Linear-Scaling Approximate Factorisation and Selected Inversion for Electronic Structure Models

Simon Etter

IWR School, 2 - 6 October 2017

Introduction

Task

Given symmetric Hamiltonian $H \in \mathbb{R}^{n imes n}$, compute total energy

$$E_{tot} := \operatorname{Tr}(Hf(H)), \qquad f(E) := \frac{1}{1 + \exp(\beta(E-\mu))}.$$

Introduction

Diagonalisation

Compute eigenvalues E_k of H and evaluate

$$E_{tot} := \sum_{k=1}^n E_k f(E_k).$$

Localisation

	11111111 1	11111111 1	11111111 1	11111111 1	1111111 1	11111111 1	11111111 1	
10^{-8}	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}	10^{-2}	10^{-1}	10^{0}

Matrx Graphs

Graph of Sparse Matrix $A \in \mathbb{R}^{n \times n}$ Graph G(A) := (V(A), E(A)) defined by

$$V(A) := \{1, \ldots, n\}, \qquad E(A) := \{(i, j) \mid A(i, j) \neq 0\}.$$

Example

Localisation

Theorem [DMS84]

$$|f(H)(i,j)| \leq \inf_{p \in \mathcal{P}_{d(i,j)-1}} ||f - p||_{\infty,\sigma(H)}$$

Proof.

$$|f(H)(i,j)| \le |p(H)(i,j)| + |f(H)(i,j) - p(H)(i,j)|$$

 $\le ||f - p||_{\infty,\sigma(H)}.$

[DMS84] S. Demko, W. F. Moss and P. W. Smith. Decay Rates for Inverses of Band Matrices. Mathematics of Computation (1984)

Localisation

PEXSI Algorithm

Pole Expansion and Selected Inversion (PEXSI) [Lin+13]

Rewrite total energy using contour integral:

$$E_{tot} = \operatorname{Tr} \left(H f(H) \right) = \frac{1}{2\pi\iota} \int_{\gamma} z f(z) \operatorname{Tr} \left((z - H)^{-1} \right) dz.$$

[Lin+13] L. Lin, M. Chen, C. Yang and L. He. Accelerating atomic orbitalbased electronic structure calculation via pole expansion and selected inversion. Journal of Physics: Condensed Matter (2013)

PEXSI Algorithm

Pole Expansion and Selected Inversion (PEXSI) [Lin+13]

Rewrite total energy using contour integral:

$$E_{tot} = \operatorname{Tr} \left(H f(H) \right) = \frac{1}{2\pi\iota} \int_{\gamma} z f(z) \operatorname{Tr} \left((z - H)^{-1} \right) dz.$$

- For each quadrature point z, do
 - Compute factorisation $LDL^T := z H$.
 - Compute $(z H)^{-1}(i, j)$ for few i, j using L and D.

[[]Lin+13] L. Lin, M. Chen, C. Yang and L. He. Accelerating atomic orbitalbased electronic structure calculation via pole expansion and selected inversion. Journal of Physics: Condensed Matter (2013)

Sparse Factorisation

Fill Path

Path i, k_1, \ldots, k_p, j in G(A) such that $k_1, \ldots, k_p < \min\{i, j\}$.

[RT78] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimination on Directed Graphs. SIAM Journal on Applied Mathematics (1978)

Sparse Factorisation

Fill Path

Path i, k_1, \ldots, k_p, j in G(A) such that $k_1, \ldots, k_p < \min\{i, j\}$.

Fill Path Theorem [RT78]

Let $A = LDL^{T}$. Barring cancellation, it holds

 $(L + L^T)(i, j) \neq 0 \iff i, j$ are connected by a fill path.

[RT78] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimination on Directed Graphs. SIAM Journal on Applied Mathematics (1978)

Sparse Factorisation

Fill Path

Path i, k_1, \ldots, k_p, j in G(A) such that $k_1, \ldots, k_p < \min\{i, j\}$.

Fill Path Theorem [RT78] Let $A = LDL^{T}$. Barring cancellation, it holds

 $(L + L^T)(i, j) \neq 0 \iff i, j$ are connected by a fill path.

Example

[RT78] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimination on Directed Graphs. SIAM Journal on Applied Mathematics (1978)

Localisation of Factorisation Level-of-fill

 $level(i, j) := min\{length(P)-1 | P \text{ is a fill path connecting } i \text{ and } j\}.$

Localisation of Factorisation Level-of-fill

 $level(i, j) := min\{length(P)-1 \mid P \text{ is a fill path connecting } i \text{ and } j\}.$

Theorem

Let $LDL^T := H$. Then,

 $|L(i,j)| \leq \inf_{p \in \mathcal{P}_{level(i,j)-1}} ||f - p||_{\infty,\sigma(A(\{1,...,j-1\},\{1,...,j-1\}))}$

Localisation of Factorisation Level-of-fill

 $level(i, j) := min\{length(P)-1 \mid P \text{ is a fill path connecting } i \text{ and } j\}.$

Theorem

Let $LDL^T := H$. Then,

 $|L(i,j)| \leq \inf_{p \in \mathcal{P}_{level(i,j)-1}} ||f - p||_{\infty,\sigma(A(\{1,...,j-1\},\{1,...,j-1\}))}$

Incomplete Sparse Factorisation

Cramer's Rule

Cramer's rule

$$A^{-1}(i,j) = (-1)^{i+j} \frac{\det \left(A_{ji}^{\mathsf{c}}\right)}{\det(A)}.$$

Determinant

$$\det(A) := \sum_{p \in P_n} \operatorname{sgn}(p) \prod_{i=1}^n A(p_i, i).$$

Cramer's Rule

Illustration with
$$A = LU \in \mathbb{R}^{3 \times 3}$$

$$\det(A) = \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} - \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} - \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} + \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} + \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf$$

LU factorisation closely related to Floyd-Warshall algorithm.

Cramer's Rule

Conjecture

Error in incomplete factorisation results because certain improper paths no longer cancel.

Conjecture

Long paths contribute exponentially little to Cramer's rule.

Conclusion

Incomplete Sparse Factorisation and Selected Inversion Linear-scaling algorithm with reduced-order scaling even without localisation.

Cramer's rule

- Could be helpful to analyse incomplete factorisation.
- Potentially new approach to localisation.

Linear-Scaling Approximate Factorisation and Selected Inversion for Electronic Structure Models

Simon Etter

IWR School, 2 - 6 October 2017

