University Heidelberg Faculty Mathematikon Seminar: Prime numbers and Cryptography with supervisor Dr. Barinder Banwait Burhan Akin Yilmaz April, 2022

1 Key-Exchange

Following scheme allows two parties to exchange a secret-key even under passive attacks like eavesdropping. A KE-protocol over \mathcal{K} consists of two interactive probabilistic-polytime-algorithms KE = (KE_A, KE_B) which output a key sk_A and sk_B. We want perfect correctness, such that those algorithm always agree to the same key sk_A = sk_B.

The security of such algorithms is defined over a game:

- KE_A and KE_B interact with each other, agree to $\text{sk}_A = \text{sk}_B$ and store all exchanged messages in τ .
- Our attacker will try to output $sk^* \leftarrow \mathcal{A}(\tau)$ such that $sk^* = sk_A$.

We want the attacker to only have negligible chances to succeed in this game.

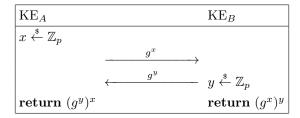
1.1 Discrete Log and Computational Diffie-Hellman assumption

Let \mathbb{Z}_p^* be any cyclic group of order p-1.

- The discrete logarithm is assumed to be a hard problem. Given $h = g^x \mod p$ and generator g, find smallest exponent x.
- The computational diffie-hellman assumption. Let $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and $y \stackrel{\$}{\leftarrow} \mathbb{Z}_p$. Determining g^{xy} given $(\mathbb{Z}_p^*, p, g, g^x, g^y)$ is computational infeasible.

1.2 Diffie-Hellman Key-Exchange

For our Let p be a prime number, and \mathbb{Z}_p^* be a cyclic group of order p-1. Furthemore $\mathbb{Z}_p^* = \langle g \rangle$. Consider following protocol to exchange keys.



2 RSA Cryptosystems

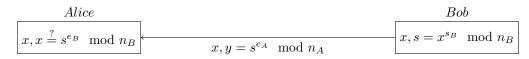
The RSA encryption scheme works very simple and is based on the difficulty of factorization and the RSA-assumption. First pick two large prime numbers p, q and calculate our RSA-modulus n = pq. Next you determine two integers $e, s \ge 3$, such that $es \equiv 1 \mod (p-1)(q-1)$. Here we need to pick e coprime to $\phi(n) = (p-1)(q-1)$, only then a solution can exist. So $gcd(e, \phi(n)) = 1$. Determine s with the extended euclidean algorithm $extended_gcd(e, (p-1)(q-1))$. As public key use (n, e), as private key (n, s) and encrypt messages with $y = x^e \mod n$. Our y is our ciphertext, and we decrypt with $y^s \equiv x \mod n$, and if our plainttext x was used from the interval $\{0, ..., n-1\}$ then we have $y^s = x \mod n$.

3 Digital Signatures

So far we have Alice and Bob communicating securely over an in-secure channel in the sense of confidentality. But we have no integrity and authenticity so far. With a digital signature we assure authenticity and integrity of a message. A digital signature over $(\mathcal{K}_{sk}, \mathcal{K}_{pub}, \mathcal{M}, \mathcal{S})$ is a tuple SIG = (Gen, Sign, Vfy) of PPT-algorithms.

- Gen() will generate our public verification key and secret key $(vk, sk) \in \mathcal{K}_{pub} \times \mathcal{K}_{sk}$.
- $\operatorname{Sign}(sk, x) \to s$ will generate our signature for our message x.
- Vfy(vk, x, s)→ {0, 1} is a deterministic algorithm that outputs 1 if the signature was generated over the message x with the secret key.

One can apply RSA to construct a digital signature. Alice and Bob generate their own public and secret keys, $sk_A = (n_A, s_A)$, $vk_A = (n_A, e_A)$ and $sk_B = (n_B, s_B)$, $vk_B = (n_B, e_B)$. We now assume, that the public keys are known to each other. First Bob creates his signature $s = x^{s_B} \mod n_B$ and sends this signature to Alice using her public key $y = s^{e_A} \mod n_A$. Alice now decrypts $s = y^{s_A} \mod n_A$ and can verify this signature belongs to message x and is authenticated by Bob by $x \stackrel{?}{=} s^{e_B} \mod n_B$.



