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Algorithmic Aspects of Hecke-Eigensystems on Spaces of Harmonic
Cocycles

It is possible to describe modular forms over function fields, also called Drin-
feld modular forms, in a combinatorial setting. The realization is through
harmonic cocycles on the Bruhat-Tits tree T , which are further required
to be equivariant under the action of some congruence subgroup Γ of
GL2(Fq[T ]). Building on this, we can compute eigensystems for Hecke op-
erators. For this purpose, we thoroughly study the Bruhat-Tits tree T , its
corresponding quotient graph Γ\T , and the values of harmonic cocycles on
them. In particular, we construct a basis of the vector space of all Γ-equiv-
ariant harmonic cocycles with values in a vector space over a field of prime
characteristic and determine transformation matrices of Hecke operators
with regards to this choice of basis. Finally, we examine the corresponding
eigenvalues.

Algorithmische Aspekte der Hecke-Eigensysteme auf Räumen
harmonischer Kozykel

Modulformen über Funktionenkörper, auch Drinfeld’sche Modulformen
genannt, können kombinatorisch beschrieben werden. Die Umsetzung erfolgt
über harmonische Kozykel auf dem Bruhat-Tits Baum T , die zusätzlich
bezüglich der Operation einer Kongruenzuntergruppe Γ von GL2(Fq[T ])
eine Äquivarianz-Eigenschaft erfüllen. Dann ist es möglich, Eigensysteme
für Hecke Operatoren zu berechnen. Dafür untersuchen wir ausgiebig den
Bruhat-Tits Baum T , den dazugehörenden Quotientengraphen Γ\T und
die Werte der harmonischen Kozykel auf diesen. Hierzu konstruieren wir
eine Basis des Vektorraums aller Γ-äquivarianten harmonischen Kozykel mit
Werten in einem Vektorraum über einem Körper mit Primzahl-Charakteris-
tik und bestimmen bezüglich dieser Basiswahl die Darstellungsmatrizen der
Hecke Operatoren. Abschließend untersuchen wir die zugehörigen Eigen-
werte.
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1 Introduction

The theory of Hecke operators is central to modern number theory. While Hecke op-
erators occur in a number of contexts, one usually describes them as operators acting
on modular forms. This Master thesis is relying on a different perspective introduced
in “The Poisson Kernel for Drinfeld Modular Curves” [Tei91] by J. Teitelbaum and
concerns modular forms over function fields.
In his work, Teitelbaum interprets cusp forms for a congruence subgroup Γ of

GL2(Fq[T ]) as harmonic cocycles which are defined on the directed edges of the
Bruhat-Tits tree T and are Γ-equivariant under some GL2(Fq[T ])-action. He de-
scribes how to find a basis of the vector space Char(Γ, X) of all Γ-equivariant har-
monic cocycles with values in a finite-dimensional vector space X over a field of
prime characteristic.
Later on, building on the work of Teitelbaum, R. Butenuth introduces in [But07]

Hecke operators on Char(Γ, X). There, he revisits Serre’s description of the Bruhat-
Tits tree T in “Trees” [Ser80] and explicitly studies the quotient graphs Γ\T , where
he chooses one of the following three congruence subgroups for a normalized poly-
nomial N of R := Fq[T ]:

• Γ(N) :=
{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(

1 0
0 1

)
(mod N)

}

• Γ1(N) :=
{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(

1 b

0 1

)
(mod N)

}

• Γ0(N) :=
{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(
a b

0 d

)
(mod N)

}
Starting from there, he creates methods for implementing the quotient graphs in
the computer algebra system Magma (see [BCP97, CBFe13]) and expands Teitel-
baum’s theory of Char(Γ, X) specifically for the three congruence subgroups men-
tioned above.
The main goal of this thesis is to build on Butenuth’s work and write programs

for the implementation of the quotient graphs Γ\T , the evaluation of Γ-equivariant
harmonic cocycles in Char(Γ, X) with values in a vector space X over a field of prime
characteristic, and the calculation of transformation matrices for Hecke operators
TP with gcd(N,P ) = 1 and their eigenvalues in order to get a better understanding
of the Hecke algebra generated by all Hecke operators.
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Let k be a finite field of prime characteristic p with q elements, R the polynomial
ring in one variable T with coefficients in k, and K the field of fractions of R.
Furthermore, let v∞ be the discrete valuation of K at infinity, K∞ the completion
of K with respect to v∞, and O∞ the valuation ring with uniformizer π∞.
In Chapter 2, we recall some facts from graph theory and introduce the Bruhat-

Tits tree T , which has homothety classes of O∞-lattices as vertices. Then, we de-
scribe a representation of its vertices and edges through matrices in GL2(K∞). This
representation allows an operation of GL2(K∞) on the set of vertices and edges
through regular matrix multiplication from left. Subsequently, we study the quo-
tient graph GL2(R)\T and realize the quotient graph Γ\T as a covering, where Γ
is either one of the three congruence subgroups above or the congruence subgroup

Γ1
0(N) :=

{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(
a b

0 d

)
(mod N), det(γ) = 1

}
.

Finally, we explain how to implement the vertices and edges of the quotient graphs
in Magma.
In Chapter 3, we introduce harmonic cocycles as functions on the directed edges

of the Bruhat-Tits tree T and further study the Γ-equivariance property, which
contributes to the fact that we only have to set the values of Γ-equivariant harmonic
cocycles on the quotient graph Γ\T . The set of required edges will also be narrowed
down by the introduction of so-called stable edges, which are defined by having trivial
stabilizers in GL2(R), allowing to explicitly construct a basis of the vector space
Char(Γ, X). Unfortunately, this description will only be useful if Γ is either Γ(N) or
Γ1(N). In the case of the congruence subgroups Γ1

0(N), Γ0(N), and SL2(R), there are
no stable edges and, additionally, the groups are not p′-torsion-free for primes p′ 6= p.
However, we will describe a way out and realize the vector spaces Char(Γ1

0(N), X) and
Char(Γ0(N), X) as subspaces of Char(Γ1(N), X) and Char(SL2(R), X) as a subspace
of Char(Γ(N), X). The implementation in Magma for all cases is described at the end
of the chapter.
The final Chapter 4 focuses on Hecke operators, which are defined as the compo-

sition of three separate maps. Their definition will allow an immediate implementa-
tion, after having realized harmonic cocycles in Chapter 3. Finally, we will explicitly
calculate Hecke operators TP on the vector space of Γ-equivariant harmonic cocycles
with values in the r-th symmetric power of K2, denoted by Symr(K2), or its irre-
ducible subrepresentations and examine their eigenvalues for polynomials P with
increasing degree.
The implementation of all calculations has been carried out in Magma. The code

is available upon request. For the visualization of all quotient graphs, I have been
using the open source graph visualization software Graphviz (see [EGK+03]).
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2 Quotients of the Bruhat-Tits Tree

Throughout the whole thesis, let k be a finite field of prime characteristic p with
q elements, R the polynomial ring in one variable T with coefficients in k, and K

the field of fractions of R. Furthermore, let v∞ be the discrete valuation of K at
infinity, K∞ the completion of K with respect to v∞, and O∞ the valuation ring
with uniformizer π∞.
The aim of this chapter is the computation of the quotient graph Γ\T where Γ is

a congruence subgroup of GL2(R) and T the Bruhat-Tits tree. Therefore, we first
study the quotient graph GL2(R)\T and show that for a subgroup Γ of GL2(R) of
finite index the quotient graph Γ\T is a covering of GL2(R)\T , which only depends
on a system of representatives of Γ\GL2(R). Since congruence subgroups are such
subgroups, we eventually determine a system of representatives of Γ\GL2(R) to
calculate the quotient graph Γ\T . We mainly follow [Ser80] and [But07].

2.1 Introduction to Graph Theory
Definition 2.1. A graph G consists of two sets V,E and two maps

E −→ V × V, e 7−→ (o(e), t(e))

and
·̄ : E −→ E, e 7−→ e

which satisfy e = e, e 6= e, and o(e) = t(e) for every e ∈ E. In this context, the
following notation is common:

• An element v ∈ V is called a vertex of the graph G.

• An element e ∈ E is called an edge of the graph G.

• Let e ∈ E be an edge. Then, one refers to o(e) as the origin and to t(e) as the
target of e.

• Let v, w ∈ V be two vertices. If there is an edge e ∈ E with o(e) = v and
t(e) = w, one says that v and w are adjacent.

An orientation of the graph G is a subset O ⊆ E such that E is the disjoint union
of O and O := {e | e ∈ O}.
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Definition 2.2. Let G be a graph and v, w two vertices. A path of length n from v

to w is an n-tuple (e1, . . . , en) with edges ei which satisfy o(e1) = v, t(ei) = o(ei+1)
for i ∈ {1, . . . , n− 1}, and t(en) = w. Furthermore, one declares:

• Let (e1, . . . , en) be a path. A pair (ei, ei+1) with ei = ei+1 is called backtracking.

• A path from v to itself without backtracking is called a circuit.

• If there exists a path from v to w for any two vertices v, w ∈ V , the graph G
is called connected.

Definition 2.3. A tree T is a connected, non-empty graph without circuits.

Proposition 2.4. Let T be a tree and v, w two vertices. Then, there is exactly one
path from v to w without backtracking.

Proof. There always exists a path from v to w, because a tree is a connected graph.
If a path contains backtracking, one can omit the respective edges to get a path with-
out backtracking. Uniqueness follows from the fact that two distinct paths without
backtracking would give rise to a circuit of v or w.

Definition 2.5. A connected graph G is called n-regular if for every vertex v there
are exactly n edges e1, . . . , en with o(ei) = v.

2.2 The Bruhat-Tits Tree
In this section, we introduce the central object we are interested in, namely the
Bruhat-Tits tree. For this purpose, we first define the following equivalence relation
on the set of O∞-lattices in K2

∞: Two O∞-lattices L1, L2 are equivalent if and only
if there exists an x ∈ K×∞ such that L2 = xL1.

Lemma 2.6. Let L be an O∞-lattice in K2
∞. Then, there exists a unique represen-

tative L′ in every equivalence class such that L′ ⊆ L and L′ * π∞L.

Proof. Let Λ′ be an equivalence class and L′ an arbitrary representative. According
to the invariant factor theorem, there exists a basis {e1, e2} of K2

∞ and a, b ∈ Z such
that L = 〈e1, e2〉O∞ and L′ = 〈πa∞e1, π

b
∞e2〉O∞ . The lattice L′ is a subset of L if and

only if a, b ≥ 0. Therefore, consider

xL′ = 〈πa+v∞(x)
∞ e1, π

b+v∞(x)
∞ e2〉O∞

for an x ∈ K×∞. By taking x = π−min(a,b)
∞ and replacing L′ by xL′, one gets a

representative L′ of Λ′ satisfying L′ ⊆ L and L′ * π∞L.
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Let L be an O∞-lattice in K2
∞ and L′ a representative of an equivalence class

Λ′ constructed like in the proof above. Then, we have L/L′ ' O∞/πn∞O∞ where
n := |a − b|. Note that n is neither dependent on the choice of the representative
nor of the basis.

Definition 2.7. Let V be the set of all equivalence classes of O∞-lattices in K2
∞.

The map
d : V × V −→ N0, (Λ,Λ′) 7−→ |a− b|

is called the distance between Λ and Λ′.

We are now ready to define the Bruhat-Tits tree T . Let V be the set of vertices
consisting of all equivalence classes of O∞-lattices in K2

∞ and

E := {(Λ1,Λ2) ∈ V × V | d(Λ1,Λ2) = 1}

the set of edges. Note that for two adjacent vertices Λ,Λ′ there exist representatives
L,L′ with

π∞L = 〈π∞e1, π∞e2〉O∞ ( L′ = 〈e1, π∞e2〉O∞ ( L = 〈e1, e2〉O∞ ,

which is equivalent to
{0} ( L/L′ ( L/π∞L ' k2 .

As a result, we obtain l(L/L′) = 1.
To proof that this graph defines a tree, which also turns out to be q + 1-regular,

we need one final lemma.

Definition 2.8. Let M be a module. A composition series of M is a series of
submodules

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = M

where Mi is a maximal proper submodule of Mi+1 for each i.

Lemma 2.9. If a moduleM 6= {0} is Artinian and Noetherian, it has a composition
series.

Proof. See [Jac95, Theorem 3.5].

Theorem 2.10. The graph T is a q + 1-regular tree and is called the Bruhat-Tits
tree.

Proof. Let Λ,Λ′ be two vertices and L,L′ representatives such that L′ ⊂ L. Accord-
ing to Lemma 2.9, there exists a composition series of L/L′, which gives rise to a
sequence

L′ = Ln ⊂ Ln−1 ⊂ · · · ⊂ L0 = L

6



with lengths l(Li−1/Li) = 1 for i ∈ {1, 2, . . . , n}. This determines a path from Λ to
Λ′ proving the graph is connected.
Let Λ1,Λ2, . . . ,Λn be a path without backtracking. Since Λk and Λk+1 are ad-

jacent, there exist representatives Lk and Lk+1, respectively, with Lk+1 ⊆ Lk and
l(Lk/Lk+1) = 1. In particular, we have l(L0/Ln) = n. In order to prove that the
given path is not a circuit, it is sufficient to show Ln * π∞L0. In this case, the
equivalence class Λn = [Ln] has to differ from Λ0 = [L0]. Otherwise, it would follow
from Lemma 2.6 that Ln = L0 which would contradict l(L0/Ln) = n.
By construction, we get L1 * π∞L0 and, since the path is assumed to be without

backtracking, also π∞Ln−2 6= L0. Consequently, we have Ln−1 = Ln + π∞Ln−2 or
Ln−1 ≡ Ln (mod π∞L0), which is non-trivial by induction hypothesis. As a result,
the path is not a circuit and the graph T thereby a tree.
Now, let Λ be a vertex and Λ′ an arbitrary neighbor. As in previous discussions,

there are representatives L,L′ such that L/π∞L ' k2 is a free k-module of rank
2 with a submodule L′/π∞L of rank 1. Thus, there is a one-to-one correspondence
between the edges e with o(e) = Λ and submodules of k2 of rank 1, of which there
are #P1(k) = q + 1 many.

Remark 2.11. The operation of GL2(K∞) on the set of vertices V and edges E of
the Bruhat-Tits tree T is declared via regular matrix multiplication from left.

2.3 The Quotient Graph GL2(R)\T
Now that we have introduced the Bruhat-Tits T tree, we are able to describe its
quotient by the general linear group of R = Fq[T ]. To achieve this, though, we have
to understand how GL2(R) acts on the tree.

Proposition 2.12. There exists a bijection

V ' GL2(K∞)/K×∞GL2(O∞)

where V is the set of vertices of T .

