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The fluid and gas phenomena 

In nature there are at least four states of matter known:  

                               Solid, Fluid, Gas, Plasma. 

But what determines the state of matter and how to decide whether a   
sample of particles is a continuum or not?  

Hypothesis:  the sample of particles is said to be a continuum, if the macroscopic 
properties, such as temperature, velocity etc., can still be associated with any 
arbitrary chosen small volume of it. 

Crucial here is the length scale, ℓ, or equivalently the so-called 
mean free path: the mean distance particles may move before 
colliding with their neighbours.  
Let “L” be the length characterizing the global size of the 
sample, then, we must first require that ℓ<<L in order to 
ensure that there is a sufficiently large number of particles. 
Based on terrestrial observations, ℓ appears to 
correlate with the temperature, i.e.,  T∝  and that for

cT > T , the matter may undergo phase transitions from 
one state into another.   
Therefore, we may argue that if the resistive forces  
exceed the attractive inter-particle forces, a phase 
transition may, though not necessary,  occur, i.e.  

binding interatomic forceP> f .Phase transition∇ ⇒  

In general, ∇P and f operate on different length scales, 
hence decoupling is possible. However, gravity could 
still oppose the pressure and lead to condensation. 

Most abundant chemical element in the universe is hydrogen. 
Hydrogen makes 75% of its mass and 90% of the number of its atoms. 
The different phases of hydrogen can be summarized as follows: 
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condensation
 T=20.28K  T=14.01K

veporization
Gas     Liquid Solid→ →← ←

freezing

melting  

 

 

 

In the case that gas is heated beyond a critical 
temperature, T > Tc, the electrons in the outer shell 
become electric-unbound to the nucleus and the 
gas undergoes a phase transition into plasma: it 
becomes electrical and magnetic conducting 
medium. The solar wind is a good example hereof. 
Also, highly collimated and relativistic jets that 
have been observed to emanate from the centres 
of galaxies are considered to be made of virially 
hot electric charged electron-proton or electron-
positron particles,   hence of plasmas. 

 

 

Q1: Consider Helium 4 (4He): what are Tcondens. and Tfreaze? Does 4He undergo deposition? 

T ~ 109-1010 K 
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Molecular clouds, where the embryos of stars are  

created are made of almost pure gas.   

 

Conditions for treating a sample of moving particles as a 
fluid flow (?) 

A sample of particles can be treated as a continuum, if the 
mean collision rate of two arbitrary neighbouring particles 
occurs at much shorter time scale than the time needed for 
acoustic waves to across the entire volume or the particles to move from one boundary to 
another. 

In the case that the internal collisional velocity of the particles is 
comparable to the bulk velocity of the sample, then the sample 
can be treated as continuum, if: 
 
 
 
 
 
 
 
 
 
 
Example 1:  
 
Consider a box of 1 cm3 of air under standard temperature and  
pressure (STP). 
Can this sample be treated as continuum? 
 
Answer:  
The number of particles in this box is:  n ≈ 10-3 NAV ≈ 6 × 1020, where the Avogadro's 
number  NAV = 6.022 × 1023 and <a> ( ≈ 10-8  cm ) is the  typical radius of an air particle. 
 
 
 
 
 
 

         a << ℓ << L, 
where:  ℓ is the collisional mean  free path,  
i.e., the average distance travelled by a particle  
between two successive collisions.  L is the  
length scale characterizing the global volume  
of the sample and  a is the average radius  
of a particle. 

Fig. 1.1: A sample of  interacting particles  in a volume V. L is the 
macroscopic  length scale and  is the mean free path between two 
neighbouring particles. 
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Mean free path? 
 
The distribution of velocities of air particles, assuming the air as ideal gas in thermal 
equilibrium, is given by the Maxwellian distribution: 
 
  
 
 
 
 
 
 
 

where M = molar mass (M = NAV m0)  and Rg = gas constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where   
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http://en.wikipedia.org/wiki/Avogadro%27s_constant
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Noting that the sound speed of a gas in thermal equilibrium reads: 

, 1.4p
s air p s

V

cPv v v
c

γ γ
ρ

= = = ⇒ >
      

Q: Does this imply that air particles are moving with supersonic velocity? 

