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CM×N =

A =


z1,1 · · · z1,N

· · · · ·
· · · · ·
· · · · ·

zM,1 · · · zM,N

 , zm,n ∈ C for all 1 ≤ m ≤M, 1 ≤ n ≤ N


(complex matrices with M rows and N columns)
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CN is endowed with a natural complex vector space structure:

• addition of two vectors of CN

z =


z1

·
·
·
zN

 , z′ =


z′1
·
·
·
z′N

 ⇒ z + z′ =


z1 + z′1
·
·
·

zN + z′N


•multiplication of a vector of CN by a scalar

α ∈ C, z =


z1

·
·
·
zN

 ⇒ αz =


αz1

·
·
·

αzN


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Conjugate transpose of a column vector z ∈ CN , a matrix A ∈ CM×N:

z∗ = (z1, · · · , zN) (line vector), A∗ ∈ CN×M s.t. [A∗]ij = Aji.
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CN is endowed with a natural inner product and associated norm

z =


z1

·
·
·
zN
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z′1
·
·
·
z′N

 ⇒ 〈z|z′〉 = z∗z′ =

N∑
n=1

zn z
′
n, ‖z‖ = 〈z|z〉1/2 =

(
N∑
n=1

|zn|2
)1/2
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The vectors e1 =



1
0
0
·
·
·
0
0


, e2 =



0
1
0
·
·
·
0
0


, · · · eN =



0
0
0
·
·
·
0
1


form an orthonormal basis of CN:

any vector z ∈ CN is a unique linear combination of e1, e2, · · · eN and

〈ej|ek〉 = e∗jek = δj,k.



Introduction 5
.

Definition. Let A ∈ CN×N .
• λ ∈ C is called an eigenvalue of A, and z ∈ CN an associated eigenvector if

z 6= 0 and Az = λz;

• the spectrum of A is the set of complex numbers

σ(A) = {λ ∈ C | λIN −A non-invertible} .
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Definition. Let A ∈ CN×N .
• λ ∈ C is called an eigenvalue of A, and z ∈ CN an associated eigenvector if

z 6= 0 and Az = λz;

• the spectrum of A is the set of complex numbers

σ(A) = {λ ∈ C | λIN −A non-invertible} .

Theorem. Let A ∈ CN×N .

σ(A) = {eigenvalues of A}
= {roots of the polynomial pA(z) := det(zIN −A)}

If λ is a root of multiplicity m of pA(z), then λ is called an eigenvalue of A
with algebraic multiplicity m.

Example: compute the eigenvalues (with their algebraic multiplicities) of

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, A =

 5 1 0
0 5 0
0 0 −3i

 .
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Definition. Let A ∈ CN×N . The matrix A is called hermitian if A = A∗, i.e. if

∀1 ≤ j, k ≤ N, Akj = Ajk.

Theorem. Let A ∈ CN×N be a hermitian matrix. Then
1. the spectrum of A is real: σ(A) ⊂ R;
2. A is diagonalizable in an orthonormal basis, i.e. there exist λ1 ≤ λ2 ≤
· · · ≤ λN in σ(A) and an orthonormal basis (z1, z2, · · · , zN) of CN s.t.

∀1 ≤ j, k ≤ N, Azj = λjzj, 〈zj| zk〉 = δj,k.

Each eigenvalues λ of A appears in the list λ1 ≤ λ2 ≤ · · · ≤ λN as many
times as its algebraic multiplicity;

3. for each polynomial function q(t) = αdt
d + αd−1t

d−1 + · · · + α1t + α0, we have

q(A) := αdA
d + αd−1A

d−1 + · · · + α1A + α0IN =

N∑
j=1

q(λj)zjz
∗
j .

By extension, we can define the matrix f (A), for any function f : R→ C, as

f (A) =

N∑
j=1

f (λj)zjz
∗
j (functional calculus).
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Some fundamental principles of quantum mechanics
1. the pure states of a given quantum system are normalized vectors (or in

fact rays) of some complex separable Hilbert spaceH;
2. observables are self-adjoint operators onH;
3. the result of the measurement of some scalar physical quantity a (e.g. the

energy) is always a point of the spectrum of the associated observableA;
4. if the system is in the pure state Ψ ∈ H (with ‖Ψ‖ = 1) just before

the measurement of a, the probability that the result lays in the range
[α, β] ⊂ R is ‖1[α,β](A)Ψ‖2, where the operator 1[α,β](A) is defined by
functional calculus.
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Good news: ifH is finite-dimensional,
• H can be identified with CN by means of an orthonormal basis ofH;
• using this identification, any self-adjoint operator A onH can be identi-

fied with a hermitian matrix A;
• the spectrum of the operator A coincides with the spectrum of the matrix A;
• 1[α,β](A) is identified with the hermitian matrix 1[α,β](A).
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Bad news: most quantum systems encountered in physics and chemistry
cannot be described by finite-dimensional Hilbert spaces.



