Universität Heidelberg

Mathematisches Institut Dr. Andreas Maurischat Julian Quast 7. November 2018

Funktionentheorie 2 – Übungsblatt 3

Wintersemester 2018/19

Aufgabe 1 (Partialbruchzerlegung, 6 Punkte)

Bestimmen Sie die Partialbruchzerlegung der Funktion $f(z) = \frac{\pi}{\sin(\pi z)}$.

Aufgabe 2 (Mittag-Leffler-Verteilungen auf dem offenen Zylinder, 6 Punkte)

Sei Z der Zylinder aus Blatt 1, Aufgabe 3. Zeigen Sie:

- 1. $p: \mathbb{C} \to Z, w \mapsto (\frac{\Re(q)}{|q|}, \frac{\Im(q)}{|q|}, 2\pi \Im(w))$ mit $q = e^{2\pi i w}$ ist eine holomorphe Abbildung Riemannscher Flächen.
- 2. p ist sogar eine Überlagerung, d.h. p ist stetig und surjektiv und für jeden Punkt $x \in Z$ existiert eine offene Umgebung $x \in U \subset X$, sodass $p^{-1}(U)$ eine höchstens abzählbare disjunkte Vereinigung offener Mengen $(V_i)_{i \in I}$ ist, sodass $p|_{V_i} \to U$ für alle $i \in I$ ein Homöomorphismus ist.
- 3. Ist $S \subseteq Z$ diskret und $(h_s)_{s \in S}$ eine Hauptverteilung auf Z, so ist $S' := p^{-1}(S) \subseteq \mathbb{C}$ diskret und $(g_{s'})_{s' \in S'}$ mit $g_{s'} := h_{p(s')}$ ist eine Hauptverteilung auf \mathbb{C} .
- 4. Jede Mittag-Leffler-Verteilung auf Z ist lösbar.

Aufgabe 3 (Unendliche Produkte, 4 Punkte)

Untersuchen Sie die folgenden unendlichen Produkte auf Konvergenz:

(a)
$$\prod_{n=2}^{\infty} \left(\frac{n^3 - 1}{n^3 + 1} \right)$$

(b)
$$\prod_{n=1}^{\infty} \left(1 + \frac{n}{2} \sin \left(\frac{1}{n} \right) \right)$$

Abgabe: Mittwoch, 14. November 2018, bis spätestens 9 Uhr ct.