

Computing Teitelbaum's *L***-invariant**

 \mathbb{Q}_p

Peter Mathias Gräf – peter.graef@iwr.uni-heidelberg.de

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen – Ruprecht-Karls-Universität Heidelberg

Introduction

Let $f \in \mathcal{S}_{k+2}(\Gamma_0(pN))^{\text{new}}$ be a newform, where $k \geq 0$ is even, p is prime and N is an integer not divisible by p. Let χ be a Dirichlet character of conductor prime to pN such that $U_p f = \chi(p)p^{\frac{k}{2}}f$. By work of Mazur, Tate and Teitelbaum the order of vanishing of the p-adic L-function attached to f at the central point $s = \frac{k+2}{2}$ is one higher than that of the classical L-function attached to it. Moreover, they formulated the following **exceptional zero conjecture**: There exists an invariant $\mathcal{L}_p(f) \in \mathbb{C}_p$, depending only on the local Galois representation $\sigma_p(f)$ attached to f, such that

$$L'_p(f,\chi,\frac{k+2}{2}) = \mathcal{L}_p(f) \cdot L^{\mathrm{alg}}(f,\chi,\frac{k+2}{2}).$$

By work of Greenberg-Stevens and many others, the qualitative behaviour of $\mathcal{L}_p(f)$ is well known, on the contrary, not a lot of quantitative data on $\mathcal{L}_p(f)$ for arbitrary even weight is available. For this purpose, our aim is to compute the \mathcal{L} -invariant defined by Teitelbaum in [5].

Teitelbaum's \mathcal{L} -operator

Let
$$P_k = \mathbb{Q}_p[x]_{\leq k}$$
 with the $\operatorname{GL}_2(\mathbb{Q}_p)$ -action given by
 $(P \cdot g)(x) = \det(g)^{-\frac{k}{2}}(cx+d)^k P\left(\frac{ax+b}{cx+d}\right), \quad \text{for } P \in \mathcal{P}_k, \ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Q}_p)$

and denote by V_k its dual. The space of Γ -invariant harmonic cocycles $C_h(\Gamma, k)$ on \mathcal{T} consists of maps $c: \mathcal{T}_1 \to V_k$ such that for all $v \in \mathcal{T}_0, e \in \mathcal{T}_1$ and $\gamma \in \Gamma$ one has

$$(\overline{e}) = -c(e), \quad \sum_{s(e)=v} c(e) = 0, \quad \gamma \cdot c(e) = c(\gamma e).$$

There is a Hecke-equivariant isomorphism $\mathcal{S}_{k+2}(\Gamma_0(pN), \mathbb{C}_p)^{\text{new}} \cong C_h(\Gamma, k) \otimes_{\mathbb{Q}_p} \mathbb{C}_p$. Moreover, any $c \in C_h(\Gamma, k)$ gives rise to \mathbb{Q}_p -valued distribution μ_c on certain locally analytic functions on $\mathbb{P}^1(\mathbb{Q}_p)$. For $\tau \in \mathbb{Q}_{p^2} \setminus \mathbb{Q}_p$ define $\kappa_{\text{col}}^{\tau}(c) \colon \Gamma \to V_k$ by

$$1 \qquad (x - \gamma \tau) \qquad (x - \gamma \tau)$$

Objectives

- Find an **efficient method** for computing *L*-invariants for modular forms of arbitrary even weight.
- Analyze the **distribution and behaviour** of the \mathcal{L} -invariants for growing weight.

Computing Teitelbaum's *L*-operator

- Teitelbaum's invariants $\mathcal{L}_p(f)$ are realized as the eigenvalues of an operator, called the \mathcal{L} -operator, defined on the finite-dimensional \mathbb{C}_p -vector space of harmonic cocycles on the **Bruhat-Tits tree** \mathcal{T} . There are three main difficulties in designing an efficient method to compute this operator (up to a prescribed precision) as a matrix with *p*-adic entries:
- The \mathcal{L} -operator in [5] is defined over \mathbb{C}_p . In order to keep the running time of our computations as low as possible, we show that the \mathcal{L} -operator can in fact be **defined over** \mathbb{Q}_p .
- In order to describe Γ -invariant harmonic cocycles on \mathcal{T} by a finite amount of data, it is necessary to compute a **fundamental domain for the action of** Γ **on** \mathcal{T} , see [1].
- Coleman integrals enter into the definition of the \mathcal{L} -operator following [5] and a priori efficient computation of these seems to be completely out of reach. Teitelbaum proved in [5] that one can replace these Coleman integrals by *p*-adic integrals coming from harmonic cocycles. However, computing the integrals directly in terms of this new definition is much too slow to compute the \mathcal{L} -operator efficiently. An alternate approach was presented by Greenberg in [3] building on the **overconvergent methods** developed by Darmon, Pollack and Stevens.