Introduction 7
.

Some fundamental principles of quantum mechanics
1. the pure states of a given quantum system are normalized vectors (or in

fact rays) of some complex separable Hilbert spaceH;
2. observables are self-adjoint operators onH;
3. the result of the measurement of some scalar physical quantity a (e.g. the

energy) is always a point of the spectrum of the associated observableA;
4. if the system is in the pure state Ψ ∈ H (with ‖Ψ‖ = 1) just before

the measurement of a, the probability that the result lays in the range
[α, β] ⊂ R is ‖1[α,β](A)Ψ‖2, where the operator 1[α,β](A) is defined by
functional calculus.

Outline of the lecture
1. Hilbert spaces
2. Self-adjoint operators
3. Spectra of self-adjoint operators
4. Functional calculus
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.

Definition (complex Hilbert space). A complex Hilbert space is
• a complex vector spaceH,

i.e. a set H, whose elements are sometimes denoted by "kets", endowed
with addition and scalar multiplication laws s.t. ∀α, β ∈ C, ∀|φ〉, |χ〉, |ψ〉 ∈ H,

|φ〉 + (|χ〉 + |ψ〉) = (|φ〉 + |χ〉) + |ψ〉 (associativity of the addition)
|φ〉 + |ψ〉 = |ψ〉 + |φ〉 (commutativity of the addition)
|ψ〉 + |0〉 = |ψ〉 (existence of a neutral element for the addition)
|ψ〉 + | − ψ〉 = |0〉 (existence of an inverse for the addition)
α(|φ〉 + |ψ〉) = α|φ〉 + α|ψ〉, (α + β)|ψ〉 = α|ψ〉 + β|ψ〉,
0|ψ〉 = |0〉, 1|ψ〉 = |ψ〉, α(β|ψ〉) = (αβ)|ψ〉
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.

Definition (complex Hilbert space). A complex Hilbert space is
• a complex vector spaceH,
• endowed with an inner product denoted by 〈·|·〉,

i.e. a mapping 〈·|·〉 : H×H → C such that ∀α, β ∈ C, ∀|φ〉, |χ〉, |ψ〉 ∈ H,

〈φ|αχ + βψ〉 = α〈φ|χ〉 + β〈φ|ψ〉 (right-linearity)
〈αχ + βψ| φ〉 = α〈χ|φ〉 + β〈ψ|φ〉 (left-antilinearity)
〈φ|ψ〉 = 〈ψ|φ〉 (hermiticity)
〈ψ|ψ〉 ≥ 0 and (〈ψ|ψ〉 = 0 ⇔ |ψ〉 = |0〉) (positive-definiteness).

Cauchy-Schwarz inequality

∀|φ〉, |ψ〉 ∈ H, |〈ψ|φ〉| ≤ ‖ψ‖ ‖φ‖.



1 - Hilbert spaces 9
.

Definition (complex Hilbert space). A complex Hilbert space is
• a complex vector spaceH,
• endowed with an inner product denoted by 〈·|·〉,
• complete for the norm ‖ · ‖ associated with this inner product.

‖ψ‖ := 〈ψ|ψ〉1/2 ≥ 0, ‖αψ‖ = |α| ‖ψ‖, ‖φ + ψ‖ ≤ ‖φ‖ + ‖χ‖, (‖ψ‖ = 0⇔ ψ = 0)

A sequence (ψn)n∈N of elements of the normed vector spaceH is called Cauchy if

∀ε > 0, ∃N ∈ N s.t. ∀q ≥ p ≥ N, ‖ψp − ψq‖V ≤ ε.

H is called complete if any Cauchy sequence of elements ofH converges inH, i.e. ∃ψ ∈ H s.t. ‖ψn−ψ‖ →
n→∞

0.
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Definition (complex Hilbert space). A complex Hilbert space is
• a complex vector spaceH,
• endowed with an inner product denoted by 〈·|·〉,
• complete for the norm ‖ · ‖ associated with this inner product.