Proof. Let Λ be a vertex, L = 〈x1, x2〉 ∈ Λ a representative, and {e1, e2} the standard
basis of K2

∞. Then, there exists a λ ∈ GL2(K∞) such that (x1, x2) = λ(e1, e2). Since
L = 〈x1, x2〉O∞ is an O∞-lattice, multiplication with an element from GL2(O∞)
does not change it, and the same is also true for its equivalence class with respect
to multiplication with elements from K×∞. Thus, the map

V −→ GL2(K∞)/K×∞GL2(O∞), Λ 7−→ λ

is a bijection.
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Proposition 2.13. There exists a bijection

E ' GL2(K∞)/K×∞I

where E is the set of edges of T and

I :=
{(

a b

c d

)
∈ GL2(O∞)

∣∣∣∣∣ v∞(c) > 0
}
.

Proof. Let e = (Λ1,Λ2) be an edge. Since Λ1 and Λ2 are adjacent, there exists a
λ ∈ GL2(K∞) such that

Λ1 = [L1] = [λ(O∞ ⊕O∞)] ,
Λ2 = [L2] = [λ(O∞ ⊕ π∞O∞)] .

A quick calculation shows that multiplication with an element from I∩GL2(O∞) = I

does not change the lattices, and their classes are invariant under multiplication with
elements from K×∞. Thus, the map

E −→ GL2(K∞)/K×∞I, (Λ1,Λ2) 7−→ λ

is a bijection.

Before we calculate the quotient graph GL2(R)\T , we further improve our de-
scription of V through matrices. The proof of the following lemma is not necessarily
insightful and can also be found in [But07, Lemma 1.18]. Since it will be part of the
implementation in Magma, we depict it in a form useful for our purpose.

Lemma 2.14. The map{(
πn∞ y

0 1

) ∣∣∣∣∣n ∈ Z, y mod πn∞
}
−→ V, A 7−→ [A(O∞ ⊕O∞)]

is bijective.

Proof. Let Λ be a vertex and

[λ] =
[(
a b

c d

)]
∈ GL2(K∞)/K×∞GL2(O∞)

its equivalence class with representative λ according to Proposition 2.12. If v∞(c) <
v∞(d), exchange the columns, which corresponds to a multiplication from right with(

0 1
1 0

)
∈ K×∞GL2(O∞) ,

8



and one still remains in the equivalence class of λ. That is why we can assume
v∞(c) ≥ v∞(d) and get(

a b

c d

)(
1 0
− c
d

1

)
=
(
a− bc

d
b

0 d

)
·d−1
−−→

(
x y

0 1

)
.

Since x ∈ K×∞, there exists an ε ∈ O×∞ and n ∈ Z such that x = επn∞. Thus, we
finally receive a representative(

x y

0 1

)(
ε−1 0
0 1

)
=
(
πn∞ y

0 1

)
.

It is still to be clarified under which condition this choice is unique. If we assume
there are two in the equivalence class of λ, we have(

πn∞ y1

0 1

)
=
(
πm∞ y2

0 1

)(
α β

γ δ

)
=
(
πm∞α + y2γ πm∞β + y2δ

γ δ

)
.

So, we get γ = 0 and δ = 1, from which it follows α = 1 and m = n. Thus, the entry
y is unique up to an element from πn∞O∞.

Definition 2.15. Let L1, L2 be two lattices. We define the integer

χ(L1, L2) := l(L1/L)− l(L2/L)

where L ⊆ L1 ∩ L2 is an arbitrary lattice.

Remark 2.16. The value χ(L1, L2) does not depend on the choice of the lattice
L ⊆ L1 ∩ L2.

Proposition 2.17. Let L be a lattice and σ ∈ GL2(K∞). Then, we have

χ(L, σL) = v∞(det(σ)) .

Proof. The invariant factor theorem guarantees the existence of a basis {e1, e2} of
L and integers a, b such that {πa∞e1, π

b
∞e2} is a basis of σL. With regards to this

basis, the matrix of σ is given by

σ =
(
πa∞ 0
0 πb∞

)
σ0

where σ0 ∈ GL2(O∞). Thus, the valuation of the determinant of σ is

v∞(det(σ)) = v∞(πa+b
∞ ) + v∞(det(σ0)) = a+ b .

Now, we consider the following cases:
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• a, b ≥ 0: Note that L ∩ σL = σL.

• a, b < 0: Note that L ∩ σL = L.

• a ≥ 0, b < 0: Note that L ∩ σL = 〈πa∞e1, e2〉.

• a < 0, b ≥ 0: Note that L ∩ σL = 〈e1, π
b
∞e2〉.

Hence, χ(L, σL) = a+ b in all cases.

Lemma 2.18. Let v be a vertex and σ ∈ GL2(K∞). Then, we have

d(v, σv) ≡ v∞(det(σ)) (mod 2) .

Proof. According to the proof of Proposition 2.17, we have

v∞(det(σ)) = a+ b .

With d(v, σv) = |a− b| ≡ a+ b (mod 2), we get the desired equation.

Remark 2.19. Lemma 2.18 will contribute to the fact that the quotient “graph”
GL2(R)\T is indeed a graph.

Lemma 2.20. Let Ln := O∞ ⊕ πn∞O∞ and Λn := [Ln] for n ∈ N0. The equivalence
classes Λn are pairwise GL2(R)-inequivalent.

Proof. Let us assume that Λm and Λn are GL2(R)-equivalent for some m,n ∈ N
with m 6= n and let

σ =
(
a b

c d

)
∈ GL2(R)

such that σΛm = Λn. Without limitation, let n = m+ r for r ∈ N. Since σLm ∈ Λn,
we have also σLm = πi∞Ln for some i ∈ Z. By definition and Proposition 2.17, we
have

−(r + 2i) = χ(Lm, πi∞Lm+r) = χ(Lm, σLm) = v∞(det(σ)) = 0 ,

that is r = −2i. Thus, σLm = πi∞Lm−2i gives rise to(
a b

c d

)
(O∞ ⊕ πm∞O∞) = πi∞O∞ ⊕ πm−i∞ O∞ .

By choosing specific vectors, this equation translates into

0 ≤ deg(a) ≤ i , 0 ≤ deg(b) ≤ −(m− i) ,
0 ≤ deg(c) ≤ m− i , 0 ≤ deg(d) ≤ −i .

Therefore, i has to be 0, which means m = n, contradicting the assumption.
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The main problem of the proof of the following theorem is to find suitable matrices
such that we receive one of the lattices defined in Lemma 2.20. Fortunately, this has
already been achieved in [But07, Satz 1.19], but once again, we revisit the proof to
have a better understanding as to how it could be implemented in Magma later on.

Theorem 2.21. The quotient graph GL2(R)\T is given by Λ0 → Λ1 → Λ2 → . . . .

Proof. According to Lemma 2.14, it suffices to consider vertices which are repre-
sented by matrices of the form (

πn∞ y

0 1

)
where n is an integer and y ∈ K∞. It is possible to assume that 0 < v∞(y) < n,
because y can be written as y = f + g for f ∈ R and g ∈ K∞ with 0 < v∞(g) < n

such that (
1 −f
0 1

)(
πn∞ y

0 1

)
=
(
πn∞ g

0 1

)
.

If n ≤ 0, we have y = 0 and get(
πn∞ 0
0 1

)
∼
(
πn∞ 0
0 1

)(
π−n∞ 0

0 π−n∞

)
=
(

1 0
0 π−n∞

)
.

In the case that n > 0, consider(
πn∞ y

0 1

)
∼
(

0 1
1 0

)(
πn∞ y

0 1

)
=
(

0 1
πn∞ y

)

∼
(

0 1
πn∞ y

)(
1 0

−πn∞y−1 1

)
=
(
−πn∞y−1 1

0 y

)

∼
(
−πn∞y−1 1

0 y

)(
y−1 0
0 y−1

)
=
(
−πn∞y−2 y−1

0 1

)

∼
(
πn−2v∞(y)
∞ y−1

0 1

)
.

If n − 2v∞(y) ≤ 0, then it is the same situation as in the case n ≤ 0. Otherwise,
replace n by n− 2v∞(y) and repeat the calculation for n > 0. Note that y has also
been replaced, namely by y−1, which requires to be fragmented into its polynomial
and non-polynomial parts, similar to y at the beginning.
In any case, one receives a representative of the equivalence class Λn. According

to Lemma 2.20, all Λn are pairwise GL2(R)-inequivalent, and Λn and Λn+1 are
adjacent, because d(Λn,Λn+1) = 1. We conclude that the quotient graph GL2(R)\T
is represented by Λ0 → Λ1 → Λ2 → . . . .

Definition 2.22. Let π : T → GL2(R)\T be the projection map. If v ∈ V and
π(v) = Λi, we call i the stage of v.
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2.4 The Quotient Graph Γ\T
Having calculated the quotient graph GL2(R)\T , we are now ready to set up the
quotient graph Γ\T for an arbitrary subgroup of GL2(R) of finite index. For this
purpose, we only need one final lemma, which describes the stabilizer subgroups of
the standard lattices in GL2(R).

Lemma 2.23. The stabilizer subgroup of the equivalence class Λn in GL2(R) is
equal to

Gn :=
{(

a b

0 d

)
∈ GL2(R)

∣∣∣∣∣ a, d ∈ k×, b ∈ R, deg(b) ≤ n

}
for n ≥ 1 and G0 := GL2(k) for n = 0.

Proof. First, consider the case n = 0. A matrix σ in GL2(R) with(
a b

c d

)
Λ0 = Λ0

satisfies the following condition(
a b

c d

)(
1 0
0 1

)
∼
(

1 0
0 1

)
.

This means a, d ∈ k and, since det(σ) ∈ k×, also b, c ∈ k. Therefore, we get σ ∈ G0.
The other inclusion follows from the fact that equivalence classes are determined up
to x ∈ K×∞. For n ≥ 1, a matrix σ in GL2(R) with(

a b

c d

)
Λn = Λn

has to satisfy the following condition:(
a b

c d

)(
1 0
0 πn∞

)
=
(
a bπn∞
c dπn∞

)
∼
(

1 0
0 πn∞

)
.

From the first row, it follows that deg(a) = 0, deg(b) ≤ n, and the second row sets
deg(c) ≤ −n, deg(d) = 0. Thus, one gets σ ∈ Gn. The other inclusion is obvious
once one takes c to be 0 above.

Theorem 2.24. Let Γ be a subgroup of GL2(R) of finite index and {s1, . . . , sm} be
a system of representatives of Γ\GL2(R). Consider the disjoint union

U :=
m⊔
i=1

si(GL2(R)\T )

and on it the relation defined through the following rules:

12



• Only vertices and edges of the same stage are to be identified.

• Two vertices si(Λn), sj(Λn) are to be identified if there exists a g ∈ Gn such
that sigs−1

j ∈ Γ.

• Two edges si((Λ0,Λ1)), sj((Λ0,Λ1)) are to be identified if there exists a g ∈
G0 ∩G1 such that sigs−1

j ∈ Γ.

• Two edges si((Λn,Λn+1)), sj((Λn,Λn+1)) for n ≥ 1 are to be identified if there
exists a g ∈ Gn such that sigs−1

j ∈ Γ.

Then, we have Γ\T = U/ ∼.

Proof. Since U contains at least one representative of every Γ-orbit of the set of
vertices or edges of T , we have Γ\T ⊆ U . Now, if any two vertices si(Λk), sj(Λl)
were equivalent for k 6= l, that is of different stages, we would have Λl = s−1

j γsiΛk,
which contradicts Lemma 2.20. Thus, only vertices and edges of the same stage can
possibly be identified. For instance, two vertices si(Λn), sj(Λn) are equivalent if and
only if there exists a γ ∈ Γ such that γsj(Λn) = si(Λn) which, according to Lemma
2.23, translates into s−1

i γsj ∈ Gn. The third and forth rule are proven similarly.

Figure 2.1: The quotient graph GL2(R)\T

Figure 2.2: The quotient graph Γ\T for k = F2,Γ = Γ1(T 2)

Corollary 2.25. If Γ = SL2(R), we have Γ\T = GL2(R)\T .
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Proof. As the kernel of the determinant homomorphism, SL2(R) is normal in GL2(R),
and we have

GL2(R)/ SL2(R) ' k× .

By taking the system of representatives given by

GL2(R)/ SL2(R) =
(
k× 0
0 1

)
,

we see that every representative is an element of the stabilizer group Gn of the vertex
Λn for all n ≥ 0.

2.5 A System of Representatives of Γ\GL2(R)
In this section, we introduce the congruence subgroups of GL2(R) and notice that
they are subgroups of finite indices. Subsequently, we determine a system of repre-
sentatives of Γ\GL2(R) for four specific congruence subgroups.

Definition 2.26. Let N be a normalized polynomial of R. Define

Γ(N) :=
{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(

1 0
0 1

)
(mod N)

}
.

A congruence subgroup Γ is a subgroup of GL2(R) with Γ(N) ⊆ Γ. The following
three congruence subgroups will be of special interest:

• Γ1(N) :=
{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(

1 b

0 1

)
(mod N)

}

• Γ1
0(N) :=

{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(
a b

0 d

)
(mod N), det(γ) = 1

}

• Γ0(N) :=
{
γ ∈ GL2(R)

∣∣∣∣∣ γ ≡
(
a b

0 d

)
(mod N)

}

Proposition 2.27. Let N be a normalized polynomial of R. Then, we have

Γ(N) ⊆ Γ1(N) ⊆ Γ1
0(N) ⊆ Γ0(N) .

Proof. The first and third inclusions are immediately clear. Hence, it remains to be
seen that Γ1(N) ⊂ Γ1

0(N). Let γ be in Γ1(N). Then, we have

det(γ) = 1 · 1− b · 0 ≡ 1 (mod N) .

So, there exists a polynomial x such that det(γ) = 1 + xN , which has to be in k×,
because γ is out of Γ1(N). In conclusion, either both x and N have to be constant
or x = 0. Thus, det(γ) = 1 and γ ∈ Γ1

0(N).
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2.5.1 A System of Representatives of GL2(R)/Γ(N)
The following lemma will be useful, when we calculate the quotient GL2(R)/Γ(N),
and its proof also provides a method to lift a matrix in SL2(R/N) to a matrix in
SL2(R), as discussed in [But07, Satz 1.33]. We will need it, when we implement a
system of representatives of GL2(R)/Γ(N) in Magma.

Lemma 2.28. Let N be a normalized polynomial of R. Then, the map

ρ : SL2(R) −→ SL2(R/N),
(
a b

c d

)
7−→

(
a mod N b mod N
c mod N d mod N

)
.

is surjective.

