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R: set of real numbers

C: set of complex numbers
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Introduction 2
Notation
N =1{0,1,2,--- }: set of non-negative integers
R: set of real numbers
C: set of complex numbers
Z = x —iy: conjugate of the complex number » = 2 + iy (z,y € R, 1> = —1)
( ( Zl \ )
CN={z= : , zp €ECforalll <n <N ; (column vectors of size V)
L o) )
( (21,1 Zl,N\ )
CMN = A= , Zmn €Cforalll <m < M, 1<n<N
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(complex matrices with M/ rows and N columns)




Introduction

C" is endowed with a natural complex vector space structure:

e addition of two vectors of C"
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o multiplication of a vector of C" by a scalar
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Introduction

C" is endowed with a natural complex vector space structure:

e addition of two vectors of C"

[ =) (4 [ a2
z=| - |, Z=1] - = z+7 = -
) =y vt %/

o multiplication of a vector of C" by a scalar

(=) (o)

aceC, z=

\ -y oy /

Conjugate transpose of a column vector z € C", a matrix A €

z' = (Z1,--- ,Zy) (line vector), A e CV Mgt (A% = Ay,

CMXN.
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C" is endowed with a natural inner product and associated norm
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C" is endowed with a natural inner product and associated norm

(=) [ . s
zZ = | , 7 = | = (z|z') = EZ: Zozy, |zl = (zlz)? = (Zzn2>/
\ 2v / \ 2 /

(0

3

—_

The vectors e; = , € = , ey = form an orthonormal basis of C";

0 0 0
\o/ o/ \1/
any vector z € C” is a unique linear combination of e, e,, - - - ey and

(ejler) = ejer = 0.
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Definition. Let A € CV*¥,

e )\ € Cis called an eigenvalue of A, and z € C" an associated eigenvector if
z+0 and Az = \z
e the spectrum of A is the set of complex numbers
o(A) ={\ € C| My — A non-invertible} .
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Definition. Let A € CV*¥,

e )\ € Cis called an eigenvalue of A, and z € C" an associated eigenvector if
z+0 and Az = \z
e the spectrum of A is the set of complex numbers
o(A) ={)\ € C| AIy — A non-invertible} .

Theorem. Let A ¢ CV*V,

o(A) = {eigenvalues of A}
= {roots of the polynomial p(z) .= det(zIy — A)}

If ) is a root of multiplicity m of pa(z), then ) is called an eigenvalue of A
with algebraic multiplicity m.
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Definition. Let A € CV*¥,

e )\ € Cis called an eigenvalue of A, and z € C" an associated eigenvector if
z+0 and Az = \z

e the spectrum of A is the set of complex numbers
o(A) ={)\ € C| AIy — A non-invertible} .

Theorem. Let A ¢ CV*V,

o(A) = {eigenvalues of A}
= {roots of the polynomial p(z) .= det(zIy — A)}

If ) is a root of multiplicity m of pa(z), then ) is called an eigenvalue of A
with algebraic multiplicity m.

Example: compute the eigenvalues (with their algebraic multiplicities) of

51 0

01 0 — L 0
0'1:<1O), 0'2:(7; O), 0'3:(0_1>, A= 05 0
00 —3
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Definition. Let A € CY*", The matrix A is called hermitian if A = A*, i.e. if
V1<j, k<N, A=A
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Definition. Let A € CY*", The matrix A is called hermitian if A = A*, i.e. if
V1<j, k<N, A=A

Theorem. Let A € CV*Y be a hermitian matrix. Then
1. the spectrum of A is real: o(A) C R;

2. A is diagonalizable in an orthonormal basis, i.e. there exist \; < )\ <
... < Ay in o(A) and an orthonormal basis (z, z,, - - - ,zy) of C¥ s.t.

V1 S j, k S N, AZj — )\ij, <Zj| Zk> — 04 k-

Each eigenvalues )\ of A appears in the list \; < Ay < --- < Ay as many
times as its algebraic multiplicity;
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Definition. Let A € CY*", The matrix A is called hermitian if A = A*, i.e. if
V1<j, k<N, A=A

Theorem. Let A € CV*Y be a hermitian matrix. Then
1. the spectrum of A is real: o(A) C R;

2. A is diagonalizable in an orthonormal basis, i.e. there exist \; < )\ <
. < Ay in 0(A) and an orthonormal basis (z, z,, - - - ,zy) of C¥ s.t.

V1 S j, k S N, AZj — )\ij, <Zj| Zk> — 04 k-
Each eigenvalues )\ of A appears in the list \; < Ay < --- < Ay as many
times as its algebraic multiplicity;

3. for each polynomial function ¢(t) = agt? + ag_1t* ' + - + ait + o, we have

q(A) = gAY+ ag AT+ A+ agly = Z q(\)z;z
7=1
By extension, we can define the matrix f(A), for any function f : R — C, as

]

_ Z f(A\j)z;z; (functional calculus).