4 Elliptic Curve Cryptosystems

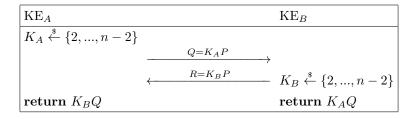
Given an elliptic curve E over \mathbb{F}_p is an equation

$$y^2 = x^3 + ax + b,$$

where $a, b \in \mathbb{F}_p$ and $4a^3 + 27 \neq 0$. We know that the points on the elliptic curve define with the addition operator \boxplus a group.

Now we can define our earlier assumptions and protocols on this elliptic curve. For the elliptic discrete logarithm we choose a point of prime order q, such that $qP = \mathcal{O}$. Now we give an adversary our point P and our αP with $\alpha \in \mathbb{Z}_q$. Determining α is considered to be a hard problem. The operation $\alpha P := (\alpha - 1)P \boxplus P$ can be computed with at most $2 \log_2 \alpha$ operations (fast exponentiation using our α). On the other hand, the best known algorithm to solve the discrete logarithm over elliptic curves has time complexity $\mathcal{O}(\sqrt{n})$.

5 Elliptic Curve Diffie Hellman (ECDH)



6 Elliptic Curve Digital Signature Algorithm (ECDSA)

Consider following digital Signature using elliptic curves [CP05]. Alice wants to sign a message x and Bob verifies it.

• Gen()

Step 1: Alice chooses a curve with $|E(\mathbb{F}_p)| = fr$. Finds a point of prime order r.

Step 2: Now she chooses a random integer $d \in [2, r-2]$.

Step 3: Gen will $\mathbf{return}((E, P, r, Q), d)$.

• $\operatorname{Sign}(d, x)$

Step 1: Alice chooses a random $k \in [2, r-2]$.

- Step 2: $(x_1, y_1) = kP$
- Step 3: $R = x_1 \mod r$

Step 4: $s = k^{-1}(h(x) + Rd) \mod r$

- Step 5: if s == 0 goto Sign(x)
- Step 6: return (R, s) || x
- $\operatorname{Verify}((E, P, r, Q), x)$

Step 1: $w = s^{-1} \mod r$ Step 2: $u_1 = h(x)w \mod r$ Step 3: $u_2 = Rw \mod r$ Step 4: (x_0, y_0) Step 5: $v = x_0 \mod r$ Step 6: if v == R return 1 else return 0

7 Coin-Flip Protocol

A commitment scheme has two properties:

- Hiding: You cannot conclude the actual bit b committed from c.
- **Binding**: When committing a bit *b*, you can not send an opening string such that a different bit \overline{b} is opened.

The coin-flip protocol can be implemented using different elegant ideas like Naos construction with pseudorandom generators [90] or with number theoretical approaches using congruences with primes. The latter one is of our interest.

Step 1: Alice computes two distinct random primes p, q, calculates n = pq, and finds a random prime r such that n is quadratic nonresidue mod p, resp. $\left(\frac{n}{r}\right) = -1$.

Step 2: Alice sends Bob the commitment string (n, r).

Step 3: Bob sends Alice his guess of which of the prime factors of n is a quadratic residue.

Step 4: Alice sends the opening string (p, q).

Obviously the binding property is satisfied, since n has a unique factorization n = pq.

References

[90]	Bit Commitment Using Pseudo-Randomness *. 1990.
	URL: https://link.springer.com/content/pdf/10.1007/0-387-34805-0_13.pdf.

Richard Crandall and Carl Pomerance. Prime Numbers - A Computational Perspective. [CP05] 2005.

[Sho20] Boneh Shoup. A Graduate Course in Applied Cryptography. 2020. URL: http://toc.cryptobook.us/book.pdf (visited on 04/03/2022).