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Introduction

Let f ∈ Sk+2(Γ0(pN))new be a newform, where k ≥ 0 is even, p is prime and N is an integer not
divisible by p. Let χ be a Dirichlet character of conductor prime to pN such that Upf = χ(p)pk2f .
By work of Mazur, Tate and Teitelbaum the order of vanishing of the p-adic L-function attached
to f at the central point s = k+2

2 is one higher than that of the classical L-function attached to it.
Moreover, they formulated the following exceptional zero conjecture: There exists an invariant
Lp(f ) ∈ Cp, depending only on the local Galois representation σp(f ) attached to f , such that

L′p(f, χ, k+2
2 ) = Lp(f ) · Lalg(f, χ, k+2

2 ).
By work of Greenberg-Stevens and many others, the qualitative behaviour of Lp(f ) is well known, on
the contrary, not a lot of quantitative data on Lp(f ) for arbitrary even weight is available. For this
purpose, our aim is to compute the L-invariant defined by Teitelbaum in [5].

Objectives

• Find an efficient method for computing L-invariants for modular forms of arbitrary even
weight.

• Analyze the distribution and behaviour of the L-invariants for growing weight.

Computing Teitelbaum’s L-operator

Teitelbaum’s invariants Lp(f ) are realized as the eigenvalues of an operator, called the L-operator,
defined on the finite-dimensional Cp-vector space of harmonic cocycles on the Bruhat-Tits tree T .
There are three main difficulties in designing an efficient method to compute this operator (up to a
prescribed precision) as a matrix with p-adic entries:
• The L-operator in [5] is defined over Cp. In order to keep the running time of our computations as
low as possible, we show that the L-operator can in fact be defined over Qp.

• In order to describe Γ-invariant harmonic cocycles on T by a finite amount of data, it is necessary
to compute a fundamental domain for the action of Γ on T , see [1].

• Coleman integrals enter into the definition of the L-operator following [5] and a priori efficient
computation of these seems to be completely out of reach. Teitelbaum proved in [5] that one
can replace these Coleman integrals by p-adic integrals coming from harmonic cocycles. However,
computing the integrals directly in terms of this new definition is much too slow to compute the
L-operator efficiently. An alternate approach was presented by Greenberg in [3] building on the
overconvergent methods developed by Darmon, Pollack and Stevens.

To make the overconvergent method applicable in our setting, we prove a control theorem for
p-adic automorphic forms of arbitrary even weight generalizing [3, Corollary 2].

Quotients of the Bruhat-Tits-tree

• Let B be a definite rational quaternion algebra of discriminant N , that is split at p.
• Let R be a maximal order in B.
• Let Γ = R[1

p]
×
1 denote the units of reduced norm 1.

• Fix a splitting ι : B ⊗Q Qp→ M2(Qp) such that ι(R⊗Z Zp) = M2(Zp) and regard Γ as a (discrete
and cocompact) subgroup of SL2(Qp) via the splitting.

The Bruhat-Tits tree T for GL2(Qp) is
the graph whose vertices T0 are the homothety
classes of Zp-lattices inQ2

p. Two vertices v and w
are joined by an edge in T1 if there exist represen-
tative lattices L and L′ such that pL ( L′ ( L.
The graph T is a p + 1-regular tree. Via the
reduction map, it encodes the geometry of the
p-adic upper half plane Hp = P1(Cp) \ P1(Qp).
The group GL2(Qp) acts transitively on T . The
quotient Γ\T is a finite graph. A fundamen-
tal domain for the action of Γ on the tree T
can be efficiently computed, see [1]. Figure 1: Bruhat-Tits tree for p = 2

Figure 2: Fundamental domain and quotient graph for p = 7 and N = 11

The crucial step is to reduce the problem wether two edges (or vertices) are Γ-equivalent to a shortest
vector search in a lattice by only using an approximation of ι up to some finite p-adic precision.

Teitelbaum’s L-operator

Let Pk = Qp[x]≤k with the GL2(Qp)-action given by

(P · g)(x) = det(g)−
k
2(cx + d)kP

(
ax + b

cx + d

)
, for P ∈ Pk, g =

(
a b
c d

)
∈ GL2(Qp)

and denote by Vk its dual. The space of Γ-invariant harmonic cocycles Ch(Γ, k) on T consists
of maps c : T1 → Vk such that for all v ∈ T0, e ∈ T1 and γ ∈ Γ one has

c(e) = −c(e), ∑
s(e)=v c(e) = 0, γ · c(e) = c(γe).

