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Drinfeld modular forms

Notation

Let p be prime and q = pe .

A = Fq[t] (Z)

F = Fq(t) (Q)

F∞ = Fq((1/t)) (R)

C∞ = F̂∞ (C)

Let Ω = P1
F∞
\ P1(F∞) the Drinfeld period domain viewed as a rigid space

over F∞. It carries a natural action of GL2(F∞).
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Drinfeld modular forms

Drinfeld modular forms

Definition:
Let k ∈ Z, ` ∈ Z/(q − 1)Z. A Drinfeld modular (cusp) form of weight k
and type ` for Γ = GL2(A) is a rigid analytic function f : Ω→ C∞ such
that:
(i) f (γz) = det(γ)−`(cz + d)k f (z) for γ =

(
a b
c d

)
∈ Γ.

(ii) f is holomorphic at ∞ (vanishes at ∞).
We denote by Mk,`(Γ) and Sk,`(Γ) the C∞-vector spaces of Drinfeld
modular forms and Drinfeld cusp forms.

For p ⊂ A prime there is an attached Hecke operator Tp ∈ End(Mk,`(Γ)),
which stabilizes Sk,`(Γ). The Hecke operators form a commutative (Hecke)
algebra T.
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Drinfeld modular forms

Drinfeld modular forms

Question: Are there interesting maps between the spaces Sk,`(Γ) for
varying k and ` that behave well with respect to the Hecke operators
(defined over F )?

In the classical situation, one expects no such maps to exist: The Maeda
conjecture predicts that Scl

k (SL2(Z),Q) is irreducible as a Hecke module.

For Drinfeld cups forms the behaviour is very different.
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Hyperderivatives and the Frobenius

Hyperderivatives: (Bosser-Pellarin) Fix k ≥ 2 and suppose that s ≥ 1
satisfies

(k+s−1
i

)
≡ 0 (mod p) for i = 1, . . . , s. Then there exists a linear

hyperderivative map

Ds : Sk,`(Γ)→ Sk+2s,`+s(Γ)

such that Ds(Tpf ) = Tp(Ds f ). In general, Ds is neither trivial nor
surjective.

(Note that Bosser-Pellarin use a different normalization for the Hecke
operators, namely they have Ds(Tpf ) = p−sTp(Ds f ).)

Frobenius: The map

τp : Sk,`(Γ)→ Spk,p`(Γ), f 7→ f p

satisfies τp(Tpf ) = Tpτp(f ).
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The link to representation theory

The Steinberg module

The projective line P1(F ) carries a natural left action by GL2(F ). Let

deg : Z[P1(F )× GL2(F )/Γ]→ Z[GL2(F )/Γ],∑
i ni (Pi , giΓ) 7→

∑
i ni (giΓ),

a map of Z[GL2(F )]-modules.

Definition:
The Steinberg module StΓ for Γ is the kernel in the short exact sequence

0→ StΓ → Z[P1(F )× GL2(F )/Γ]
deg−−→ Z[GL2(F )/Γ]→ 0.

It carries an action by the Hecke algebra T.
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The link to representation theory

Teitelbaum’s isomorphism

Let ∆k = Symk((F 2)∗) ∼= F [X ,Y ]deg=k and

Vk,` = HomF (∆k−2 ⊗F det`−1,F ).

Theorem: (Teitelbaum)

There is a Hecke-equivariant isomorphism

Sk,`(Γ)→ (StΓ ⊗GL2(F ) Vk,`)⊗F C∞.
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The link to representation theory

The functor StΓ ⊗GL2(F ) (·)

Theorem: (B-G-P)

The functor

RepfF (GL2(F ))→ ModfF [T]

M 7→ StΓ ⊗GL2(F ) M

is exact.

Question: Can one describe Hyperderivatives and Frobenius in terms of
representation theory, i.e. via the functor above?
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The link to representation theory

Hyperderivatives

Fix k ≥ 2 and suppose that s ≥ 1 satisfies
(k+s−1

i

)
≡ 0 (mod p) for

i = 1, . . . , s. Then the map

Ds : ∆k−2+2s ⊗F dets → ∆k−2

X iY j 7→ (−1)s
(i
s

)
X i−sY j−s

is GL2(F )-equivariant.

Via Teitelbaum’s isomorphism (and after dualizing) we have

Ds = D∗s ,

i.e. these are the hyperderivatives of Bosser-Pellarin.
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The link to representation theory

The Frobenius

Denote by σ the Frobenius of (the perfect field) C∞. Let k ≥ 2 and
m ∈ Z. The map

Cp : σ∗((∆pk−2 ⊗ detpm−1)⊗F C∞)→ (∆k−2 ⊗ detm−1)⊗F C∞

given by

Cp(aX i−1Y j−1) =

{
a

1
pX

i
p
−1Y

j
p
−1
, if p | i ,

0, otherwise,

is GL2(F )-equivariant and surjective. Via Teitelbaum’s isomorphism (and
after dualizing) it becomes the Frobenius on Drinfeld cusp forms.

Remark: This map can be interpreted in terms of the Cartier operator on
A2
C∞

.
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The link to representation theory

Remarks

• Upshot: All of the constructions presented in this talk work over any
base A and for general congruence subgroups Γ ⊂ GL2(F ). In
particular, the representation theoretic construction of the
hyperderivative maps provides a natural generalization of the maps of
Bosser-Pellarin to this general setting.

• It is a natural question to ask wether one can find other interesting
maps via representation theory; questions along these lines will be
discussed in the next talk by R. Perkins.
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Numerical examples

Example: Let q = 3. We have chains of hyperderivatives

S62,0(Γ)
D2−→ S66,0(Γ)

D16−−→ S98,0(Γ)
D2−→ S102,0(Γ)

and a direct map
S62,0(Γ)

D20−−→ S102,0(Γ)

but no direct maps

S62,0(Γ)
D18−−→ S98,0(Γ) and S66,0(Γ)

D18−−→ S102,0(Γ).

One has D2D16 = D16D2 = 0. There are also Frobenius maps

S22,0(Γ)
τ3−→ S66,0(Γ) and S34,0(Γ)

τ3−→ S102,0(Γ).

We have computed the action of the Hecke operator Tt on the image of all
of these maps using Sage (with the normalization as in Bosser-Pellarin).
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Numerical examples

S102,0(Γ)

(X − t4) · (X − t22) · (X − t28)
(X − t30) · (X + t48 + t24)

(X 2 + t6X − t96 + t90 + t18)
(X 2 + t10X + t92 − t84 + t12)

(irreducible of degree 3)

S34,0(Γ)

(X − t10) · (X + t16 + t8)
(X 2 + t2X − t32 + t30 + t6)

τ3

S98,0(Γ)

(X − t2) · (X − t8) · (X − t20)
(X − t28) · (X + t46 + t22)

(X 2 + t4X − t92 + t86 + t14)
(X 2 + t44X + t70 + t62 − t44)

(irreducible of degree 3)

D2

S66,0(Γ)

(X − t4) · (X − t12) · (X + t30 + t6)
(X 2 + t28X + t38 + t30 − t12)

(irreducible of degree 3)

D16

S62,0(Γ)

(X − t2) · (X − t8)
(X − t10) · (X + t28 + t4)

(irreducible of degree 3)

D2

D20

S22,0(Γ)

(X − t4) · (X + t10 + t2)

τ3
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