Proof. Let

γ =
(
a b

c d

)
∈ SL2(R/N) .

Since ad − bc ≡ 1 (mod N), we have gcd(c, d,N) = 1. To find s, t ∈ R such that
gcd(c + sN, d + tN) = 1, consider the following two cases: If c 6= 0, let s = 0 and
choose t ∈ R such that

t ≡ 1 (mod p), p | gcd(c, d),
t ≡ 0 (mod p), p - gcd(c, d), p | c .

The existence of such a t is guaranteed by the Chinese remainder theorem. If c = 0,
we have d 6= 0 because of gcd(c, d,N) = 1. So, one repeats the steps above with the
roles of c and d interchanged.
Next, let r be a polynomial such that ad − bc = 1 + rN and f, g ∈ R with

1 = f(c+ sN) + g(d+ tN). Then, for k := −(r+ at− bs)g and l := (r+ at− bs)f a
simple calculation shows

(a+ kN)(d+ tN)− (b+ lN)(c+ sN) = 1 ,

which gives rise to a lift of γ in SL2(R).

Theorem 2.29. Let N be a normalized polynomial of R. Then,

GL2(R)/Γ(N) '
(
k× 0
0 1

)
SL2(R/N) .

Proof. Consider the projection map

ρ : GL2(R) −→ GL2(R/N) .
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According to Lemma 2.28, it is a surjective homomorphism with kernel Γ(N). Thus,
we have an isomorphism

GL2(R)/Γ(N) ' GL2(R/N) .

Furthermore, since

GL2(R/N) =
(
k× 0
0 1

)
SL2(R/N) ,

the theorem is proven.

Corollary 2.30. Let Γ be a congruence subgroup. Then, the index [GL2(R) : Γ] is
finite.

2.5.2 A System of Representatives of Γ1(N)\GL2(R)
Theorem 2.31. Let N be a normalized polynomial of R. Then, we have

Γ1(N)\GL2(R) ' {(x, y) ∈ (R/N)2 | gcd(x, y) = 1}
(
k× 0
0 1

)
.

Proof. Let (c, d) ∈ (R/N)2 be a pair with gcd(c, d) = 1. Then, there exist r, s in
R/N such that rc+ sd = 1, and we get a matrix

(
s −r
c d

)
∈ SL2(R/N) .

Since Γ1(N) ⊆ SL2(R), it is sufficient to consider the following action

SL2(R)× {(x, y) ∈ (R/N)2 | gcd(x, y) = 1} −→ {(x, y) ∈ (R/N)2 | gcd(x, y) = 1},((
α β

γ δ

)
, (c, d)

)
7−→ (γs+ δc,−γr + δd) ,

which is motivated and well-defined by
(
α β

γ δ

)(
s −r
c d

)
=
(
αs+ βc −αr + βd

γs+ δc −γr + δd

)
.

The stabilizer of (1, 1) is determined by δ ≡ 1 (mod N) and γ+δ ≡ 1 (mod N), that
is γ ≡ 0 (mod N). Additionally, notice that αδ − βγ ≡ 1 (mod N). In conclusion,
we get α ≡ 1 (mod N), γ ≡ 0 (mod N) and δ ≡ 1 (mod N). That is why the
stabilizer of (1, 1) under the action is Γ1(N).
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2.5.3 A System of Representatives of Γ1
0(N)\GL2(R)

Lemma 2.32. Let N be a normalized polynomial of R. Then, σ, τ ∈ SL2(R) are in
the same Γ1

0(N)-right coset if and only if there exists an x ∈ R with gcd(x,N) = 1
such that (τ21, τ22) ≡ x(σ21, σ22) (mod N).

Proof. In [But07, Lemma 1.22], this is proven for the case of Γ0(N), which is almost
identical to the statement of this lemma. Namely, one only has to set x = 1 and
y = ab′−a′b in the proof there. Since it is rather technical, but neither insightful nor
necessary with regards to the implementation, we will leave it at the reference.

Theorem 2.33. Let N be a normalized polynomial of R. Then,

Γ1
0(N)\ SL2(R) ' P1(R/N) .

Proof. By Lemma 2.32, there exists an inclusion

Γ1
0(N)\ SL2(R) ↪−→ P1(R/N) ,

so it remains to be seen that the other inclusion is true as well. For this purpose, let
(x, y) be in

P1(R/N) = {[(x, y)] | gcd(x, y) = 1} ,

where the equivalence relation is defined up to a unit in R/N . Since gcd(x, y) = 1,
the pair (x, y) can be expanded to a matrix in SL2(R/N), which then is lifted to a
matrix in SL2(R) with Lemma 2.28. Thus, we have a map

P1(R/N) −→ Γ1
0(N)\ SL2(R) ,

which is by Lemma 2.32 well-defined and injective.

Corollary 2.34. Let N be a normalized polynomial of R. Then, we obtain

Γ1
0(N)\GL2(R) ' P1(R/N)

(
k× 0
0 1

)
.

Proof. Applying Theorem 2.33 to

GL2(R) = SL2(R)
(
k× 0
0 1

)
' Γ1

0(N)P1(R/N)
(
k× 0
0 1

)
.

yields the statement of the corollary.
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2.5.4 A System of Representatives of Γ0(N)\GL2(R)
Lemma 2.35. Let N be a normalized polynomial of R. Then, σ, τ ∈ GL2(R) are in
the same Γ0(N)-right coset if and only if there exists an x ∈ R with gcd(x,N) = 1
such that (τ21, τ22) ≡ x(σ21, σ22) (mod N).

Proof. See [But07, Lemma 1.22].

Theorem 2.36. Let N be a normalized polynomial of R. Then, we have

Γ0(N)\GL2(R) ' P1(R/N) .

Proof. This is proven similarly to Theorem 2.33 by using Lemma 2.35 instead of
Lemma 2.32.

2.6 Implementation in Magma

Now that we have discussed the theory, it is time to explain how to implement
the quotient of the Bruhat-Tits tree by a congruence subgroup on a computer.
According to Theorem 2.24, the quotient graph Γ\T essentially consists of m :=
[GL2(R) : Γ] copies of the quotient graph GL2(R)\T where several vertices and
edges are identified. Since GL2(R)\T has infinitely many vertices and edges, we
need the identification process to stop at some point, in order to implement the
quotient graph Γ\T in Magma. Fortunately, the following theorem guarantees this.

Theorem 2.37. Let N be a normed polynomial in R with n := deg(N) and Γ be
a congruence subgroup. If there is a m1 ≥ n and γ1 ∈ Gm1 such that s−1

i γ1sj ∈ Γ
for si, sj ∈ Γ\GL2(R) with si 6= sj, there exists a m2 < n ≤ m1 and γ2 ∈ Gm2 such
that s−1

i γ2sj ∈ Γ.

Proof. Suppose there is a m ∈ N with m ≥ n such that si(Λm), sj(Λm) are to be
identified. Thus, there exists

γ =
(
a b

0 d

)
∈ Gm

with s−1
i γsj ∈ Γ, a, d ∈ k×, and b ∈ R with deg(b) ≤ m. Further, let p, q ∈ R such

that b = pN + q and deg(q) < n. Then, we obtain

s−1
i γsj = s−1

i

(
a pN + q

0 d

)
sj ≡ s−1

i

(
a q

0 d

)
sj (mod N) .

Therefore, all identification must have been taken place until stage deg(q) < n.
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2.6.1 A System of Representatives of Γ\GL2(R)
Now that we know that the identification terminates after finitely many steps, we
can examine which vertices and edges overlap. For this purpose, we need a system of
representatives of Γ\GL2(R). The approach to the implementation of these systems
requires different methods for different Γ, but we have already encountered all of
them, when we studied Γ\GL2(R).
Starting with Γ = Γ(N), we have

GL2(R)/Γ(N) '
(
k× 0
0 1

)
SL2(R/N) ,

according to Theorem 2.29. Thus, we only have to write a function, which can lift
a matrix with entries in SL2(R/N) to a matrix in SL2(R). This is easily achieved
following the proof of Lemma 2.28.
If Γ = Γ1(N), we proved in Theorem 2.31 that a system of representative is given

by

Γ1(N)\GL2(R) ' {(x, y) ∈ (R/N)2 | gcd(x, y) = 1}
(
k× 0
0 1

)
.

Let (x, y) ∈ (R/N)2 with gcd(x, y) = 1. If the greatest common divisor is 1 after di-
rectly lifting the pair to R, we have already arrived at a matrix in SL2(R). Otherwise,
search for s, t ∈ R such that gcd(x+sN, y+ tN) = 1, which is described in the proof
of Lemma 2.28. The only inconvenience we face during this process is that, unfor-
tunately, Magma does not provide a gcd-function for the quotient ring R/N . That is
why we consider gcd(x, y) mod N in R, and check whether it results in a polynomial
coinciding with a unit in R/N . This is equivalent to gcd(gcd(x, y) mod N,N) = 1
in R.
Finally, the implementation of

Γ1
0(N)\GL2(R) ' P1(R/N)

(
k× 0
0 1

)
,

according to Corollary 2.34, and

Γ0(N)\GL2(R) ' P1(R/N) ,

by Theorem 2.36, work similarly.

2.6.2 The Quotient Graph Γ\T
For the implementation of the quotient graph it is beneficial to use the MultiDigraph
object of Magma. It saves directed edges and also allows the existence of multiple edges
from one vertex to an other. Moreover, Magma itself offers a wide range of functions
in regard to graphs. Some important ones with their description in [CBFe13] are:
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• VertexSet(G), EdgeSet(G)

• AssignLabel(∼ G, v, l): It assigns the label l to the vertex v in the graph G.
We will label all vertices with a number, so we know afterwards, where they
are in the graph and which representative si ∈ Γ\GL2(R) they have been
assigned to.

• IncidentEdges(v): It returns all the edges incident to and from the vertex v
as a subset of EdgeSet(G).

However, there are a few drawbacks. It is not possible to identify two edges di-
rectly, so one has to identify the corresponding vertices instead. For this purpose,
there is the Contract(u, v) function, which identifies two vertices and assigns all
neighbours of the vanishing vertex to the vertex with which it was identified. Un-
fortunately, once Contract(u, v) erases the second vertex, it also renumbers all
following vertices. Hence, it becomes rather tiresome to keep track of numeration.
In order to circumvent these problems, we use a different method to identify all ver-
tices and edges. Once the process is finished, we save the data in the MultiDigraph
object to benefit from Magma’s further features.
Let n be the degree of the monic polynomial N and m the cardinality of the

representative system Γ\GL2(R), where Γ is one of the groups Γ(N),Γ0(N),Γ1
0(N)

and Γ1(N). We construct a quadratic matrix A with m(n + 1) rows and columns
corresponding to all possible vertices. Keep in mind that there are n + 1 stages,
because stage 0 counts too. The entries of the matrix will be integers and the entry
in the i-th row and j-th column states whether the i-th vertex is connected with
the j-th vertex and how often. A negative entry means that the edges are incoming
and not outgoing. Initially, we have m copies of GL2(R)\T and the numeration of
the vertices are as follows:

1 −→ 1 +m −→ · · · −→ 1 + nm

2 −→ 2 +m −→ · · · −→ 2 + nm

...
m −→ m+m −→ · · · −→ m+ nm

and the corresponding matrix will be

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0


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for example with m = 3 and n = 2. The identification process takes place in three
steps and according to the rules of Theorem 2.24:

• Identify the edges between stage 0 and 1.

Algorithm 1 Identification of Edges of Stage 0
for si, sj ∈ Γ\GL2(R), si 6= sj, i ≤ j do

for g ∈ G0 ∩G1 do
if sjgs−1

i ∈ Γ then
Aj+lm,k := 0 for k ∈ {1, . . . ,m(n+ 1)}, l ∈ {0, . . . , (n− 1)};

end if
end for

end for

• Identify vertices of stage 0. During this process, we have to assign the values
of the vanishing vertex to the vertex it is getting identified with. The half-line
of both are otherwise unaffected.

• Identify vertices of stages ≥ 1 (and the corresponding edges). This is similar
to the first step, where not only the vertex and edge are disappearing, but also
the corresponding half-line.

Once the identification process is finished, remove all rows and columns which rep-
resent nonexisting vertices and transfer the data from the matrix to the object class
MultiDigraph. At the same time, we assign all remaining vertices their number in
the initial numeration above as a label. Then, the number mod m corresponds to
its representative in Γ\GL2(R) and the number divided by m refers to its stage.
These assignments also indicate the representatives of all edges of stages i ≥ 1,

because they are identified if and only if their origins are identified. In the case of
edges between vertices of stage 0 and 1, we have to be more careful and consider all
possibilities, which are listed below:

• If two distinct edges ei and ej are identified, there are no complications, since
one only has to omit the edge ej represented by sj.

• If only the origins of two edges ei and ej are identified, their representatives
still correspond to the numeration of their targets t(ei) and t(ej). The edge ej
represented by sj exists, but its origin is different.

• If only the targets of two edges ei and ej are identified, their representatives
still correspond to the numeration of their origins o(ei) and o(ej). The edge ej
represented by sj exists, but its target is different.
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• If the origin as well as the target of two edges ei and ej are identified, we will
have two edges from o(ei) to t(ei). The first one is represented by si and the
second by sj.

To keep track of the representatives of all edges, we store the information in list.
Then, the assignment of the labels for vertices and edges can be implemented in
Magma as explained in Algorithm 2.

Algorithm 2 Assignment of Vertices and Edges
x := 0;
for 1 ≤ i ≤ m(n+ 1) do

if not relevant[i] then
RemoveRow(A, i− x);
RemoveColumn(A, i− x);
x := x+ 1;

else
Include(∼ActualNumber, i);

end if
end for
Graph := MultiDigraph< NumberOfRows(A)| >; counter := 0;
for 1 ≤ i ≤ NumberOfRows(A) do

AssignLabel(∼Graph, vi, Sprintf("%o", ActualNumber[i]));
for 1 ≤ j ≤ NumberOfRows(A) do

while Aij > 0 do
for 1 ≤ k ≤ m do

if list[k] = (ActualNumber[i], ActualNumber[j]) then
AddEdge(∼Graph, vi, vj, Sprintf("%o", k));
counter := 1; list[k] := < 0, 0 >; break k;

end if
end for
if counter 6= 1 then

AddEdge(∼Graph, vi, vj, Sprintf("%o", ActualNumber[i]));
end if
Aij := Aij − 1; counter := 0;

end while
end for

end for
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3 Harmonic Cocycles

In this chapter, we introduce special functions called harmonic cocycles, which are
defined on the edges of the Bruhat-Tits tree and will further satisfy equivariance
under some action of a congruence subgroup. We will immediately notice that these
functions constitute a finite-dimensional vector space if they map into a finite-di-
mensional vector space. Furthermore, it will suffice to specify the values of harmonic
cocycles only on the stable edges since these will determine the values of the har-
monic cocycles everywhere else. In the end, we determine a basis of the vector space
of harmonic cocycles and discuss how to implement harmonic cocycles in Magma.
Most of these results are from [Ser80] and [Tei91] except some technical proofs in
Section 3.2.1, which rely on the work of [But07].

