, I) by Lemma 7.5. Thus we see that

Spa A = Cont(A) N ﬂ Spv(4, I)(%)
a€At

is a pro-constructible subset of the spectral space Spv(A, I'). Thus it is pro-constructible
in Spv(A, I). In particular it is a spectral space.

(2). By Remark 7.30 (1), one has R(L) = Spa A N Spv(4,1)(L). As the sets of
the form Spv(A, I )(%) form a basis of open quasi-compact subsets of Spv(A,I) and
as Spa A is pro-constructible in Spv(A, I), the rational subsets form a basis of quasi-
compact open subsets of Spa A. Moreover, this basis is stable under finite intersection
by Remark 7.30 (4). O

Corollary 7.36. Let A be an affinoid ring. Then a subset of Spa A is constructible if
and only if it is in the Boolean algebra generated by the rational subsets.
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Example 7.37. Let K be a field, endowed with the topology induced by a microbial
valuation v, and let A(v) be its valuation ring. Then

Spa(K, A(v)) = {z € Spv K ; A(v) C A(z) # K },

and the open subsets are the sets U, := {z € SpvK ; A(w) C A(x) }, where w €
Spa(K, A(v)).
In particular, Spa(K, A(v)) consists of h € N points if and only if v is of height h.

The next proposition is easy to check.

Proposition 7.38. Let A = (A, A1) be an affinoid ring and let a C A be an ideal. Let
A/a be the quotient affinoid ring (Definition 7.22) and let m: A — A/a be the canonical
homomorphism. Then Spa(w): Spa A/a — Spa A is a homeomorphism of Spa A/a onto
the closed subset of points x € Spa A with supp(x) 2 a.

Not all closed subspaces of Spa A are of this form.

7.5 Analytic Points

Definition 7.39. Let A be a topological ring. A point € Cont A is called analytic if
supp z is not open in A.

If A= (A, A") is an affinoid ring, then the subset of analytic points in Spa A is
denoted by (Spa A),, its complement in Spa A is denoted by (Spa A)na.

Any valuation with open support is automatically continuous.

Remark 7.40. Let A = (A4, A™) be an affinoid ring.

(1) For = € Cont(A) the following assertions are equivalent.
(i) « has non-open support.
(ii) There exists a € (A)? such that z(a) # 0.

(2) (Spa A), is an open quasi-compact subset of Spa A.

(3) If A is Tate, then Cont A = (Cont A), and Spa A = (Spa A),.

(4) In (Cont A), (and hence in (Spa A),) there are no proper horizontal specializations.
Thus all specializations are vertical.

(5) Every valuation x in (Cont A), has height > 1 and is microbial.

(6) Let € (Cont A),. Then x has height = 1 if and only if z is a maximal point of
(Spa A), (i.e., the closure of {z} in (Spa A), is an irreducible component).

Proof. Assertion (1) follows from Lemma 6.6, which in particular shows
{p € Spec A ; p is open } = V((A)*).

Let T C (A)°° be a finite subset such that 7" - A is open in A (e.g., if T' is a system of
generators of an ideal of definition of a ring of definition of A). Then

(spad)a = J B,

teT
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This shows (2). Assertion (3) follows from (1).

Let v be a continuous valuation on A with value group I', and let vz be a horizontal
specialization, where H is a proper convex subgroup of I' (containing cI';). Then
supp(v|x) is the union of {a € A ; v(a) < 7}, where v runs through all elements of
'\ H. Thus vy is non-analytic. This shows (4).

A continuous valuation z of height 0 is a trivial valuation whose support is {a €
A; x(a) < 1} and hence it is open. Assume that z is analytic, i.e., A/(supp =) endowed
with the quotient topology is not discrete. Then there exists by (1) a topologically
nilpotent element # 0 in K(x). Thus the valuation z on K(z) is microbial. This
shows (5).

Let us prove (6). By (4) it remains to show that an analytic continuous valuation
x has height 1 if there exists no proper vertical generization of x. But the vertical
generizations are those within Spv K (z) (Remark 4.12). O

Proposition 7.41. Let A be an f-adic ring and let x € Cont(A), be of height 1. Then
x(a) <1 for all a € A°. In particular x € Spa(A, AT), for every ring of integral
elements A™.

Proof. Let a € A° and assume that z(a) > 1. Choose b € A% with x(b) # 0 (possible
by Remark 7.40 (1)). As T', has height 1, it is archimedean (Proposition 1.14). Hence
there exists n € N with x(a”) > z(b)~!, i.e., x(a"b) > 1. But as a is power-bounded,
ab € A% and thus the continuity of = implies that z(a"b) < 1. Contradiction. O]

Remark 7.42. Let A = (A4, A™) be an affinoid ring and let x € Spa A.

(1) Let H C I'; be a proper convex subgroup. Then the vertical generization =, is a
point of Spa A.

Indeed, z,p is continuous by Remark 7.11 (2), and if z(a) < 1 for all a € AT

then clearly x5 (a) <1 for all a € AT.

(2) If z is analytic, it is microbial (Remark 7.40 (5)) and hence there exists by (1) a
vertical generization of height 1.

(3) If z is non-analytic, then the vertical generization xr, is the trivial valuation with
support supp(z). As supp(z) is an open prime ideal, xr, is continuous and hence
a point of Spa A.

Example 7.43. Let A be an affinoid ring and let = € SpaA. Endow K(z) =
Frac A/(supp ) with the topology induced by x. As z is continuous, the canonical
ring homomorphism v: A — K (z) is continuous.

Assume that z is analytic. By Remark 7.40 (5) the valuation x on K (z) is microbial.
Thus (K(z), A(x)) is an affinoid ring and the condition |f(x)| < 1 for all f € A* then
implies, that « is a morphism of affinoid rings.

Lemma 7.44. Let A be an f-adic ring and let B be an open subring of A. Denote by

f: Spec A — Spec B and g: Spv A — Spv B be the morphisms induced by the inclusion

B < A.

(1) Set T := {q € SpecB ; q open}. Then f~1(T) = {p € Spec A ; p open} and the
restriction f: (Spec A)\ f~Y(T) — (Spec B) \ T is a homeomorphism.
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(2) Cont(A) = g~*(Cont(B)).
(3) g vyields by restriction a homeomorphism Cont(A), — Cont(B), and one has for
every v € Cont(A), that T'y =T y,).

Proof. (1). As B isopen in A, a prime ideal p of A is open if and only if pN B is open
in B. This shows f~}(T) = {p € Spec A ; p open }.

Let ¢ C B be a non-open prime ideal. Then there exists s € B with s ¢ q. As B
is open, there exists for all a € A an integer n > 1 such that s"a € B. This shows that
the injective homomorphism Bs; — A; is also surjective. This shows the claim because
(Spec B) \ T' = {U,¢ goo Spec Bs and f~!(Spec B) = Spec A,.

(2). Clearly one has Cont(A) C g~*(Cont(B)). Let v be a valuation on A such
that w := v|p is continuous. If supp(v) is open in A, then v is continuous. Assume
that p := supp(v) is not open in A and set q := BNyp. Then (1) shows that By — A, is
an isomorphism and in particular ', = I'y,. Hence the subgroup {a € 4 ; v(a) < v}
contains the open subgroup {b € B ; w(b) < v} for all v € ', = I'y,. Therefore v is
continuous.

(8). This follows from (1) and the proof of (2). O

Lemma 7.45. Let A be a complete affinoid ring. Let p be a non-open prime ideal of
A. Then there exists an analytic point x € Spa A of height 1 such that suppx 2 p.

If A has a noetherian ring of definition, we may assume in addition that x is a
discrete valuation and that suppx = p.

Proof. Let Ay be a ring of definition of A and let I C Ay be a finitely generated ideal
of definition. Set pg := p N Ag. As pg is not open, one has I Z pg.

Construction of x in the general case. Let m be a maximal ideal of Ay containing
po. As Ap is complete for the I-adic topology, one has I C m (Proposition 5.38).
In particular pg € m. Let ug be a valuation of Frac Ay/py such that its valuation
ring dominates (Ao/Po)m/p,- Let u be the corresponding valuation of Ag such that
suppu = po. Then u(a) < 1 for all a € m.

Let r: Spv(By) — Spv(Bo,I) be the retraction from (7.4.2). As u(a) < 1 for all
a € I one also has r(u) < 1 for all a € I by definition of r(u). Hence r(u) € Cont(By)
by Theorem 7.10. Moreover by Lemma 7.5 (3) one has I Z supp(r(u)). Hence r(u) is
not analytic. By Lemma 7.44 (3) there exists a unique continuous analytic valuation
v on A such that v| 4, = 7(u). Then supp(v) N Ag = suppr(u) 2 suppu = po because
r(u) is a (horizontal) specialization of w.

By Remark 7.40 (5) v is microbial and thus there exists a vertical generalization
of v of height 1 within Spv A (Remark 4.12). Then z is continuous Remark 7.11 (2).
As x is of height 1, Proposition 7.41 shows that x € Spa A.

Construction of x if Ag is noetherian. Let Ag be noetherian. Let J be the image
of I 'in Ag/po. Let m: Z — X := Spec(Ap/po) be the blow-up of X in Y :=V(J). As J
contains a regular element, 7 is projective and birational, and 7~!(Y") is a non-empty
divisor of Z. As Ag is noetherian, Z is noetherian. Thus if z is a maximal point of
77 1(Y), then Oz, is a local noetherian ring of dimension 1. By the theorem of Krull-
Akizuki its normalization is a discrete valuation ring R. We have Frac R = Frac Ay/po
because 7 is birational. Let w be the valuation on Ag with supp w = pg corresponding
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to R. Then w(a) < 1 for all @ € I. As T, is of height 1 (in fact isomorphic to the
totally ordered group Z) this implies that w(a) is cofinal for T',, for all a € I. Hence
w is continuous (Remark 7.11). As I € po, w is analytic. Therefore Lemma 7.44 (3)
shows that there exists a unique continuous valuation z € Cont(A) with x4, = w.
Moreover I'y, = I'; and hence z is a discrete valuation. Again Proposition 7.41 shows
that x € Spa A. O

Lemma 7.46. Let ¢: A — B be a continuous homomorphism between affinoid rings
and let f = Spa(p): X := SpaB — Y := SpaA be the attached continuous map.

(1) f(Xpa) CYpa If ¢ is adic, then f(X,) CY,.

(2) If B is complete and f(X,) CY,, then ¢ is adic.

(3) If p is adic, then for every rational subset V of Y the preimage f~1(V) is rational.
In particular f is spectral.

Proof. (1). The first assertion of (1) is clear and the second follows from Remark 7.40 (1).

(2).  Assume that B is complete and that ¢ is not adic. We want to show that
f(Xa) € Ya. Let (Ap, I) and (By, J) pairs of definition of A and B, respectively, such
that ¢(Ag) C By and ¢(I) C J. Since ¢ is not adic, ¢(I)By and J do not have the
same radical. Therefore there exists a prime ideal p of By such that ¢(I) C p and
J & p (i.e., p is non-open). By Lemma 7.45 there exists a point z € X, such that
(suppz) N By 2 p. But supp f(z) = ¢ '(suppz) 2 I and hence f(x) ¢ Y.

(3). Let s € Aand T' C A a finite subset such that 7 - A is open in A. If ¢ is
adic, then ¢(T) - B is open in B. Hence f~!(R(Z)) is the rational subset R(@) of

s

Spa B. O

7.6 First properties of Spa A

Lemma 7.47. Let A be an f-adic ring, let v: A — A be its completion. Then under
the bijection (Example 5.33)

{open subgroups G of A} < {open subgroups G' of A},
G G =G), TG — G

the following subgroups correspond to each other.

(1) A% and (A)°.

(2) A% and (A)°. R
(3) Rings of definition of A and rings of definition of A.
4)

(4) Rings of integral elements of A and rings of integral elements of A.

Proof. [Hul] 2.4.3. O

If A is an affinoid ring, then At is a ring of integral elements in A and we set
A= (A, AT). This is an affinoid ring by Lemma 7.47.

Proposition 7.48. Let A be an affinoid ring. The canonical map Spa A — Spa A is a
homeomorphism which maps rational subsets to rational subsets.
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Proof. [Hu2| Prop. 3.9 O

Proposition 7.49. Let A = (A, AT) be an affinoid ring.
(1) The following assertions are equivalent.
(i) SpaA =10.
(ii) Cont(A) = 0.
(iii) A/{0} = 0.
(2) The following assertions are equivalent.
(1) (SpaA)a = 0.
(ii) (Cont A), = 0.
(iii) The Hausdorff ring A/{0} attached to A has the discrete topology.

The equivalent conditions in (1) (resp. in (2)) imply that A = 0 (resp. that A is
discrete).

Proof. First note that in (1) and (2) the implications “(iii) = (ii) = (i)” are clear. We
set X := Spa A. Let B be a ring of definition of A and let I be a finitely generated
ideal of definition of B.

(2). Assume that X, = 0.

We first claim that if p C q are prime ideals of B and I C q, then I C p. The proof
is similar as the proof of the general case of Lemma 7.45. Assume that I € p. Let u
be a valuation of B such that suppu = p and such that the valuation ring B(u) of u
dominates the local ring (B/p)q/p- Let r: Spv B — Spv(B, I) be the retraction (7.4.2).
Then r(u) is a continuous valuation with I C supp(r(u)). By Lemma 7.44 there exists
a continuous valuation v on A with r(u) = v|p. The vertical generization w of v of
height 1 is then an element of X,. Contradiction.