Physical consequence of completeness: Dirac’s bra-ket duality
(Riesz representation theorem)
• for each ψ ∈ H,H 3 φ 7→ 〈ψ|φ〉 ∈ C is linear and continuous;
• conversely, any continuous linear map H 3 φ 7→ l(φ) ∈ C can be repre-

sented in a unique way by a "bra" 〈ψ|:
∃!ψ ∈ H s.t. ∀φ ∈ H, l(φ) = 〈ψ|φ〉.
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Fundamental example 1: CN endowed with its canonical inner product

x =


x1

·
·
·
xN

 ∈ CN , y =


y1

·
·
·
yN

 ∈ CN , 〈x|y〉 =

N∑
n=1

xnyn, ‖x‖ =

(
N∑
n=1

|xn|2
)1/2

.
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N∑
n=1
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.

Fundamental example 2: l2(N,C)

l2(N,C) =

{
|ψ〉 = (ψn)n∈N ∈ CN |

+∞∑
n=0

|ψn|2 <∞

}

∀|ψ〉, |φ〉 ∈ l2(N,C), 〈ψ|φ〉 =

+∞∑
n=0

ψnφn, ‖ψ‖ =

(
+∞∑
n=0

|ψn|2
)1/2
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Fundamental example 3: L2(Rd,C).
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Fundamental example 3: L2(Rd,C).
• The mapping

(u, v) 7→ (u, v)L2 :=

∫
Rd
uv :=

∫
Rd
u(r) v(r) dr

defines an inner product on the complex vector space

C∞c (Rd,C) :=
{
v ∈ C∞(Rd,C) | v = 0 outside some bounded set

}
,

but C∞c (Rd,C), endowed with the inner product (·, ·)L2, is not a Hilbert space.
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• To obtain a Hilbert space, we have to "complete" it with "all the limits
of the Cauchy sequences of elements of C∞c (Rd)". We thus obtain the set

L2(Rd,C) :=

{
u : Rd → C |

∫
Rd
|u|2 <∞

}
,

which, endowed with the inner product (u, v)L2, is a Hilbert space.
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Fundamental example 3: L2(Rd,C).
• The mapping

(u, v) 7→ (u, v)L2 :=

∫
Rd
uv :=

∫
Rd
u(r) v(r) dr

defines an inner product on the complex vector space

C∞c (Rd,C) :=
{
v ∈ C∞(Rd,C) | v = 0 outside some bounded set

}
,

but C∞c (Rd,C), endowed with the inner product (·, ·)L2, is not a Hilbert space.

• To obtain a Hilbert space, we have to "complete" it with "all the limits
of the Cauchy sequences of elements of C∞c (Rd)". We thus obtain the set

L2(Rd,C) :=

{
u : Rd → C |

∫
Rd
|u|2 <∞

}
,

which, endowed with the inner product (u, v)L2, is a Hilbert space.

• Technical details:

– one must use the Lebesgue integral (doesn’t work with Riemann integral);
– the elements of L2(Rd,C) are in fact equivalence classes of measurable functions (for the Lebesgue

measure) for the equivalence relation u ∼ v iff u = v everywhere except possibly on a set of Lebesgue
measure equal to zero.
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Fundamental example 4: the Sobolev spaces H1(Rd,C) and H2(Rd,C).

• The sets

H1(Rd,C) :=
{
u ∈ L2(Rd,C) | ∇u ∈ (L2(Rd,C))d

}
,

H2(Rd,C) :=
{
u ∈ L2(Rd,C) | ∇u ∈ (L2(Rd,C))d and D2u ∈ (L2(Rd,C))d×d

}
are complex vector spaces. Respectively endowed with the inner products

(u, v)H1 :=

∫
Rd
uv +

∫
Rd
∇u · ∇v,

(u, v)H2 :=

∫
Rd
uv +

∫
Rd
∇u · ∇v +

∫
Rd
D2u : D2v,

they are Hilbert spaces.
• Technical detail: the gradient and the second derivatives are defined by means of distribution theory.
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Fundamental example 4: the Sobolev spaces H1(Rd,C) and H2(Rd,C).

• The sets

H1(Rd,C) :=
{
u ∈ L2(Rd,C) | ∇u ∈ (L2(Rd,C))d

}
,

H2(Rd,C) :=
{
u ∈ L2(Rd,C) | ∇u ∈ (L2(Rd,C))d and D2u ∈ (L2(Rd,C))d×d

}
are complex vector spaces. Respectively endowed with the inner products

(u, v)H1 :=

∫
Rd
uv +

∫
Rd
∇u · ∇v,

(u, v)H2 :=

∫
Rd
uv +

∫
Rd
∇u · ∇v +

∫
Rd
D2u : D2v,

they are Hilbert spaces.
• Technical detail: the gradient and the second derivatives are defined by means of distribution theory.