3.1 The Definition of Harmonic Cocycles
Definition 3.1. Let X be a vector space with an action of GL2(R), Γ a congruence
subgroup, and T the Bruhat-Tits tree. A map c : E(T ) −→ X which satisfies

1. ∑t(v)=e c(e) = 0 for every v ∈ V (T ),

2. c(e) = −c(e) for every e ∈ E(T ),

is called a harmonic cocycle with values in X. Furthermore, we define:

• A harmonic cocycle c is called Γ-equivariant if it satisfies c(γ · e) = γ · c(e) for
every e ∈ E(T ), γ ∈ Γ.

• A harmonic cocycle c is called cuspidal if there is a finite subgraph S ⊂ Γ\T
such that c(e) 6= 0 only for e ∈ E(π−1(S)), where π : T −→ Γ\T is the
projection.

This definition guarantees that if X is a finite-dimensional vector space over a
field F with an action of GL2(R) and Γ a congruence subgroup, the set Char(Γ, X)
of all Γ-equivariant harmonic cocycles is not only a vector space over F but also
finite-dimensional. In order to realize this, though, we need to prove the following
property of the Bruhat-Tits tree T .
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Proposition 3.2. Let v ∈ V (T ) be a vertex with normal form

v =
(
πn∞ y

0 1

)
.

Then, the normal forms of all adjacent vertices are given by(
πn+1
∞ y + xπn∞
0 1

)
,

(
πn−1
∞ y

0 1

)
,

where x ∈ k and y is the class of y mod πn−1
∞ O∞. If v is of stage 0, all adjacent

vertices are of stage 1, and if v is of stage i ≥ 1, exactly one adjacent vertex is of
stage i+ 1 and the other q edges are of stage i− 1.

Proof. The first part follows immediately from(
πn+1
∞ y + xπn∞
0 1

)
=
(
πn∞ y

0 1

)(
π∞ x

0 1

)
,(

πn∞ y

0 1

)
=
(
πn−1
∞ y

0 1

)(
π∞ (y − y)π−(n−1)

∞
0 1

)
.

The assertion regarding the stages are easily proven by following the steps of the
algorithm described in the proof of Theorem 2.21.

Proposition 3.3. Let X be a finite-dimensional vector space over a field F with
an action of GL2(R) and let Γ be a congruence subgroup. Then, the set Char(Γ, X)
of all Γ-equivariant harmonic cocycles is a finite-dimensional vector space over F .

Proof. It is immediately clear that Char(Γ, X) is a vector space. That is why we
only have to prove it is of finite dimension. Therefore, let c be in Char(Γ, X) and
e = σ(Λi,Λi+1) ∈ E(T ) with σ ∈ GL2(R) be an edge of stage i ≥ 1. Furthermore,
let v1, . . . , vq be the adjacent vertices of stage i− 1 of the vertex σΛi. By definition,
we have

c(e) = −c(e) =
q∑
i=1

c(vi, σΛi) .

Thus, the values of c are completely determined by its values on edges of stage 0.
So, let e = γsk(Λ0,Λ1) be an edge of stage 0 such that γ ∈ Γ and sk ∈ Γ\GL2(R).
Since c is Γ-equivariant, it follows

c(e) = γ · c(sk(Λ0,Λ1)) .

Consequently, c is fully declared by its values on sk(Λ0,Λ1) with sk ∈ Γ\GL2(R).
These essentially are the edges of stage 0 of the quotient graph Γ\T , of which there
are only finitely many. Thus, if {x1, . . . , xn} is a basis of X, the set

{eij : si(Λ0,Λ1) 7−→ xj | si(Λ0,Λ1) ∈ Γ\T }

generates the vector space Char(Γ, X).
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Corollary 3.4. Let X be a finite-dimensional vector space over a field F with an
action of GL2(R) and let Γ be a congruence subgroup. Then, if m := #Γ\GL2(R)
and n := dim(X), we have

dim(Char(Γ, X)) ≤ m · n .

Now, we have to further study the quotient graph Γ\T and observe how many
and what kind of edges of stage 0 occur. For this purpose, we introduce the notion
of stable vertices and edges.

Definition 3.5. Let Γ be a congruence subgroup and T the Bruhat-Tits tree. A
vertex v ∈ V (T ) or an edge e ∈ E(T ) is called Γ-stable if StabΓ(v) = {1} or
StabΓ(e) = {1}, respectively.

Example 3.6. If Γ = Γ0(N) and q > 2, there are no Γ-stable vertices or edges,
because for all v ∈ V (T ), we have(

ϕ 0
0 ϕ

)
∈ StabΓ(v)

for 1 6= ϕ ∈ k× and similarly(
ϕ 0
0 ϕ

)
∈ StabΓ(e) = StabΓ(o(e)) ∩ StabΓ(t(e))

for all edges e ∈ E(T ). The same is also true for Γ = Γ1
0(N) and q 6= 2r, because in

this case, #k× = q − 1 is even such that there always exists an element ϕ ∈ k× of
order 2.
The construction of a basis of Char(Γ, X) will heavily rely on the existence of

stable vertices and edges. That is why the following considerations only concern
the congruence subgroups Γ(N) and Γ1(N). In the case of Γ1

0(N) and Γ0(N), we
will describe a different method once we have established a basis for the former
congruence subgroups.

3.2 A Basis of Char(Γ, X) if Γ = Γ(N) or Γ1(N)
Proposition 3.7. Let v be a Γ-stable vertex. Then, all q + 1 edges containing v as
a vertex are also Γ-stable.

Proof. Let e be an arbitrary edge containing v. Then,

StabΓ(e) = StabΓ(o(e)) ∩ StabΓ(t(e)) = {1}

since either o(e) or t(e) is v, which is Γ-stable.
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Theorem 3.8. Let Γ be a congruence subgroup and v ∈ V (T ) be a Γ-stable vertex.
Then, there are exactly q + 1 edges containing π(v) ∈ V (Γ\T ) as a vertex.

Proof. Let ei := (v, vi) be all q + 1 edges with v as a vertex. If two of the edges em
and en were equivalent in Γ\T , there would exist 1 6= γ ∈ Γ such that γ[em] = [en].
If γv were equal to vn, then

1 = d(v, vn) = d(v, γv) ≡ 0 (mod 2) ,

by Lemma 2.18. Thus, it would have to be γv = v. But this contradicts the assump-
tion that v is Γ-stable.

Remark 3.9. In general, the converse of this theorem is not true. For example,
consider k = F3, N = T 3 + T,Γ = Γ0(N). The quotient graph Γ\T has a vertex
with four adjacent edges, but the Bruhat-Tits tree itself has no stable vertices, as
discussed in Example 3.6.

Figure 3.1: The quotient graph Γ\T for k = F3,Γ = Γ0(T 3 + T )

According to Theorem 3.8, if we have a stable vertex v of stage 0, all edges
containing v will correspond to distinct edges in the quotient graph. Thus, there
will also be q + 1 edges in the quotient graph such that we can omit exactly one of
them when choosing a basis, because the value of a Γ-equivariant harmonic cocycle
on the omitted edge can be calculated by its values on the other q edges.
Therefore, it remains to be seen how many edges of stage 0 contribute to the basis

of the vector space Char(Γ, X) if the initial vertex is unstable. This will require a lot
more work than before and will be dealt with in the following section.
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3.2.1 The Situation at an Unstable Vertex
Lemma 3.10. If deg(N) ≥ 1 and l 6= p is prime, the congruence subgroups Γ(N)
and Γ1(N) are l-torsion-free.

Proof. Since Γ(N) ⊆ Γ(P ) for every prime divisor P of N , we assume that N is
prime. Let γ ∈ Γ(N) with γl = 1 for an arbitrary prime l 6= p. It suffices to show that
γ ≡ 1 mod (N)m for allm ∈ N, because ⋂m∈N(N)m = {0}. We prove it by induction,
beginning with m = 1 which is by definition true. Suppose that γ ≡ 1 mod (N)m
for a m ≥ 1. This means there exists a matrix σ ∈ GL2(R) such that γ = 1 +Nmσ.
It follows that

1 = γl = (1 +Nmσ)l =
l∑

i=0

(
l

i

)
(Nmσ)i ≡ 1 + lNmσ mod (N)m+1 .

Since l and p are coprime, we get σ ≡ 0 mod (N) and thus γ ≡ 1 mod (N)m+1.
Now, let γ ∈ Γ1(N) with γl = 1 for an arbitrary prime l 6= p. Note that Γ(N) is

a normal subgroup of Γ1(N), because it is normal in GL2(R) as the kernel of the
projection

GL2(R) −→ GL2(R/N) .

Consequently, Γ1(N)/Γ(N) ' R/N is a p-group with [Γ1(N) : Γ(N)] = qdeg(N) many
elements. For the image γ of γ under the canonical projection we have

γl = γl = 1 = 1 .

Since l and p are coprime, it follows l = 1.

Example 3.11. If q 6= 2 and l is a prime divisor of q − 1, the congruence subgroups
Γ1

0(N) and Γ0(N) are not l-torsion-free. In order to prove this, consider the matrix

γ =
(
a 0
0 d

)
∈ Γ1

0(N) ⊆ Γ0(N)

for a, d ∈ k× and ad = 1. Then, γq−1 = 1 and thus
(
γ

q−1
l

)l
= 1.

Lemma 3.12. Let G be a subgroup of GL2(R) which is l-torsion-free for all prime
l 6= p. Then, (q − 1)(q2 − 1) is a divisor of the index [GL2(R) : G].

Proof. Consider the action

GL2(k)×GL2(R)/G −→ GL2(R)/G , (σ, gG) 7−→ σgG .

The stabilizer subgroup of an arbitrary element gG ∈ GL2(R)/G under this action
is

StabGL2(k)(gG) = {σ ∈ GL2(k) |σg ∈ gG} = {σ ∈ GL2(k) |σ ∈ gGg−1} .
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Let σ be an element of StabGL2(k)(gG). Then, there exists an h ∈ G such that

σl = (ghg−1)l = ghlg−1 6= 1

for all prime l 6= p. That is why the stabilizer subgroup StabGL2(k)(gG) of an ar-
bitrary element gG is also l-torsion-free. Since # GL2(k) = q(q − 1)(q2 − 1) and
StabGL2(k)(gG) ⊆ GL2(k), StabGL2(k)(gG) is even a p-group.
Now, let g1, . . . , gm be a system of representatives of the orbits under the action

above. According to the orbit-stabilizer theorem, it follows for q = pr that

[GL2(R) : G] =
m∑
i=1

# GL2(k)
# StabGL2(k)(giG) = (q − 1)(q2 − 1)

m∑
i=1

pr−ri .

Thus, (q − 1)(q2 − 1) is a divisor of the index [GL2(R) : G]

Lemma 3.13. LetG be a non-trivial p-subgroup of GL2(K2
∞). Then, there is exactly

one element x ∈ P1(K∞) with G · x = x.

Proof. First, we prove the existence of an element x ∈ P1(K∞) with the required
property. Since G is a non-trivial p-group, there exists a matrix σ 6= 1 in the center
of G of order pm for some m ∈ N. The matrix is unipotent because

0 = σp
m − 1 = (σ − 1)pm

.

That is why it is conjugated to a matrix(
1 x

0 1

)
.

Thus, the set V 〈σ〉 consisting of all elements in K2
∞ fixed by σ is a one-dimensional

subspace of K2
∞. Furthermore, since σ is an element of the center of G, we have

σ(g(v)) = g(σ(v)) = g(v)

for all g ∈ G and v ∈ V 〈σ〉. This induces an action

G/〈σ〉 × V 〈σ〉 −→ V 〈σ〉 ,

which has to be trivial because there are no endomorphisms of K∞ of order p. Thus,
x := V 〈σ〉 defines an element of P1(K∞) which is invariant under G.
Now, suppose there are two distinct elements [x], [y] ∈ P1(K∞) with this property.

Let σ be an arbitrary element of G. With regards to the basis {x, y}, σ must be of
form (

a b

0 d

)
,
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when we consider σ[x] = [x], and of form(
a 0
c d

)
,

because of σ[y] = [y]. Subsequently, σ is a diagonal matrix. Since G is a p-group,
there exists a m ∈ N such that

1 = σp
m =

(
ap

m 0
0 dp

m

)

and, because 0 = deg(apm) = pm deg(a), we have a ∈ k×. As a result, we get that
the order of a divides q − 1 and pm. This is possible if and only if the order of a is
1 and thus a = 1. Similarly, we get d = 1. This means σ = 1, which contradicts the
fact that G is non-trivial.

Definition 3.14. If two paths of infinite length in T differ at only finitely many
edges, they are called equivalent. Their corresponding classes are ends of T . The
ends of the quotient graph Γ\T are called cusps.

Corollary 3.15. Let Γ be a subgroup of GL2(R) which is l-torsion-free for all prime
l 6= p and let v be an Γ-unstable vertex of the Bruhat-Tits T . Then, there exists a
unique end bv : v → v1 → v2 → . . . with initial vertex v and StabΓ(v) ⊆ StabΓ(bv).
The end consists exclusively of Γ-unstable vertices.

Proof. The stabilizer group StabΓ(v) is non-trivial, since v is unstable; finite; and a
p-group, because Γ is l-torsion-free for every prime l 6= p. According to Lemma 3.13,
there exists an x ∈ P1(K∞) which is invariant under the action of StabΓ(v). Since
there is a one-to-one correspondence between P1(K∞) and the ends of T , StabΓ(v)
leaves exactly one end bv : v → v1 → v2 → . . . invariant. Subsequently, we have
StabΓ(v) ⊆ StabΓ(vi). Thus, bv consists only of unstable edges.

The Γ(N)-Stable Vertices and Edges

Now, we can explicitly calculate the stabilizer of vertices and edges. The case Γ =
Γ(N) is the simplest, because Γ(N) is a normal subgroup of GL2(R). That is why
we can directly calculate the stabilizer groups of vertices.

Proposition 3.16. Let v ∈ V (T ) be a vertex of stage i ≤ 1. Then, v is Γ(N)-stable
if and only if i < deg(N).