We now prove (2) using the claim. Set S := 1+ I and let ¢: B — C := S7!B
the localization. As in Spec C every prime ideal specializes to a prime ideal containing
(1), the claim implies that ¢(I) is contained in every prime ideal of C'. Hence there
exists n € N with ¢(I™) = 0 because [ is finitely generated. This means that there
exists 4 € I with (1 +¢)I" = 0 in B. But then I¥ = I" for all k > n. This shows that
A/{0} is discrete.

(1). Assume that X = @. Then by (2) the ideal {0} is open in A. Then every
trivial valuation whose support contains m is an element of X. This shows that A
has no prime ideal containing {0}, i.e. A = {0}. O

Remark 7.50. Let A be a complete affinoid ring such that (Spa A), = (). Then A is
discrete by Proposition 7.49. This can also be seen as follows. Let (B, ) be a pair of
definition of A. By Lemma 7.45 all prime ideals of B are open. Thus [ is contained in
all prime ideals of B and hence in the nil radical of B. As [ is finitely generated, this
shows I = 0.

Proposition 7.51. Let A be a complete affinoid ring and let m C A be a mazximal
ideal. Then m is closed and there exists v € Spa A with suppv = m.
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Proof. The set of (A4)% of topologically nilpotent elements of an f-adic ring is open (as
the union of all definition ideals of all definition rings). Hence 1+ A% is open in A. As
A is complete, 1 + A% is a subgroup of the group of units of A. This shows that A*
is open in A. If m was not closed, then its closure (being an ideal) would be A, which
contradicts that A\ A* is closed. Hence m is closed.

Thus A/m is a Hausdorff and {v € Spa A ; supp(v) = m} = SpaA/m # () by
Proposition 7.49. 0

Proposition 7.52. Let A = (A, A") be an affinoid ring, and f € A.

(1) Then |f(x)| <1 for all x € Spa A if and only if f € AT.

(2) Assume that A is complete. Then f is a unit if and only if |f(x)| # O for all
x € Spa A.

Proof. Assertion (1) is simply a reformulation of Proposition 7.18 (1). Assertion (2) is
a reformulation of Proposition 7.51. O

Corollary 7.53. Let A be a complete affinoid ring and let T C A be a finite subset.
Then the ideal generated by T equals A if and only if for all x € Spa A there exists
t € T with [t(z)| # 0. If these equivalent conditions are satisfied, (R(L))ier is an open
covering of Spa A.

Proof. If T- A is contained in a maximal ideal m then there exists = € Spa A with |t(z)| =
0 for all ¢ € T' by Proposition 7.51. Conversely, if >, a;t; = 1 with ¢; € T and a; € A
and there exists z € Spa A with |¢;(x)] = 0 for all 3. Then 1 < max{|t;(x)||ai(z)|} = 0.
Contradiction.

Assume now that for all z € X there exists ¢t € T with |t(x)| # 0. Let t; € T such
that |t;(x)] = max{ |t(x)| ; t €T }. Then z € R(%) O

Lemma 7.54. Let A be a complete affinoid ring and let (V;)jcs be an open covering
of Spa A. Then there exist fo,..., fn € A generating A as an ideal such that for all
i €{0,...,n} the rational subset R( fo"];;’f") is contained in some V;.

By Corollary 7.53 the rational subsets R(fofifn) form an open covering of Spa A.
Proof. [Hu3| Lemma 2.6. O

Remark 7.55. Let A = (A, AT) be a Tate affinoid ring, s € A and T = {t1,...,t,} C
A a finite subset such that T-Aisopenin A. Let U = {x € Spa 4 ; z(t;) < z(s) # 0 for ¢
be the corresponding rational subset. Since U is quasi-compact, there exists by Corol-
lary 7.32 a unit u € A* such that |u(z)| < |s(x)| for all z € U. We set

Xo:={xze€Spad; 1§x(§)}

a rational subset of Spa A). Then x(s 0 for all x € Xy, thus s, x, is a unit in A su!
[Xo 1
(Proposition 7.52). Define now inductively rational subsets X, ..., X,, of Spa A by

tA
Xi::{xGXi_l;x(i>§1}, 1=1,...,n.
s
Thus we obtain a chain of rational subsets SpaA > Xy D X; D---D X, =U.
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7.7 Examples of adic spectra

Definition 7.56. A non-archimedean field is a topological field k whose topology is
induced by a valuation of height 1.

An affinoid k-algebra topologically of finite type (tft for short) is an affinoid ring
A = (A, A") such that A is a k-algebra topologically of finite type and such that
AT = A°,

Every non-archimedean field has then a continuous valuation | - |: k& — R=? which is
unique up to passing from | - | to | - |* for some t € R>?. Moreover, k° = {c € k; |¢| <1}
and k° ={cek; |¢] <1}

Example 7.57. Let k be a non-archimedean field and fix the norm | - |: & — RZ°. Let

|kX| be its value group. For x € k and r € R=° we set D(z,r) :={y€k; |y—x| <r}.

Such subsets are called discs. Note that for any 2’ € D(x,r) one has D(z/,r) = D(x,r).

We also set D°(z,7) :={y € k; |[z—y| <r}. Then k° = D%(0,1) is the maximal ideal

of k° and we denote by k = k°/k°° the residue field. We assume that k is algebraically

closed and complete. Then « is also algebraically closed.

Let A = k(t) be the ring of convergent power series in one variable and AT = A° =
E°(t). In X = Spa(A, A°) there are 5 different kind of points. We visualize X as a
tree.

(1) The classical points (end points): Let = € k°, i.e., z € D(0,1). Then for any
f € k(t) we can evaluate f at x to get a map k(t) — k, f — f(x). Composing with
the norm on k, one gets a valuation f +— |f(x)| on k(t), which is continuous and
<1 for all f € RT. These classical points correspond to the maximal ideals of A:
If m C A is a maximal ideal, then A/m = k ([BGR] 6.1.2 Corollary 3; because k is
algebraically closed) and m is of the form (¢ — x) for a unique = € D(0,1).

These are the end points of the branches.
(2),(3) Points on the limbs: Let 0 < r <1 be some real number and = € k°. Then

T: f = an(t—z)" > suplanr” = sup |f(y)|
n yek®,

" ly—z|<r

is a point of X. It depends only on D(z,r). For r = 0 it agrees with the classical
point defined by z, for » = 1 the disc D(x,1) is independent of x and we obtain the
Gauf} norm ) a,t" — sup,, |a,| as the “root” of the tree.
If r € |k*|, then the point x, corresponding to D(x,r) is a branching point.
These are the points of type (2), the other points are of type (3).
(4) Dead ends: Let D; D Dy D --- be a sequence of closed discs such that (), D; = 0

(such sequences exist if k is not spherically complete, e.g. if k is C, = Q,). Then

f— inf sup |f(y)|
v oyeD;

is a point of X.
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(5) Finally there are some valuations of height 2. Let x € k° and fix a real number r
with 0 < 7 < 1 and let T'., be the abelian group R>° x 4% endowed with the unique
total order such that ' < v < r for all 7/ < r. Then

Tep: [ = Zan(t —z)" mgx\an\*y” el.,

n

is a point of X which depends only on D%z,r). For 0 < r < 1 let I's, be the
abelian group R>% x 4% endowed with the unique total order such that r’ > v > r
for all ' > r. Then

Top: f = Zan(t —z)" mﬁx|anh" els,
n

is a point of X which depends only on D(z,r) (and hence z~, = 2, if and only if

Ty = 2.

If r ¢ |k*|, then o, = x>, = z,. But for each point z, of type (2) this

gives exactly one additional point for each ray starting from z,. The points z,

correspond to rays towards the classical points, and the point x~, corresponds to

the ray towards the Gauf} point.
All points except the points of type (2) are closed. The closure of such a point x,
consists of x, and all points of type (5) around it. The closure of the Gaufl point is
homeomorphic to the scheme Al with the Gauss point as generic point. The closure of
all other points of type (2) is homeomorphic to the scheme P..

The subspace, consisting only of points of type (1) — (4), is the Berkovich space X"
attached to k(t). Note that X?" is Hausdorff.

In case (5) one also could have defined a valuation z~; (note that if 1 < <’ for
all ¥/ > 1, then lim, |a,|y" = 0 if a,, — 0, thus max,, |a,|y" is still defined). This is a
continuous valuation on k(t) but xs;(¢) > 1, thus it is not a point in Spa(A4, A°). In
fact, one can show that Spa(A, A°) U {z>1} = Spa(A, AT), where AT is the smallest
ring of integral elements of A which contains k°, i.e. the integral closure of A% + k°.

Example 7.58. Let k be a complete non-archimedean field and let |- |: & — R=Y be
a height 1 valuation. Let A be a k-algebra topologically of finite type over k. Every
maximal ideal element m in

Max(A) := {m C A ; m maximal ideal }

defines a point of X := Spa(A, A°) (again called “classical point”): For € Max(A)
the quotient A/x is a finite extension of k by Proposition 5.61. Thus there exists a
unique extension of | - | to A/x. Its composition with A — A/m is denoted by |- |, and
it is a point of X. Via x +— | - |, we consider Max(A) as a subset of X. We also set

Ly:={veSpvA; v(a) <1foralla e A° and v(a) < 1 for all a € A }.
Then
Max(A) C Spa(A, A°) C Ly C Spv A.
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One can show that Ly4 is the closure of Max A in the constructible topology of Spv(A).

Instead of A° we can also consider the following ring of integral elements A™ which
is defined to be the integral closure of k° + A°. Then AT is the smallest ring of integral
elements of A which contains k°. Then X, := Spa(A, A™) contains X as an open dense
subset.

Example 7.59 (cf. [Hul] (3.7.1)). Let A be an adic ring with a finitely generated
ideal of definition I. We consider

X =Spa(A,A) ={z € Cont(A) ; z(f) <lforall feA}.

Let Y = Xy be the subspace of trivial valuations. Such a trivial valuation is
continuous if and only if its support is an open prime ideal. Thus we can identify
Y =SpfA:={p & SpecA; popenin A}. It follows from Remark 4.6 that Y carries
also the subspace topology of Spec A.

The subspace Y is pro-constructible, in particular Y is spectral and the inclusion
Y — X is spectral. There is a spectral retraction r: X — Y, given by z — x|cp,.

Once we have defined the structure sheaf Ox on X, we will see that attaching to
a complete noetherian adic ring A the adic space Spa(A4, A) yields an embedding ¢
of the category of noetherian formal affine schemes into the category of adic spaces.
The inverse functor (on the essential image of ¢) is given by attaching to (X, Ox) the
topologically ringed space (Xtyiv, 7+0x).

8 Adic spaces

8.1 The presheaf Oy

We recall the following special case of Definition 5.51. Let A be an f-adic ring, s € A
and let T'= {t1,...,t,} C A be a finite subset such that 7'- A is open in A. Then there
exists on A a non-archimedean ring topology making it into a topological ring

such that { £ ; t € T'} is power-bounded in A(Z) and such that A(Z) and the canonical
homomorphism ¢: A — A(%) satisfy the following universal property. If B is a non-
archimedean topological ring and f: A — B is a continuous homomorphism such that
f(s) is invertible in B and such that the set { f(t)f(s)™!; t € T} is power-bounded
in B, then there exists a unique continuous ring homomorphism g: A(%) — B with
f=g00¢.

The completion of A(%) is denoted by A<%> = A<%>

The ring A(%) is constructed as follows. Let (Ag,I) be a pair of definition. In the
localization A consider the subring D generated by Ag and E := {%, e %"}, ie.,

t t
D= A2, ..., 2.
S S

Then (I™ - D), is a fundamental system of neighborhoods of 0 in A(%)
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The construction also shows that A( %) is again an f-adic ring. The pair (D, I D) is
a pair of definition of A(%)

Now let A™ be a ring of integral elements of A, i.e. A = (A4, A") is an affinoid
ring. Let C be the integral closure of A*[%, ceey %”] in A;. Then C' is a ring of integral
elements in A(%) We denote the affinoid ring (A(%),C’) simply by A(%) and its
completion by A(L).

The canonical ring homomorphism A — A; is a continuous homomorphism of affi-
noid rings h: A — A(L), one has h(s) € A(L)*, and };l((’?))) €C =AD" Itis
universal for these properties.

In a similar way, the canonical continuous homomorphism of affinoid rings p: A —
A(%) is universal for continuous homomorphism of affinoid rings ¢: A — B, with B
complete, ¢(s) € B* and % € BT. But in fact p has also a more geometric universal
property.

Lemma 8.1. Let U = R(%) C Spa A be the corresponding rational subset. Then
Spap: SpaA(%) — Spa A factors through U and whenever ¢: A — B is a continuous
homomorphism from A to a complete affinoid ring B such that Spa(p) factors through
U, then there exists a unique continuous ring homomorphism 1 : A(%) — B such that

Yop=e.

Proof. The definition of A<%> shows that for x € SpaA<%> one has |¢o(t)]z < |¢(s)|s
for all t € T. This means Spa(p)(z) € U.