Remark. Let u ∈ H1(Rd). A function ũ ∈ H1(Rd) can be a very accurate
approximation of u in L2(Rd) and a terrible approximation of u in H1(Rd).

For instance, let u(x) = 1
1+x2 and un(x) =

(
1 + sin(n2x2)

n

)
u(x). The sequence

(un)n∈N∗ converges to u in L2(R) and goes to infinity in H1(R).
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Finite-dimensional complex Hilbert spaces

If there exists a finite family (|ψ1〉, · · · , |ψN〉) of vectors ofH such that

∀|ψ〉 ∈ H, ∃!(α1, · · · , αN) ∈ CN such that |ψ〉 = α1|ψ1〉 + · · · + αN |ψN〉,
thenH is called finite-dimensional and such a family is called a basis ofH.
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Finite-dimensional complex Hilbert spaces

If there exists a finite family (|ψ1〉, · · · , |ψN〉) of vectors ofH such that

∀|ψ〉 ∈ H, ∃!(α1, · · · , αN) ∈ CN such that |ψ〉 = α1|ψ1〉 + · · · + αN |ψN〉,
thenH is called finite-dimensional and such a family is called a basis ofH.

Example: two bases of C3

B1 =

 1
0
0

 ,

 0
1
0

 ,

 0
0
1

 (canonical basis), B2 =

 1/2
2
0

 ,

 1
1
1

 ,

 0
4
1

 .
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In particular, dim(CN) = N

The basis (|ψ1〉, · · · , |ψN〉) is called orthonormal if ∀1 ≤ m,n ≤ N, 〈ψm|ψn〉 = δm,n.
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IfH is not finite-dimensional, it is called infinite-dimensional.

Example: l2(N,C) is an infinite-dimensional Hilbert space.

Nevertheless, l2(N,C) possesses orthonormal bases in the following sense:
• let |0〉 = (1, 0, 0, 0, 0, · · · ), |1〉 = (0, 1, 0, 0, 0, · · · ), |2〉 = (0, 0, 1, 0, 0, · · · ), ...
• the family (|n〉)n∈N of elements of l2(N,C) satisfies

〈m|n〉 = δm,n (orthonormality)
∀|ψ〉 ∈ l2(N,C), ‖ψ‖2 =

∑
n∈N

|〈n|ψ〉|2 (Parseval relation)

|ψ〉 =
∑
n∈N

〈n|ψ〉 |n〉 (completeness)
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A Hilbert space H is called separable if it has a countable dense subset,
that is if there exists a countable family (χn)n∈N of elements ofH such that

∀ψ ∈ H, ∀ε > 0, ∃n ∈ N s.t. ‖ψ − χn‖ ≤ ε.
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• l2(N,C) is an infinite-dimensional separable Hilbert space;
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Any infinite-dimensional separable Hilbert spaceH possesses orthonormal
bases: there exists a countable family (|en〉)n∈N of elements ofH such that
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Let H and K be two Hilbert spaces. A mapping U : H → K is called a
unitary operator if
• U is a linear operator;
• U is invertible;
• U is an isometry.

If a quantum system described by
• the Hilbert spaceH;
• observables A1, A2, ... (self-adjoint operators onH),

and if U : H → K is a unitary operator, then the physics of the system can
be reformulated in a totally equivalent way using
• the Hilbert space K (the ket |ψ〉 ∈ H is transformed into |φ〉 = U |ψ〉 ∈ K);
• observables B1 = UA1U

−1, B2 = UA2U
−1, ... (self-adjoint operators on K).

These two formulations correspond to two different representations of the
same physical quantum system.
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Fundamental example: one-dimensional quantum harmonic oscillator

Position rep. Momentum rep. Energy rep.

Hilbert space Hpos = L2(R,C)

Pure state ψpos(x)

Position op. xpos = x

Momentum op. ppos = −i~ d
dx

Kinetic energy op. Tpos = − ~2

2m
d2

dx2

Potential energy op. Vpos = 1
2κx

2

Total energy op. Hpos = − ~2

2m
d2

dx2 + 1
2κx

2
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Fundamental example: one-dimensional quantum harmonic oscillator

Position rep. Momentum rep. Energy rep.

Hilbert space Hpos = L2(R,C) Hmom = L2(R,C)

Pure state ψpos(x) ψmom(p)

Position op. xpos = x xmom = i~ d
dp

Momentum op. ppos = −i~ d
dx pmom = p

Kinetic energy op. Tpos = − ~2

2m
d2

dx2 Tmom = p2

2m

Potential energy op. Vpos = 1
2κx

2 Vmom = −~2

2 κ
d2

dp2

Total energy op. Hpos = − ~2

2m
d2

dx2 + 1
2κx

2 Hmom = p2

2m −
~2

2 κ
d2

dp2

ψmom(p) = (Upos→momψpos) (p) =
1√
2π~

∫
R
ψpos(x)e−i px/~ dx (Fourier transform)
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Fundamental example: one-dimensional quantum harmonic oscillator

Position rep. Momentum rep. Energy rep.

