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1 Key-Exchange

Following scheme allows two parties to exchange a secret-key even under passive attacks like eaves-
dropping. A KE-protocol over K consists of two interactive probabilistic-polytime-algorithms KE
= (KEA, KEB) which output a key skA and skB . We want perfect correctness, such that those
algorithm always agree to the same key skA = skB .

The security of such algorithms is defined over a game:

� KEA and KEB interact with each other, agree to skA = skB and store all exchanged messages
in τ .

� Our attacker will try to output sk∗← A(τ) such that sk∗ = skA.

We want the attacker to only have negligible chances to succeed in this game.

1.1 Discrete Log and Computational Diffie-Hellman assumption

Let Z∗
p be any cyclic group of order p− 1.

� The discrete logarithm is assumed to be a hard problem. Given h = gx mod p and generator
g, find smallest exponent x.

� The computational diffie-hellman assumption. Let x
$← Zp and y

$← Zp. Determining gxy

given (Z∗
p, p, g, g

x, gy) is computational infeasible.

1.2 Diffie-Hellman Key-Exchange

For our Let p be a prime number, and Z∗
p be a cyclic group of order p − 1. Furthemore Z∗

p = ⟨g⟩.
Consider following protocol to exchange keys.

KEA KEB

x
$← Zp

gx

−−−−−−−−−−−−→
gy

←−−−−−−−−−−−− y
$← Zp

return (gy)x return (gx)y

2 RSA Cryptosystems

The RSA encryption scheme works very simple and is based on the difficulty of factorization and
the RSA-assumption. First pick two large prime numbers p, q and calculate our RSA-modulus
n = pq. Next you determine two integers e, s ≥ 3, such that es ≡ 1 mod (p − 1)(q − 1). Here we
need to pick e coprime to ϕ(n) = (p− 1)(q− 1), only then a solution can exist. So gcd(e, ϕ(n)) = 1.
Determine s with the extended euclidean algorithm extended gcd(e, (p− 1)(q − 1)). As public key
use (n, e), as private key (n, s) and encrypt messages with y = xe mod n. Our y is our ciphertext,
and we decrypt with ys ≡ x mod n, and if our plainttext x was used from the interval {0, ..., n−1}
then we have ys = x mod n.
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3 Digital Signatures

So far we have Alice and Bob communicating securely over an in-secure channel in the sense of
confidentality. But we have no integrity and authenticity so far. With a digital signature we assure
authenticity and integrity of a message. A digital signature over (Ksk,Kpub,M,S) is a tuple SIG
= (Gen, Sign, Vfy) of PPT-algorithms.

� Gen() will generate our public verification key and secret key (vk, sk) ∈ Kpub ×Ksk.

� Sign(sk, x)→ s will generate our signature for our message x.

� Vfy(vk, x, s)→ {0, 1} is a deterministic algorithm that outputs 1 if the signature was generated
over the message x with the secret key.

One can apply RSA to construct a digital signature.Alice and Bob generate their own public and
secret keys, skA = (nA, sA), vkA = (nA, eA) and skB = (nB , sB), vkB = (nB , eB). We now assume,
that the public keys are known to each other. First Bob creates his signature s = xsB mod nB

and sends this signature to Alice using her public key y = seA mod nA. Alice now decrypts
s = ysA mod nA and can verify this signature belongs to message x and is authenticated by Bob

by x
?
= seB mod nB .

x, x
?
= seB mod nB

Alice

x, s = xsB mod nB

Bob

x, y = seA mod nA

4 Elliptic Curve Cryptosystems

Given an elliptic curve E over Fp is an equation

y2 = x3 + ax+ b,

where a, b ∈ Fp and 4a3 + 27 ̸= 0. We know that the points on the elliptic curve define with the
addition operator ⊞ a group.

Now we can define our earlier assumptions and protocols on this elliptic curve. For the elliptic
discrete logarithm we choose a point of prime order q, such that qP = O. Now we give an adversary
our point P and our αP with α ∈ Zq. Determining α is considered to be a hard problem. The
operation αP := (α−1)P⊞P can be computed with at most 2 log2 α operations (fast exponentiation
using our α). On the other hand, the best known algorithm to solve the discrete logarithm over
elliptic curves has time complexity O(

√
n).

5 Elliptic Curve Diffie Hellman (ECDH)

KEA KEB

KA
$← {2, ..., n− 2}

Q=KAP−−−−−−−−−−−−−−−−→
R=KBP←−−−−−−−−−−−−−−−− KB

$← {2, ..., n− 2}
return KBQ return KAQ

2



7 COIN-FLIP PROTOCOL

6 Elliptic Curve Digital Signature Algorithm (ECDSA)

Consider following digital Signature using elliptic curves [CP05]. Alice wants to sign a message x
and Bob verifies it.

� Gen()

Step 1: Alice chooses a curve with |E(Fp)| = fr. Finds a point of prime order r.

Step 2: Now she chooses a random integer d ∈ [2, r − 2].

Step 3: Gen will return((E,P, r,Q), d).

� Sign(d, x)

Step 1: Alice chooses a random k ∈ [2, r − 2].

Step 2: (x1, y1) = kP

Step 3: R = x1 mod r

Step 4: s = k−1(h(x) +Rd) mod r

Step 5: if s == 0 goto Sign(x)

Step 6: return (R, s)||x

� Verify((E,P, r,Q), x)

Step 1: w = s−1 mod r

Step 2: u1 = h(x)w mod r

Step 3: u2 = Rw mod r

Step 4: (x0, y0)

Step 5: v = x0 mod r

Step 6: if v == R return 1 else return 0

7 Coin-Flip Protocol

A commitment scheme has two properties:

� Hiding: You cannot conclude the actual bit b committed from c.

� Binding: When commiting a bit b, you can not send an opening string such that a different
bit b is opened.

The coin-flip protocol can be implemented using different elegant ideas like Naos construction
with pseudorandom generators [90] or with number theoretical approaches using congruences with
primes. The latter one is of our interest.

Step 1: Alice computes two distinct random primes p, q, calculates n = pq, and finds a random
prime r such that n is quadratic nonresidue mod p, resp. (nr ) = −1.

Step 2: Alice sends Bob the commitment string (n, r).

Step 3: Bob sends Alice his guess of which of the prime factors of n is a quadratic residue.

Step 4: Alice sends the opening string (p, q).

Obviously the binding property is satisfied, since n has a unique factorization n = pq.
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