 

 But what is the average distance a particle may move freely before colliding with its 
neighbours?       

 
Concept:  mean free path: 
 
Assume we have a cylinder, through which the air 
particles are flowing. 
 
 
The average distance travelled by a particle is:  .d v t=  
The volume of the cylinder is V= A d, where A(= [π a2]×nv) is the area occupied by each 
particle times the number of particles = cross section of the cylinder. 
 
 
 
 
Thus, the mean free path reads: 
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Q:  A piece of pure iron has the volume of one liter. How many particles are contained in this 
liter under standard conditions? 
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Example 2: 
 

• In intergalactic medium (IGM), the number density  n~10-3 cm-3 
 

 
 
 
 
 

 

 

 

 
• In interstellar medium (ISM), the number density  n~1 

cm-3.  
 
 
 
 

 

 
 
Example 3: 

By stellar clusters, we mean samples of millions of stars held together about their own center 
of mass. 

In stellar clusters  ℓ << L.  <v>st ~ <v>cluster. 

Stars may migrate from the cluster without direct interaction with other stars. ⇒ normal 
fluid description here is not appropriate (the collision is not diffusive) 
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Basic properties of fluid flows: 

• Mass density 
v
mass
olume

ρ =  = the amount of matter contained in a unit of 

volume. The units of                  [𝛒𝛒] = [M/L3] = g/cm3, kg/m3. 
 

• Viscosity: is a physical property of the fluid that offers resistance to shear 
forces. The particles re-arrange their internal motion and interaction in 
such a manner to yield a force that appose their global motion. It is also 
a measure 
for the 
interaction 
between 
particles that 
gives rise to 
resistance 
and deformation of particle motions, i.e., internal friction.  

It appears that each fluid has its own resistivity and it is defined as follows:   
Let 𝛕𝛕 be a measure for the force per unit area, i.e.,  
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Example: From the viscosity per unit mass, we obtain the coefficient, 

called Kinematic viscosity: 
μν = .
ρ   

Note that not all viscous fluid flows obey the Newtonian’s law of 
viscosity. The viscosity law in ketchup, polymers, blood and many other 
types of fluids may obey other laws, such as :      τ ∝(dV/dy)n : there 
are classified  as Non-Newtonian fluids.  

• Pressure: [ ] -2Force FP=   P  = NL
Area A

= ⇒  

     
Thus          F = P .

A

dFP dA
dA
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

 
 

• Boyle's law:  PV = Const.      
         
                                           

j i k
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i j k

the rate of deformationdV dV 2 dV = -μ μδ  coefficient 
of V in x -directionsdx dx 3 dx

where μ is called the dynamical viscosity.
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The equations of fluid dynamics: 
 

Let V be  a volume filled with a plasma, 
whose surface is .S∂  

Assume that source sinkf = f  = 0 , ↔ no generation and destruction of 
matter. 

Then the rate of change of the total 

mass inside V is uniquely  determined  

through the net flux across the surface .S∂  

Mass conservation                  
S

M F n ds
t ∂

∂
= − ⋅

∂ ∫∫


                                               

According to the divergence theorem: 

 A quantity is said to be conservative, if the corresponding equation has the form: 
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Momentum in fluids: 

The momentum in fluids is a conserved vector quantity, which describes the 
motion of a collection of particle subject to external and internal forces: 

internal external

1 2 3

[Momentum]+div [Flux of momentum]= f f
t

( )

where V=(V ,V , ),  P = pressure, 
(traceless) component of internal interaction (fricti
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Energy equation: 

Assume we have the control volume dV filled with a hot, radiative and 

magnetized plasma moving with velocity V


under the influence of  a 
gravitational  field,  then the total energy of the plasma in V  at a certain time `` ´´t
:  

total kinetic internal magnetic radiative potential extraE =  E + E + E + E + E + E  

                             
[ ]tot gain lossE div Flux

t
∂

+ ⋅ = Γ − Λ
∂  

Assume that: 

kinetic magnetic radiative potential extraE = E = E  = E  = E constant,=  

Then we are left with an equation that describes the time-evolution of the internal 
energy: 
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