 $\kappa_{\rm col}^{\tau}(c)(\gamma)(P) = \frac{1}{2} \operatorname{Tr}_{\mathbb{Q}_{p^2}/\mathbb{Q}_p} \left(\int_{\mathbb{P}^1(\mathbb{Q}_p)} P(x) \log_p \left(\frac{x - \tau}{x - \tau} \right) \mathrm{d}\mu_c(x) \right) \in \mathbb{Q}_p, \quad \text{for } \gamma \in \Gamma, \ P \in \mathcal{P}_k.$

This induces the Coleman integration map $\kappa_{col} \colon C_h(\Gamma, k) \to H^1(\Gamma, V_k)$. There is also a combinatorial Hecke-equivariant isomorphism $\kappa_{sch} \colon C_h(\Gamma, k) \to H^1(\Gamma, V_k)$ due to Schneider. The composition

 $\mathcal{L} = \kappa_{\rm col} \circ (\kappa_{\rm sch})^{-1} \colon H^1(\Gamma, V_k) \to H^1(\Gamma, V_k)$

is **Teitelbaum's** \mathcal{L} -operator, whose eigenvalues are the \mathcal{L} -invariants of the associated newforms.

A control theorem for p-adic automorphic forms

To compute the Coleman integrals, we first construct a covering of $\mathbb{P}^1(\mathbb{Q}_p)$ given by edges in \mathcal{T} such that the integrands have a nice expression. Then the remaining step is to compute the moments $m(\mu_c, g, i) = \mu_c(g\mathbb{Z}_p)(x^i \cdot g^{-1})$ for all $g \in \mathrm{GL}_2(\mathbb{Q}_p)$, $i \geq 0$. These moments are encoded in values of rigid analytic automorphic forms for Γ . Let $\mathcal{A}_k(\Gamma)$ denote the vector space of these forms and $\mathbb{A}_k(\Gamma)$ the space of *p*-adic automorphic forms. We have $C_h(\Gamma, k) \cong (\mathbb{A}_k(\Gamma)^{p-\mathrm{new}})^{U_p=p^{k/2}}$. By methods along the lines of [4], we obtain the following control theorem:

- The restriction of the specialization map $\rho: \mathcal{A}_k(\Gamma)^{U_p = p^{k/2}} \to \mathbb{A}_k(\Gamma)^{U_p = p^{k/2}}$ is an isomorphism.
- Let φ_c the *p*-adic automorphic form corresponding to *c* and denote the above lift by Φ_c . Then

 $\Phi_c(g)(x^i) = m(\mu_c, g, i).$

• For any lift $\Phi_0 \in \mathcal{A}_k(\Gamma)$ of φ_c defined over \mathbb{Z}_p , $n \ge 1$ and $i \in \{1, \ldots, n\}$, we have $((p^{-k/2}U_p)^n \Phi_0)(g)(x^{k+i}) = m(\mu_c, g, k+i) \pmod{p^{n-i+1}}.$

Computational Results for p = 2

To make the overconvergent method applicable in our setting, we prove a **control theorem for** p-adic automorphic forms of arbitrary even weight generalizing [3, Corollary 2].

Quotients of the Bruhat-Tits-tree

- Let B be a definite rational quaternion algebra of discriminant N, that is split at p.
 Let R be a maximal order in B.
- Let $\Gamma = R[\frac{1}{p}]_1^{\times}$ denote the units of reduced norm 1.
- Fix a splitting $\iota: B \otimes_{\mathbb{Q}} \mathbb{Q}_p \to M_2(\mathbb{Q}_p)$ such that $\iota(R \otimes_{\mathbb{Z}} \mathbb{Z}_p) = M_2(\mathbb{Z}_p)$ and regard Γ as a (discrete and cocompact) subgroup of $SL_2(\mathbb{Q}_p)$ via the splitting.

The **Bruhat-Tits tree** \mathcal{T} for $\operatorname{GL}_2(\mathbb{Q}_p)$ is the graph whose vertices \mathcal{T}_0 are the homothety classes of \mathbb{Z}_p -lattices in \mathbb{Q}_p^2 . Two vertices v and ware joined by an edge in \mathcal{T}_1 if there exist representative lattices L and L' such that $pL \subsetneq L' \subsetneq L$. The graph \mathcal{T} is a p + 1-regular tree. Via the reduction map, it encodes the geometry of the p-adic upper half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(\mathbb{Q}_p)$. The group $\operatorname{GL}_2(\mathbb{Q}_p)$ acts transitively on \mathcal{T} . The quotient $\Gamma \setminus \mathcal{T}$ is a finite graph. A **fundamental domain** for the action of Γ on the tree \mathcal{T} can be efficiently computed, see [1].