Introduction 7

Some fundamental principles of quantum mechanics

1. the pure states of a given quantum system are normalized vectors (or in
fact rays) of some complex separable Hilbert space H;

2. observables are self-adjoint operators on H;

3. the result of the measurement of some scalar physical quantity a (e.g. the
energy) is always a point of the spectrum of the associated observable A;

4. if the system is in the pure state U € # (with ||V|| = 1) just before
the measurement of a, the probability that the result lays in the range
la, 8] € Riis ||1f,5(A)¥[]* where the operator 1, 5(A) is defined by
functional calculus.
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Some fundamental principles of quantum mechanics

1. the pure states of a given quantum system are normalized vectors (or in
fact rays) of some complex separable Hilbert space H;

2. observables are self-adjoint operators on H;

3. the result of the measurement of some scalar physical quantity a (e.g. the
energy) is always a point of the spectrum of the associated observable A;

4. if the system is in the pure state V € #H (with ||V|| = 1) just before

the measurement of a, the probability that the result lays in the range
la, 8] € Riis ||1f,5(A)¥[]* where the operator 1, 5(A) is defined by
functional calculus.

Good news: if H is finite-dimensional,
e 7 can be identified with C" by means of an orthonormal basis of 7{;

e using this identification, any self-adjoint operator A on 7 can be identi-
fied with a hermitian matrix A;

e the spectrum of the operator A coincides with the spectrum of the matrix A;
o 1, 5(A) is identified with the hermitian matrix 1, 5(A).
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Some fundamental principles of quantum mechanics

1. the pure states of a given quantum system are normalized vectors (or in
fact rays) of some complex separable Hilbert space H;

2. observables are self-adjoint operators on H;

3. the result of the measurement of some scalar physical quantity a (e.g. the
energy) is always a point of the spectrum of the associated observable A;

4. if the system is in the pure state U € # (with ||V|| = 1) just before
the measurement of a, the probability that the result lays in the range
la, 8] € Riis ||1f,5(A)¥[]* where the operator 1, 5(A) is defined by
functional calculus.

Bad news: most quantum systems encountered in physics and chemistry
cannot be described by finite-dimensional Hilbert spaces.
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Some fundamental principles of quantum mechanics

1. the pure states of a given quantum system are normalized vectors (or in
fact rays) of some complex separable Hilbert space H;

2. observables are self-adjoint operators on H;

3. the result of the measurement of some scalar physical quantity a (e.g. the
energy) is always a point of the spectrum of the associated observable A;

4. if the system is in the pure state V € #H (with ||V|| = 1) just before

the measurement of a, the probability that the result lays in the range
la, 8] € Riis ||1f,5(A)¥[]* where the operator 1, 5(A) is defined by
functional calculus.

Outline of the lecture

1. Hilbert spaces

2. Self-adjoint operators

3. Spectra of self-adjoint operators

4. Functional calculus
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1 - Hilbert spaces 9

Definition (complex Hilbert space). A complex Hilbert space is

e a complex vector space H,

i.e. a set 7, whose elements are sometimes denoted by ''kets'', endowed
with addition and scalar multiplication laws s.t. Vo, 5 € C, V|¢), |x), |¥) € H,

o)+ (Ix) +[¥)) = (|¢) + |x)) + [) (associativity of the addition)
O) + |v) = 1) +|¢) (commutativity of the addition)

) +10) = |¢p) (existence of a neutral element for the addition)
Y)Y+ | — 1) =10) (existence of an inverse for the addition)

af|p) +|9)) = alg) +aly),  (a+B)Y) = aly) + Bl),
0l) = 10), ) =1v),  alBlY)) = (aB)[¢)




1 - Hilbert spaces

Definition (complex Hilbert space). A complex Hilbert space is
e a complex vector space H,

e endowed with an inner product denoted by (-|-),

i.e. a mapping (-|-) : H x H — C such that Vo, g € C, V|¢), |x), |¥) € H,

(Plax + BY) = alg|x) + B{¢[¥) (right-linearity)
(ax + BY| ¢) = alx|¢) + B(L|o) (left-antilinearity)
(lY) = (¥|9) (hermiticity)

(W) ; 0 and ({(Y|Y) =0 < |¢) =10)) (positive-definiteness).

Cauchy-Schwarz inequality

vig), [y € H, |@lo)| < [lvll o]
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Definition (complex Hilbert space). A complex Hilbert space is
e a complex vector space H,
e endowed with an inner product denoted by (|-),

e complete for the norm || - || associated with this inner product.

[l = @) >0, el =lal [¢l, lo+vll <ol +Ixl, (¥l =0ev=0)

A sequence (1, ),cn of elements of the normed vector space 7 is called Cauchy if

Ve>0, INeN st Yg>p>N, |v,—llv <e.

H is called complete if any Cauchy sequence of elements of 7 converges in #,i.e. 3 € H s.t. ||, —1|| — O.
n—oo
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Definition (complex Hilbert space). A complex Hilbert space is
e a complex vector space H,
e endowed with an inner product denoted by (|-),

e complete for the norm || - || associated with this inner product.

Physical consequence of completeness: Dirac’s bra-ket duality
(Riesz representation theorem)

o for each ¢ € H, H > ¢ — (¢|¢) € Cis linear and continuous;

e conversely, any continuous linear map H > ¢ — [(¢) € C can be repre-
sented in a unique way by a "bra" (¥ |:

Ay € Hst. Vo € H, I(d) = (W]d).