As Spa(yp) factors through U, we have |p(t)|w < |@($)|w # 0 for all w € Spa B and
for all t € T. This implies ¢(s) € B* by Proposition 7.52. Moreover, for all w € Spa B
we have \%Lﬂ < 1. This implies :;’((?) € B™ by Proposition 7.52. Thus the claim
follows from the universal property of A — A(%) O

Proposition 8.2. Let A = (A, A™) be an affinoid ring. Let s,s' € A and T,T" C A

finite subsets such that T+ A and T"- A are open. Let U = R(L) and U’ = R(Z—,/) be the

corresponding rational subsets. Let p: A — A(%) and p': A — A(f—,/> be the canonical

continuous homomorphisms of affinoid rings.

(1) IfU' C U, then there exists a unique continuous homomorphism o: A(L) — A(:SF—,I)
such that cop=p'.

(2) The map Spa(p): Spa A(L) — Spa A is a homeomorphism of Spa A(L) onto R(L),
and it induces a bijection between rational subsets of Spa A(%) and rational subsets
of Spa A contained in R(L).

Proof. (1) follows immediately from Lemma 8.1. Let us prove (2). We set j := Spa(p).

We factorize p into
T

/ T
A A(Z) 5 A=),
s s
As p' is adic by definition and ¢ is clearly adic, the composition p is adic by Propo-
sition 6.26. Thus for every rational subset V of Spa A its inverse image j~1(V) is
a rational subset of Spa A(%) (Lemma 7.46). Moreover Spa(t) is a homeomorphism
mapping rational subsets to rational subsets by Proposition 7.48. Thus it remains to
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show that j' := Spa(p’) is a homeomorphism from Spa A(%) onto U mapping rational
subsets to rational subsets.

Write T' = {t1,...,t,}. A valuation v on A extends (necessarily uniquely) to As
if and only if v(s) # 0. Moreover, if v is continuous, such an extension is continuous
with respect to the topology defined on A; = A(%) if and only if v(t;) < v(s) for all
i ={1,...,n}. Finally, it satisfies v(f) < 1 for all f € A(L)* = A*[2 ... L]intif and
only v(f) <1 for all f € A" and v(t;) < v(s) for all i. This shows that j’ is injective
and that the image of j' is R(%) Thus it remains to show that j' maps rational subsets
to rational subsets.

Let V = R(%:=29m) be a rational subset of Spa A(L) for r,g1,...,9m € As = A(L).
Multiplying r, g1,...,gmn with a suitable power of s we may assume that all these
elements lie in the image of p', say r = p'(q) and {g1,...,9m} = p/(H) for some ¢ € A
and some finite subset H of A. As V is quasi-compact, j'(V') is quasi-compact. Now
every z € j'(V) is of the form vop’ for some v € V. Thus by definition one has z(q) # 0
for all x € j/(V). Thus Lemma 7.31 shows that there exists a neighborhood E of 0 in
A with v(p/(e)) <wv(q) for all v € V and e € E. Let D C E be a finite subset such that
D-Aisopenin A (e.g. a finite system of generators of an ideal of definition contgained
in F) and put W := R(%). Then j/(V) = U N W, hence j/(V) is a rational subset
of Spa A. O

Let A = (A, A") be an affinoid ring. Proposition 8.2 now allows us to define a
presheaf on the basis of rational subsets of X := Spa A by setting for s € Aand T C A
finite with T"- A open:

T T
(8.2.1) ﬁX(R(E)) = A(;

).

This is a presheaf with values in the category of complete topological rings and contin-
uous ring homomorphisms. For an arbitrary open subset V' of Spa A we set

Ox(V) = lim Ox (U),
U

where U runs through rational subsets of Spa A contained in V. We equip 0x (V') with
the projective limit topology and obtain a presheaf on Spa A with values in the category
of complete topological rings.

Remark 8.3. One has X = R(1) and hence Ox(X) = A.

Remark 8.4. Let R(%) C SpaA be a rational subset, let B be the affinoid ring
A<%>, and let j: U := SpaB — X := Spa A be the canonical continuous map with
image R(L). Let V be a rational subset of Spa A with V' C R(Z). Then the unique

continuous ring homomorphism o: Ox (V) = 0y(j71(V)) making the diagram

A A(S)

Ox(V)—>0y(j=1(V))

commutative, is an isomorphism of complete topological rings.
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Remark and Definition 8.5. Let A be an affinoid ring, X = Spa A. For x € X let

Oxy, = lim Ox(U)= lim Ox(U)
— —
z € U open z € U rational

be the stalk. Here we take the inductive limit in the category of rings. Thus Ox . is
not endowed with a topology.

For every rational subset U of X with x € U the valuation z: A — I'; U{0} extends
uniquely to a valuation vy: Ox(U) — T', U {0} (Proposition 8.2 (2)). By passing to
the inductive limit one obtains a valuation

(8.5.1) Uyt Ox gz — Ty U{0}.

For every rational subset U with © € U we obtain the homomorphism
(8.5.2) pe: A= Ox(U) = Ox s

which is independent of the choice of U. By definition one has

(8.5.3) ve(pe(f)) = x(f) € Te U{0}
for f € A and z € X. We usually omit p, from the notation and simply write v, (f).

Proposition 8.6. For every x € X = Spa A, the stalk Ox , is a local ring and the
mazximal ideal of Ox , is the support of v,.

Proof. Let U C Spa A be an open subset with € U and let f € Ox(U) with v, (f) # 0.
We have to show that the image of f in Ox , is a unit. Let x € W C U be a rational
subset. Then v, defines by restriction a continuous valuation vy on Ox(W). As
vw (f) # O there exists a finite subset 7" of B := Ox (W) such that T - B is open in
B and vy (t) < v (f) for all t € T. Then we have in Y := Spa B the rational subset
V= R(%) with vy € V and f € Oy (V)*. Hence there exists a rational subset S of
Spa A such that x € S C W and such that f is a unit in Ox(S5). O

We denote by k(x) the residue field of the local ring Ox .. The valuation v, induces
a valuation on k(z) which is again denoted by v,. Its valuation ring is denoted by
k(x)*.
We denote by #P' the category of tuples X = (X, Ox, (v3)zex), where
(a) X is a topological space,
(b) Ox is a presheaf of complete topological rings on X such that the stalk Ox , of
Ox (considered as a presheaf of rings) is a local ring,
(c) vy is an equivalence class of valuations on the stalk @x , such that supp(v;) is the
maximal ideal of Ox ,.
The morphisms f: X — Y are pairs (f, f°), where f is a continuous map of topological
spaces X — Y and f’: Oy — f.Ox is a morphisms of pre-sheaves of topological rings
(i.e., for all V C Y open, py: Oy (V) = Ox(f~1(V)) is a continuous ring homomor-
phism) such that for all x € X the induced ring homomorphism fg: Oy, fe) = Ox 18
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compatible with the valuation v, and vy, i.e., V) = vz 0 fg. (Note that this implies
that f2 is a local homomorphism and that T, oy € To,t)

We have seen above that for an affinoid ring A its adic spectrum Spa A is an object
in yPre,

Remark and Definition 8.7. Let X be a an object in #P' and let U be an open
subset of the underlying topological space of X. Then (U, Ox|u, (vz)zev) is again an
object of ¥Pre.

A morphism j: Y — X in 7P is called an open immersion if j is a homeomorphism
of Y onto an open subspace U of X which induces an isomorphism

(Y, Oy, (vy)yey) = (U, Ox U, ()zev)
in YPre,

Remark 8.8. Let A be an affinoid ring, X = Spa and let U = R(%) be a rational
subset. Then Spa A(L) — Spa A is an open immersion with image U.

Remark and Definition 8.9. Let X be a topological space and let B be a basis of
the topology. Let .% be a presheaf on X with values in a category, where projective
limits exist. We call .# adapted to Bif for every open subset V of X the restriction
maps .Z# (V) — #(U) with U € B and U C V yield an isomorphism

g ~NT a
Z (V) = lim 7 (U).
U

In this case, .% is a sheaf if and only if .%# is a sheaf on B.

Remark and Definition 8.10. An affinoid pre-adic space is an object of ¥P' which
is isomorphic to Spa A for an affinoid ring A.

Let X be an object in #P' such that there exists an open covering (U;); of X such
that (U, Ox v, (vz)zer) is an affinoid pre-adic space. An open subset U of X is called
open affinoid subspace if (U, Ox v, (vz)zev) is an affinoid pre-adic space. The open
affinoid subspaces form a basis of the topology of the underlying topological space of
X.

We call X a pre-adic space if in addition the sheaf of topological rings Ox is adapted
to the basis of open affinoid subspaces. The full subcategory of P of pre-adic spaces
is called the category of pre-adic spaces and it is denoted by (PreAd).

For every affinoid ring A, Spa A is a pre-adic space by definition.

Remark 8.11. Let X be a pre-adic space.

(1) For every open subset U C X the object (U, Ox v, (vz)zev) in ¥ is again a pre-adic
space.

(2) Let U and V' be open affinoid adic subspaces of X. Then for all z € U NV there
exists an open neighborhood W C U NV of x such that W is a rational subset of
U and of V.
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Remark 8.12. Let U C X = Spa A be open and f,g € Ox(U). Then V := {z €
U; U:v(f) < Ux(g) # O} is open in X.

Indeed, we can assume that U = R(%) is rational. Replacing A by A(%) we may
assume that U = X and f,g € A (Proposition 8.2). But then V is open by definition
of the topology on Spa A as subspace of Spv A.

Remark and Definition 8.13. Let X be a pre-adic space. For every open subset
U C X we set

(8.13.1) Ox(U) ={f€Ox(U);v,(f) <1foralaxeU},

endowed with the topology induced by &x (U). This is a sub-presheaf ﬁ’; of topological
rings of Ox. For every x € X let ﬁ;g , denote the stalk of ﬁ;g at x. It follows from
Remark 8.12 that

(8.13.2) 0%, = 1f€0xa: vl <1}

Proposition 8.6 then shows that 6’; , is the inverse image of the valuation ring of
(k(x),vy) under the canonical homomorphism Oy ; — k(x). In particular we see that
0% is alocal ring with maximal ideal { f € Ox, ; vo(f) <1}.

Lemma 8.14. Let X and Y be pre-adic spaces. Let (f, f°): (X,0x) — (Y, Oy) be
a pair such that f: X — Y is continuous and such that f>: Oy — f.Ox is a local
morphism of presheaves of topological rings. Then (f, fb) is a morphism of pre-adic
spaces if and only if the following two conditions are satisfied.

(a) f7(65) C f.0%.

(b) The induced morphism ﬁ{‘,‘ = fs ﬁ; s a local morphism of presheaves of rings.
Proof. Tt is clear that the condition is necessary. Assume that condition (a) and (b) are
satisfied. We have to show that for all x € X the local homomorphism f:,'i: Oy, @) —
Ox . is compatible with valuations, i.e. v, o fz = Vf(z). NOW My, = suppvy(,) and
m, = supp v, (Proposition 8.6). As f; is local, this shows that v, o f; and vy(,) both
have the support my(,). Let K := Oy, f(;)/my(y) and let A, and Ay, in K the valuation
rings of fz ov; and vy(,), respectively. We have to show that Ag(,) = A;. Condition (a)
and (8.13.2) show that Ag(,) C Az, and Condition (b) shows that A, dominates Aj(,).
Hence A; = Ay, O

T
s

T T
s

) one has
)")-

Proof. One has 0x(U) = A(%) by definition and SpaA(%) — Spa A is an open im-
mersion with image U. Hence

Proposition 8.15. For every rational subset U = R(

OLU) = (] € A<§> L u(f) < 1 forall v € spaAé)}
= A,

where the second equation holds by Proposition 7.52 (1). O
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Remark 8.16. In general Ox is not a sheaf of rings even if A is a Tate ring (see the
end of section 3.2 in [Hul]).

Let ¢: A — B be a continuous morphism of affinoid rings. Set X := Spa B,
Y := Spa A considered as objects in ¥P™. Let f: X — Y be the continuous map
of the underlying topological spaces attached to .

Let V be a rational subset of Y and U = R(%) be a rational subset of X with f(U) C
V. Then U = SpaB(%) and as f|y factors through V' there exists a unique continuous
ring homomorphism ¢y : Oy (V) — B(L) = 0x(U) such that the following diagram
commutes

A L B

[AR%

Oy(V)—=0x(U).

These v,y yield a morphism of presheaves of complete topological rings 0y — f.Ox
on the basis of rational subsets on X resp. Y and hence a morphism or presheaves
f’: Oy — f.0Ox of complete topological rings.

For every x € X the induced ring homomorphism f,: Oy, f,) — Ox . is compatible
with the valuations vy ) and v;. Thus we obtain a morphism

[ =% :=Spa(p): X =Y

in ¥Pre,
The formation ¢ — ¢ is functorial. If we denote by (Affd) the category of affinoid
rings with continuous morphisms of affinoid rings, we obtain a contravariant functor

(Affd) — (PreAd), A — Spa A.

Remark 8.17. Let A be an affinoid ring and ¢: A — A the canonical morphism into
the completion. Then ,: Spa A — Spa A is an isomorphism in #P™,

Proposition 8.18. Let A and B affinoid rings. If B is complete, the map
Homagq)(A, B) — Homywre (Spa B, Spa A), o= %

1s bijective.