Proof. Since v ∈ V (T ) is a vertex of stage i ≤ 1, there exists a σ ∈ GL2(R) such
that v = σΛi. Thus, the stabilizer group is given by

StabΓ(N)(v) = Γ(N) ∩ StabGL2(R)(v) = Γ(N) ∩ σGiσ
−1 ,
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where StabGL2(R)(Λi) = Gi according to Lemma 2.23. Since Γ(N) is a normal sub-
group of GL2(R), we obtain

σ−1 StabΓ(N)(v)σ = Γ(N) ∩Gi

=


{1} if i < deg(N) ,
1 xN

0 1

 ∣∣∣∣∣∣ deg(x) + deg(N) ≤ i

 if i ≥ deg(N) .

As a result, v ∈ V (T ) is Γ(N)-stable if and only if i < deg(N).

Proposition 3.17. Every vertex v ∈ V (T ) of stage 0 is Γ(N)-stable.

Proof. According to Proposition 3.16, if deg(N) ≥ 2, all vertices of stage 1 are
stable. If v was unstable, there would exist an end of unstable vertices by Corollary
3.15, including an unstable vertex of stage 1.
Now, let deg(N) = 1. Then, there is only one vertex of stage 0 in Γ(N)\T , because

GL2(R)/Γ(N) '
(
k× 0
0 1

)
SL2(R/N) ' GL2(k) .

So, all vertices of stage 0 are identified with Λ0, whose stabilizer group is given by

StabΓ(N)(Λ0) = Γ(N) ∩G0 = {1} .

Consequently, every vertex v ∈ V (T ) of stage 0 is Γ(N)-stable.

Corollary 3.18. Let e ∈ E(T ) be an edge between vertices of stage i and i + 1.
Then, e is Γ(N)-stable if and only if i < deg(N).

Proof. According to Proposition 3.7, every edge which contains a vertex of stage
i < deg(N) is stable. These are the only stable edges, because if an edge between
vertices of stage i and i + 1 was stable for i ≥ deg(N), the corresponding vertex of
stage i would also have to be stable, which contradicts the previous lemma.

Thus, if Γ = Γ(N), there are no unstable vertices of stage 0 and the quotient
graph exclusively has stable vertices of stage 0 with q+ 1 stable edges, of which one
is to be omitted to construct a basis of Char(Γ, X).

The Γ1(N)-Stable Vertices and Edges

Next, since Γ1(N) is not normal in GL2(R), the expression

StabΓ1(N)(v) = Γ1(N) ∩ StabGL2(R)(v) = Γ1(N) ∩ σGiσ
−1 ,

does not simplify. Thus, the calculations are more difficult in this case.
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Lemma 3.19. Let γ ∈ GL2(R/N), π : GL2(R) → GL2(R/N) be the projection
map, and Γ := π(Γ1(N)).

1. Let i ≥ 1 and Gi := π(Gi). Then, we have

γ−1Γγ ∩Gi =
{(

1 x

0 1

) ∣∣∣∣∣ deg(x) ≤ i,
N

gcd(N, γ21)

∣∣∣∣∣x
}
.

2. Let G0 := π(G0 ∩G1). Then, we have

γ−1Γγ ∩G0 =
{(

1 x

0 1

) ∣∣∣∣∣x ∈ k
}
.

Proof. See [But07, Lemma 2.32].

Proposition 3.20. Let v ∈ V (T ) be a Γ1(N)-unstable vertex of stage i ≥ 1
and bv : v = v1 → v2 → . . . its unique end from Corollary 3.15. Then, we have
StabΓ1(N)(vi) ⊆ StabΓ1(N)(vi+1) and # StabΓ1(N)(vi+1)/ StabΓ1(N)(vi) = q.

Proof. See [But07, Satz 2.36].

Proposition 3.21. Let e = (v1, v2) ∈ E(T ) be a Γ1(N)-unstable edge between
vertices of stage 0 and 1 and bv : v = v1 → v2 → . . . its unique end from Corollary
3.15. Then, we have StabΓ1(N)(e) ⊆ StabΓ1(N)(v2), # StabΓ1(N)(v2)/ StabΓ1(N)(e) = q,
StabΓ1(N)(vi) ⊆ StabΓ1(N)(vi+1), and # StabΓ1(N)(vi+1)/ StabΓ1(N)(vi) = q for i ≥ 2.

Proof. See [But07, Satz 2.37].

Corollary 3.22. Let e = γ(Λi,Λi+1) ∈ E(T ) be an edge between vertices of stage
i and i + 1 and let M(γ−1) := N

gcd(N,c) where c := (γ−1)2,1. If deg(M(γ−1)) > i, the
edge e is Γ1(N)-stable. Otherwise, the stabilizer group of e is given by

StabΓ1(N)(e) = γ

{(
1 M(γ−1)x
0 1

) ∣∣∣∣∣x ∈ R, deg(x) + deg(M(γ−1)) ≤ i

}
γ−1 .

Corollary 3.23. Let v ∈ V (T ) be a Γ1(N)-unstable vertex of stage 0 and the
path bv : v = v1 → v2 → . . . its unique end from Corollary 3.15. Then, we have
StabΓ1(N)(v) = StabΓ1(N)(v, v2). Furthermore, if ei = (v, wi) with i = 1, . . . , q are
the other edges containing v as initial vertex, all ei are Γ1(N)-stable and Γ1(N)-
equivalent.

Proof. According to Corollary 3.15, the group StabΓ1(N)(v) stabilizes the whole end
bv : v = v1 → v2 → . . . , so we have StabΓ1(N)(v) ⊆ StabΓ1(N)(vi) for i ≥ 1. Thus, it
follows

StabΓ1(N)(v, v2) = StabΓ1(N)(v) ∩ StabΓ1(N)(v2) = StabΓ1(N)(v) .

31



Now, let e = (v, v2) be the Γ1(N)-unstable edge of the unique end and ei = (v, wi)
with i = 1, . . . , q the remaining q edges at the vertex v. Consider the action of
StabΓ1(N)(e) on these edges. By definition, the group stabilizes their initial vertex
o(ei) = v, and has to act transitively on the set of terminal vertices t(ei) = wi.
Otherwise, there would exist a non-trivial element stabilizing a wi, which would also
stabilize the edge ei. Consequently, StabΓ1(N)(ei) would be non-trivial and, according
to Corollary 3.22, would have cardinality q. Since # StabΓ1(N)(v) = q, we would get

StabΓ1(N)(ei) = StabΓ1(N)(v) ∩ StabΓ1(N)(wi) = StabΓ1(N)(v) .

Then, StabΓ1(N)(v) would stabilize a whole new end introduced by v and wi, which
would contradict Corollary 3.15. Thus, all ei are stable edges and result in the same
edge in the quotient graph Γ\T .

According to Corollary 3.23, the vertex v only has two adjacent edges in the
quotient graph, with exactly one being stable and the other one being unstable. As
a result, if c : E(T ) −→ X is a Γ1(N)-equivariant harmonic cocycle, its value on the
edge e = (v, v2) is given by

c(e) = −c(e) =
q∑
i=1

c(ei) = −
q∑
i=1

c(ei) = −
∑
σ∈U

c(σ · e′) = −
∑
σ∈U

σ · c(e′) ,

where U := StabΓ1(N)(e) and e′ is an arbitrary ei = (v, wi). Thus, if we have an
unstable vertex of stage 0, we only have to set the value on one edge instead of q or
q + 1 edges.

Figure 3.2: The quotient graph Γ\T for k = F2,Γ = Γ1(T 2)
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3.2.2 Result
Corollary 3.24. Let X be a vector space with dimension d, mv the number of
stable vertices of stage 0 in Γ\T , and me the number of stable edges between stage
0 and 1 in Γ\T . Then, we have

dim(Char(Γ, X)) = d(me −mv) .

If {e1, e2 . . . , eme−mv} is a subset of stable edges as required and {v1, v2 . . . , vd} a
basis of X,

{ci,j : ei 7−→ vj | i ∈ {1, 2, . . .me −mv}, j ∈ {1, 2, . . . , d}}

is a basis of Char(Γ, X).

3.3 A Basis of Char(Γ, X) if Γ = Γ1
0(N), Γ0(N), or

SL2(R)
Now, as discussed in the previous section, while these results are always true if Γ is
Γ(N) or Γ1(N), there are quite a few restrictions if Γ is Γ1

0(N), Γ0(N), or SL2(R).
This is because of the fact that there are no stable edges depending on #k = q and
there exist isolated vertices depending on the choice of N ∈ R. In the following page,
we discuss a resort such that we can fully describe the vector space of Γ-equivariant
harmonic cocycles in all cases.

Proposition 3.25. Let X be a vector space with dimension d and N a normalized
polynomial of R. Then, we have

Char(Γ0(N), X) ⊆ Char(Γ1
0(N), X) ⊆ Char(Γ1(N), X) ⊆ Char(Γ(N), X) .

Proof. In Proposition 2.27, we proved

Γ(N) ⊆ Γ1(N) ⊆ Γ1
0(N) ⊆ Γ0(N) .

Thereby, the first assertion follows immediately.

Definition 3.26. Let G be a group and H a subgroup of G. Then, the set
G Char(H,X) := {c ∈ Char(H,X) | c(g · e) = g · c(e)∀g ∈ G}

defines the subspace of all G-equivariant elements of Char(H,X).

Proposition 3.27. Let X be a finite-dimensional vector space, N a normalized
polynomial of R, and Γ either Γ1

0 or Γ0. Then, we have

Char(Γ, X) = Γ/Γ1 Char(Γ1, X) .
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Proof. Let c ∈ Char(Γ, X), that is a Γ-equivariant harmonic cocycle. By Proposition
3.25, c is also an element of Char(Γ1, X), thus c ∈ Γ/Γ1 Char(Γ1, X).
Conversely, let c ∈ Γ/Γ1 Char(Γ1, X). It is a harmonic cocycle, so we only have to

prove Γ-equivariance. For this purpose, let γ ∈ Γ. Then, there exist γ1 ∈ Γ/Γ1 and
γ2 ∈ Γ1 such that γ = γ1γ2. It follows

c(γ · e) = γ1 · c(γ2 · e) = (γ1γ2) · c(e) = γ · c(e) ,

where the first equation is because of Γ/Γ1-equivariance and the second equation is
due to Γ1-equivariance.

Remark 3.28. With Proposition 3.27, it is now possible to compute Char(Γ1
0, X) and

Char(Γ0, X) as subspaces of Char(Γ1, X). For this purpose, we calculate the kernel of
the map

Char(Γ1, X) −→ Char(Γ1, X), c 7−→ [e 7→ g−1 · c(g · e)]

for every g ∈ Γ/Γ1. The intersection delivers the desired subspace. It is essential
that Γ1 is a normal subgroup of Γ1

0 and Γ0, because otherwise the map would not be
well-defined. If we consider a congruence subgroup Γ such that Γ1 is not a normal
subgroup of Γ, for example Γ = SL2(R), we can compute Char(Γ, X) as a subspace
of Char(Γ(N), X), since Γ(N) is a normal subgroup of every congruence subgroup.
Further, especially with regards to complexity, it may be wiser to implement

Char(Γ(N) ∩ Γ1(P )) where P ∈ R is a polynomial with gcd(N,P ) = 1. By choosing
P appropriately, that is of lower degree, the computation gets less expensive.

3.4 Improvements in the Evaluation of a Harmonic
Cocycle

With what we have described in the previous sections, we are able to evaluate a
Γ-equivariant harmonic cocycle on an arbitrary edge of the Bruhat-Tits tree T .
Nevertheless, there is still room for improvement, especially when we consider that
right now, if we want to evaluate on an edge of stage i sufficiently large, we will have
to evaluate on several edges of prior stages.

3.4.1 Cuspidality
In a first improvement, we show that if the vector space X is defined over a field
of prime characteristic p, all Γ-equivariant harmonic cocycles are cuspidal, that is
after a specific stage i, the values will always be 0. For this purpose, we need the
following lemma.
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Lemma 3.29. Let Γ be a congruence subgroup and Un := StabΓ(Λn). Then, for
a sufficiently large n, we have #Un/Un−1 = q. In this case, the edge (Λn,Λn+1) is
invariant under the action of Un/Un−1. On all other edges e with origin Λn, the
action of Un/Un−1 is transitive.

Proof. By definition, there exists an N ∈ R such that Γ(N) is a subgroup of Γ. We
define U ′n := StabΓ(N)(Λn). If n < deg(N), U ′n = {1}. Otherwise, we have

#U ′n/U ′n−1 = q = #Gn/Gn−1 .

Since

U ′n/U
′
n−1 ⊆ Un/Un−1 = Un/Un ∩Gn−1 = Gn−1Un/Gn−1 ⊆ Gn/Gn−1 ,

we finally conclude Un/Un−1 = U ′n/U
′
n−1 for n > deg(N) + 1. Furthermore, it follows

directly from the definition of Un that Un/Un−1 leaves the edge (Λn,Λn+1) fixed. As
to its action on the other edges, we notice

#Un/Un−1(Λn−1,Λn) = #Gn/Gn−1(Λn−1,Λn) = q ,

because U ′n/U ′n−1 = Gn/Gn−1 acts transitively on the edges e 6= (Λn,Λn+1) which
contain Λn as a vertex.

Theorem 3.30. Let X be a finite-dimensional vector space over a field of prime
characteristic p with an action of GL2(R) and let Γ be a congruence subgroup. Then,
every Γ-equivariant harmonic cocycle is cuspidal.

Proof. Let c be a Γ-equivariant harmonic cocycle. In Chapter 2, we proved that
Γ\T consists of a finite subgraph and finitely many cusps. Therefore, it suffices to
consider the values of c on sequences in T corresponding to cusps in Γ\T .
First, let (en)n∈N0 be the sequence with edges en := (Λn,Λn+1). We define the

subspaces
Xn := {x ∈ X |σ · x = x ∀σ ∈ Un}

of X, where Un denotes the stabilizer subgroup of Λn in Γ. Since Un ⊆ Un+1 for
n ∈ N and c(en) ∈ Xn, (Xn)n∈N is by definition a descending sequence of subspaces
of the finite-dimensional vector space X. That is why there exists a m1 ∈ N such
that

Xm1 = Xm1+1 = Xm1+2 = . . . .

Simultaneously, we know that #Un/Un−1 = q for n ≥ m2 with a sufficiently large
m2 ∈ N, which exists according to Lemma 3.29. Further, Un/Un−1 acts transitively on
the q edges containing Λn unequal to en = (Λn,Λn+1). Thus, for n ≥ max(m1,m2),
we have

c(en+1) =
q∑
i=1

c(γi · en) =
q∑
i=1

γi · c(en) =
q∑
i=1

c(en) = qc(en) = 0
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where {γ1, . . . , γq} is a system of representatives for Un/Un−1. The third equation is
true because of γi · c(en) = c(γi · en) = c(en) ∈ Xn−1 = Xn.
Now, let (en)n∈N0 be an arbitrary sequence of edges in T corresponding to a cusp

in Γ\T . Then, it is GL2(R)-equivalent to the standard cusp from the beginning, so
there exists a σ ∈ GL2(R) such that en = σ(Λn,Λn+1) for all n ≥ m for some m ∈ N.
Since the map

c : E(T ) −→ X, e 7−→ σ−1 · c(σ · e) .

defines a σ−1Γσ-equivariant harmonic cocycle, it disappears on the standard cusp.
Consequently, c itself vanishes on (en)n∈N0 .