1 - Hilbert spaces

10

Fundamental example 1: C" endowed with its canonical inner product

[ 7

v /

e CV,

y:

[0

vy

N 1/2
Y, (xly) = zxnyn, Ix]l = (z) |
n=1
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Fundamental example 1: C" endowed with its canonical inner product

(@) (o) ) o
e ye | et G- anyn, x| = (ZW) -
\ 2y \ uv _

Fundamental example 2: [*(N, C)

I*(N,C) = {QM = (Yn)nen € C" | Z ] < OO}

+00 1/2
V), 1¢) € P(N,C),  (i]¢) = anaﬁn, ||¢|I—<Z¢n2)

n=0
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11

Fundamental example 3: L*(R¢, C).
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Fundamental example 3: L*(R¢, C).
e The mapping

(u,v) — (u,v) 2 := / uv = / u(r) v(r) dr
defines an inner product on the corliildplex Vecﬁfr space
CERY,C) = {v e C*(R? C) | v =0 outside some bounded set} ,
but C>(R?, C), endowed with the inner product (-, -), 2, is not a Hilbert space.
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Fundamental example 3: L*(R¢, C).
e The mapping

(u,v) — (u,v) 2 := / uv = / u(r) v(r) dr
defines an inner product on the corlfldplex Vecﬁjr space
CERY,C) = {v e C*(R? C) | v =0 outside some bounded set} ,
but C>(R?, C), endowed with the inner product (-, -), 2, is not a Hilbert space.

e To obtain a Hilbert space, we have to '"complete' it with ''all the limits
of the Cauchy sequences of elements of C>°(R%)". We thus obtain the set

L*(R%,C) = {u RY = C | / ul? < oo},
Rd

which, endowed with the inner product (u, v);2, is a Hilbert space.
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Fundamental example 3: L*(R¢, C).
e The mapping
(u,v) = (u,v)2 = / uv = / u(r) v(r) dr
R4 R4
defines an inner product on the complex vector space
CERY,C) = {v e C*(R? C) | v =0 outside some bounded set} ,
but C>(R?, C), endowed with the inner product (-, -), 2, is not a Hilbert space.

e To obtain a Hilbert space, we have to '"complete' it with ''all the limits
of the Cauchy sequences of elements of C>°(R%)". We thus obtain the set

L*(R%,C) = {u RY = C | / ul? < oo} :
Rd
which, endowed with the inner product (u, v);2, is a Hilbert space.

® Technical details:

— one must use the Lebesgue integral (doesn’t work with Riemann integral);

— the elements of L?(R? C) are in fact equivalence classes of measurable functions (for the Lebesgue
measure) for the equivalence relation u ~ v iff u = v everywhere except possibly on a set of Lebesgue
measure equal to zero.
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Fundamental example 4: the Sobolev spaces H!(R? C) and H*(R? C).
e The sets
H'R%C) = {ue L*R%,C) | Vu € (LR’ C))"},
H*(RY,C) :={ue L*(R",C) | Vu € <L2(1R<d, C))* and D*u € (L*(R", C))™’}

are complex vector spaces. Respectively endowed with the inner products

(u, ) ::/ w+ | Vu- Vo,
Rd R

(u, )2 = / w+ [ Vu-Vu+ | D2u: D%,
Rd Rd Rd

they are Hilbert spaces.

® Technical detail: the gradient and the second derivatives are defined by means of distribution theory.
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Fundamental example 4: the Sobolev spaces H!(R? C) and H*(R? C).
e The sets
H'R%C) = {ue L*R%,C) | Vu € (LR’ C))"},
H*R%,C) = {ue L*R",C) | Vue <L2(1R<d, C))" and D*u € (L*(R?,C))™}

are complex vector spaces. Respectively endowed with the inner products

(u, ) ::/ w+ | Vu- Vo,
Rd R

(u, )2 = / w+ [ Vu-Vu+ | D2u: D%,
Rd Rd Rd

they are Hilbert spaces.

® Technical detail: the gradient and the second derivatives are defined by means of distribution theory.

Remark. Let u € H!(R?). A function 7 € H'(R?) can be a very accurate
approximation of v in L?>(R?) and a terrible approximation of v in H'(R%).

For instance, let u(z) = — and u,(x 1+ Sln("QxQ) w(z). The sequence
14z
() nen+ converges to v in L?(R) and goes to 1nﬁn1ty in 7'(R).
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Finite-dimensional complex Hilbert spaces

If there exists a finite family (|¢)1),-- -, [¢)n)) of vectors of H such that
V‘¢> c 7‘[, E”(Oél, s ,OéN> c (CN such that |w> = Oélhbﬁ + -+ OZNMDN%

then 7 is called finite-dimensional and such a family is called a basis of .
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Finite-dimensional complex Hilbert spaces

If there exists a finite family (|¢)1),-- -, [¢)n)) of vectors of H such that
V‘¢> c 7‘[, E”(Oél, s ,OéN> c (CN such that |¢> = Oélhbﬁ + -+ OZNMDN%

then 7 is called finite-dimensional and such a family is called a basis of .
Example: two bases of C*
1 0 0 1/2 1

Ol,{1],]0 (canonical basis), B = 2 11,
0 0 1 0 1
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Finite-dimensional complex Hilbert spaces

If there exists a finite family (|¢)1),-- -, [¢)n)) of vectors of H such that
V‘¢> c 7‘[, E”(Oél, s ,OéN> c (CN such that |¢> = Oélhbﬁ + -+ OZNMDN%

then 7 is called finite-dimensional and such a family is called a basis of .