Proof. The inverse map is given by

Homypre (Spa B, Spa A) — HOII](Aﬂrd) (A, B) = HOHI(Aﬁrd) (A, B), f — f}b/,

where the equality Hom, AHd)(A, B) = Homagq) (4, B) is due to the completeness of B.
For details we refer to [Hu2]. O
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8.2 Adic spaces

Remark 8.19. Let X be a topological space, and let Ox be a presheaf of topological
rings (i.e. Ox(U) is a topological ring for U C X open and the restriction maps are
continuous). Then Oy is a sheaf of topological rings (i.e., for every topological ring T,
U — Hom(T, Ox(U)) is a sheaf of sets on X) if and only if Ox is a sheaf of rings and
for every open subset U of X and for every open covering (U;);cr of U the canonical
map Ox(U) — [[;c; Ox(U;) is a topological embedding (where the product is endowed
with the product topology).

Let 7 be the full subcategory of #P' consisting of those objects (X, Ox, (vy)zex)
in ¥P'® such that Ox is a sheaf of topological rings.

Let A be an affinoid ring, set X := Spa A, and for x € X let v, be the valuation de-
fined on Oy, in Definition 8.5. If O is a sheaf of topological rings, then (X, Ox, (vz)s)
is an object of ¥ which we again denote by Spa A.

Definition 8.20. An affinoid adic space is an object of ¥ which is isomorphic to
X := Spa A for some affinoid ring A such that Ox is a sheaf of topological rings.

Definition 8.21. An adic space is an object X of ¥ such that there exists an open
covering (U;)ies of X such that (Us, Oy, (vz)zeu;) is an affinoid adic space for all 7 € I.
The full subcategory of ¥ of adic spaces is denoted by (Adic).

Remark 8.22. Let X be an adic space.

(1) The open affinoid adic subspaces form a basis of the topology of X.

(2) For every open subset U C X the object (U, Ox v, (vz)zev) in ¥ is again an adic
space.

(3) Let U and V be open affinoid adic subspaces of X. Then for all x € U NV there
exists an open neighborhood W C U NV of x such that W is a rational subset of
U and of V.

Remark 8.23. The morphisms of adic spaces form a sheaf. More precisely, if X and
Y are adic spaces, then the presheaf on X of sets

U Hom(Adic) (U7 Y),
with the obvious restriction maps, is a sheaf.

For two pairs (A, A"), (B, B’) consisting of a topological ring A (resp. B) and a
subring A’ of A (resp. B’ of B) we denote by Hom((A, A"), (B, B')) the set of continuous
ring homomorphisms ¢: A — B such that ¢(A’) C B'.

Proposition 8.24. Let X be an adic space, let A be an affinoid ring and set’Y = Spa A.
Then the map

Hom(Adic)(Xa Y) — Hom((AvAJr)v (ﬁX(X)7 ﬁ;(_'(X))) = HOII]((A, A+)7 (ﬁX(X)v ﬁ;(X))),
f Y

s a bijection.
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Proof. This follows from Proposition 8.18 and Remark 8.23. O

Definition 8.25. We call an f-adic ring A sheafy, if for every ring AT of integral
elements of A the presheaf ﬁSpa( A,A4) is a sheaf of topological rings.

We call A stably sheafy if B is sheafy for every A-algebra topologically of finite type.

Remark 8.26. Let X be a pre-adic space such that one of the following conditions

hold.

(a) For every open affinoid subspace U = Spa A of X the f-adic ring A is sheafy.

(b) There exists a covering by open affinoid subspaces of the form Spa A such that the
f-adic ring A is stably sheafy.

Then X is an adic space.

Theorem 8.27. Let A= (A, A") be an affinoid ring and X = Spa A. Assume that A
satisfies one of the following conditions.

(a) The completion A has a noetherian ring of definition.

(b) A is a strongly noetherian Tate ring.

(¢) A has the discrete topology.

Then Ox is a sheaf of complete topological rings. Moreover, one has HY(U,Ox) = 0
for all g > 1 and all rational subsets U of X.

We will give the proof only in the cases (b) and (c). In case (c¢) the proof is esay:

Proof in the discrete case. We may and do assume that A is complete. Assume that
A carries the discrete topology. Then AT can be any subring of A which is integrally
closed in A, and Spa A ={v e SpvA;uv(f)<1forall fe At}

IfU = R(%) is a rational subset of Spa A, then Ox(U) = A, endowed with the
discrete topology, and the Ox-acyclicity of rational covers follows from the analogue
statement for the structure sheaf of an affine scheme and open coverings by principally
open subsets D(s) = Spec As. In fact, in this case the structure sheaf on Spa A is simply
the pullback of the structure sheaf on Spec A under the continuous and surjective map
Spa A — Spec A, x +— supp(x). O

For the proof if A is a strongly noetherian Tate algebra we need some preparations.
We will use some general results on Cech cohomology, recalled in Appendix A.

Remark 8.28. Let A be a complete noetherian Tate ring and let M be a finitely gen-
erated A-module endowed with its canonical topology (Proposition 6.18 (1)). Denote
by M(X) the A(X)-module of elements ) ., m, X" with m, € M for all v and such
that for every neighborhood of zero U in M one has m, € U for almost all v.

We claim that the homomorphism of A(X)-modules

pn: M @4 A(X) — M(X), m® a+— ma

is bijective. Indeed, this is clear if M is a finitely generated free A-module. In general,
we find a presentation
u

A" Ly oAm Py a0
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(because A is noetherian). Proposition 6.18 (2) shows that u and p are continuous and
open onto its image. Thus we obtain an exact sequence A™(X) — A™(X) - M(X) —
0. Then the 5-lemma implies our claim.

Proposition 8.29. Let A = (A, AT) be a strongly noetherian Tate affinoid ring, and
let U CV C X :=SpaA be two rational subsets. Then the restriction homomorphism
ﬁx(V) — ﬁX(U) 18 ﬂat.

Proof. By Example 6.38 we know that Ox (V) is again a strongly noetherian Tate ring.
Thus we may assume that X = V and that A is complete. By Remark 7.55 we may
moreover assume that U is either of the form U; = R({) ={zeX; z(f)<1}orof
the form U = R(%) ={xe X ; x(f)>1} for some f € A.

In Example 6.38 we have seen that Ox(U;) = A(X)/(f — X) and Ox(Us) =
A(X)/(1 — fX). Thus it suffices to show the following lemma. O

Lemma 8.30. Let A be a noetherian complete Tate ring.
(1) The ring A(X) is faithfully flat over A.
(2) For all f € A the rings A(X)/(f — X) and A(X)/(1 — fX) are flat over A.

Proof. (1). Let i: N < M be an injective homomorphism of finitely generated A-
modules. Then Remark 8.28 implies that i @ idsxy: M ®4 A(X) — N ®a A(X) is
again injective. This shows that A(X) is flat over A.

If p is a prime ideal of A, then the set of > a, X" € A(X) such that ag € p is a
prime ideal q of A(X) with N A = p. Thus A(X) is faithfully flat over A.

(2). We first show the following claim. Let g € A(X) and assume that for every
finitely generated A-module M the multiplication wy: M(X) — M(X) is injective.
Then B := By := A(X)/(g) is flat over A.

To show the claim consider the sequence of A-modules

0— AX) 5 AX) 2 B0,

where v = v, is the multiplication with g. It is exact by our assumption applied to
M = A. If we want to show that Tor{!(M,B) = 0 for every finitely generated A-
module M, then it suffices to show that wy := idyr ® avy is injective (use that we have
already seen in (1) that A(X) is flat over A and the long exact Tor-sequence). But
using Remark 8.28 we see that w, is the homomorphism M(X) — M (X) given by
multiplication with g. This proves the claim.

If g=1— fX, then wy is easily checked to be injective.

Letg=f—-X,u=>,m,X" e M(X) with (f — X)u = 0. Then

(+) fmo =0, fmy,=my,_1 forallv>1.
Let M’ be the submodule of M generated by {m, ; v € Ng}. As M is noetherian,
M’ is generated by finitely many elements, say mg,...,m;. Then (+) implies that

M’ is generated by m; and f'Tlm; = 0. Write mg1 = amy for some a € A. Then
my = " mor = afmy = 0. Thus M’ = 0 and hence u = 0. O
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Corollary 8.31. Let A be a strongly noetherian Tate affinoid ring, X = Spa A, and
let (U;)i<i<n a finite covering of X be rational subsets. Then the homomorphism

n

ﬁX(X> - H ﬁX(Ul)v f = (f\Ui)ISiSn

i=1
is faithfully flat (and in particular injective).

Lemma 8.32. Let A = (A, A™") be a strongly noetherian Tate affinoid ring, X = Spa A.
Let fe Aand set Uy ={zx € X ; o(f) <1} and Uy ={z € X ; z(f) > 1}. Then
the augmented Cech complex (with alternating cochains) for Ox and the open covering

(U, U3} of X
0= Ox(X) -5 Ox(Ur) x Ox(Us) - Ox (U1 NUs) — 0
18 exact.

Proof. We may assume that A is complete (to simplify the notation). We have already
seen that ¢ is injective (Corollary 8.31). Moreover, by Examples 6.38 and 6.39 we have

Ox(Ur) = A(Q)/(f = 0),
(8.32.1) Ox(Uz) = Aln)/(1 = fn),
Ox(UrNUs) = A(C,m)/(f — 1= fn) = A(C,m) /(f = ¢ 1 —(n)
= A CH/(f =0

Consider the following commutative diagram

0—=A4A L A(C) x Aln) 2 A(G,¢TH ——0
0 A % (Ul) X ﬁx(Uz) % (Ul N UQ) 0
0 0

Here ¢ is the canonical injection, X is the map g((¢), h(n)) — g(¢) — h(¢71), and X is
induced by A. The columns are exact by (8.32.1). A diagram chase shows that if we the
first and second row are exact, then the third row is exact (note that we know already
the injectivity of ¢).
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The equations

A(C, ¢ = A(Q) + CTTACTY,
(f = QA CH =(F = QA + (1 — fFCHALT

show the surjectivity of A and X (and in particular the exactness of the first row).
Finally, the equality

0=AD_ar™> bin®) =D arc® = bt

k>0 k>0 k>0 k>0
is equivalent to a; = by = 0 for k > 0 and ag = by. Thus im(¢) = ker(\). O
We can now prove that Ox is a sheaf if A is a strongly noetherian Tate algebra.

Proof of Theorem 8.27 if A is a strongly noetherian Tate algebra. By Proposition A.4
it suffices to show that every open covering by rational subsets is Ox-acyclic. We may
assume that A is complete. Every open covering of X has a refinement U = (Uy)er of
the form U, := R(%) with T C A generating A as an ideal (Lemma 7.54). Let us call
such a cover the rational cover generated by T'. If U is any rational subset, then Uy is
the rational cover of U = Spa 0x (U) generated by the set of images of t in Ox(U) for
t € T. Thus by Proposition A.3 (2) it suffices to show the following lemma. O

Lemma 8.33. Let A be a complete strongly noetherian Tate ring and U be a rational
cover generated by some finite subset T C A with T -A = A. Then U is Ox-acyclic.

Proof. (i). For f € Alet Uy be the open covering of X = Spa A consisting of R({)
and R(%) Then Uy is Ox-acyclic by Lemma 8.32.

Moreover, if U = R(%) is any rational subset then Uy y = Uy, where f|y is the
image of f under the homomorphism A — A(%) Thus Uy is (Ox)-acyclic.

Using Proposition A.3 (3) it follows by induction that all open covers of the form
V i=Uyf x - - XUy, are Ox-acyclic. Such a cover is called a Laurent cover generated
by fi,..., fr- 1t is the rational cover generated by T'={[[;c; fi : J C{1,...,r} }.

If U is any rational subset of X, then V|y is the Laurent cover generated by
i, friy. Thus we have seen that for every Laurent cover V of X and every open
rational subset U the restriction V|U is Ox-acyclic (more precisely, & X|U—acyclic).

(ii). We show the following claim. Let T' = (fo,..., fn) € A be finite such that
T generates A as ideal and let U be the rational cover of X generated by T. Then
there exists a Laurent cover (V});es of X such that Uy, is a rational cover generated
by units of Ox (V;) for all j € J.

Indeed, for all x € X there exists f; such that z(f;) # 0. Thus by Corollary 7.32
there exists a unit s € A* such that for all x € X an i € {0,...,n} exists with
x(s) < z(f;). Then the Laurent cover generated by s~!f1,...,s™!f, satisfies the claim.

(iii). Every rational cover U of X which is generated by units fo,..., f, of A has
a refinement by a Laurent cover.

Indeed, the Laurent cover generated by { f; fj_1 ; 0<14,j <n}isarefinement of U.
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(iv).  As the restriction of Laurent covers to arbitrary rational subsets are Ox-
acyclic by (i), it follows from (iii) that all restrictions to rational subsets of all rational
covers generated by units are Ox-acyclic (Proposition A.3 (2)).

Now let U be a rational cover generated by some finite subset T C A withT-A = A
and let V be a Laurent cover such that Uy is a rational cover generated by a finite set
of units for all V' in V (which exists by (ii)). Then we have just seen that Uy is Ox-
ayclic. Moreover, by (i) V| is Ox-acyclic for every U in % . Thus the Ox-acyclicity
of V implies the Ox-acyclicity of U by Proposition A.3 (1). O

Corollary 8.34. Let A be an f-adic ring satisfying one of the following properties.

