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1 Key-Exchange

Following scheme allows two parties to exchange a secret-key even under passive attacks like eaves-
dropping. A KE-protocol over K consists of two interactive probabilistic-polytime-algorithms KE
= (KE4, KEg) which output a key sk and skp. We want perfect correctness, such that those
algorithm always agree to the same key ska = skp.

The security of such algorithms is defined over a game:

e KE,4 and KEpg interact with each other, agree to sk4 = skp and store all exchanged messages
in 7.

e Our attacker will try to output sk*<— A(7) such that sk* = sky.

We want the attacker to only have negligible chances to succeed in this game.

1.1 Discrete Log and Computational Diffie-Hellman assumption
Let Zy, be any cyclic group of order p — 1.

e The discrete logarithm is assumed to be a hard problem. Given h = ¢g* mod p and generator
g, find smallest exponent x.

e The computational diffie-hellman assumption. Let z < Z, and y & Zyp. Determining g*¥
given (Zy,p, g, 9", g") is computational infeasible.
1.2 Diffie-Hellman Key-Exchange

For our Let p be a prime number, and Z; be a cyclic group of order p — 1. Furthemore Z; = (9)-
Consider following protocol to exchange keys.

KEA KEB
x & Ly,
gr
g?/ $
— Yy Z,
return (g¥%)* return (g*)Y

2 RSA Cryptosystems

The RSA encryption scheme works very simple and is based on the difficulty of factorization and
the RSA-assumption. First pick two large prime numbers p,q and calculate our RSA-modulus
n = pq. Next you determine two integers e, s > 3, such that es =1 mod (p — 1)(¢ — 1). Here we
need to pick e coprime to ¢(n) = (p—1)(¢ — 1), only then a solution can exist. So ged(e, p(n)) = 1.
Determine s with the extended euclidean algorithm extended_ged(e, (p — 1)(g — 1)). As public key
use (n,e), as private key (n, s) and encrypt messages with y = 2° mod n. Our y is our ciphertext,
and we decrypt with y* =z mod n, and if our plainttext 2 was used from the interval {0, ...,n—1}
then we have y* = x mod n.
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3 Digital Signatures

So far we have Alice and Bob communicating securely over an in-secure channel in the sense of
confidentality. But we have no integrity and authenticity so far. With a digital signature we assure
authenticity and integrity of a message. A digital signature over (Ksx, Kpus, M,S) is a tuple SIG
= (Gen, Sign, Viy) of PPT-algorithms.

o Gen() will generate our public verification key and secret key (vk, sk) € Kpup X Ksg.
e Sign(sk,x)— s will generate our signature for our message x.

e Viy(vk,z,s)— {0, 1} is a deterministic algorithm that outputs 1 if the signature was generated
over the message x with the secret key.

One can apply RSA to construct a digital signature.Alice and Bob generate their own public and
secret keys, ska = (na,s4),vka = (na,ea) and sk = (np,sp),vkp = (np,ep). We now assume,
that the public keys are known to each other. First Bob creates his signature s = x*2 mod np
and sends this signature to Alice using her public key y = s°4 mod n4. Alice now decrypts
s =y°4 mod n4 and can verify this signature belongs to message x and is authenticated by Bob

?
by x = s mod ng.

Alice Bob

”
z,x = s mod np e z,s =" mod np
r,y = s mod ny

4 Elliptic Curve Cryptosystems
Given an elliptic curve E over I}, is an equation
vy =23+ az +0b,

where a,b € F,, and 4a® + 27 # 0. We know that the points on the elliptic curve define with the
addition operator H a group.

Now we can define our earlier assumptions and protocols on this elliptic curve. For the elliptic
discrete logarithm we choose a point of prime order ¢, such that ¢P = O. Now we give an adversary
our point P and our aP with a € Z;. Determining « is considered to be a hard problem. The
operation aP = (a—1)PHP can be computed with at most 2log, o operations (fast exponentiation
using our «). On the other hand, the best known algorithm to solve the discrete logarithm over
elliptic curves has time complexity O(y/n).

5 Elliptic Curve Diffie Hellman (ECDH)

KE4 KEp
Ki&{2,..,n-2}

Q=KaP

f=Rsl Kg & {2,...,n—2}
return Kg@Q return K,Q
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6 Elliptic Curve Digital Signature Algorithm (ECDSA)

Consider following digital Signature using elliptic curves [CP05]. Alice wants to sign a message z
and Bob verifies it.

o Gen()
Step 1: Alice chooses a curve with |E(F,)| = fr. Finds a point of prime order r.
Step 2: Now she chooses a random integer d € [2,r — 2].
Step 3: Gen will return((E, P,r,Q),d).
e Sign(d,x)
Step 1: Alice chooses a random k € [2,7 — 2].
Step 2: (z1,y1) = kP
Step 3: R=x; mod r
Step 4: s = k~(h(z) + Rd) mod r
Step 5: if s == 0 goto Sign(x)
Step 6: return (R, s)||z
e Verify((E, P,r,Q),x)

L mod r

Step 1: w = s~
Step 2: u3 = h(z)w mod r
Step 3: us = Rw mod r
Step 4: (o, o)

Step 5: v =g mod r

Step 6: if v == R return 1 else return 0

7 Coin-Flip Protocol

A commitment scheme has two properties:
¢ Hiding: You cannot conclude the actual bit b committed from c.

e Binding: When commiting a bit b, you can not send an opening string such that a different
bit b is opened.

The coin-flip protocol can be implemented using different elegant ideas like Naos construction
with pseudorandom generators [90] or with number theoretical approaches using congruences with
primes. The latter one is of our interest.

Step 1: Alice computes two distinct random primes p, q, calculates n = pq, and finds a random
prime 7 such that n is quadratic nonresidue mod p, resp. (%) = —1.

Step 2: Alice sends Bob the commitment string (n,r).
Step 3: Bob sends Alice his guess of which of the prime factors of n is a quadratic residue.
Step 4: Alice sends the opening string (p, q).

Obviously the binding property is satisfied, since n has a unique factorization n = pq.
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