Example: two bases of C*

1 0 0 1/2 1 0
Ol,{1],]0 (canonical basis), B, = 2 1], 4
0 0 1 0 1 1

If H is finite-dimensional, then all the bases have the same number NV of ele-
ments. This number is called the dimension of 7{ and is denoted by dim(7).

In particular, dim(C") = N
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Finite-dimensional complex Hilbert spaces

If there exists a finite family (|¢)1),-- -, [¢)n)) of vectors of H such that
V‘¢> c 7‘[, E”(Oél, s ,OéN> c (CN such that |¢> = 041’”@1> + -+ OZNMDN%

then 7 is called finite-dimensional and such a family is called a basis of .

Example: two bases of C*

1 0 0 1/2 1 0
Ol,{1],]0 (canonical basis), B, = 2 1], 4
0 0 1 0 1 1

If H is finite-dimensional, then all the bases have the same number NV of ele-
ments. This number is called the dimension of 7{ and is denoted by dim(7).

In particular, dim(C") = N

The basis (|11), - - , [¢n)) is called orthonormal if V1 < m,n < N, (¢¥,|Yn) = dpne

Any non-orthonormal basis can be transformed into an orthonormal basis
by the Gram-Schmidt orthonormalization process.



1 - Hilbert spaces

14

Infinite-dimensional complex Hilbert spaces
If H is not finite-dimensional, it is called infinite-dimensional.

Example: /*(N, C) is an infinite-dimensional Hilbert space.
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Infinite-dimensional complex Hilbert spaces
If H is not finite-dimensional, it is called infinite-dimensional.

Example: /*(N, C) is an infinite-dimensional Hilbert space.

Nevertheless, [“(N, C) possesses orthonormal bases in the following sense:
elet|0) =(1,0,0,0,0,---),]1) =(0,1,0,0,0,---), |2) = (0,0,1,0,0, - ), .«
o the family (|n) ),y of elements of [*(N, C) satisfies

(m|n) = (orthonormality)

Vi) € P(N,C),  [[9[I*=) [{n[¢)|*  (Parseval relation)
neN

) = Z(n\w n) (completeness)

neN
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Separable Hilbert spaces

A Hilbert space H is called separable if it has a countable dense subset,
that is if there exists a countable family (y,,),cn of elements of 7{ such that

Vip e H, Ve>0, dneNst |[v— x| e
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Separable Hilbert spaces

A Hilbert space H is called separable if it has a countable dense subset,
that is if there exists a countable family (y,,),cn of elements of 7{ such that

Vip e H, Ve>0, dneNst |[v— x| e

Examples of separable Hilbert spaces:
e all finite-dimensional Hilbert spaces are separable;
e [*(N, C) is an infinite-dimensional separable Hilbert space;
e all the Hilbert spaces arising in QM (e.g. L*(R?, C), H*(R?, C)) are separable.
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Separable Hilbert spaces

A Hilbert space H is called separable if it has a countable dense subset,
that is if there exists a countable family (y,,),cn of elements of 7{ such that

Vip e H, Ve>0, dneNst |[v— x| e

Examples of separable Hilbert spaces:
e all finite-dimensional Hilbert spaces are separable;
e [*(N, C) is an infinite-dimensional separable Hilbert space;
e all the Hilbert spaces arising in QM (e.g. L*(R?, C), H*(R?, C)) are separable.

Any infinite-dimensional separable Hilbert space 7{ possesses orthonormal
bases: there exists a countable family (|e,)),cn of elements of 7{ such that

(emlen) = Omn (orthonormality)

V|v) € H, 9% = Z [{en| V)| (Parseval relation)
neN

[¢) = Z(%\W €n) (completeness)

neN
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Unitary transforms

Let H and C be two Hilbert spaces. A mapping U : H — K is called a
unitary operator if

e [/ is a linear operator;
e [/ is invertible;

e [/ is an isometry.
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Unitary transforms

Let H and C be two Hilbert spaces. A mapping U : H — K is called a
unitary operator if

e [/ is a linear operator;
e [/ is invertible;

e [/ is an isometry.

If a quantum system described by
e the Hilbert space H;
e observables A, Ao, ... (self-adjoint operators on 7{),

and if U : { — I is a unitary operator, then the physics of the system can
be reformulated in a totally equivalent way using

e the Hilbert space K (the ket |¢)) € H is transformed into |¢) = U|y) € K);
e observables B, = UA,U"!, By = UA,U L, ... (self-adjoint operators on X).
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Unitary transforms

Let H and C be two Hilbert spaces. A mapping U : H — K is called a
unitary operator if

e [/ is a linear operator;
e [/ is invertible;

e [/ is an isometry.

If a quantum system described by
e the Hilbert space H;
e observables A, Ao, ... (self-adjoint operators on 7{),

and if U : { — I is a unitary operator, then the physics of the system can
be reformulated in a totally equivalent way using

e the Hilbert space K (the ket |¢)) € H is transformed into |¢) = U|y) € K);
e observables B, = UA,U"!, By = UA,U L, ... (self-adjoint operators on X).

These two formulations correspond to two different representations of the
same physical quantum system.