(a) The completion A has a noetherian ring of definition.
(b) A is a strongly noetherian Tate ring.
(c) A has the discrete topology.

Then A is stably sheafy.

Proof. If A has one of these properties, then every A-algebra topologically of finite type
over A has the same property. ]

8.3 Analytic Points of adic spaces

Proposition and Definition 8.35. Let X be an adic space. A point v € X 1is called

analytic if the following equivalent conditions are satisfied.

(i) There exists an open neighborhood U of x such that Ox(U) contains a topologically
nilpotent unit.

(ii) For every open affinoid neighborhood U = Spa A of x, the point suppx C A is not
open in A (i.e., x € Spa A is analytic in the sense Definition 7.39.)

We set Xo:={x € X ; x is analytic} and X := X \ X,.

Proof. We may assume that X = Spa A, A complete affinoid ring.

“(ii) = (i)”. Let x € Spa A such that supp x is not open in A. By Remark 7.40 (1)
there exists a topologically nilpotent element s of A with z(s) # 0. Then U := {y €
SpaA ; y(s) # 0} is an open neighborhood of x in Spa A. As the restriction A =
Ox(X) — Ox(U) is a continuous ring homomorphism, the image of s in Ox(U) is
again a topologically nilpotent unit.

“(i) = (i1)”. Let x € Spa A such that suppx is open A, and let U be an open
neighborhood of x. We have to show that 0x(U) has no topologically nilpotent unit.
Let V be a rational subset of Spa A withz € V C U andsetp:={f € Ox(V); v,(f) =
0}. Then p is a prime ideal of Ox (V') with pN A = suppx. As supp = contains an ideal
of definition of (a ring of definition of) A, p contains an ideal of definition of &x (V') by
definition of Ox (V). Thus p is an open prime ideal of &x (V') and contains therefore all
topologically nilpotent elements of &x (V). As p contains no units, &x (V') contains no
topologically nilpotent units. Hence &x (U) does not contain a topologically nilpotent
unit. ]

Remark 8.36. Let X be an adic space.
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(1) Remark 7.40 (2) implies that X, is an open constructible subset of X.
(2) For every open subspace U of X one has U, = X, NU and Uy, = Xpa NU.

8.4 Adic morphisms of adic spaces

Definition 8.37. A morphism f: X — Y of adic spaces is called adic if for every
x € X there exist open affinoid neighborhoods U of z in X and V of f(z) in Y with
f(U) C V such that the ring homomorphism of f-adic rings Oy (V) — Ox(U) induced
by f is adic.

Proposition 8.38. Let f: X — Y be a morphism of adic spaces.
(1) f is a adic if and only if f(X,) CY,.
(2) f(Xna) - Yna-

Proof. Tt follows from Remark 8.36 (2) that we may assume that X and Y are affinoid.
But in this case we have already shown the all results in Lemma 7.46. O

Corollary 8.39. Let f: X — Y be an adic morphism of adic spaces. Then for all
open affinoid subspaces U C X and V CY with f(U) C V the ring homomorphism
Oy (V) — Ox(U) induced by f is adic.

Proof. 1t follows from Proposition 8.38 (1) that f(U,) C V,. Thus Lemma 7.46 (2)
implies the claim. O

Let X be an adic space, z € X. Recall that we denote by k(x) the residue
field of Ox,. If z is non-analytic, we endow k(z) with the discrete topology. If
x is analytic, then we endow k(z) with the topology induced by v,. Then k(x)
is an f-adic field (Example 6.5 (3)). In fact, this is the unique structure of an f-
adic field on k(x) such that for every open affinoid neighborhood U of z the canon-
ical homomorphism Ox(U) — k(z) is adic ([Hul] 3.8.10). We also have defined
k(z)" :={a € k(x) ; vy(a) <1} and we set

which is an affinoid field. Moreover, the underlsing topological space of Spak(z) is
totally ordered by specialization. The closed point is v,. If z is analytic, the generic
point is the unique height 1 valuation on k(x) that is dependent on v,. If z is non-
analytic, the generic point of Spax(x) is the trivial valuation on k(z).

The canonical morphism i,: Spak(z) — X of adic spaces is adic. It maps the
closed point of Spak(z) to x € X and it yields a homeomorphism of Spa x(z) onto the
subspace consisting of the vertical generizations of x.

8.5 Morphisms of finite type

Let A be an f-adic ring, let My, ..., M, be finite subsets of A such that M, - A is open
in A fori=1,...,n. Then M;"U is a neighborhood of 0 for all neighborhoods U of 0
and for all m > 1 (Lemma 6.20) and we defined in Definition 5.48 the ring

AX)y = AXy, ., X))y, M-
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We saw in Proposition 5.49 that A(X) s is complete if A is complete. We also described
in Corollary 5.50 the universal property of A(X)s.

Recall also the definition of homomorphisms topologically of finite type and some
of their properties between f-adic rings from Section 6.6. We now define the notion of
homomorphisms topologically of finite type between affinoid rings.

Remark and Definition 8.40. Let A = (A, A™) be an affinoid ring and let M, ..., M,
be finite subsets of A such that M; - A is open in A for i = 1,...,n. Recall that we set
MY := M{*--- M}~ for all v € Nj. Then

B:={ aX€AX)y;a, € M- (A") for all v € N}

veNy

is a subring of A(X)s. Its integral closure in A(X)js is a ring of integral elements of
A(X)pr. The affinoid ring (A(X)ar, C) is imply denoted by A(X)ar. We set A(X) :=
AX) 1y, 1)

Definition 8.41. A homomorphisms 7: (C,C*) — (B, BT) between affinoid rings is
called a quotient mapping if 7: C — B is surjective continuous and open and if BT is
the integral closure of 7(C") in B.

A homomorphism ¢: (A, AT) — (B, BT) of affinoid rings with B complete is called
topologically of finite type if there exist n € Ny and finite subsets T4, ..., T, of A with
T; - A open in A and a quotient mapping 7: A(Xy,...,Xp)7,,.. 1, — B such that
@ =mou, where t: A — A(X)p is the canonical homomorphism.

Proposition 8.42. Let A and B affinoid rings with B complete. Let o: A — B be a
homomorphism of affinoid rings. Then ¢ is topologically of finite type if and only if the
homomorphism A — B of f-adic rings is topologically of finite type and there exists an
open subring C' of BT such that BT is integral over C, p(AT) C C, and p: AT — C
is topologically of finite type.

Proof. [Hu3| Lemma 3.5. O

Corollary 8.43. Let A be an affinoid ring, si,...,8, € A, T; C A finite subsets such
that T;- A for alli =1,...,n. Then the canonical homomorphism A — A(X1,..., Xp)1
is topologically of finite type.

The following proposition follows from the corresponding result for homomorphism
of f-adic rings (Proposition 6.34).

Proposition 8.44. Let A be a Tate affinoid ring, then a homomorphism ¢: A — B to
a complete affinoid ring B is topologically of finite type if and only if ¢ factors through
a quotient mapping A(X1,...,Xyn) — B for some n € Ny.

Proposition 8.45. Let A, B, and C be affinoid rings with B and C complete and let
p: A— B and: B — C be continuous homomorphism of affinoid rings.

(1) If ¢ and 1) are topologically o finite type, then 1 o ¢ is topologically of finite type.
(2) If 1 o v is topologically of finite type, then 1) is topologically of finite type.
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Proof. [Hu3| Lemma 3.5. O

Proposition 8.46. Let A and B complete f-adic rings and let p: A — B be a contin-
wous ring homomorphism which is topologically of finite type. Assume that A is a Tate
ring and has a noetherian ring of definition. Then there is a unique Ting of integral
elements BT of B such that p: (A, A°) — (B, B™") is a homomorphism of affinooid
rings which is topologically of finite type, namely BT = B°.

Proof. [Hul] 2.4.17 O

Definition 8.47. Let f: X — Y be a morphism of adic spaces.

(1) Then f is called locally of finite type (resp. locally of weakly finite type), if for every
x € X there exists an open affinoid neighborhood U = Spa B of x in X and an
open affinoid subspace V' = Spa A of Y with f(U) C V such that the induced
homomorphism of affinoid rings (A4, AT) — (B, B™) is topologically of finite type
(resp. such that the induced homomorphism of f-adic rings A — B is topologically
of finite type).

(2) The morphism f is called of (weakly) finite type, if f is locally of (weakly) finite
type and quasi-compact.

Remark 8.48. Let X be an adic space.
(1) Let U C X be an open subspace. Then the inclusion U — X is locally of finite

type.
(2) Every morphism locally of weakly finite type is adic (Proposition 6.29).

Proposition 8.49. Let f: X — Y be a morphism of adic spaces locally of (weakly)
finite type. Let U' C X and V' CY be open subspaces with f(U') C V'. Then the
morphism of adic spaces U — V' obtained by restriction from f is locally of (weakly)

finite type.

Proof. We have to show that for all z € U’ there exist open affinoid neighborhoods
U=SpaB CU of x and V = SpaA C V' of f(z) with f(U) C V such that the
induced homomorphism of affinoid rings A — B is topologically of finite type.

Indeed, by hypothesis there exist open affinoid neighborhoods U = Spa B of z and
V = Spa A with f(U) C V such that A — B is topologically of finite type. Choose
open rational subsets R(L) of Spa A contained in V' and R(2L) of Spa B contained in
U’ with f(R(2)) € R(L). Then the composition A — B — B(X) is topologically
of finite type (Corollary 8.43 and Proposition 8.45 (1)) and thus Proposition 8.45 (2)
implies that the induced homomorphism A<%> — B(%) is topologically of finite type.

The same proof shows the claim in the “locally of weakly finite type” case (us-
ing Proposition 6.33 instead of Proposition 8.45 and Example 6.38 instead of Corol-
lary 8.43). O

Proposition 8.50. Let f: X — Y be a morphism of adic spaces locally of finite type.
Let U = SpaB C X and V = SpaA C Y be open affinoid subspaces with f(U) C V.
Then the induced homomorphism of affinoid rings (A, A*) — (B, BT) is topologically
of finite type.
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Proof. Replacing f by its restriction U — V (again locally of finite type by Proposi-
tion 8.49), we may assume that X and Y are affinoid. Then the proposition is shown
in [Hul] Prop. 3.8.15. O

Remark 8.51. Let X = SpaB amd Y = SpaA be affinoid adic spaces, and let
f: X — Y Dbe weakly of finite type. Then the induced homomorphism A — B of
f-adic rings is not necessarily topologically of finite type ([Hul] 3.8.18).

Corollary 8.52. Let X = Spa A be an affinoid adic space, U = Spa B an open affinoid
subspace of X. Then the induced homomorphism (A, AT) — (B, BT) is topologically of

finite type.

8.6 Fiber products of adic spaces

Definition 8.53. An adic space X is called stable if there exists an open covering by
affinoid subspaces of the form Spa(A, AT) , where the f-adic ring is stably sheafy.

Remark 8.54. Let X be a stable adic space.
(1) The underlying topological space of X has a basis of open affinoid subspaces
Spa(A, AT), where A is stably sheafy.

Indeed, if U = Spa(A, AT) with A stably sheafy, then for every open rational
subspace V = Spa(B, BT) of U, the f-adic ring B is stably sheafy because B is
topologically of finite type over A.

(2) If f: Y — X is a morphism locally of weakly topologically space, then Y is stable
adic space.

Theorem 8.55. Let f: X — S and g: Y — S be morphisms of adic spaces. Assume
Y is stable and that one of the following consitions is satisfied.

(a) f is locally of finite type.

(b) f is locally of weakly finite type and g is adic.

Then the fiber product X xgY in the category of adic spaces exists. Moreover, X xXgY
1s a stable adic space.

Proof. (i). As usual (using the fact that morphisms between adic spaces can be
glued) the existence of the fibre product for f and g follows if there exist an open
coverings S = |J; S; and open coverings f~1(S;) = U; Xi; and g7 1(S;) = U, Yir such
that all fiber products X;; xg, Vi), exist. Thus we may assume that X = Spa(4, A™T),
Y = Spa(B,B™) and S = Spa(R, R") are affinoid with R, A, and B complete and B
stably sheafy. Let ¢o: R — A and ¥: R — B be the homomorphisms of f-adic rings
induced by f and g, respectively.

(ii). We first assume that (b) is satisfied. Then 1) is adic (Corollary 8.39). Moreover,
we may assume that the homomorphism ¢: R — A of f-adic rings is topologically of
finite type. Let Rg C R, Apg C A, and By C B be rings of definitions with ¢(Ry) C Ay
and ¥(Ry) € By. Let I be an ideal of definition of Ry.

Set C" := A ®pg B, let C| be the image of Ay ®pg, By in C’, and let C't be the
integral closure of the image of AT @p+ BT in C’. Endow C’ with the topology such
that {I"™ - C'},en is a fundamental system of neighborhoods of zero. Let C' be the
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completion of C’. As A is topologically of finite type over R, C' is topologically of finite
type over B. Thus C is an f-adic ring by Proposition 6.21 and Remark 6.7. Moreover
C is stably sheafy because B is stably sheafy. The completion C* of C'T is a ring of
integral elements in C.