Corollary 3.31. Let X be a vector space with dimension d over a field of prime
characteristic p and let Γ be either Γ(N) or Γ1(N). If c : E(T )→ X is Γ-equivariant
harmonic cocycle, we have c(e) = 0 for all edges e ∈ E(T ) between vertices of stage
i and i+ 1 with i ≥ n+ d+ 1.

Proof. In the proof of Theorem 3.30, we have noticed that a Γ-equivariant harmonic
cocycle vanishes on edges between vertices of stage i and i + 1, when the chain
of subspaces Xi terminates and we have # StabΓ(ei)/ StabΓ(ei−1) = q. The latter
requirement is always fulfilled for unstable edges, which at the latest appear after
stage n, according to Theorem 3.8. The subspaces will terminate at maximum after
d steps, because X is d-dimensional.

3.4.2 The Source of Unstable Edges
Next, we study the concept of the source of unstable edges. This will allow us to
calculate the value of a harmonic cocycle on an unstable edge by its value on a stable
edge, which introduces an end through the unstable edge. For the whole section, let
Γ be either Γ(N) or Γ1(N).

Definition 3.32. Let e ∈ E(T ) be Γ-unstable. We define the source of e by

SrcΓ(e) := {e′ ∈ E(T ) | e′ stable; ∃e′′ unstable: o(e′′) = t(e′), e ∈ bo(e′′)} .

For a Γ-stable edge e ∈ E(T ), we set SrcΓ(e) = {e}.

Proposition 3.33. Let e = (v1, v2) be an unstable edge such that the stage of v1 is
smaller than the stage of v2. If e1, . . . , eq are the remaining edges which contain v1,
then we have

Src(e) =
q⊔
i=1

Src(ei) .

Proof. Since e is unstable and the stabilizer groups grow with a factor of q, there
exists a m ∈ N such that # StabΓ(e) = qm. If m = 1, then all ei are stable, which
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means that Src(ei) = {ei}. Furthermore, we have t(ei) = o(e), so ei ∈ Src(e).
Now, let e′ ∈ Src(e). By definition, e is the first unstable edge with t(e′) = o(e) and
e ∈ bt(e′), so e′ = ei for some i. Ifm > 1, all ei are unstable. We have Src(ei) ⊆ Src(e),
because bo(e) ⊂ bo(ei). On the other hand, if e′ is an element from Src(e), its path to
infinity must include some ei, proving the other inclusion.

Corollary 3.34. Let e = (v1, v2) be an edge. Then, # Src(e) = # StabΓ(e) <∞.

Proof. The source of a stable edge only has one element. If e is an unstable edge,
according to Proposition 3.33, its source is the union of the sources of finitely many
adjacent edges of a prior stage. This terminates in finitely many steps with the
source of stable edges, which only have one element themselves. By induction, we
get

# Src(e) =
q∑
i=1

# Src(ei) =
q∑
i=1

qm−1 = qm ,

which is equal to # StabΓ(e).

Proposition 3.35. Let e be an unstable edge and e′ an element of its source. Then,
Src(e) = StabΓ(e) · e′.

Proof. Since e′ ∈ Src(e), there is an end bt(e′) : t(e′)→ e′′ → . . . such that e ∈ bt(e′).
Then, for γ ∈ StabΓ(e) the end γe′ → γe′′ → . . . consists of unstable edges with the
exception of γe′, and contains γe = e. Thus, γe′ ∈ Src(e) and

StabΓ(e)e′ ⊆ Src(e) .

According to Corollary 3.34, both sets have the same number of elements. Hence,
they are equal.

Corollary 3.36. For all e ∈ E(T ), γ ∈ Γ, we get Src(γe) = γ Src(e).

Proof. According to Proposition 3.35, we have

Src(γe) = StabΓ(γe)γe′ = γ StabΓ(e)γ−1γe′ = γ Src(e) .

Theorem 3.37. Let c : E(T ) −→ X be a Γ-equivariant harmonic cocycle and let
e ∈ E(T ) be unstable. Then

c(e) =
∑

e′∈Src(e)
c(e′) .

Similarly, if c is a Γ-equivariant, harmonic map with values in X defined on all stable
edges, then

c(e) :=
∑

e′∈Src(e)
c(e′)

defines a Γ-equivariant harmonic cocycle c : E(T ) −→ X.
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Proof. First, let c : E(T ) −→ X be a Γ-equivariant harmonic cocycle, e ∈ E(T ) an
unstable edge, and e1, . . . , eq the other q adjacent edges. We prove the theorem by
induction for m ∈ N,# StabΓ(e) = qm. Let m = 1. Then, by definition

q∑
i=1

c(ei) + c(e) = 0 .

Now, letm > 1. Applying Proposition 3.33 and by induction hypothesis for # StabΓ(ei),
we get

c(e) =
q∑
i=1

c(ei) =
q∑
i=1

∑
e′∈Src(ei)

c(e′) =
∑

e′∈Src(e)
c(e′) .

Finally, if c is a Γ-equivariant, harmonic map with values in X defined on all stable
edges, then

c(e) :=
∑

e′∈Src(e)
c(e′)

is, according to Corollary 3.34, a finite sum and, according to Corollary 3.36, a
Γ-equivariant map. Furthermore, if e is an unstable edge and e1, . . . , eq as before,

c(e) =
∑

e′∈Src(e)
c(e′) =

q∑
i=1

∑
e′∈Src(ei)

c(e′) =
q∑
i=1

c(ei) .

Therefore, c defines a harmonic cocycle.

Subsequently, if we want to evaluate a Γ-equivariant harmonic cocycle c on an
unstable edge e, we can search for a stable edge e′ of a prior stage introducing a
path to infinity through e, evaluate c on e′, and then calculate c(e) by operating on
c(e′) with StabΓ(e).

3.5 Implementation in Magma

Let X be a vector space over a field F of prime characteristic p with a GL2(R)-
action. In order to evaluate a Γ-equivariant harmonic cocycle c : E(T ) −→ X on an
arbitrary edge e ∈ E(T ), there are essentially three major steps.

1. Let A ∈ GL2(K∞) be a matrix which represents the edge e. Find elements
γ ∈ Γ and σ ∈ Γ\GL2(R) such that A = γσ(Λn,Λn+1) for some n ∈ N.

2. Evaluate c on the edge σ(Λn,Λn+1), that is on the corresponding edge [e] of
the quotient graph Γ\T .

3. Since c(e) = c(γ · [e]) = γ · c([e]), apply the GL2(R)-action on X.
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First, let us discuss how to find the required matrices. Notice that while it is possible
to consider matrices in GL2(K∞) in Magma, there are quite a few complications
regarding the use. For example, one can implement K∞ as a Laurent series ring in
π∞ with coefficients from k, and an arbitrary element x of K∞ is then given by

x =
∞∑
i=m

xiπ
i
∞ = xmπ

m
∞ + xm+1π

m+1
∞ + . . .

for m ∈ Z, which is an infinite series. Magma can only save it up to a precision, which
is 20 if not specified and not sufficient from a theoretical point of view. Even if we
just use elements in the field of fractions K of R but make use of operations in K∞,
there is still the possibility that inverting an element will turn it into an infinite
series. For example, consider
T + 1
T 2 + 1 7−→ π−1

∞ + π2
∞ + 2π4

∞ + π6
∞ + 2π8

∞ + π10
∞ + 2π12

∞ + π14
∞ + 2π16

∞ + π18
∞ +O(π19

∞) ,

where we chose k = F3 and embedded K into K∞. However, according to all our
previous considerations, we only need to operate in K, where we can invert these
elements precisely. The only disadvantage from not using K∞ is that we have to
pass on preassigned functions such as Valuation and Coefficient for elements in
K∞, which can be easily implemented separately, though.

3.5.1 Representatives of Edges
Now, let e = (v, w) be an edge. Our goal is to find γ ∈ Γ, sk ∈ Γ\GL2(R) such that

e = (v, w) = γsk(Λi,Λj) ,

where |i − j| = 1. Therefore, we first need two functions which assign to the two
vertices v, w their normal forms

v =
(
πnv
∞ yv
0 1

)
, w =

(
πnw
∞ yw
0 1

)

and then their representatives on the quotient graph GL2(R)\T

v = σvΛi , w = σwΛj .

Both algorithms are thoroughly discussed in the proof of Lemma 2.14 and Theorem
2.21, respectively. At first, σv is not necessarily equal to σw, but Proposition 2.13
provides the existence of a σ ∈ GL2(R) such that

e = (v, w) = (σvΛi, σwΛj) = σ(Λi,Λj) .

Therefore, we have
σvαv = σ = σwαw ,

where αv ∈ Gi, αw ∈ Gj. Now, consider the following four cases:
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• If 1 ≤ i < j, we have Gi ⊆ Gj. As a result, we get

e = (σvΛi, σwΛj) = (σvΛi, σvαvα
−1
w Λj) = σv(Λi,Λj) .

• If 1 ≤ j < i, we have Gj ⊆ Gi. Similarly, it follows

e = (σvΛi, σwΛj) = (σwαwα−1
v Λi, σwΛj) = σw(Λi,Λj) = σw(Λj,Λi) .

• If i = 0 and j = 1, we still obtain σvαv = σ = σwαw for αv ∈ G0, αw ∈ G1,
but since G0 = GL2(k) * G1, we have

e = (σvΛ0, σwΛ1) = (σα−1
v Λ0, σα

−1
w Λ1) = σ(Λ0,Λ1) .

In order to find σ, we run through G0 and G1 and search for αv ∈ G0, αw ∈ G1

satisfying σvαv = σwαw.

• If i = 1 and j = 0, it similarly follows e = σ(Λ1,Λ0) = σ(Λ0,Λ1).

In all cases, once we have established e = σ(Λi,Λj) for σ ∈ GL2(R), all that remains
is to find the corresponding edge on the quotient graph Γ\T . Algorithm 3 does
exactly that.

Algorithm 3 Find a representative on the quotient graph Γ\T
σ,Λi given
Γ := Γ(N),Γ1(N),Γ1

0(N), or Γ0(N)
for g ∈ Γ\GL2(R) do

if σg−1 ∈ Γ then
return σ ∗ g−1, g,Λi,Λj;

end if
end for

Thus, we get γ1 ∈ Γ and γ1,r ∈ Γ\GL2(R) such that

e = γ1γ1,r(Λi,Λj) .

Theoretically, we have found the edge [e] in the quotient graph Γ\T , which corre-
sponds to our initial edge e in the Bruhat-Tits tree. However, it may be that [e]
no longer exists in the quotient graph in Magma if it has been identified with an
other edge. Fortunately, we collected the information on edge equivalency when we
implemented the quotient graph. Thus, we just have to go through that list and get
matrices γ2 ∈ Γ, γ2,r ∈ Γ\GL2(R), g ∈ Gmin(i,j) or possibly g ∈ G0 ∩G1 such that

γ1,r = γ2γ2,rg ,
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where γ2,r ∈ Γ\GL2(R) is an existing edge in the quotient graph which is equivalent
to γ1,r. Consequently, we have

e = σ(Λi,Λj) = γ1γ1,r(Λi,Λj) = γ1γ2γ2,r(Λi,Λj) ,

where σ ∈ GL2(R), γ1, γ2 ∈ Γ, γ1,rγ2,r ∈ Γ\GL2(R).

3.5.2 Evaluating a Harmonic Cocycle on an Edge
Now, let c be a Γ-equivariant harmonic cocycle given by its coordinates with regards
to the basis in Corollary 3.24 and e = (v, w) = (σvΛi, σwΛj) an edge. We assume
i < j, otherwise return −c(e). If i > deg(N) + dim(X), then, according to Corollary
3.31, we have c(e) = 0.
If e is unstable, search for an edge e′ in the source of e. To go through all edges

of prior stages, starting with stage i− 1 and terminal vertex v, use Proposition 3.2.
Once this is achieved, return

c(e) =
∑

σ∈StabΓ(e)
σ · c(e′) .

Thus, we can restrict ourselves to the case that e is stable, and then, all edges of
prior stages will also be stable. If e is of stage i ≥ 1 and e1, . . . , eq are all edges with
t(ei) = o(e), evaluate

c(e) =
q∑
i=1

c(ei) .

In finitely many steps, we will be at edges of stage 0, where the values are either
directly given by the coordinates of c and the action of Γ, or one lands on one of the
omitted stable edges or an unstable edge. If we have arrived on one of the omitted
stable edges, let e1, . . . , eq be the other adjacent edges of stage 0. Then, we have

c(e) = −
q∑
i=1

c(ei) .

If we have landed on an unstable edge, let e′ be one of the other q adjacent edges of
stage 0, which are all stable, and we finally get

c(e) = −
∑

σ∈StabΓ(e)
σ · c(e′) .

The stabilizer subgroups of edges are easily implemented with the knowledge
of Proposition 3.16 and Corollary 3.22. If the vector space X is compatible with
homomorphisms in Magma, the GL2(R)-action in Magma is given by
emb := hom< X -> X | σ · x1, . . . , σ · xd>;
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where {x1, . . . , xd} is a basis of X and σ · xi is the image of the i-th vector under
the GL2(R)-action. Otherwise, we have to declare X as a formal d-dimensional
vector space and define a separate function, which implements the operation through
regular matrix multiplication.

3.5.3 A Basis of Char(Γ, X) if Γ = Γ1
0(N), Γ0(N), or SL2(R)

Now that we have discussed how to evaluate a Γ-equivariant harmonic cocycle on
an arbitrary edge of the Bruhat-Tits tree T , where Γ is one of the two congruence
subgroups Γ(N),Γ1(N) or in restricted cases even Γ1

0(N),Γ0(N), we want to com-
pute the vector space Char(Γ1

0(N), X), Char(Γ0(N), X), and Char(SL2(R), X). In the
following lines, we describe the method for the former two vector spaces, but if we
replace Γ1 by Γ(N), we immediately get the case for Char(SL2(R), X).
For this purpose, let {e1, . . . , em} be a set of Γ1-stable edges of the Bruhat-Tits

tree T such that Char(Γ1, X) can be fully declared, and let {x1, . . . , xn} be a basis
of X. Further, let {b1, . . . , bm·n} be a basis of Char(Γ1, X) like in Corollary 3.24 such
that

b(j−1)·m+k(ej) = xk .