1 - Hilbert spaces 17
Fundamental example: one-dimensional quantum harmonic oscillator
Position rep. Momentum rep. Energy rep.

Hilbert space Hoos = L*(R,C)
Pure state Vpos(T)
Position op. Tpos = &
Momentum op. Ppos = —ih%
Kinetic energy op. Thos = —%%

Potential energy op.

_ 1 2
.‘/i:)os — 5/{/%.

Total energy op.

R g2 1.9
Hyos = =502 + 3k
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Fundamental example: one-dimensional quantum harmonic oscillator
Position rep. Momentum rep. Energy rep.

Hilbert space Hoos = L*(R,C) Huwom = L*(R, C)
Pure state wpos(aj ) 77Dmom (p)
Position op. Tpos = X Tmom = ihd%
Momentum op. Ppos = _Zh% Pmom = P
Kineti B2 2 p’
inetic energy op. Thos = =57 Tmom = 5,
Potential energy op. Vios = 5K Visom %2 %

Total energy op.

K2 d? 1

Hyos = =52 + 3he

2

1 .
wmom<p) — (Upos—>mom¢p05> <p) — ﬁ4¢p08<x>62px/h dx

(Fourier transform)
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Fundamental example: one-dimensional quantum harmonic oscillator
Position rep. Momentum rep. Energy rep.
Hilbert space Hpos = L*(R, C) Huwom = L*(R, C) H. = I*(N,C)
Pure state Gposl) Yinom(P) ) = 3 e Yeuln)
Position op. Tpos = T Tmom = ihd% ze = (2-1) /2 (a' + a)
Momentum op. Ppos = —ih% Diom = P Do = 0 (gmw)l/ ? (a' — a)
Kinetic energy op. Thos = —%% Tom = % T, = —2(al — a)?
Potential energy op. Vios = 5K Vivom %2%;% Ve = 2(al 4 a)?

Total energy op.

K2 d? 1.2

Hyos = =gz + 35

He =Y (n+ 3)hw|n)(n]

k
|0) = (1,0,0,0,---), |1) =(0,1,0,0,---), [2) =(0,0,1,0,--+),---, w:\/a, aT]n>:\/n+1\n+1>, aln) = +v/n | n—1)
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Fundamental example: one-dimensional quantum harmonic oscillator
Position rep. Momentum rep. Energy rep.
Hilbert space Hpos = L*(R, C) Huwom = L*(R, C) H. = I*(N,C)
Pure state Gposl) Yinom(P) ) = 3 e Yeuln)
Position op. Tpos = T Tmom = ihd% ze = (2-1) /2 (a' + a)
Momentum op. Ppos = —ih% Diom = P Do = 0 (gmw)l/ ? (a' — a)
Kinetic energy op. Thos = —%% Tom = % T, = —2(al — a)?
Potential energy op. Vios = 5K Vivom %2 j—é Ve = 2(al 4 a)?

Total energy op.

h? d> 1
Hpos:

“omd2 T 3k

2

He =Y (n+ 3)hw|n)(n]

Uposae - Z ‘n> <¢pos,n|a

neN

pros,n (37) =




2 - Self-adjoint operators

Notation: in this section, 7{ denotes a separable complex Hilbert space, (-|-)
its inner product, and || - || the associated norm.
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Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H
is a linear map A : H — H such that

Au
Al = sup 124
weH\{0} [Jull

< OQ.
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Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H
is a linear map A : H — H such that

< OQ.

Au
Al = sup 124
weH\{0} [wl]

The set 3(H ) of the bounded operators on 7{ is a non-commutative algebra
and || - || is a norm on B(H).

Remark. A bounded linear operator is uniquely defined by the values of
the sesquilinear form H x H 3 (u,v) — (u|Av) € C.

Definition-Theorem (adjoint of a bounded linear operator). Let A € B(H).
The operator A* € B(H) defined by

V(u,v) e H X H, (u|A™v) = (Au|v),
is called the adjoint of A. The operator A is called self-adjoint if A* = A.

Endowed with its norm || - || and the x operation, 5(7#) is a C*-algebra.
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(Non necessarily bounded) linear operators on Hilbert spaces

Definition (linear operator). A linear operator on 7 is a linear map
A : D(A) — H, where D(A) is a subspace of # called the domain of A.
Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A; and A, be operators on . A is
called an extension of A, if D(A;) C D(A,) and if Vu € D(A;), Asu = Aju.

Definition (unbounded linear operator). An operator A on  which does
not possess a bounded extension is called an unbounded operator on 7.

Definition (symmetric operator). A linear operator A on 7{ with dense
domain D(A) is called symmetric if

V(u,v) € D(A) x D(A), (Au|v) = (u]Av).

