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Introduction

Let f € Srio(To(pN))"™ be a newform, where k > 0 is even, p is prime and N is an integer not
divisible by p. Let x be a Dirichlet character of conductor prime to p/N such that U,f = X(p)pg f.
By work of Mazur, Tate and Teitelbaum the order of vanishing of the p-adic L-function attached
to f at the central point s = % is one higher than that of the classical L-function attached to it.
Moreover, they formulated the following exceptional zero conjecture: There exists an invariant

L,(f) € C,, depending only on the local Galois representation o,(f) attached to f, such that
LU0 B2) = L,(f) - L(f, 0, 222).

By work of Greenberg-Stevens and many others, the qualitative behaviour of £,(f) is well known, on
the contrary, not a lot of quantitative data on L£,(f) for arbitrary even weight is available. For this
purpose, our aim is to compute the L-invariant defined by Teitelbaum in [5].

Objectives

» Find an efficient method for computing L-invariants for modular forms of arbitrary even
weight.

» Analyze the distribution and behaviour of the L-invariants for growing weight.

Computing Teitelbaum’s L-operator

Teitelbaum’s invariants £,(f) are realized as the eigenvalues of an operator, called the L-operator,
defined on the finite-dimensional C,-vector space of harmonic cocycles on the Bruhat-Tits tree 7.
There are three main difficulties in designing an efficient method to compute this operator (up to a
prescribed precision) as a matrix with p-adic entries:

« The L-operator in [5] is defined over C,. In order to keep the running time of our computations as
low as possible, we show that the L-operator can in fact be defined over Q,.

« In order to describe I'-invariant harmonic cocycles on 7 by a finite amount of data, it is necessary
to compute a fundamental domain for the action of I' on T, see [1].

» Coleman integrals enter into the definition of the L-operator following [5] and a priori efficient
computation of these seems to be completely out of reach. Teitelbaum proved in [5] that one
can replace these Coleman integrals by p-adic integrals coming from harmonic cocycles. However,
computing the integrals directly in terms of this new definition is much too slow to compute the
L-operator efficiently. An alternate approach was presented by Greenberg in [3] building on the
overconvergent methods developed by Darmon, Pollack and Stevens.

To make the overconvergent method applicable in our setting, we prove a control theorem for
p-adic automorphic forms of arbitrary even weight generalizing |3, Corollary 2].

Quotients of the Bruhat-Tits-tree

» Let B be a definite rational quaternion algebra of discriminant /V, that is split at p.

= Let R be a maximal order in B.

« Let ' = R[}%]f denote the units of reduced norm 1.

« Fix a splitting ¢: B ®q Q, — M(Q,) such that ¢(R ®z Z,) = My(Z,) and regard " as a (discrete
and cocompact) subgroup of SLy(Q,) via the splitting.

The Bruhat-Tits tree 7 for GLy(Q,) is

the graph whose vertices 7y are the homothety
classes of Z,-lattices in Qg. ‘Two vertices v and w

are joined by an edge in 7; if there exist represen-
tative lattices L and L’ such that pL C L' C L.
The graph 7T is a p + l-regular tree. Via the
reduction map, it encodes the geometry of the
p-adic upper half plane H, = P(C,) \ P/(Q,).
The group GLy(Q,) acts transitively on 7. The
quotient I'\'7" is a finite graph. A fundamen-
tal domain for the action of I on the tree T

' Fi 1: Bruhat-Tits tree f = 2
can be efficiently computed, see [1]. igure 1. bruhat- lits tree for p

Figure 2: Fundamental domain and quotient graph for p =7 and N =11

The crucial step is to reduce the problem wether two edges (or vertices) are [-equivalent to a shortest
vector search in a lattice by only using an approximation of ¢ up to some finite p-adic precision.