By Proposition 8.24 it suffices to show that the natural diagram

(C,Ct)<— (B,B™")

IR

(A, A*) <"—(R,R")

is cocartesian in the category of complete affinoid rings. This is proved in [Hul] 2.4.18.
(i11). For the proof under condition (a) we refer to [Hu4] 1.2.2. O

The construction of the fiber product in loc. cit. under condition (a) does not show
that in this case the fiber product of affinoids adic spaces is again affinoid.

Remark 8.56. Let

A Y

p g
f

be a cartesian diagram of adic spaces such that f is locally of weakly finite type and g

is adic.

(1) The proof of Theorem 8.55 shows that ¢ is locally of weakly finite type and p is
adic.

(2) If f (resp. g) is quasi-compact, then ¢ (resp. p) is quasi-compact.

Lemma 8.57. Notation and hypotheses of Remark 8.56. Then for allx € X andy €Y
with f(x) = g(y) there exists z € Z with p(z) =z and q(z) = y.

Proof. This shown as in [Hu3] Lemma 3.9 (i). O

Definition 8.58. Let f: X — Y be a morphism locally of weakly finite type, let
y € Y, and let Spar(y) — Y be the canonical adic morphism. The fiber product
X xy Spar(y) is denoted by X, or by f,1(y) and is called the adic fiber of f in y.

Proposition 8.59. Let f: X — Y be a morphism of adic spaces locally of weakly finite
type, let y € Y, and let S be the set of vertical generizations of y. Then the projection
o (y) — X induces a homeomorphism of f;'(y) onto the topological space f~1(S).

Proof. [Hul] 3.10.4 O
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8.7 Fiber products of adic spaces and schemes

We denote by (X, Ox, (vz)zex) — X = (X, Ox) the forgetful functor from the cate-
gory of adic spaces to the category of locally ringed spaces.

Proposition and Definition 8.60. Let X and Y be schemes, S a stable adic space
and let f: X — Y and g: S — Y be morphisms of locally ringed spaces. Assume
that f is scheme morphism locally of finite type. Then there exists an adic space R, a
morphism p: R — S of adic spaces, and a morphism q: R — X of locally ringed spaces
such that

1. x

=

(8.60.1) /

[las}
-

g

—2->Y

[T

commutes and such that the following universal property is satisfied. For every adic
space U, every morphism u: U — S of adic spaces, and every morphism v: U — X of
locally ringed spaces with gowu = f owv there exists a unique morphism w: U — R of
adic spaces with pow = u and gow = v.

Moreover, the morphism p is locally of finite type and R is a stable adic space.

The adic space R is denoted by X Xy S and is called the fiber product of X and S
over Y.

Proof. We may assume that Y = Spec B and X = Spec B[X}, ..., X,]/I are affine and
that S = Spa A is affinoid such that the affinoid ring A is stably sheafy. Then g is
induced by a ring homomorphism A\: B — A. Let E be a finite set of topologically
nilpotent elements of A such that E - A is open in A.

For every k € N let A(k) be the affnoid ring A(X1,...,Xn) g pe (Where EF =
{e1----er ;e €FE}). Let \y: B[X1,...,X,] — A(k) be the extension of A\ with
Me(X;) =X fori=1,...,n. Let

s A(k) — A(k)/N\e(I) - A(k) := Ay,

be the canonical homomorphism of f-adic rings (i.e. Ay is endowed with the f-adic
topology such that 7 is open and continuous). Then Ay is topologically of finite type
over A and hence stably sheafy. Let A be the integral closure of m(A(k)") in Ay.
We obtain an affinoid ring (Ay, 4;). Let Ry, = Spa(Ay, A).

For k <llet ¢;: R — R; be the morphism induced by the continous A-homomorphism
A — Ag with m(X;) — mx(X;) for ¢ = 1,...,n. Then ¢y is an isomorphism of Ry,
onto the rational subset

{x € Ry ; vy(em(X;)) <1lforalleec E(k),i=1,...,n}.

of R;. Hence there exists in the category of adic spaces over S the inductive limit R of
the system (Ry, pi). Let p: R — S be the structure morphism.

The ring homomorphisms 7m0\, : B[X1,...,X,] — A induce morphisms of locally
ringed spaces R — X of locally ringed spaces which glue together to a morphism of
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locally ringed spaces ¢: R — X. We have gop = f oq. It is not difficult to check that
R, p, and ¢ satisfy the universal property. ]

Remark 8.61. Let Y be a scheme, let X; and Xs two Y-schemes locally of finite type,
and let h: X; — Xs be a morphism of Y-schemes. Let S be an adic space and let
g: S — Y be morphisms of locally ringed spaces. Then h induces by the universal
property of the fiber product a canonical morphism of adic spaces X7 xy S — Xg Xy S
which is denoted by hg.

Proposition 8.62. With the notations of the commutative diagram (8.60.1) let x € X
and s € S with f(x) = g(s). Then there exists r € R with q(r) = x and p(r) = s.

Proof. We may assume Y = SpecB, X = SpecC, S = SpaA. Then f and g are

given by ring homomorphisms ¢: B — C and ¢¥: B — A. Then p := p, € SpecC,

v := vy € Spa A with ¢~ (p;) = ¥~ (supp(vs)). Set D := C ®@p A. Choose q € Spec D

whose image in Spec A is supp(v) and whose image in Spec C' is z. Let r € Spv(D) be

a valuation satisfying the following conditions.

(a) supp(r) = q.

(b) 7 extends the valuation vs.

(¢) T, and T'; have the same divisible hull (in particular, then convex subgroup gener-
ated by I';, in I, is all of I',.).

We claim that r € R.

Let (Ag, I) be a pair of definition of A and let C' C C' be a finite set of generators of
the B-algebra C. As the convex hull of ', is T', we can find k& € N such that r(c®i) <1
for all ¢ € C" and i € I*.

Set Do := Ao[c®i;c € C' i € I¥] C D. Let Dt be the integral closure of A*[c ®
i;ceC'icI*in D. We endow D with the grup topology such that { I"-Dy; n € N}
is a fundamental system of neighborhoods of 0. Then D is an f-adic ring and DV is a
ring of integral elements of D. One has r € Cont(D) and r(d) < 1 for all d € DT by
definition. Hence r € Spa(D, D1). As Spa(D, D) is an open subspace of R the claim
is proved. O

Definition 8.63. Let k& be a non-archimedean field and let X be a k-scheme locally
of finite type. The identity k — k corresponds to a morphism of locally ringed spaces
Spa(k, k°) — Spec k. Thus we obtain the adic space

Xad =X XSpeCk’ Spa(k, ko),

which is locally of finite type over Spa(k, k°). It is called the adic spaces associated to
X.

Example 8.64. Let R be a ring endowed with the discrete topology and let X be a
k-scheme locally of finite type. Let R™ C R be a ring of integral elements. The identity
R — R corresponds to a morphism of locally ringed spaces S := Spa(R, R*) — Spec R
and we obtain the adic space X Xgpec r Spa(R, R). It can be described as follows.

Set T := { (z,v) € SpvX ;v(a) <1 foralla€ R"}. Let f: T — X be the restric-
tion of supp: Spv X — X which sends (z,v) to = and define o7 := f~1(0x) (a sheaf of
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rings). We denote again by o7 its topologicalization (see Remark 9.4 below). For each
t = (x,v) € T let v; be the valuation on the stalk A4y = Ox o Whose support is m
and which induces v. Then R := (T, %, (v)ter) is the fiber product X Xgpecr S.

If R=R" =k is a field, then S = Spa(k, k) consists only of the trivial valuation
and the underlaing topological space of X Xgpecr Spa(k, k) is the subspace of Spv X
consisting of the points (x,v) such that the restriction to k is trivial.

9 Formal schemes as adic spaces

9.1 Formal (adic) schemes

Definition 9.1. A topological ring A is called pre-admissible if it satisfies the following

properties.

(a) A is linearly topologized (i.e., there exists a fundamental system of neighborhood
of 0 consisting of ideals of A).

(b) There exists an open ideal I C A such that (I"), tends to zero (i.e., for every
neighborhood of zero V' there exists n > 1 with I™ C V).

An ideal as in (b) is called ideal of definition. A is called admissible, if A is in addition

complete.

Remark 9.2. If [ is an ideal of definition in a pre-admissible ring and if J is an open
ideal, then I N J is again an ideal of definition. This shows that the ideals of definition
in A form a fundamental system of open ideals.

Note that I" is not necessarily open.

An adic ring is a topological ring A, such that an ideal I C A exists such that
(I™)nen is a fundamental system of neighborhoods of zero. Such an ideal I is then an
ideal of definition of A.

Any adic ring is pre-admissible.

Recall the following properties (Remark 5.26).

Remark 9.3. Let A be a pre-admissible ring.

(1) The set of topologically nilpotent elements A°° is an open ideal of A, and A% is
the union of all ideals of definition.

(2) For every ideal of definition I one has

Spec(A/I) = Spec(A/A%) = {p € Spec A ; p open in A}.
In particular, the left hand side is independent of I.

Remark 9.4. Let X be a topological space. Let % be a sheaf of sets on X. If one
endows #(U) with the discrete topology for all U C X open, then % is a presheaf
of topological spaces. This is not a sheaf of topological spaces in general: If U is an
arbitrary open subset and (Uj;); is an open covering, then the discrete topology on .# (U)
is in general not the coarsest topology making all restriction maps .#(U) — % (U;)
continuous.
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Now assume that the set B of open quasi-compact subsets of X is a basis of the
topology of X. Then it is easy to check that the restriction of .# to B is a sheaf of
topological spaces. Thus there exists a sheaf #’ of topological spaces on X (unique up
to unique isomorphism) extending .# |- For every open subset U the underlying set of
F'(U) is equal to Z(U), but the topology is not necessarily the discrete topology if U
is not quasi-compact.

We call .#’ the topologicalization of % .

If u: F — ¢ is a morphism of sheaves of sets, then u: .7’ — ¢’ is a morphism of
sheaves of topological spaces.

The same considerations hold for sheafs of groups or of rings.

Now let A be an admissible ring. We attach a topologically ringed space (X, Ox)
to A as follows. Let (1)), be a fundamental system of ideals of definition in A. The
underlying topological space X is the subspace Spec(A/Iy) of Spec(A) of open prime
ideals of A. Let &) be the topologicalization of Ogpec(a/r,) on X and set Ox := {iLn/\ O

(projective limit in the category of sheaves of topological rings).

Definition 9.5. The topologically ringed space (X, Oy) is called the formal spectrum
of A. Tt is denoted by Spf A.

Remark 9.6. Let A be a linearly topologized ring, (I))) be a fundamental system of

ideals and let S C A be a multipicative set. Let Sy be the image of S in Ay := A/I,.

Then the S)TIAA form a projective system with surjective transition homomorphisms.

We denote by A{S~!} its projective limit.

If S={f"; neNy}for f €A, wewrite Agyy.

(1) The canonical homomorphism S~1A4 — S/\_lA)\ is surjective and has as its kernel
S~1I,. This shows that A{S~!'} is the completion of S~'A for the topology given
by the fundamental system S~11y.

In particular Agsy = A(%)

(2) Let a C A be an open ideal. Then S~'a is an open ideal in S~!A. Its completion
is denoted by a{S~1}.

(3) If A is pre-admissible, then A{S~!} is an admissible ring. If I is an ideal of
definition, then 7{S™'} is an ideal of definition of A{S~!}.

(4) If A is an adic with an ideal of definition I such that I/I? is a finitely generated
A/I-module (e.g., if I is a finitely generated A-module), then A{S~'} is an adic
ring and I’ ;= I{S~'} is an ideal of definition. Moreover (I')"* = I"{S~'} (|[EGA]
07 (7.6.11)).

(5) If A is adic and noetherian, then A{S~!} is adic and noetherian.

Remark 9.7. Let A be an admissible ring, X = Spf(A).

(1) X is a spectral space (because X C Spec A closed). For f € A set D(f) :=
D(f)NX. Then (D(f))fea is a basis of quasi-compact open subsets, stable under
finite intersections.

(2) For all f € A one has
1

L(D(f), Ox) = Agypy = A<f

)
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as topological rings. In particular T'(X, Ox) = A.
(3) If Ais in adic with a finitely generated ideal of definition, then Ay is again a
complete f-adic adic ring.
(4) For all U C X the topologically ring I'(U, Ox) is complete.
(5) For x € X let
Oxq = lm Ay
fEpa

be the stalk of Ox as sheaf of rings (without topology). Then Oy , is a local ring
with residue field k(z) = Ay, /pzAp,. If A is noetherian, then Oy , is noetherian.

Example 9.8. Let A be a ring endowed with the discrete topology. Then Spf A =
Spec A (as locally ringed spaces).

Definition 9.9. Let (X, Ox) be a topologically ringed space.

(1) It is called affine formal scheme if it is isomorphic to Spf(A) for an admissible ring
A. An affine formal scheme is called adic (resp. f-adic, resp. noetherian) if it is
isomorphic to Spf A, where A is an adic (resp. f-adic and adic, resp. noetherian
and adic) ring.

(2) An open subset U C X is called (adic, resp. f-adic, resp. noetherian) affine formal
open, if (U, Oxy) is an (adic, resp. f-adic, resp. noetherian) affine formal scheme.

(3) (X, Ox) is called an (adic resp. f-adic resp. locally noetherian) formal scheme if ev-
ery point z € X has an open neighborhood that is an (adic resp. f-adic resp. noethe-
rian) affine formal open.