Symmetric operators are not very interesting. Only self-adjoint operators
represent physical observables and have nice mathematical properties:

e real spectrum;

e spectral decomposition and functional calculus.
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Definition (adjoint of a linear operator with dense domain). Let A be a
linear operator on 7 with dense domain D(A), and D(A*) the vector space
defined as

D(A") ={veH|Tw, € Hst.Vu € D(A), (Au|v) = (u|w,)} .
The linear operator A* on , with domain D(A*), defined by
Vv e D(A"), A*v=w,,

(if w, exists, it is unique since D(A) is dense) is called the adjoint of A.
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Definition (adjoint of a linear operator with dense domain). Let A be a
linear operator on 7 with dense domain D(A), and D(A*) the vector space
defined as

D(A") ={veH|Tw, € Hst.Vu € D(A), (Au|v) = (u|w,)} .
The linear operator A* on , with domain D(A*), defined by
Vv e D(A"), A*v=w,,

(if w, exists, it is unique since D(A) is dense) is called the adjoint of A.
(This definition agrees with the one on Slide 20 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain
is called self-adjoint if A* = A (that is if A symmetric and D(A*) = D(A)).

Case of bounded operators:

symmetric < self-adjoint.

Case of unbounded operators:

symmetric (easy to check) z self-adjoint (sometimes difficult to check)
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Some unbounded self-adjoint operators arising in quantum mechanics

e position operator along the ; axis:

- H = L*(R%, C),

- D(7)) = {u € L*R",C) | rju € L*(R%, C) }, (7¢)(r) = r;o(r);
e momentum operator along the ; axis:

- H = L*(R?,C),

- D(p;) {u c L*(R%,C) | Oru € L*(RY, (C)}, (Djd)(r) = —z'&njgb(r);
¢ Kinetic energy operator:

- H = L*(R%, C),

1

- D(T) = H*R?,C) = {u € L*(R%,C) | Au € L*(R%,C)}, T = —545

e Schridinger operatorsin 3D: let V € L2 (R’ R) (V(r) = — Tl 2 OK)

~H = L¥(R3,C),
- D(H) = H*(R3,C), H = —%A +V.



3 - Spectra of self-adjoint operators

Notation: in this section, 7{ denotes a separable complex Hilbert space, (-|-)
its inner product, and || - || the associated norm.
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Definition-Theorem (spectrum of a linear operator). Let A be a closed’
linear operator on 7.

e The openset p(A) = {z € C| (2 — A) : D(A) — H invertible} is called
the resolvent set of A.

! The operator A is called closed if its graph I'(A) := {(u, Au), u € D(A)} is a closed subspace of H x H.
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Definition-Theorem (spectrum of a linear operator). Let A be a closed’
linear operator on 7.

e The openset p(A) = {z € C| (2 — A) : D(A) — H invertible} is called
the resolvent set of A. The analytic function

p(A) 2z R.(A) = (2 — A~ € B(H)
is called the resolvent of A. Itholds R.(A)—R.(A) = (2'—2)R.(A)R..(A).
e The closed set o(A) = C \ p(A) is called the spectrum of A.
o If A is self-adjoint, then 0(A) C R and it holds 0(A) = 0,(A) Uo.(A),

where 0,(A) and o.(A) are respectively the point spectrum and the con-
tinuous spectrum of A defined as

op(A) = {z€C|(2—A) : D(A) — H non-injective} = {eigenvalues of A}

0.(A) = {2z€C|(z—A) : D(A) — H injective but non surjective}.

! The operator A is called closed if its graph I'(A) := {(u, Au), u € D(A)} is a closed subspace of H x H.
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle 69, Amrein and Georgescu ’73, Enss ’78).

Let H be a locally compact self-adjoint operator on L*(R?).
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let 7, = Span {eigenvectors of H } and . = 7—[;.
[Ex.: for the Hamiltonian of the hydrogen atom, dim(7#,) = dim(#,.) = oc.]

Let 5, be the characteristic function of the ball By = {r € R? | |r| < R}.
Then

(¢po € Hy) < Ve >0, dR >0, Vt >0, ‘(1 — XBR)G_“H%H; <e¢g;

T
(o€ Ho) & VR >0, I /0 Ixspe o[, dt = 0.

T—+o00

H, : set of bound states, H. : set of scattering states
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Diagonalizable self-adjoint operators and Dirac’s bra-ket notation

Let A be a self-adjoint operator that can be diagonalized in an orthonormal
basis (e,),cn (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: A = Z Anlen)(enl, A €R, (enlen) = dmn.

neN

Then,
e the operator A is bounded if and only if | A|| = sup,, |\,| < oo3
= {lu) = Scntnlen) | Spen(+ ADluaf? < 00)}s
e 5,(A) = {\},cyand o (A) = {accumulation points of {\,}, _}\op(A);
e H, =H and H. = {0} (no scattering states);

¢ functional calculus for diagonalizable self-adjoint operators: for all
f : R — C, the operator f(A) defined by

D(f(A) { = ulen) | Y (1+[f(A un|2<00} =Y f)len)en

neN neN neN
is independent of the choice of the spectral decomposition of A.
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Electronic problem for a given nuclear configuration {R;}, _,._,,
Ex: water molecule H,O
MZS NZlO 2’1:8 2221,23:1
Uext Z |I' o Rk‘
| N
_§;A +ZzlveXt r;) + Z z—I‘j| U(ry,- - ,ry) = FE V(ry, -+ ,ry)

1<i<y<N

|\Ij<r1’ ce

Vp € Gy,

\Ij(rp(1)7 e

arp(N)> — g(p)\lf(rh e

arN)a

(Pauli principle)

,Ty)|* probability density of observing electron 1 at ry, electron 2 at ro, ...
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1=1 1=1 1<i<y<N

|\Ij<r1’ ce

)