Let Γ be either Γ1
0 or Γ0 and compute a system of representatives of

Γ1
0/Γ1 =

{(
x 0
0 x−1

) ∣∣∣∣∣x ∈ (R/N)×
}
,

Γ0/Γ1 =
(
k× 0
0 1

){(
x 0
0 x−1

) ∣∣∣∣∣x ∈ (R/N)×
}
,

or if we consider SL2(R), the group

SL2(R)/Γ(N) = SL2(R/N) .

These matrices have to be lifted again, which was previously described in Lemma
2.28. Alternatively, since Γ(N) is normal in every congruence subgroup Γ and
Γ1(N) is normal in Γ1

0(N) and Γ0(N), we know that Γ/Γ(N), Γ1
0(N)/Γ1(N), and

Γ0(N)/Γ1(N) are groups generated by finitely many elements. Then, it is sufficient
and more efficient to only require equivariance with regards to a set of generators.
Next, compute for all i ∈ {1, . . . ,m · n} the expression

g−1 · bi(g · ej) =
n∑
k=1

f
(i)
jk xk ∀g ∈ Γ/Γ1, j ∈ {1, . . . ,m} ,

with the help of the cocycle function for Γ1, which was previously implemented.
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These computations give rise to new matrices

F i =


f

(i)
11 . . . f

(i)
1n

... . . . ...
f

(i)
m1 . . . f (i)

mn


for i ∈ {1, . . . ,m · n}. Finally, create the matrix

Fg =



F 1
11 . . . F 1

1n . . . F 1
m1 . . . F 1

mn
... . . . ...
... . . . ...
... . . . ...
... . . . ...
... . . . ...

Fm·n
11 . . . Fm·n

1n . . . Fm·n
m1 . . . Fm·n

mn


and calculate the kernel of E−Fg for all g ∈ Γ/Γ1. As a result, the intersection over
all g ∈ Γ/Γ1 induces the vector space Char(Γ, X).

43



4 Hecke Operators

Throughout the chapter, let N be a monic polynomial in R and Γ one of the five
congruence subgroups Γ(N), Γ1(N), Γ1

0(N), Γ0(N), or SL2(R) of GL2(R). In this
chapter, we will study linear operators TP called Hecke operators for an irreducible
polynomial P in R with gcd(N,P ) = 1 on Char(Γ, X), the vector space of Γ-equiv-
ariant harmonic cocycles with values in a vector space X over a field of prime
characteristic p. In Section 4.1, we mainly follow [But07].

4.1 The Definition of the Hecke Operator
In order to introduce the Hecke operator, we first have to consider several lemmas.
We define

Γ0(P ) :=
{(

a b

c d

) ∣∣∣∣∣ b ≡ 0 (mod P )
}
.

Lemma 4.1. The map

φP : Γ ∩ Γ0(P ) −→ Γ ∩ Γ0(P ), γ 7−→
(
P 0
0 1

)
γ

(
P 0
0 1

)−1

is bijective.

Proof. First, we clarify that the map φP is well-defined. For this purpose, let

γ =
(
a b

c d

)
∈ Γ ∩ Γ0(P ) .

Then, we have

φP (γ) =
(
P 0
0 1

)
γ

(
P 0
0 1

)−1

=
(

a bP

cP−1 d

)
.

Since γ ∈ Γ0(P ) and gcd(N,P ) = 1, P divides c and N still divides cP−1. Thus,
φP (γ) ∈ Γ ∩ Γ0(P ). To prove that the map φP is bijective, we define the map

ψP : Γ ∩ Γ0(P ) −→ Γ ∩ Γ0(P ), γ 7−→
(
P 0
0 1

)−1

γ

(
P 0
0 1

)
,

which is similarly well-defined and obviously the inverse map to φP .
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Lemma 4.2. Let
ι : Char(Γ, X) −→ Char(Γ ∩ Γ0(P ), X)

be the inclusion map. We define

φ∗P : Char(Γ ∩ Γ0(P ), X) −→ Char(Γ ∩ Γ0(P ), X)

through

φ∗P (c)(e) :=
(
P 0
0 1

)−1

· c
((

P 0
0 1

)
e

)
and the map

tr : Char(Γ ∩ Γ0(P ), X) −→ Char(Γ, X)

by setting
tr(c)(e) :=

∑
σ∈(Γ∩Γ0(P ))\Γ

σ−1 · c(σe)

for an edge e ∈ E(T ). Then, all three maps are well-defined and linear.

Proof. The linearity of all three maps is clear, so it remains to be seen that they are
well-defined. Let us begin with the inclusion map ι. Since a Γ-equivariant harmonic
cocycle is also Γ∩ Γ0(P )-equivariant, it is immediately clear that the map ι is well-
defined.
Now, let c be in Char(Γ ∩ Γ0(P ), X). Then

∑
t(e)=v

φ∗P (c)(e) =
∑
t(e)=v

(
P 0
0 1

)−1

· c
((

P 0
0 1

)
e

)
=
(
P 0
0 1

)−1

·
∑

t(e)=w
c(e) = 0 ,

where
w =

(
P 0
0 1

)
v .

Furthermore, for γ ∈ Γ ∩ Γ0(P ), we have

φ∗P (γe) =
(
P 0
0 1

)−1

· c
((

P 0
0 1

)
γe

)

=
(
P 0
0 1

)−1

c

(
φP (γ)

(
P 0
0 1

)
e

)
= γφ∗P (e) ,

where we used Lemma 4.1 in the last equation. Finally, consider the map tr. First,
notice that the definition is not dependent on the choice of a system of representa-
tives. To see this, let {σ1, . . . , σm} and {τ1, . . . , τm} be two systems of representatives.
Then, there are γi ∈ Γ ∩ Γ0(P ) such that τi = γiσi. Consequently, we have

m∑
i=1

τ−1
i · c(τie) =

m∑
i=1

σ−1
i γ−1

i · c(γiσie) =
m∑
i=1

σ−1
i · c(σie) .
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Let c be in Char(Γ ∩ Γ0(P ), X). Then,∑
t(e)=v

tr(c)(e) =
∑
t(e)=v

∑
σ∈(Γ∩Γ0(P ))\Γ

σ−1 · c(σe) =
∑

σ∈(Γ∩Γ0(P ))\Γ
σ−1 ·

∑
t(e)=σv

c(e) = 0 .

Additionally, for γ ∈ Γ, we have

tr(c)(γe) =
∑

σ∈(Γ∩Γ0(P ))\Γ
σ−1 · c(σγe) =

∑
σγ−1∈(Γ∩Γ0(P ))\Γ

γσ−1 · c(σe) = γ · tr(c)(e) .

Thus, tr(c) is indeed a Γ-equivariant harmonic cocycle.

Definition 4.3. Let P be an irreducible polynomial in R with gcd(N,P ) = 1. The
map

TP : Char(Γ, X) −→ Char(Γ, X), c 7−→ (tr ◦φ∗P ◦ ι)(c)

is called Hecke operator.

Remark 4.4. According to Lemma 4.2, the map TP is well-defined and linear. Thus,
it is an operator.

4.2 Implementation in Magma

Let P be an irreducible polynomial in R with gcd(N,P ) = 1. In order to implement
a Hecke operator in Magma, we write out its definition

TP : Char(Γ, X) ι−→ Char(Γ ∩ Γ0(P ), X)
φ∗P−→ Char(Γ ∩ Γ0(P ), X) tr−→ Char(Γ, X) ,

or element-wise

TP (c)(e) = tr(φ∗P (ι(c)))(e) = tr(φ∗P (c))(e) =
∑

σ∈(Γ∩Γ0(P ))\Γ
σ−1 · φ∗P (c)(σe)

=
∑

σ∈(Γ∩Γ0(P ))\Γ
σ−1

(
P 0
0 1

)−1

· c
((

P 0
0 1

)
σe

)

for c ∈ Char(Γ, X) and e ∈ E(T ). Therefore, we will obtain its matrix with regards
to the basis {e1, . . . , en} of Char(Γ, X) as discussed in Corollary 3.24 once we have
a system of representatives of (Γ ∩ Γ0(P ))\Γ and computed the values of the basis
elements ei on the edges (

P 0
0 1

)
σe ,

where e runs through all edges between vertices of stage 0 and 1 which contribute
to the basis.
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4.2.1 A System of Representatives of (Γ ∩ Γ0(P ))\Γ
Since N and P are coprime, it follows from the Chinese remainder theorem

(Γ ∩ Γ0(P ))\Γ× Γ\GL2(R) = (Γ ∩ Γ0(P ))\GL2(R)
' Γ\GL2(R)× Γ0(P )\GL2(R) .

Thus, to implement a system of representatives of (Γ ∩ Γ0(P ))\Γ, we start with a
matrix γ0 ∈ Γ0(P )\GL2(R) and lift it to a matrix γ1 such that

γ1 ≡ E mod N ,

γ1 ≡ γ0 mod P .

Now, γ1 is not necessarily in GL2(R). That is why we lift it, following the proof of
Lemma 2.28, to a matrix γ2 ∈ GL2(R) such that γ2 ≡ γ1 mod NP .

4.2.2 Evaluation on the Basis Edges

Let σ be an element of (Γ ∩ Γ0(P ))\Γ and e = τ(Λ0,Λ1) with τ ∈ Γ\GL2(R) an
edge between vertices of stage 0 and 1 contributing to the basis. Consider the edge

e′ =
(
P 0
0 1

)
σe =

(
P 0
0 1

)
στ(Λ0,Λ1) .

With the help of Section 3.5.2, a harmonic cocycle is easily evaluated on the edge
e′. To further decrease complexity, it is advised to buffer the values on the edges of
the quotient graph, because e′ will often be of the same stage. Then, we can avoid
computing the harmonic cocycle on the same edge repeatedly and only have to apply
the corresponding Γ-action on the previously calculated values.

4.2.3 Implementation for Γ(N) or Γ1(N)
Let Γ be either Γ(N) or Γ1(N). Furthermore, let {e1, . . . , em} be all stable edges of
stage 0 in Γ\T contributing to a basis of Char(Γ, X) and {x1, . . . , xn} a basis of the
vector space X. Then, we choose the following basis of the vector space Char(Γ, X)
of all Γ-equivariant harmonic cocycles:

bi,j : Γ\E(T ) −→ X, ei 7−→ xj .

We arrange the basis according to b1,1, b1,2, . . . , b1,n, b2,1, . . . , bm,n. The remaining
implementation is straightforward and detailed in Algorithm 4.
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Algorithm 4 Calculating the Hecke Operator TP
Require: P with gcd(N,P ) = 1;
TP := ZeroMatrix(K, m · n, m · n);
for 1 ≤ i ≤ m do

Let ei = γi(Λ0,Λ1).
for 1 ≤ j ≤ n do

value := Vec ! 0;
for σ ∈ (Γ ∩ Γ0(P ))\Γ do

Find γ ∈ Γ and γ′ ∈ Γ\GL2(R) such that(
P 0
0 1

)
σγi(Λ0,Λ1) = γγ′(Λi,Λj)

with |i− j| = 1. Evaluate

add := σ−1
(
P 0
0 1

)−1

γ · bi,j(γ′(Λi,Λj)) .

value := value + add;
end for
list := Coordinates(Vec, value);
for 1 ≤ k ≤ n do

(TP )i,k+j·n := list[k];
end for

end for
end for

4.2.4 Implementation for Γ1
0(N), Γ0(N), or SL2(R)

In Section 3.5.3, we computed a basis for Char(Γ, X) if Γ is Γ1
0(N), Γ0(N), or SL2(R).

Therefore, we only have to take those basis vectors and simply follow the steps in
Section 4.2.3. At first, one gets a d1 × d2 matrix T ′P with d1 being the dimension of
Char(Γ, X) and d2 the dimension of Char(Γ1(N), X) or Char(Γ(N), X). Since we are
dealing with an operator on Char(Γ, X), it is possible to rewrite the columns of T ′P
in the basis of Char(Γ, X).
If Γ = SL2(R), we can arbitrarily choose a polynomial N , as long as N and P are

coprime. To reduce complexity, it is recommended to choose a polynomial N with
deg(N) as small as possible such that gcd(N,P ) = 1 is still satisfied. If we compute
TP with two distinct N , the resulting transformation matrices may be different. This
is to be expected because the vector space Char(Γ(N), X) is dependent on the choice
of N . Thus, the matrices will be equal up to a change of coordinates.
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4.3 Values in the r-th Symmetric Power of K2

Let n ≥ 0 be an integer and V (n) the vector space of all homogeneous polynomials
in two variables X, Y of degree n− 1 over the field K∞. Then, we define

σ =
(
a b

c d

)
∈ GL2(K∞) : σ ·

(
X

Y

)
:= det(σ)−1

(
d −b
−c a

)(
X

Y

)
.

If we choose its dual space V (−n) = Hom(V (n), K∞), we consider the action

(σ · ϕ)(v) := ϕ(σ−1 · v)

for ϕ ∈ V (−n), v ∈ V (n).
According to [Tei91, Theorem 16], if n ≥ 2 is an integer, there exists an isomor-

phism
Sn(Γ) −→ Char(Γ, n)

where Sn(Γ) is the vector space of cusp forms of weight n for Γ and Char(Γ, n) is the
vector space of all Γ-equivariant harmonic cocycles with values in V (1−n)⊗ det−1.
The elements of Char(Γ, n) are also called harmonic cocycles of weight n for Γ.
That is why, in this section, we specifically choose the vector space X to be the

r-th symmetric power of V := K2 or an irreducible subrepresentation of Symr(V ).
To introduce a GL2(K)-action on Symr(V ), we identify it with the vector space
of homogeneous polynomials in two variables X, Y of degree r and take the action
above, for X and its dual space X∗ = Hom(Symr(V ), K), respectively.
According to the work of [Ure13, 3.4 Fazit], irreducible subrepresentations of

Symr(V ) are given by the dominant weights (m,n) ∈ N2 such thatm ≥ n,m+n = r,
and m− n = ∑l

i=0 kip
i. Then, we have

L(m,n) ' L(m− n, 0)⊗ ∧2(V )⊗n '
l⊗

i=0
(Symki(V ))[i] ⊗ ∧2(V )⊗n ,

where (Symki(V ))[i] denotes the vector space Symki(V ) with the following action

σ =
(
a b

c d

)
∈ GL2(K) : σ ·[i]

(
X

Y

)
:=
(
ap bp

cp dp

)i
·
(
X

Y

)
.