It follows from Remark 9.7 that every formal scheme is a locally ringed space.

Remark 9.10. By Remark 9.7 the f-adic (resp. noetherian) affine formal open subsets
of an f-adic (resp. locally noetherian) formal scheme X form a basis of the topology
of X. In particular if &/ C X is an open subset, then (U, Oxy) is again an f-adic
(resp. locally noetherian) formal scheme.

Definition 9.11. A morphism of formal schemes is a morphism of locally and topo-
logically ringed spaces.

Let A, B be complete adic rings, X = Spf B, ) = Spf A, and let ¢p: A — B be a
continuous homomorphism. Then ®¢ := Spec(y) maps Spf B into Spf A. Moreover, for
every f € A one has D(¢(f)) = % 1(D(f)), and ¢ induces a continuous homomor-
phism Agp — By, compatible with restrictions corresponding by passage of f to
fg for some g € A. Thus one obtains a homomorphism of sheaves of topological rings
Oy — %0y which is easily seen to induce a local homomorphism on stalks. This
construction is compatible with composition of continuous ring homomorphisms and
we obtain a functor Spf from the category of complete adic rings into the category of
toplogically and locally ringed spaces.

Proposition 9.12. The functor Spf is fully faithful.
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Remark 9.13. Let A be a complete f-adic adic ring, X = Spf A, f € A, and let
¢: A = Ayp be the canonical homomorphism. Then Spf(y) yields an isomorphism

Spf Ay = (D(f), Ox|p(p))-

Example 9.14. Let X be a scheme and let Y C X be a closed subschemes, defined

by a quasi-coherent ideal .# of finite type. Let Ox/y be the sheaf of topological rings

which is obtained by restriction to Y of the sheaf lim €y /.#"*!. Then (Y, O /vy is an
«—

f-adic formal scheme ([EGA] I (10.8.3)). It is called the completion of X along Y and
it is denoted by Xy

If X = Spec A is affine, Y = V/(I), then Xy = Spf(fl), where A is the completion
of A for the I-adic topology.

Let A be an admissible ring, & := Spf(A). Let I C A an open ideal and let {I)}
be the partially ordered set of ideals of definition contained in I. Set X = Spec A/,

and let I/ be the quasi-coherent ideal of O, corresponding to I/Iy. We denote by

T2 the projective limit of the sheaves induced by I /I, on X. This is an ideal of Oy.
For all f € A one has

IA(D(f)) = {iinSJZII/S;lIA = Iy C Ay
A

In particular we have I®(X) = I. As the D(f) form a basis of the topology, one has

(9.14.1) I® o) = (Iy)™

Definition 9.15. Let X be a formal scheme. An ideal .# of Oy is called ideal of
definition if for every point there exists an open affine neighborhood & = Spf(A) and
an ideal of definition I of A such that Sy =1 A

Proposition 9.16. Let X be a formal locally noetherian scheme. Then there exists a
largest ideal of definition T of X. This is the unique idealof definition & of Ox such
that the scheme (X, Ox/.%) is reduced.

Definition 9.17. The scheme (X, Ox/.7) is denoted by Xeq. It is called the underlying
reduced subscheme of the formal scheme X.

Remark 9.18. Let X and ) be formal schemes, let . (resp. ) be an ideal of
definition of Ox (resp. of ). Let f: X — ) be a morphism of formal schemes such that
f (A )Ox C 7. Thenone has f*(A™)Ox = (f*(A)0Ox)" C #" for alln € N. Thus f
induces for all n > 0 morphisms of schemes f,,: X,, — Y,,, where X,, := (X, Ox/#"t1)
and Y, := (Y, Oy/# "), For all m < n the following diagram is commutative

(9.18.1) J{ f l



Proposition 9.19. Let X and Y be adic formal schemes. Then the construction in
Remark 9.18 yields a bijection between the set of morphisms of formal schemes X — Y
such that f*()Ox C . and of the set of sequences (f,) of morphisms fn: X, — Yy
making (9.18.1) commutative.

Remark 9.20. If X is locally noetherian with largest ideal of definition 7. Then
f () Ox C T for every ideal of definition ¢ of ).

Recall ([?] 07, 7.7) that for a linearly topologized ring R and linearly topologiczed
topological R-modules M one defines a topolpogy on M ®gr N by declaring that the
im(U @ N) +im(M xg V) form a fundamental system of neighborhoods of zero, if
U C M and V C N run through the set of open R-submodules. We denote by M&rN
its completion.

If M = Aand N = B are R-algebras, then A®r B and AQ B are topological rings.
If A and B are pre-admissible R-algebras, then A ®p B is pre-admissible and AQrB
is admissible.

Proposition 9.21. Let X = Spf(A), Y = Spf(B) affine formal schemes over an
affine formal scheme S = Spf(R). Setze Z := Spf(A®rB) and let p: Z — X and
q: Z — Y be the S-morphisms corresponding to the canonical continuous R-algebra
homomorphisms A — AQrB and B — A®QrB. Then (Z,p,q) is a fiber product of X
and Y over S in the category of formal schemes.

Proposition 9.22. In the category of formal schemes arbitrary fiber products exist.

Definition 9.23. Let X', S be locally noetherian schemes. A morphism f: X — S is
called adic if there exists an ideal of definition .# of Os such that f*(.#)Oy is an ideal
of definition. One also then says that X is an adic S-scheme.

Remark 9.24. Let X, S be locally noetherian formal schemes and let f: X — S be
an adic morphism. Then for every ideal of definition .# of s one has that f*(%)0x
is an ideal of definition.

This implies that for two adic S-schemes A and ) any morphism f: X — ) is adic.

Let S be a locally noetherian formal S-scheme and let .# be an ideal of definition
of S. We set S, = (S, Os/#™1) (a locally noetherian scheme). An inductive system
(fn: Xnn — Sp)n of locally noetherian S,-schemes is called an adic inductive (Sy)-
system if for all m < n the diagram

Xm— X5

A

Sy —— Sh,

is cartesian.

If f: X - S is a formal locally noetherian adic S-scheme, then " := f*(.#)0x is
an ideal of definition and the inductive system (X,,) with X,, := (X, Ox/#""1) is an
adic inductive (.S,,)-system.
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Theorem 9.25. The above construction yields an equivalence of the category of locally
noetherian formal adic S-schemes and the category of adic inductive (Sy,),-systems.

In particular for all (locally noetherian) adic S-schemes X and ) the following
canonical map is bijective

Homg(X,)Y) = lim Homg, (X, Yy,)-
H

n

Proof. [EGA] 1, (10.12.3). O

Example 9.26. Let R be a noetherian ring, I C A an ideal, let R be the I-adic
completion of R and set S := Spec R, S,, := Spec R/I"*!. Let f: X — S be a locally
noetherian S-scheme and set X,, := S, xg X. Then (X,), is an adic inductive (S,)-
system corresponding under the equivalence of Theorem 9.25 to an adic S-scheme X,
where S = Spf(R). Moreover, X is the formal completion of X along f~(V(I)).

Definition 9.27. Let ) be a locally noetherian formal scheme, .2 an ideal of definition
of Oy, let f: X — ) be an adic morphism and set .# := f*(# )0y (an ideal of
definition of X'). Let fo: (X,0x/%) — (), 0y/# ) be the induced morphism of
schemes.

Then f is called (locally) of finite type, if fo is (locally) of finite type.

Proposition 9.28. Let Y be a locally noetherian formal scheme. Then a morphism of
formal schemes f: X — Y is locally of finite type (resp. of finite type) if and only if every
point of Y has an open affine neighborhood V- = Spf A such that f=1(V) is the union
of a family (resp. of a finite family) of open affine formal subschemes U; = Spf B; such
that B; is strictly topologically of finite type (i.e., there exists a surjective continuous
open ring homomorphism A(X1,...,X,) — B;).

Proof. ?] (10.13.1). O

Definition 9.29. Let )Y be a locally noetherian formal scheme. Then a morphism of
formal schemes f: X — ) is called locally of formally finite type if every point of ) has
an open affine neighborhood V' = Spf A such that f=!(V) is the union of a family of
open affine formal subschemes U; = Spf B; such that there exists a surjective continuous
open ring homomorphism A[7y,...,T,](X1,...,X,) — B;, where A[Th,...,T,] is the
noetherian adic ring whose ideal of definition is generated by an ideal of definition of
A and the T;.

Example 9.30. Let V' be a discrete valuation ring with uniformizing element 7, let X
be a scheme locally of finite type over V', and let Y be a closed subscheme of X such
that 7 is locally nilpotent on Y (e.g., if Y is contained in the special fiber of X). Let
X be the formal completion of X along Y (which is the same as the formal completion
of X along the special fiber of V). Then X is locally of formally finite type over Spf V.
It is locally of finite type over Spf V if and only if the underlying topological space of
Y is equal to a connected component of the special fiber of X.
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9.2 The adic space attached to a formal scheme

Definition 9.31. A complete affinoid ring (A, A1) is called sheafy if Ogpaia a+y is a
sheaf of topological rings.

An adic ring A is called sheafy, if A is complete, f-adic (i.e. it has a finitely generated
ideal of definition) and if the affinoid ring (A, A) is sheafy.

A formal scheme X is called sheafy if for every affine formal open subset & = Spf(A)
the adic ring A is sheafy.

Example 9.32. A noetherian adic ring is sheafy. A ring with the discrete topology is
sheafy.

If Y is an adic space, the subsheaf ﬁ; of Oy is considered as a sheaf of topological
rings by endowing &y (U) with the subspace topology of Oy (U) for U C Y open. Then
(Y, 05) is a locally and topologically ringed space. Every morphism f: Z — Y of adic
spaces induces a morphism fT: (Y, Oy) — (Z, 03) of locally and topologically ringed
spaces (Proposition 8.14).

Proposition 9.33. Let A be a sheafy adic ring and set X := Spf A. Then for any adic
space Y the map

Hom(Ltr)((Ya ﬁ}—t)? (X7 ﬁ-’()) - HOHI(A, ﬁ}t (Y))a
(F.£) = fx

is bijective. Here the set on the left hand side denotes morphism of locally and topolog-
ically ringed spaces, and the set of the right hand side denotes continuous ring homo-
morphisms.

Proof. As morphisms of adic spaces can be glued, we may assume that Y = Spa(B, B™),
where (B, BT) is a complete affinoid ring. Let ¢: A — &3 (Y) be a continuous ring
homomorphism. For every y € Y we set g(y) := {a € A ; vy(¢(a)) < 1}. Then g(y)
is an open prime ideal of A. This defines a map ¢g: Y — X. This map is continuous
because for all s € A one has

1

g D) =g'{zeX;sgp.})={yeY ; vle(s) 21} = Y(@)-
Let s € A = Ox(X). Then Ox(D(s)) = A(L) and 3 (g7'D(s)) = B+<¢(15)>. Thus

by universal properties of the topological localization there exists a unique continuous
ring homomorphism v making the following diagram commutative.

Or(X) —F—= 07 ()

| |

Ox(D(s)) —% O (g7 D(s))

The ¢y define a homomorphism of sheaves of topological rings ¥: Oy — gs ﬁ;;. It
remains to show that for all y € Y the induced homomorphism on stalks 1, : Oy 4(,) —

99



ﬁ;y is local. Let m, C ﬁ;y and my,) C Oy 4, be the maximal ideals and let
t: A — Oy 4, be the caonical ring homomorphism. Then by definition of g one has
Hmyy)) = L_1(¢;1(my)) which implies my(,) = @Dzjl(my). O

Theorem 9.34. Let X be a sheafy formal scheme. Then there exists an adic space
t(X) and a morphism of locally and topologically ringed spaces
m=mx: (t(X), ﬁ:('x)) — (X, Ox)
satisfying the following universal property. For every adic space Z and for every mor-
phism f: (Z,0%) — (X,0x) of locally and topologically ringed spaces there ezists a
unique morphism of adic spaces g: Z — t(X) making the following diagram commuta-
tive
f
(Zv ﬁ;) (Xa ﬁX)

gt

Proof. As we can glue morphisms of adic spaces, we may assume that X = Spf(A) is
affine. We set ¢(X') := Spa(A, A). By Proposition 9.33, the identity A — A corresponds
to a morphism of locally and topologically ringed spaces m: (t(X), ﬁ;EX)) — (X, Ox).

For every adic space Z we then have identifications

Homaqicy(Z, (X)) 2" Homaga) (4, A), (62(2), 6(2)))
Hom(TopRing) (A? ﬁ; (Z))
9.33
= Hom(Ltr)((Z7 ﬁ;)a (t(X)v ﬁ;(r_x)))a

and the composition is given by f + mo fT. O

Remark 9.35. Let f: X — ) be a morphism of sheafy formal schemes. The universal
property, applied to the composition

(H(X), O py) 25 (X, 0x) L5 (0, 6y),

t(X)

yields a unique morphism ¢(f): t(X) — ¢t()) of adic spaces such that the diagram

NN N
(1X). 6} ) "= (1), 6,)

oo

(Xvﬁ/\’) (y,ﬁy)

commutes. The uniqueness of ¢(f) implies that the formation of ¢(-) is compatible with
composition. Hence we obtain a functor

t: (sheafy formal schemes) — (Adic).
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Example 9.36. Let A be a complete valuation ring of height 1 endowed with its
valuation topology. Let m be its maximal ideal, k := A/m, K := Frac A.