N
VeHy=N\H, Hi=LRC)

ry)|* probability density of observing electron 1 at ry, electron 2 at ro, ...
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Electronic problem for a given nuclear configuration {R;}, _,._,,
Ex: water molecule H,O
M=3 NZlO 21:8 2221,23:1
Uext Z |I' . Rk‘
| N
_§ZA + ) Vetlr) + Z @—rjl U(ry, - ,ty) = E W(ry, -+ ,ry)
1=1 1=1 1<i<y<N

|\Ij<r1’ ce

)

N
\IJEHN:/\Hl,

H, = L*(R*,C?) with spin

ry)|* probability density of observing electron 1 at ry, electron 2 at ro, ...
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Electronic problem for a given nuclear configuration {Rk}1§ <M

Ex: water molecule H,O
M=3 NZlO 2’1:8 2’221,2321

Uext Z |I' L Rk‘

N N
1
_§ZA —|—Z’UeXt I'Z -+ Z Z_r]| (rl,"',rN>:qu(r1,"',I'N)
1=1 1=1 1<i<y<N
|W(ry, -+, ry)|* probability density of observing electron 1 at r;, electron 2 at ro, ...

N
VeHy=A\H, Hi= L2<R3 @)

Theorem (Kato ’51). The operator Hy .= —— Z Arﬁrz Vext (1) + Z

— T
1<z<j<N L ‘7|

with domain D(Hy) := Hy N H*(R?*Y,C) is self—adJ01nt on Hn.
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Theorem (spectrum of ).

1. HVZ theorem (Hunziger ’66, van Winten ’60, Zhislin ’60)
o.(Hy) = XN, +00) with Xy = mino(Hy_1) < 0and Xy < 0iff N > 2.
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IfN < 7 := Z 21, then Hy has an infinite number of bound states.
k=1

Ground state Excited states
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| | | LH ””%
I I [ TTIHI
0
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XN Continuous spectrum




3 - Spectra of self-adjoint operators 28

Theorem (spectrum of ).

1. HVZ theorem (Hunziger ’66, van Winten ’60, Zhislin ’60)
o.(Hy) = XN, +00) with Xy = mino(Hy_1) < 0and Xy < 0iff N > 2.

2. Bound states of neutral molecules and positive ions (Zhislin ’61)
M

IfN < 7 := Z 21, then Hy has an infinite number of bound states.
k=1

Ground state Excited states

| /N

| | | LH ””%
I I [ TTIHI
0

EN

XN Continuous spectrum

3. Bound states of negative ions (Yafaev ’72)
If N > 7 + 1, then Hy has at most a finite number of bound states.
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Spectra of Schrodinger operators with confining potentials

H = L*(RY), V e C'(RYR), lim V/(r) = 4oco (confining potential)

r|—+00

1 1
D(H) = {u c L*(RY | — SAu+Vu e LZ(Rd)} , Yu€ D(H), Hu= —5AutVu.

H is bounded below and its spectrum is purely discrete (oq(H) = o(H), o.(H) = ().

As a consequence, [ is diagonalizable in a orthonormal basis: there exist
¢ a non-decreasing sequence (), of real numbers going to +oo;
e an orthonormal basis (¢, ),cn of 7 composed of vectors of D(H),
such that
VneN, Hy,=FE,,.

In addition, the ground state eigenvalue £/ is non-degenerate and the cor-
responding eigenvector can be chosen positive on R,
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Spectra of 3D Schrodinger operators with potentials decaying at infinity

V such that Ve > 0, 3(V5, Vo) € L*(R*, R)x L¥(R?, R) s.t. V = Vo+ Vo and || Vi |1 < €,

1
H = L*(RY), D(H) = H*(R?), VYu € D(H), Hu = —5Au+Vu.

The operator H is self-adjoint, bounded below, and o.(H) = |0, +00).

Depending on V/, the discrete spectrum of /7 may be
e the empty set;
e a finite number of negative eigenvalues;

¢ a countable infinite number of negative eigenvalues accumulating at 0
(ex: Ridberg states).

If H has a ground state, then its energy is a non-degenerate eigenvalue and
the corresponding eigenvector can be chosen positive on R".
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The special case of Kohn-Sham LDA Hamiltonians

M
1 KS . KS Z 2k p(r’) dei? A
Hp = —§A—|—va with va (I‘) = — |I‘ — Rk‘—l_ s ‘I‘ — I‘/| dr’+d—p(,0(r))
k=1

For any p € L'(R?,R) N L*(R? R), the KS potential V/*> satisfies the assumptions
in the previous slide. In particular H, is bounded below and o.(H,) = [0, +00).