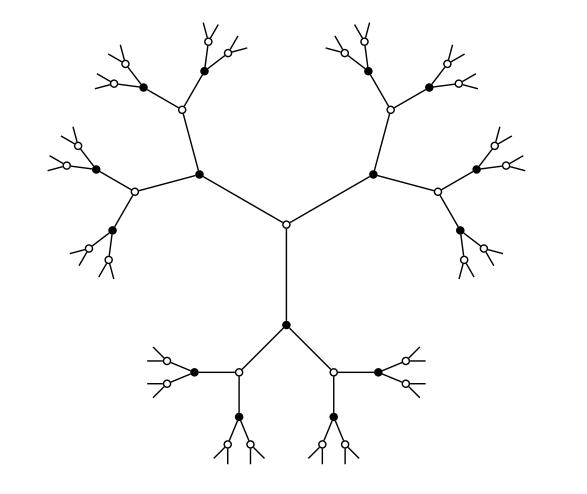


Figure 1: Bruhat-Tits tree for p = 2

Let $d_k(p, N) = \dim_{\mathbb{C}} \mathcal{S}_k(\Gamma_0(pN))^{\text{new}}$ and denote by $\alpha_{\mathcal{L}}(k, p, N)$ the slopes of the \mathcal{L} -operator. Let $\alpha_{\mathcal{L}}^{\pm}(k, p, N)$ be the slopes with respect to the Atkin-Lehner involution at N.

k	$d_k(2,3)$	$\alpha_{\mathcal{L}}(k,2,3)$	
		$\alpha_{\mathcal{L}}^+(k,2,3)$	$\alpha_{\mathcal{L}}^{-}(k,2,3)$
6	1	01	
8	1		-1_{1}
10	1		01
12	3	-1_{1}	-4_{2}
14	1	-1 ₁	
16	3	-4_{2}	-2_{1}
18	3	-4_{2}	-1_{1}
20	3	-2_{1}	-6_{2}
22	3	-2_{1}	-4_{2}
24	5	-6_{2}	$-2_1, -7_2$
26	3	-6_{2}	-2_{1}
28	5	$-2_1, -7_2$	-5_{2}
30	5	$-2_1, -7_2$	-6_{2}
32	5	-5_{2}	$-3_1, -7_2$

Table 1: p = 2, N = 3

k	$d_k(2,5)$	$\alpha_{\mathcal{L}}(k,2,5)$	
		$\alpha_{\mathcal{L}}^+(k,2,5)$	$\alpha_{\mathcal{L}}^{-}(k,2,5)$
6	3	-2_{2}	01
8	1		-1_1
10	3	$-\mathbf{5_2}$	01
12	5	-2_{2}	$-1_1, -4_2$
14	3	-3_{2}	-1_1
16	5	$-\mathbf{5_2}$	$-2_1, -4_2$
18	7	$-\mathbf{5_4}$	$-1_1, -4_2$
20	5	-3_{2}	$-2_1, -6_2$
22	7	$-1_2, -8_2$	$-2_1, -4_2$
24	9	-5_4	$-2_1, -6_2, -7_2$
26	7	$-\frac{11}{2}$ 4	$-2_1, -6_2$
28	9	$-1_2, -8_2$	$-2_1, -5_2, -7_2$
30	11	$-4_2, -7_4$	$-2_1, -6_2, -7_2$
32	9	$-\frac{11}{2}_4$	$-3_1, -5_2, -7_2$

Table 2: p = 2, N = 5

Conjectures

• For $k \in 4\mathbb{Z}, k \geq 8$, we have

 $\alpha_{\mathcal{L}}^{-}(k,2,3) = \alpha_{\mathcal{L}}^{+}(k+4,2,3) = \alpha_{\mathcal{L}}^{+}(k+6,2,3) = \alpha_{\mathcal{L}}^{-}(k+10,2,3)$

