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1 Introduction

The AKS-algorithm delivers us a primality test
that can be computed in polynomial time c¢d? for
some positive constants ¢ and A. d stands for the
number of digits of the number n on which the
AKS-primality test ist applied. The improvement
of bit operations (steps) in comparision to older
algorithms were brought down from d¢loglogd
for some constant ¢ > 0 to d™ steps and
a modification by Lenstra and Pomerance in
about d® steps. This was also called Gauss’s
dream which describes an algorithm that can find
prime numbers in polynomial time and puts that
Problem in the P complexity class.

2 Proof Steps

We start by assuming that a given number n > 1
is odd, not a perfect power, with no prime factor
< r and has order d > (logn)? mod r such that

(1)

We know it holds for n is a prime, so we must
show that they cannot hold if n is composite.
We start by letting p be a prime dividing n and
h(z) be an irreducible factor of 2" — 1 to get
(x+a)" =z"4+a mod (p, h(z)). The congruence
classes mod (p, h(z)) can be viewed as elements
of the ring F := Z/(p, h(x)) which is isomorphic to
a field of p™ elements. This makes working with
the fields much easier.

We define the following sets

(r+a)"=2"+a mod (n,z" —1)

H=(x+b:1<b<[A4]) (2)

G:=H mod (p,h(z)) (3)

S={keN: (4)
g(z¥) = g(z)* mod (p,2" —1),Vg € H}

Now our goal is to give an upper and lower bound
on the size of G to establish a contradiction,
therefore showing that eq. doesn’t work for n
composite.

2.1 Upper Bound on |G|

We start by proving the following lemmas
Lemma 2.1.1. If a,b € S, then ab € S

Lemma 2.1.2. ifa,b € Sand a =b mod r, then
a=b mod |G|

Our objective is to prove the following elegant
characterization of prime numbers by Agrawal,
Kayal and Saxena.

Theorem (Agrawal, Kayal and Saxena). For
given integer m > 2, let r be a positive integer
r < n, for which n has order > (logn)? mod 7.
Then n is prime if and only if

e 1 is not a perfect power,

e n does not have any factor < r,

e (x+a)"=2"+a mod (n,a" — 1) for each
a€Z,1<a<A:=./rlogn

We define R as follows. R < (Z/rZ)* and R =
(n,p). Since n is not a power of p, the integers
n'p’ with i, > 0 are distinct. There are > |R|
such integers with 0 < 4,5 < \/@ and so two
must be congruent (mod r)

n'p’ =n'p’ ()

By lemma these integers are both in S. By
lemma their difference is divisble by |G| and
therefore

(mod )

G| < |n'p! —nlp?| < (np)VIF =1 < p2VIEI 1

(6)
We can improve this by showing that n/p € S and
then replace n by n/p € S eq. @ to get

Gl < nVIE 1 (7)

2.2 Lower bounds on |G|

The inital idea was to show that there are many
distinct elements of G. If f(z),g(z) € Z[z] with
f(z) = g(z) mod (p,h(x)), then we can write
f(z)—g(x) = h(x)k(x) mod p for k(x) € Z[x]. If
both deg(f) and deg(g) < deg(h), then k(z) =0
mod p which implies f(z) = g(x) mod p. For
all polynomials of the form [[,.,«4(x + a)® of
degree < deg(h) = m are distinct elements of
G. Therefore if p™ = 1 (mod r) is large, then
we can get a good lower bound on |G|. However
proving that such r exists proves challenging and
needing non-trivial tools of analytical number
theory. Inspired by Lenstra and Pomerance we
can replace m by |R|
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Lemma 2.2.1. Suppose that f(z),g(x) €
Zlz] with f(z) = g(x) mod (p,h(z)) and the
reductions of f and g in F both belong to G.
If deg(f) and deg(g) < |R|, then f(x) = g(z)
mod p

We define R as follows

R:={(n:n (mod r)) (8)

so |R| > d, with d being the order of n mod r,
which is > (logn)? by the assumption of AKS.
That gives us |R| > (logn)?. Therefore |R| > B,

where B := [\/|R|log n]. lemma implies that

the products [, r(z + a) give distinct elements
of G for every subset T of the set {0,1,2,..., B}.
This gives us

1G] > 2B+ — 1> VIR 1 (9)

which contradicts eq. . That completes the
proof of the theorem of AKS. So we proved by

contradiction that eq. doesn’t work for n being
composite.

3 Improvements by Lenstra and Pomerance

The core idea behind this improvement of Lenstra-
Pomerance is to replace the polynomial ®,(z) in
AKS by a certain polynomial f(z) with integer
coefficients of degree d and positive integer n. We
say that Z[z]/(n, f(z)) is a pseudofield if

a) f(z™) =0 mod (n, f(x))

b) 2" —2=0 mod (n, f(z)), and
c) 2" — 2 is a unit in Z]z]/(n, f(x)) for all
primes ¢ dividing d

When n is prime and f(x) is irreducible mod n,
then these criteria are all true and Z[z]/(n, f(z))
is a field.

Theorem (Lenstra and Pomerance). For a
given n,r € Z, n > 2 let d € Z be in ((logn)?,n)
for which there exists a polynomial f(x) of degree
d with integer coefficients such that Z[x]/(n, f(z))
is a pseudofield. Then n is prime if and only if

e 1 is not a perfect power,
e n does not have any prime factor < d,

e (x+a)" = 2"+ a mod (n, f(x)) for each
a€Z,1<a<A:=+dlogn.

One can quickly determine if for a given f one
gets a pseudofield, and if so check the criteria of
the theorem. This fact gives this version of the
primality test its speed.
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