Alternatively, according to [Ure13, Theorem 4.9], there is an embedding of L(r, 0)
into Symr(V ) through

L(r, 0) =

Symr(V ) , if 0 ≤ r ≤ p− 1,〈
XjY r−j

∣∣∣ p - (r
j

)〉
, else.

In this case, the action on L(r, 0) is given by the regular action on Symr(V ).
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As for the implementation in Magma, since there is no special object for Symr(V ) in
the library, we realize it or its dual space as a formal r+ 1-dimensional vector space
over K using VectorSpace(K,r+1). The corresponding action of a σ ∈ GL2(K) on
a vector v is given by regular vector-matrix multiplication vTA, where

A =


σ · e1
...

σ · er+1


with a basis {e1, . . . , er+1} of either Symr(V ) or its dual space. If we choose

{X iY r−i | i = 0, 1, . . . , r}

as a basis for Symr(V ), we get

σ · (X iY r−i) = det(σ)−i(dX − bY )i det(σ)−(r−i)(−cX + aY )r−i

= det(σ)−r
(

i∑
k=0

(
i

k

)
(dX)k(−bY )i−k

)(
r−i∑
l=0

(
r − i
l

)
(−cX)l(aY )r−i−l

)

= det(σ)−r
i∑

k=0

r−i∑
l=0

(−1)i−k+l
(
i

k

)(
r − i
l

)
ar−i−lbi−kcldkXk+lY r−(k+l) .

Introducing j = k + l and

si,j :=
∑

0≤k≤i, 0≤l≤r−i, k+l=j
(−1)i−k+l

(
i

k

)(
r − i
l

)
ar−i−lbi−kcldk

give rise to

σ · (X iY r−i) = det(σ)−r
r∑
j=0

si,jX
jY r−j .

Similarly, let

v =
r∑
j=0

vjX
jY r−j ∈ Symr(V )

and consider the dual basis {(X iY r−i)∗ | i = 0, 1, . . . , r}. Then, we have

(σ · (X iY r−i)∗)(v) = (X iY r−i)∗(σ−1 · v)

= (X iY r−i)∗
 r∑
j=0

vj(aX + bY )j(cX + dY )r−j


=
r∑
j=0

vj

j∑
k=0

r−j∑
l=0

(
j

k

)(
r − j
l

)
akbj−kcldr−j−lδi,k+l
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with the Kronecker delta δi,j. Thus, if

si,j :=
∑

0≤k≤j, 0≤l≤r−j, k+l=i

(
j

k

)(
r − j
l

)
akbj−kcldr−j−l ,

we finally get

σ · (X iY r−i)∗ =
r∑
j=0

si,j(XjY r−j)∗ .

Also, if there is a twist, that is a contribution by ∧2(V )⊗n, one further has to consider
an additional factor det(σ)n.

4.4 Examples
Before we list several examples of how the characteristic polynomials of Hecke opera-
tors TP with increasing deg(P ) change, let us consider some concrete Hecke operators
and their transformation matrices. For this purpose, let X(n) := V (1−n)⊗ det2−n.
First, we start with Hecke operators on Char(Γ1(T ), X(5)) over F3, that means the

cocycles have values in V (−4) ⊗ det−3. For the irreducible polynomials P = T + 1
and Q = T 2 + 1, we get

TP =


1 0 2T 0
0 T + 1 0 0
0 0 T + 1 0
0 2T 3 0 1

 ,

TQ =


1 0 2T 2 0
0 T 2 + 1 0 0
0 0 T 2 + 1 0
0 2T 4 0 1

 .

Calculating TPTQ − TQTP = 0 shows that both matrices commutate, which is to be
expected of Hecke operators. Now, if we consider both on Char(Γ0(T ), X(5)), we get
the notification “Matrix with 0 rows and 0 columns”, that is the dimension of
Char(Γ0(T ), X(5)) is zero. This result is in compliance with the following theorem.

Theorem 4.5. If q 6= 2, N a prime polynomial, and q − 1 - n, we have

dim(Sn(Γ0(N))) = 0 .

Proof. [Gek86, Section VII.6]
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Thus, let us consider Hecke operators on Char(Γ1(T ), X(6)) over F3, that means
the cocycles have values in V (−5)⊗det−4. For the irreducible polynomials P = T+1
and Q = T 2 + 1, we get

TP =



1 0 2T 2 + T 0 0
0 1 0 2T 0
0 0 T 2 + 2T + 1 0 0
0 2T 3 0 1 0
0 0 2T 4 + T 3 0 1

 ,

TQ =



1 0 2T 4 + T 2 0 0
0 T 4 + 1 0 0 0
0 0 T 4 + 2T 2 + 1 0 0
0 0 0 T 4 + 1 0
0 0 2T 6 + T 4 0 1

 .

Again, the operators commutate. Moving over to Char(Γ0(T ), X(6)), we have

TP =


1 2T 2 + T 0
0 T 2 + 2T + 1 0
0 2T 4 + T 3 1

 ,

TQ =


1 2T 4 + T 2 0
0 T 4 + 2T 2 + 1 0
0 2T 6 + T 4 1

 .

This suggests that the first, third, and last basis vector of Char(Γ1(T ), X(6)) generate
Char(Γ0(T ), X(6)), which can easily be verified by our designated function.
Finally, let us consider Hecke operators on Char(Γ1(T ), X) over F3 but with val-

ues in the irreducible subrepresentation L(4, 1) of Sym5(V ). According to previous
discussions, we have

L(4, 1) = L(3, 0)⊗ ∧2(V )

and

L(3, 0) =
〈
XjY 3−j

∣∣∣∣∣ p -
(

3
j

)〉
= 〈X0Y 3, X3Y 0〉 ⊂ Sym3(V ) .

Then, the Hecke operator for P = T +1 operating on cocycles with values in L(4, 1),
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Sym3(V )⊗ det, and Sym5(V ) are

TP =
( 1
T+1 0
0 1

T+1

)
,

TP =


1

T+1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T+1

 ,

TP =



1 0 2T 5 0 T 5 0
0 2T + 1 0 2T 3 0 0
0 0 1 0 T 3 0
0 T 0 1 0 0
0 0 2T 0 2T + 1 0
0 T 0 2T 3 0 1


,

respectively. The first matrix has the eigenvalue P−1 twice, the second has 1 and
P−1 each twice, and the final matrix has 1 twice and otherwise only eigenvalues,
which are not in K.

4.4.1 Characteristic Polynomials of Hecke Operators
Finally, we compute several Hecke operators TP and their characteristic polynomial
for P with increasing degree. Then, we examine the change in the characteristic
polynomial. For this purpose, we vary the field k = Fq, the congruence subgroups
Γ, and the dimension of X. The result is presented in tables on the following pages.
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n Characteristic Polynomial of TP with P = T + 1
2 (X + 1)2

3 (X + 1)4

4 (X + 1)4 · (X + T + 1)2

5 (X + 1)4 · (X2 + T 3 + 1)2

6 (X + 1)4 · (X + T + 1)4 · (X + T 2 + 1)2

n Characteristic Polynomial of TP with P = T 2 + T + 1
2 (X + 1)2

3 (X + 1)4

4 (X + 1)4 · (X + T 2 + T + 1)2

5 (X + 1)4 · (X2 + T 6 + T 3 + 1)2

6 (X + 1)4 · (X + T 2 + T + 1)4 · (X2 + T 4 + T 2 + 1)2

n Characteristic Polynomial of TP with P = T 3 + T + 1
2 (X + 1)2

3 (X + 1)4

4 (X + 1)4 · (X + T 3 + T + 1)2

5 (X + 1)4 · (X2 + T 9 + T 3 + 1)2

6 (X + 1)4 · (X + T 3 + T + 1)4 · (X2 + T 6 + T 2 + 1)2

Table 4.1: Hecke Operator TP on Char(Γ(T ), X(n)), F2

n Characteristic Polynomial of TP with P = T + 1
2 (X + 1)16

3 (X + 1)32

4 (X + 1)32 · (X + T + 1)16

5 (X + 1)32 · (X2 + T 3 + 1)16

6 (X + 1)32 · (X + T + 1)32 · (X + T 2 + 1)16

n Characteristic Polynomial of TP with P = T 2 + T + 1
2 (X + 1)16

3 (X + 1)32

4 (X + 1)32 · (X + T 2 + T + 1)16

5 (X + 1)32 · (X2 + T 6 + T 3 + 1)16

6 (X + 1)32 · (X + T 2 + T + 1)32 · (X + T 4 + T 2 + 1)16

Table 4.2: Hecke Operator TP on Char(Γ(T 2), X(n)), F2
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n Characteristic Polynomial of TP with P = T + 1
2 (X + 1)
3 (X + 1)2

4 (X + 1)2 · (X + T + 1)
5 (X + 1)2 · (X2 + T 3 + 1)
6 (X + 1)2 · (X + T + 1)2 · (X + T 2 + 1)
n Characteristic Polynomial of TP with P = T 2 + T + 1
2 (X + 1)
3 (X + 1)2

4 (X + 1)2 · (X + T 2 + T + 1)
5 (X + 1)2 · (X2 + T 6 + T 3 + 1)
6 (X + 1)2 · (X + T 2 + T + 1)2 · (X + T 4 + T 2 + 1)

Table 4.3: Hecke Operator TP on Char(Γ1(T ), X(n)), F2

n Characteristic Polynomial of TP with P = T + 1
2 (X + 1)4

3 (X + 1)8

4 (X + 1)8 · (X + T + 1)4

5 (X + 1)8 · (X2 + T 3 + 1)4

6 (X + 1)8 · (X + T + 1)8 · (X + T 2 + 1)4

n Characteristic Polynomial of TP with P = T 2 + T + 1
2 (X + 1)4

3 (X + 1)8

4 (X + 1)8 · (X + T 2 + T + 1)4

5 (X + 1)8 · (X2 + T 6 + T 3 + 1)4

6 (X + 1)8 · (X + T 2 + T + 1)8 · (X + T 4 + T 2 + 1)4

Table 4.4: Hecke Operator TP on Char(Γ1(T 2), X(n)), F2
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n Characteristic Polynomial of TP with P = T + 1
2 (X + 1)16

3 (X + 1)32

4 (X + 1)32 · (X + T + 1)16

5 (X + 1)32 · (X2 + T 3 + 1)16

6 (X + 1)32 · (X + T + 1)32 · (X + T 2 + 1)16

n Characteristic Polynomial of TP with P = T 2 + T + 1
2 (X + 1)16

3 (X + 1)32

4 (X + 1)32 · (X + T 2 + T + 1)16

5 (X + 1)32 · (X2 + T 6 + T 3 + 1)16

6 (X + 1)32 · (X + T 2 + T + 1)32 · (X + T 4 + T 2 + 1)16

Table 4.5: Hecke Operator TP on Char(Γ1(T 3), X(n)), F2

n Characteristic Polynomial of TP with P = T + 1
2 (X + 2)
3 (X + 2)2

4 (X + 2)2 · (X + T + 2)
5 (X + 2)2 · (X + 2T + 2)2

6 (X + 2)2 · (X + T 2 + 2) · (X + 2T 2 + 2) · (X + 2T 2 + T + 2)
n Characteristic Polynomial of TP with P = T 2 + 1
2 (X + 2)
3 (X + 2)2

4 (X + 2)2 · (X + 2T 2 + 2)
5 (X + 2)2 · (X + 2T 2 + 2)2

6 (X + 2)2 · (X + 2T 4 + 2)2 · (X + 2T 4 + T 2 + 2)

Table 4.6: Hecke Operator TP on Char(Γ1(T ), X(n)), F3
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n Characteristic Polynomial of TP with P = T + 1
2 (X + 2)9

3 (X + 2)18

4 (X + 2)18 · (X + T + 2)9

5 (X + 2)18 · (X + 2T + 2)18

6 (X + 2)18 · (X + T 2 + 2)9 · (X + 2T 2 + 2)9 + (X + 2T 2 + T + 2)9

n Characteristic Polynomial of TP with P = T 2 + 1
2 (X + 2)9

3 (X + 2)18

4 (X + 2)18 · (X + 2T 2 + 2)9

5 (X + 2)18 · (X + 2T 2 + 2)18

6 (X + 2)18 · (X + 2T 4 + 2)18 · (X + 2T 4 + T 2 + 2)9

Table 4.7: Hecke Operator TP on Char(Γ1(T 2), X(n)), F3

n Characteristic Polynomial of TP with P = T + 1
2 (X + 2)
3
4 (X + 2)2 · (X + T + 2)
5
6 (X + 2)2 · (X + T 2 + 2) · (X + 2T 2 + 2) · (X + 2T 2 + T + 2)
n Characteristic Polynomial of TP with P = T 2 + 1
2 (X + 2)
3
4 (X + 2)2 · (X + 2T 2 + 2)
5
6 (X + 2)2 · (X + 2T 4 + 2)2 · (X + 2T 4 + T 2 + 2)

Table 4.8: Hecke Operator TP on Char(Γ1
0(T ), X(n)), F3
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n Characteristic Polynomial of TP with P = T + 1
2 (X + 2)
3
4 (X + 2)2

5
6 (X + 2)2 · (X + 2T 2 + T + 2)
n Characteristic Polynomial of TP with P = T 2 + 1
2 (X + 2)
3
4 (X + 2)2

5
6 (X + 2)2 · (X + 2T 4 + T 2 + 2)

Table 4.9: Hecke Operator TP on Char(Γ0(T ), X(n)), F3

n Characteristic Polynomial of TP with P = T + 1
2
3 . . . 5 (X + 1)
6 (X + 1) · (X + T + 1)
n Characteristic Polynomial of TP with P = T 2 + T + 1
2
3 . . . 5 (X + 1)
6 (X + 1) · (X + T 2 + T + 1)

Table 4.10: Hecke Operator TP on Char(SL2(R), X(n)), F2
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n Characteristic Polynomial of TP with P = T + 1
2, 3
4 (X + 2)
5
6 (X + 2)
n Characteristic Polynomial of TP with P = T 2 + 1
2, 3
4 (X + 2)
5
6 (X + 2)
n Characteristic Polynomial of TP with P = T 3 + T 2 + 2T + 1
2, 3
4 (X + 2)
5
6 (X + 2)

Table 4.11: Hecke Operator TP on Char(SL2(R), X(n)), F3

n Characteristic Polynomial of TP with P = T + 1
2 . . . 5
6 (X + 4)
n Characteristic Polynomial of TP with P = T 2 + T + 1
2 . . . 5
6 (X + 4)
n Characteristic Polynomial of TP with P = T 3 + T 2 + 3T + 1
2 . . . 5
6 (X + 4)
7 . . . 9
10 (X + 4)

Table 4.12: Hecke Operator TP on Char(SL2(R), X(n)), F5
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