There is a Hecke-equivariant isomorphism Sk+2(Γ0(pN),Cp)new ∼= Ch(Γ, k) ⊗Qp
Cp. Moreover, any

c ∈ Ch(Γ, k) gives rise to Qp-valued distribution µc on certain locally analytic functions on P1(Qp).
For τ ∈ Qp2 \Qp define κτcol(c) : Γ→ Vk by

κτcol(c)(γ)(P ) = 1
2

TrQp2/Qp

(∫
P1(Qp)

P (x) logp
(
x− γτ
x− τ

)
dµc(x)

)
∈ Qp, for γ ∈ Γ, P ∈ Pk.

This induces the Coleman integration map κcol : Ch(Γ, k)→ H1(Γ, Vk). There is also a combinatorial
Hecke-equivariant isomorphism κsch : Ch(Γ, k)→ H1(Γ, Vk) due to Schneider. The composition

L = κcol ◦ (κsch)−1 : H1(Γ, Vk)→ H1(Γ, Vk)
is Teitelbaum’s L-operator, whose eigenvalues are the L-invariants of the associated newforms.

A control theorem for p-adic automorphic forms

To compute the Coleman integrals, we first construct a covering of P1(Qp) given by edges in T such
that the integrands have a nice expression. Then the remaining step is to compute the moments
m(µc, g, i) = µc(gZp)(xi · g−1) for all g ∈ GL2(Qp), i ≥ 0. These moments are encoded in values of
rigid analytic automorphic forms for Γ. Let Ak(Γ) denote the vector space of these forms and Ak(Γ)
the space of p-adic automorphic forms. We have Ch(Γ, k) ∼= (Ak(Γ)p−new)Up=pk/2. By methods
along the lines of [4], we obtain the following control theorem:
• The restriction of the specialization map ρ : Ak(Γ)Up=pk/2 → Ak(Γ)Up=pk/2 is an isomorphism.
• Let ϕc the p-adic automorphic form corresponding to c and denote the above lift by Φc. Then

Φc(g)(xi) = m(µc, g, i).
• For any lift Φ0 ∈ Ak(Γ) of ϕc defined over Zp, n ≥ 1 and i ∈ {1, . . . , n}, we have

((p−k/2Up)nΦ0)(g)(xk+i) = m(µc, g, k + i) (mod pn−i+1).

Computational Results for p = 2

Let dk(p,N) = dimC Sk(Γ0(pN))new and denote by αL(k, p,N) the slopes of the L-operator.
Let α±L(k, p,N) be the slopes with respect to the Atkin-Lehner involution at N .

k dk(2, 3) αL(k, 2, 3)
α+
L(k, 2, 3) α−L(k, 2, 3)

6 1 01
8 1 − 11
10 1 01
12 3 −11 −42
14 1 −11
16 3 −42 −21
18 3 −42 −11
20 3 −21 −62
22 3 −21 −42
24 5 −62 −21,−72
26 3 −62 −21
28 5 −21,−72 −52
30 5 −21,−72 −62
32 5 −52 −31,−72

Table 1: p = 2, N = 3

k dk(2, 5) αL(k, 2, 5)
α+
L(k, 2, 5) α−L(k, 2, 5)

6 3 −22 01
8 1 −11
10 3 −52 01
12 5 −22 −11,−42
14 3 −32 −11
16 5 −52 −21,−42
18 7 −54 −11,−42
20 5 −32 −21,−62
22 7 −12,−82 −21,−42
24 9 −54 −21,−62,−72
26 7 −11

2 4 −21,−62
28 9 −12,−82 −21,−52,−72
30 11 −42,−74 −21,−62,−72
32 9 −11

2 4 −31,−52,−72

Table 2: p = 2, N = 5

Conjectures

• For k ∈ 4Z, k ≥ 8, we have
α−L(k, 2, 3) = α+

L(k + 4, 2, 3) = α+
L(k + 6, 2, 3) = α−L(k + 10, 2, 3)

and consequently αL(k, 2, 3) = αL(k + 6, 2, 3).
• For k ≥ 6 we have α−L(k, 2, 5) = αL(k, 2, 3). Moreover, for k ∈ 2 + 4Z, k ≥ 6, we have

α+
L(k, 2, 5) = α+

L(k + 6, 2, 5).

Future Directions

• The above conjectures show only a small part
of the visible patterns and observations. We
are gathering more data for other primes, and
are computing L-invariants of classical and
p-adic modular forms building on work of
Lauder.

• Our observations are related to recent conjec-
tures of Bergdall and Pollack on the size of
the Coleman family through f and its relation
with the L-invariant.
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