Teitelbaum’s L-operator

Let P, = Q,|z|<; with the GLy(Q,)-action given by

(P g)(x) = det(g)” Zj i 2

)  for PEPy, g = (CC‘ 2) € GLy(Q,)

and denote by V} its dual. The space of I'-invariant harmonic cocycles C(I', k) on T consists
of maps c: T; — V. such that for all v € T, e € Ty and v € I one has

DO

(cx 4 d)*P (

C(E) — _C(e)a Zs(e):v C(e) =0, - C(e) — C(7€)°
There is a Hecke-equivariant isomorphism Sp42(I'o(pN), C))"™ = Cp(I', k) ®q, C,. Moreover, any

c € Cu(T, k) gives rise to Q,-valued distribution p. on certain locally analytic functions on P'(@Q,).

For 7 € Q2 \ Q, define k] j(c): I' = V}, by
1

0P =3 Traue, [, Plaliog (

This induces the Coleman integration map keo: Cy(I', k) — H'(I", V}.). There is also a combinatorial
Hecke-equivariant isomorphism kg, : Ch(I', k) — HY(I', V},) due to Schneider. The composition

L = kel 0 (k) 1 HY(T,V3) — HYT, V)

is Teitelbaum’s L-operator, whose eigenvalues are the L-invariants of the associated newforms.

) d,uc(aj)> cQ, foryel, PePy.

A control theorem for p-adic automorphic forms

To compute the Coleman integrals, we first construct a covering of P(Q,) given by edges in T such
that the integrands have a nice expression. Then the remaining step is to compute the moments
m(pe, g,1) = pe(gZy)(z' - g71) for all g € GLy(Q,), @ > 0. These moments are encoded in values of
rigid analytic automorphic forms for I". Let Ax(I") denote the vector space of these forms and Ax(I)
the space of p-adic automorphic forms. We have C),(I', k) = (A4(D)P2") V=" By methods
along the lines of 4], we obtain the following control theorem:

_ph/?

« The restriction of the specialization map p: Ax(D)%="" — Ay(D)%="" is an isomorphism.

» Let . the p-adic automorphic form corresponding to ¢ and denote the above liftt by ®.. Then

D(g)(x") = m(pc, g,1).
« For any lift &y € Ai(") of . defined over Z,, n > 1 and ¢ € {1,...,n}, we have

((p~"2U,)"®0) (9)(z**") = m(pc, g,k +1) (mod p" ).

Computational Results for p =2

Let di(p, N) = dime Si(Io(pN))"™ and denote by az(k, p, N) the slopes of the L-operator.
Let a7 (k, p, N) be the slopes with respect to the Atkin-Lehner involution at N.

ko 1di(2,3) ap(k,2,3) k |di(2,5) ap(k,2,5)
a(k,2,3) a,(k,2,3) a(k,2,5) a,(k,2,5)

6 |1 04 6 |3 01

S |1 S |1 —14

10 1 04 10 13 —99 04

12 13 —49 12 |5 —11, —49

14 |1 14 13 —39 —14

16 |3 —49 —21 16 |5 —99 —21, —49

1813 —49 18 |7 —94 —11, —49

20 |3 —21 —69 20 15 —39 —21, —69

22 13 —21 —49 2217 —19, —89 —21, —49

24 15 —69 —21,—72 24 19 —94 —21, —69, =79

26 13 — 69 —24 26 |7 —5 —21, —69

28 10 —21,—792 —d9 28 19 —19, —89 —21, —959, — 19

30 15 —21,—79 —69 30 |11 —49, =7y —21, —69, —79

32 D —92 —31, =12 3219 —%4 —31, =99, — 19

Table 1. p=2, N =3 Table 2: p=2, N =5

Conjectures

« For kK € 47., k > 8, we have
ay(k,2,3)=ap(k+4,2,3)=aj(k+6,2,3) = a,(k+10,2,3)

and consequently a,(k,2,3) = ag(k +6,2,3).
« For £ > 6 we have a(k,2,5) = ag(k,2,3). Moreover, for k € 2+ 47, k > 6, we have
af(k,2,5) =ap(k+6,2,5).
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