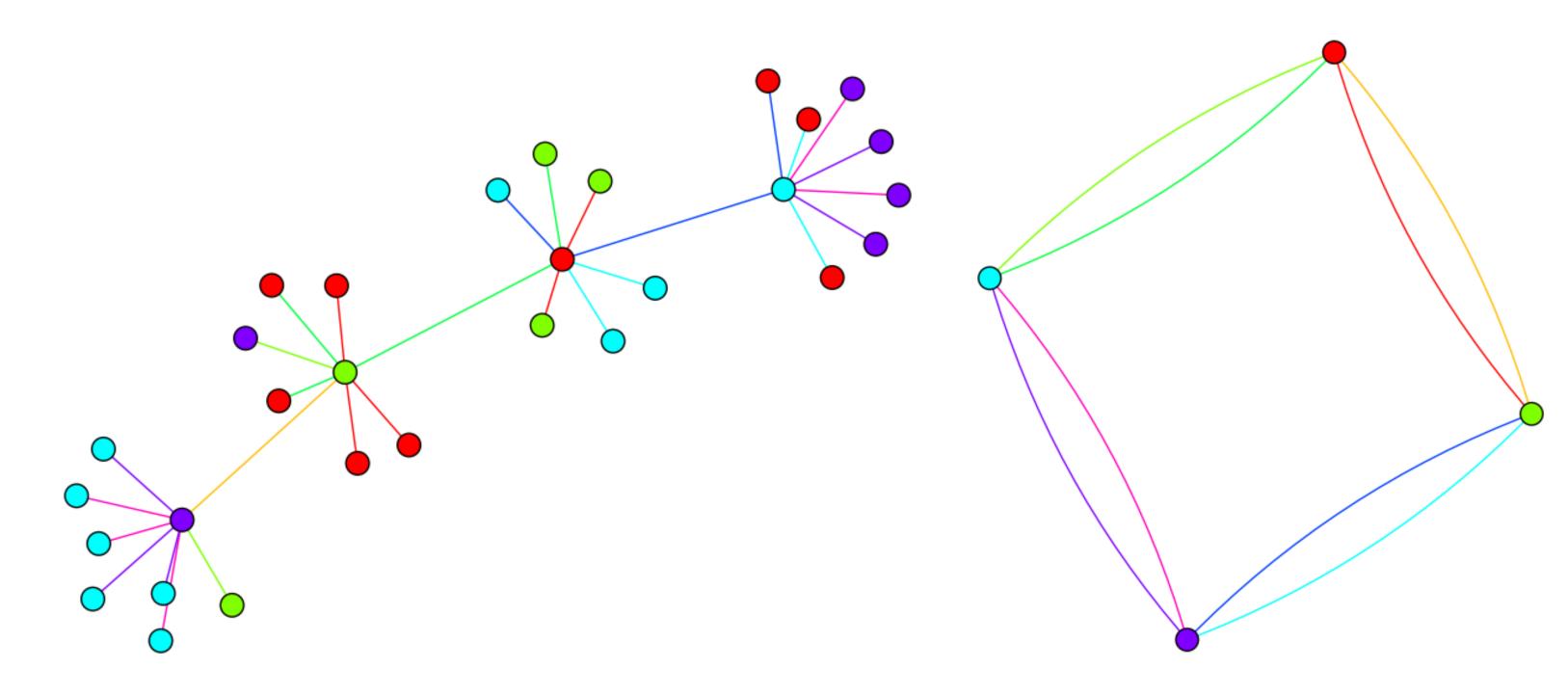


Figure 2: Fundamental domain and quotient graph for p=7 and N=11

The crucial step is to reduce the problem we ther two edges (or vertices) are Γ -equivalent to a shortest vector search in a lattice by only using an approximation of ι up to some finite *p*-adic precision. and consequently $\alpha_{\mathcal{L}}(k, 2, 3) = \alpha_{\mathcal{L}}(k + 6, 2, 3).$ • For $k \ge 6$ we have $\alpha_{\mathcal{L}}^-(k, 2, 5) = \alpha_{\mathcal{L}}(k, 2, 3)$. Moreover, for $k \in 2 + 4\mathbb{Z}, k \ge 6$, we have $\alpha_{\mathcal{L}}^+(k, 2, 5) = \alpha_{\mathcal{L}}^+(k + 6, 2, 5).$

Future Directions

- The above conjectures show only a small part of the visible patterns and observations. We are gathering more data for other primes, and are computing *L*-invariants of classical and *p*-adic modular forms building on work of Lauder.
- Our observations are related to recent conjectures of Bergdall and Pollack on the size of the Coleman family through f and its relation with the *L*-invariant.

References

- [1] C. Franc, M. Masdeu, Computing fundamental domains for the Bruhat-Tits tree for GL₂(Q_p), p-adic automorphic forms, and the canonical embedding of Shimura curves. LMS J. of Comput. Math. **17** (2014), 1–23.
- P. M. Gräf, A control theorem for p-adic automorphic forms and Teitelbaum's *L*-invariant. Preprint (2017), https://arxiv.org/abs/1705.02158.
- [3] M. Greenberg, Heegner point computations via numerical p-adic integration. Lect. Notes Comput. Sc. 4076 (2006), 361-376.
- [4] M. Greenberg, Lifting modular symbols of noncritical slope. Israel Journal of Mathematics 161 (2007), no. 1, 141–155.
- [5] J. T. Teitelbaum, Values of p-adic L-functions and a p-adic Poisson kernel. Invent. Math. 101 (1990), no. 2, 395–410.