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1 Introduction

The AKS-algorithm delivers us a primality test
that can be computed in polynomial time cdA for
some positive constants c and A. d stands for the
number of digits of the number n on which the
AKS-primality test ist applied. The improvement
of bit operations (steps) in comparision to older
algorithms were brought down from dc log log d

for some constant c > 0 to d7.5 steps and
a modification by Lenstra and Pomerance in
about d6 steps. This was also called Gauss’s
dream which describes an algorithm that can find
prime numbers in polynomial time and puts that
Problem in the P complexity class.

Our objective is to prove the following elegant
characterization of prime numbers by Agrawal,
Kayal and Saxena.

Theorem (Agrawal, Kayal and Saxena). For
given integer n ≥ 2, let r be a positive integer
r < n, for which n has order > (log n)2 mod r.
Then n is prime if and only if

� n is not a perfect power,

� n does not have any factor ≤ r,

� (x+ a)n ≡ xn + a mod (n, xr − 1) for each
a ∈ Z, 1 ≤ a ≤ A :=

√
r log n

2 Proof Steps

We start by assuming that a given number n > 1
is odd, not a perfect power, with no prime factor
≤ r and has order d > (log n)2 mod r such that

(x+ a)n ≡ xn + a mod (n, xr − 1) (1)

We know it holds for n is a prime, so we must
show that they cannot hold if n is composite.
We start by letting p be a prime dividing n and
h(x) be an irreducible factor of xr − 1 to get
(x+a)n ≡ xn+a mod (p, h(x)). The congruence
classes mod (p, h(x)) can be viewed as elements
of the ring F :≡ Z/(p, h(x)) which is isomorphic to
a field of pm elements. This makes working with
the fields much easier.
We define the following sets

H := ⟨x+ b : 1 ≤ b ≤ [A]⟩ (2)

G := H mod (p, h(x)) (3)

S := {k ∈ N : (4)

g(xk) ≡ g(x)k mod (p, xr − 1),∀g ∈ H}

Now our goal is to give an upper and lower bound
on the size of G to establish a contradiction,
therefore showing that eq. (1) doesn’t work for n
composite.

2.1 Upper Bound on |G|

We start by proving the following lemmas

Lemma 2.1.1. If a, b ∈ S, then ab ∈ S

Lemma 2.1.2. if a, b ∈ S and a ≡ b mod r, then
a ≡ b mod |G|

We define R as follows. R ≤ (Z/rZ)× and R =
⟨n, p⟩. Since n is not a power of p, the integers
nipj with i, j ≥ 0 are distinct. There are > |R|
such integers with 0 ≤ i, j ≤

√
|R| and so two

must be congruent (mod r)

nipj ≡ nIpJ (mod r) (5)

By lemma 2.1.1 these integers are both in S. By
lemma 2.1.2 their difference is divisble by |G| and
therefore

|G| ≤ |nipj − nIpJ | ≤ (np)
√

|R| − 1 < n2
√

|R| − 1
(6)

We can improve this by showing that n/p ∈ S and
then replace n by n/p ∈ S eq. (6) to get

|G| ≤ n
√

|R| − 1 (7)

2.2 Lower bounds on |G|

The inital idea was to show that there are many
distinct elements of G. If f(x), g(x) ∈ Z[x] with
f(x) ≡ g(x) mod (p, h(x)), then we can write
f(x)− g(x) ≡ h(x)k(x) mod p for k(x) ∈ Z[x]. If
both deg(f) and deg(g) < deg(h), then k(x) ≡ 0
mod p which implies f(x) ≡ g(x) mod p. For
all polynomials of the form

∏
1≤a≤A(x + a)ea of

degree < deg(h) = m are distinct elements of
G. Therefore if pm ≡ 1 (mod r) is large, then
we can get a good lower bound on |G|. However
proving that such r exists proves challenging and
needing non-trivial tools of analytical number
theory. Inspired by Lenstra and Pomerance we
can replace m by |R|
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Lemma 2.2.1. Suppose that f(x), g(x) ∈
Z[x] with f(x) ≡ g(x) mod (p, h(x)) and the
reductions of f and g in F both belong to G.
If deg(f) and deg(g) < |R|, then f(x) ≡ g(x)
mod p

We define R as follows

R := ⟨n : n (mod r)⟩ (8)

so |R| ≥ d, with d being the order of n mod r,
which is > (log n)2 by the assumption of AKS.
That gives us |R| > (log n)2. Therefore |R| > B,

where B := [
√
|R| log n]. lemma 2.2.1 implies that

the products
∏

a∈T (x + a) give distinct elements
of G for every subset T of the set {0, 1, 2, . . . , B}.
This gives us

|G| ≥ 2B+1 − 1 > n
√

|R| − 1 (9)

which contradicts eq. (7). That completes the
proof of the theorem of AKS. So we proved by
contradiction that eq. (1) doesn’t work for n being
composite.

3 Improvements by Lenstra and Pomerance

The core idea behind this improvement of Lenstra-
Pomerance is to replace the polynomial Φr(x) in
AKS by a certain polynomial f(x) with integer
coefficients of degree d and positive integer n. We
say that Z[x]/(n, f(x)) is a pseudofield if

a) f(xn) ≡ 0 mod (n, f(x))

b) xn
d − x ≡ 0 mod (n, f(x)), and

c) xn
d/q − x is a unit in Z[x]/(n, f(x)) for all

primes q dividing d

When n is prime and f(x) is irreducible mod n,
then these criteria are all true and Z[x]/(n, f(x))
is a field.

Theorem (Lenstra and Pomerance). For a
given n, r ∈ Z, n ≥ 2 let d ∈ Z be in ((log n)2, n)
for which there exists a polynomial f(x) of degree
d with integer coefficients such that Z[x]/(n, f(x))
is a pseudofield. Then n is prime if and only if

� n is not a perfect power,

� n does not have any prime factor ≤ d,

� (x + a)n ≡ xn + a mod (n, f(x)) for each
a ∈ Z, 1 ≤ a ≤ A :=

√
d log n.

One can quickly determine if for a given f one
gets a pseudofield, and if so check the criteria of
the theorem. This fact gives this version of the
primality test its speed.
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