Then A is a y-adic ring for all 0 # v € m. Set X := Spf(A4) = {m} and Ox(X) = A.

For z € X := Spa(A, A) with supp v, = m one has v;(a) =1 for all a € k™ (because
v(a) <1 for all a € A). Thus the only point x € Spa(A, A) with supp(vz) = m is the
trivial valuation with support m.

For y € Spa(A, A) with suppv, = (0) one obtains an induced valuation v, on
K = FracA. As vy is continuous (and (0) is not open in A), v, is not trivial. As
vy(a) < 1for all a € A, A is contained in the valuation ring A, of v,. As A is of height
1, it is maximal among all valuation rings # K of K and hence A = A,. Thus the only
point y € Spa(A, A) with supp(vy) = (0) is the valuation of A.

Clearly, y is a horizontal generization of z. Omne has Ox(X) = 0% (X) = A,
Ox({y}) = Frac A, and 0% ({y}) = A.

Remark 9.37. Let X be an adic space.
(1) Set
Xiiv := {2 € X ; v, is trivial valuation}.

The value group of v, is the same as the value group of the corresponding valuation
on A, where U = Spa(A, AT) C X is an open affinoid neighborhood of z. Hence

KXipiv VU = Ugyiv = {v € Spa A ; v trivial}.

(2) Let X = Spa A be affinoid. A trivial valuation on A is continuous if and only
if its support is open. Hence the map v + suppv yields a map Xyiyv — {p €
Spec A ; p open in A} which is a homeomorphism (Remark 4.6).

(3) Now assume that X = Spa(A, A), where A is an adic ring and let I be a finitely
generated ideal of definition. Then supp yields a homeomorphism

Xtriv :> Spf(A) )

and Spf A is a closed constructible subset of Spec A (because Spf A = V(I) and I
is finitely generated). The inclusion Xi,iy < X is spectral as the intersection of a
rational subset R(%) C X with Xy is D(s).

(4) For X = Spa(A, A), A adic ring, one has v,(f) <1 for all x € X. In particular one
has for all s € A and T' C A finite with T'- A C A open that

R() = {veSpa(4, 4) ; o(s) = 1} C R(%).
Moreover

ﬁ;(R(})) ={fe Ay ;v(f) <1forallze X with 1 <w,(s)}
(9.37.1) 5

= Ay = ﬁX(R(%))-
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(5) Let A be a sheafy adic ring, X := Spf A and let i: X4y < X = Spa(A, A) be the
inclusion. The restriction of the canonical morphism of locally and topologically
ringed spaces m: (X, ﬁ}) — (X, 0O0x) to Xy defines an isomorphism of locally
ringed spaces

(9.37.2) ox: (Xuiv,i 1O%) 5 (X, 0x).

Indeed, it is a homeomorphism by (2). For all z € Xj,;, the open rational neigh-
borhoods of z of the form R(2) for s ¢ suppuv, are cofinal in the set of all open
rational neighborhoods of x by (4). Thus we have for the stalk in z:

. ) 1
(0. =0%, = lm OHRL)
s¢supp vy
= lm o Agy
S¢supp vy

= ﬁX,oX(a:)'

(6) The homomorphisms induced by ag( on rings of sections are bijective continuous
ring homomorphisms. The morphism ox is an isomorphism of locally and topo-
logically ringed spaces if A is noetherian by the following lemma applied to the
isomorphisms of Ay, -modules abD(s): Ox(D(s)) = o, (i710%)(D(s)) for all s € A.

Lemma 9.38. Let A be an adic noetherian ring, I an ideal of definition. Let M, N be
A-modules and let N be finitely generated. Then every A-linear map M — N is strict
for the I-adic topologies.

We denote by (InSchf) the category of locally noetherian formal schemes.
Proposition 9.39. The functor t: (InSchf) — (Adic) is fully faithful.

Proof. For a locally noetherian formal scheme Z set Z; := {z € t(Z) ; v, is trivial} and
let Zy be the locally and topologically ringed space (Z;, O t'{ 2)| z,). By Remark 9.37 (6)
the morphism oz : Zy — Z is an isomorphism of locally and topologically ringed spaces.

Let X and Y be locally noetherian formal schemes and let f: ¢((X) — ¢()) be a
morphism of adic spaces. As f is compatible with valuations, ona has f(X;) C V;
and thus f induces a morphism of locally and topologically ringed spaces fy: Xo — Yp
which we consider via ox and oy as morphism g: X — ) of formal schemes. It is easy
to see that t(g) = f.

Let g1,92: X — ) be morphisms of sheafy formal schemes with t(g1) = t(g2) =: f.
Then g; o ox = oy o fy for i« = 1,2 and hence g1 = go. This shows that ¢ is fully
faithful. O

To determine the essential image of the functor ¢t we make the following definition.

Definition 9.40. A full subcategory C of the category (Adic) of adic spaces is called
saturated if it satisfies the following properties.
(a) If an adic space X is isomorphic to Y € C, then X € C.
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(b) If X € C and U C X is an open subspace, then u € C.
(¢) If X is an adic space that has an open covering (U;);er with U; € C for all i € I,
then X € C.

Clearly the intersection saturated subcategories is again a saturated subcategory.

Proposition 9.41. Let C be the smallest saturated subcategory of (Adic) such that
t((InSchf)) C C. Then the objects of C are those adic spaces X such that every v € X
has an open affinoid neighborhood U such that the following conditions hold.

(a) Ox(U) has a noetherian ring of definition A.

(b) Ox(U) is a finitely generated A-algebra.

(c) 0%(U) is the integral closure of A in Ox(U).

Proof. [Hu3| Prop. 4.2. O

Proposition 9.42. Let f: X — Y be a morphism of locally noetherian formal schemes.

(1) f is adic if and only if t(f) is adic.
(2) f is locally of finite type if and only if t(f) is locally of finite type.

Proof. [Hu3| 4.2. O

10 Rigid analytic spaces as adic spaces

Remark 10.1. Let k be a non-archimedean field, let X be a scheme locally of finite
type over k and let X'& be the attached rigid analyit variety. Then the adic space
attached to X" is isomorphic to the adic space X?4 associated to the scheme X.

Remark 10.2. Let V' be a complete discrete valuation ring (of height 1) and let k be
the field of fractions of V. Let F; be the category of formal schemes locally of finite
type over Spv V. Let Ry be the category of rigid analytic spaces over k. Finally let
& be the category of locally noetherian formal schemes whose morphisms are the adic
morphisms between formal schemes.

Let to: € — (Adic) be the functor X +— ¢(X), (note that because all morphisms are
adic, the respect to open subset of analytic points). Let rig: Fy — Ry be the generic
fiber functor defined by Raynaud and let u: Fy — & be the inclusion functor. Then
the diagram

Fr _ s R

£ % (Adic)

is 2-commutative.

The functor ¢, can be extended and described differently as follows (cf. [Hu4] 1.2.2).
The adic space S := Spa(V, V) attached to SpfV consists of an open and a closed
point, and the canonical morphism S° = Spa(k, V) — S is an open immersion onto the
open point (in particular it is a morphism of adic spaces of finite type).
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Let Fys be the category of formal schemes locally of formally finite type over V.
Then Berthelot has extended Raynaud’s generic fiber functor to a functor rig: F;r —
Ry. If X — SpfV is an object in F;; we obtain an associated morphism of adic spaces
t(X) — S and we can form the fiber product ¢(X) xg S°. Then Berthelot’s generic
fiber functor and the functor X' + t(X) xg S° are isomorphic.

A Cech cohomology

Let X be a topological space. For a family of open subsets U = (U;);c; we set
Uio...iq =U;,N---N Uiq

for all (ig,...,iq) € It If Y is a subspace of X we set Uy = (UiNY)ier. If
V = (Vj)jes is a second family of open subsets of X, we set

UV :=UNVj)erjes-

If U and V are open coverings of X, then U x V is an open covering of X.

An open covering V = (V});jes of X is called refinement of an open covering U =
(Ui)ier of X if there exists a map 7: J — I such that V; C U, for all j € J.

Now let .% be a presheaf of abelian groups on X. For an open covering U of X we
define the abelian group of g-cochains

Cu,F)= [ FUi..,)

(iy-r.yiq) E19H1

If .7 is a presheaf of rings, then C9(U,.%) is an .#(X)-module. For f € CU(U,.F) we
denote by fi,,..i, its (io, - . ., i¢)-component. We call f alternating if for all permutations
mof {0,1,...,q} one has

fiw(o)»-v-,iﬂq) = (sgn W)fio,...iq
and if f,;o,,,,iq = 0 whenever the indices ig, ...,7; are not pairwise distinct. The alter-

nating g-cohains form a submodule C¢ (U, .F) of CU(U,.F).
For ¢ > 0 we define d?: CY(U,.F) — CT (U, .F) by

g+1

dq(f)io...iq+1 = Z(_l)jf@' ibjeigyn”

J=0

Then d?0d?% ! =0 for all ¢ > 1 and we obtain the Cech complex of cochains on U with
values in .. The alternating cochains form a subcomplex C*(U, 7).

Recall that the inclusion C®(U,.F7) — C*(U,.F) is a quasi-isomorphism, i.e., it
yields for all ¢ > 0 an isomorphism

HIU, 7) = HI(CoU, F)) = HI(C*U, F)).
One has a homomorphism

sf(X)HCg(u,ﬁ):CO(U,ﬁ), 5}_)(8|U)U€Z/[
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called the augmentation homomorphism.

Let V = (V});jes be a refinement of i and let 7: J — I be a map such that V; C U,
for all j € J. Then 7 induces homomorphisms of complexes 7*: C*(U,.F) — C*(V, F)
and 7%: C2(U, F) — C2(V,.F), and the induced map

HY(r*): HY(U,F) — HI(V,F)

is independent of the choice of 7. Thus one may define the Cech cohomology on X
with values in .% by
HYX,Z):=1lim H(U,.F),
H
u

where U runs through the set of open coverings of X, preordered by refinement.

Definition A.1. Let U be an open covering of X. Then the covering U is called
F -acyclic if the the augmented Cech complex

0= .Z(U) - C'U,F) = CYU,F) - C*U,F) — ...
is exact. In other words, the augmentation morphism ¢ yields an isomorpism .% (X) =
HO(U,.Z) and HI(U,.F) =0 for ¢ > 1.

The trivial open covering Uy consisting of X only is always .%-acyclic. An arbitrary
open covering U is always a refinement of Uy (in a unique way) and U is F-acyclic if
and only if C*(%, F) — C*(% ,.F) is a quasi-isomorphism. This implies in particular
the following remark.

Remark A.2. Let U and V be open coverings that are refinements of each other. Then
U is F-acyclic if and only if V is F-acyclic.

The preceeding remark show that every open covering (U;); of X such that there
exists ig € I with U;, = X is .#-acyclic.

Proposition A.3. Let .7 be a presheaf of abelian groups and let U = (U;)ier and

V = (Vj)jes be open coverings of X such that VlUiO.Hiq is F -acyclic (or, more precisely,

F |Uiy...ip-0cyclic) for all (ig,. .., iq) € I97Y and for all ¢ > 0.

(1) Assume that also Uy, . is F-acyclic for all (jo,...,Jq) € J9and all ¢ > 0.
Then U is F -acycic if and only if V is % -acyclic.

(2) If Vis a reﬁnement of U, then U is ¥ -acyclic if and only if V is ¥ -acyclic.

(3) Then U x V is .F -acyclic if and only if U is F -acyclic.

Proof. Under the hypotheses in Assertion (1) one knows more generally that H9(U,. %) =
HY(V,.F) for all ¢ > 0. In particular (1) holds.

If V is a refinement of U, then U Vig-..dq and the trivial covering of Vj,. ;. are refine-
ments of each other. This shows (2).

Let us show (3). The coverings V|y, . and (U x V), . are refinements of each
other. Thus (U xV)u , s F-acyclic. Thus we may apply (2) to U and its refinement

iQg...

U xV. O
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Proposition A.4. Let B be a basis of the topology of X that is stable under finite
intersections. Let .F' be a presheaf of abelian groups on B and define a presheaf .F on
X by setting for V. .C X open

FV)= lm F(U).
UCV,UE#

Assume that for every U € A and for every open covering U = (U;)ier of U by open
subsets U; € A the presheaf F is U-acyclic, i.e., the augmented Cech complex

0= .ZU)—C'U,F)—CHU,F)— C*U,F) — ...

is exact. Then % is a sheaf on X and for all ¢ > 0 and for every open subset U of X
the canonical homomorphisms HY(U, F) — H1(U, F) is an isomorphism. In particular
HYU,Z)=0 for allU € B and q > 1.

Proof. The exactness of 0 — .Z(U) — CO(U,.F) — C1(U,.F) shows that .Z’ is a sheaf
on % and thus .Z is a sheaf on X. The exactness of the augmented Cech complex
then shows that HY(%,.%) = 0 for all ¢ > 1 and for every open covering % of U € %
by open subsets in %. This shows H9(U,.#) = 0 for all ¢ > 1 and all U € % and
thus a result of Cartan (e.g. [God] I 5.9.2) shows that HY(U,.#) — H(U,.Z) is an
isomorphism for every open subset U C X and all ¢ > 0. O
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