M

Let Z = Z 2i. be the total nuclear charge of the molecular system and NV = e

3
k=1 R

o If N < Z (positive ion), /1, has a countable infinite number of negative
eigenvalues accumulating at 0.

o If N = Z (neutral molecular system) and if p is a ground state density
of the system, then /7, has at least /N non-positive eigenvalues.
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Spectra of Hartree-Fock Hamiltonians

Let ® = (¢, - - ,qu) c (H(R?))" be such that/ o) qb] = 0yj,
Z si(r)pi(r')",  py(r) Z 4(r)
" =L*R’°), D(H)=HR’),

(H)(r) = __A¢ Z Ir—Rk\ ( [ p (1) dr’) s [ 2T )

r — 1’| r3 [T — 1|

Let Z = 224: , 2k The operator H is self-adjoint, bounded below, and we have:
® Opgs = [Oa +OO>;

o if N < Z (positive ion), /{ has a countable infinite number of negative
eigenvalues accumulating at 0;

o if N = Z (neutral molecular system) and if ¢ is a HF minimizer of the
system, then /1 has at least NV negative eigenvalues (counting multiplicities).
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Spectra of Dirac Hamiltonians

" =L} R%CY),  D(Dy)=H'(R%CY),  Dy=cp-d+mep
p; = —ihaj, Q= ( 0 Ok) c (C4X4, 5 = ({)2 O] ) S C4X4
— 42

O 0
01:<

1 0 —i 1 0 . .
O) : 09 = ( - ) : O3 = (O _1) (Pauli matrices)

The free Dirac operator D is self-adjoint and

—_ O

0(Dy) = 0ac(Dy) = (—00, —mc?] U [mc?, +00).
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Theorem. Let o .= 47;2 = ~ 1/137.036 be the fine structure constant. Let

Z
Dy =Dy— ﬂ, Z € R (physical cases: 7 =1,2,3,---).
r
oif |7| < 2—\/3 ~ 118.677, the Dirac operator D is essentially self-adjoint

(meaning that there exists a unique domain D (D) containing C>°(R3; C*)
for which D is self-adjoint);

oif | 7| > 2—@ ~ 118.677, Dz has many self-adjoint extensions;

oif |7| < é ~ 137.036, D~ has a special self-adjoint extension, considered
as the physical one. The essential spectrum of this self-adjoint exten-
sion is (—oo, —mc?] U [mc?, +oo) and its discrete spectrum consist of the
eigenvalues

_ o7 —1/2

2

1+ , neN, j=

E,; = mc

Y Y

DO | QO
DO | Ot

DO | —

Ae
n—j—%+\/(j+%)2—z2a2

Many-body Dirac-Coulomb Hamiltonian are not understood mathematically.
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Notation: in this section, 7{ denotes a separable complex Hilbert space, (-|-)
its inner product, and || - || the associated norm.
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Theorem (functional calculus for bounded functions). Let B(RR, C) be the
x-algebra of bounded C-valued Borel functions on R and let A be a self-
adjoint operator on 7{. Then there exists a unique map

Oy B(R,C) > f s f(A) € B(H)

satisfies the following properties:

1. &4 is a homomorphism of x-algebras:

(af+B89)(A) = af(A)+B9(A), (fg)(A) = f(A)g(4), [f(A)=f(A);

2 [IF(A)] < sup (@)l

3.if f,,(x) — x pointwise and | f,,(x)| < |z| for all n and all z € R, then
Vu e D(A), fu(Au— Auin H;

4.if f,(x) — f(x) pointwise and sup,, sup,.p | f»(z)| < 0o, then
VueH, fu(Adu— f(A)uin H;

In addition, if v € H is such that Au = \u, then f(A)u = f(\)u.
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Theorem (spectral projections and functional calculus - general case -).

Let A be a self-adjoint operator on 7.

e For all \ € R, the bounded operator P} := 1) . ,(A), where 1), y(-)
is the characteristic function of | — oo, \|, is an orthogonal projection.
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Theorem (spectral projections and functional calculus - general case -).

Let A be a self-adjoint operator on 7.

e For all \ € R, the bounded operator P} := 1) . ,(A), where 1), y(-)
is the characteristic function of | — oo, \|, is an orthogonal projection.

e Spectral decomposition of A: for all w € D(A) and v € H, it holds

(v|Au) = / Agl<v|Pg4u>J, which we denote by A = / AdP;.
R ~ R

Bounded complex measure on R
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Theorem (spectral projections and functional calculus - general case -).

Let A be a self-adjoint operator on 7.

e For all \ € R, the bounded operator P} := 1) . ,(A), where 1), y(-)
is the characteristic function of | — oo, \|, is an orthogonal projection.

e Spectral decomposition of A: for all w € D(A) and v € H, it holds

(v|Au) = / Agl<v|Pg4u>J, which we denote by A = / AdP;.
R ~ R

Bounded complex measure on R

¢ Functional calculus: let f be a (not necessarily bounded) C-valued Borel
function on R. The operator f(A) can be defined by

p(f(a) = {uen] [ IFNP dlulPu) < oo

Bounded positive measure on R

and

V(u,v) € D(f(A)) x H, /f (v| Pitu)
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Theorem (form domain and quadratic form).

Let A be a self-adjoint operator on 7.

e The set
Q)= {wen| [ Mawlpiv) < ool

Bounded positive measure on R

is a vector space, called the form domain of A, and we have
D(A) — Q(A) — H
with dense embeddings.

e The mapping defined by
V6 € QM) (wlAlw) = [ AdwIPy)

is called the quadratic form associated with A.




References 39

e E.B. Davies, Linear operators and their spectra, Cambridge University
Press 2007.

e B. Helffer, Spectral theory and its applications, Cambridge University
Press 2013.

e M. Reed and B. Simon, Modern methods in mathematical physics, in 4
volumes, 2nd edition, Academic Press 1972-1980.