Hilbert space Hpos = L2(R,C) Hmom = L2(R,C) He = l2(N,C)

Pure state ψpos(x) ψmom(p) |ψe〉 =
∑

n∈Nψe,n|n〉

Position op. xpos = x xmom = i~ d
dp xe =

(~
2

1
mω

)1/2
(a† + a)

Momentum op. ppos = −i~ d
dx pmom = p pe = i

(~
2mω

)1/2
(a† − a)

Kinetic energy op. Tpos = − ~2

2m
d2

dx2 Tmom = p2

2m Te = −~ω
4 (a† − a)2

Potential energy op. Vpos = 1
2κx

2 Vmom = −~2

2 κ
d2

dp2 Ve = ~ω
4 (a† + a)2

Total energy op. Hpos = − ~2

2m
d2

dx2 + 1
2κx

2 Hmom = p2

2m −
~2

2 κ
d2

dp2 He =
∑

(n + 1
2)~ω|n〉〈n|

|0〉 = (1, 0, 0, 0, · · · ), |1〉 = (0, 1, 0, 0, · · · ), |2〉 = (0, 0, 1, 0, · · · ), · · · , ω =

√
k

m
, a†|n〉 =

√
n+ 1 | n+1〉, a|n〉 =

√
n | n−1〉
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Total energy op. Hpos = − ~2

2m
d2

dx2 + 1
2κx

2 Hmom = p2

2m −
~2

2 κ
d2

dp2 He =
∑

(n + 1
2)~ω|n〉〈n|

Upos→e =
∑
n∈N

|n〉〈φpos,n|, φpos,n(x) =
1√

2n n!

(mω
π~

)1/4
Hn

(√
mω

~
x

)
e−

mωx2

2~ , Hn(z) = (−1)n ez
2 dn

dzn

(
e−z

2
)
.



2 - Self-adjoint operators

Notation: in this section,H denotes a separable complex Hilbert space, 〈·|·〉
its inner product, and ‖ · ‖ the associated norm.
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Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H
is a linear map A : H → H such that

‖A‖ := sup
u∈H\{0}

‖Au‖
‖u‖

<∞.
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Definition-Theorem (bounded linear operator). A bounded operator on H
is a linear map A : H → H such that

‖A‖ := sup
u∈H\{0}

‖Au‖
‖u‖

<∞.

The set B(H) of the bounded operators onH is a non-commutative algebra
and ‖ · ‖ is a norm on B(H).

Remark. A bounded linear operator is uniquely defined by the values of
the sesquilinear form H×H 3 (u, v) 7→ 〈u|Av〉 ∈ C.

Definition-Theorem (adjoint of a bounded linear operator). Let A ∈ B(H).
The operator A∗ ∈ B(H) defined by

∀(u, v) ∈ H ×H, 〈u|A∗v〉 = 〈Au|v〉,
is called the adjoint of A. The operator A is called self-adjoint if A∗ = A.

Endowed with its norm ‖ · ‖ and the ∗ operation, B(H) is a C∗-algebra.
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(Non necessarily bounded) linear operators on Hilbert spaces

Definition (linear operator). A linear operator onH is a linear map
A : D(A)→ H, where D(A) is a subspace ofH called the domain of A.
Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). LetA1 andA2 be operators onH. A2 is
called an extension of A1 if D(A1) ⊂ D(A2) and if ∀u ∈ D(A1), A2u = A1u.

Definition (unbounded linear operator). An operator A on H which does
not possess a bounded extension is called an unbounded operator onH.

Definition (symmetric operator). A linear operator A on H with dense
domain D(A) is called symmetric if

∀(u, v) ∈ D(A)×D(A), 〈Au|v〉 = 〈u|Av〉.

Symmetric operators are not very interesting. Only self-adjoint operators
represent physical observables and have nice mathematical properties:
• real spectrum;
• spectral decomposition and functional calculus.
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Definition (adjoint of a linear operator with dense domain). Let A be a
linear operator onH with dense domain D(A), and D(A∗) the vector space
defined as

D(A∗) = {v ∈ H | ∃wv ∈ H s.t. ∀u ∈ D(A), 〈Au|v〉 = 〈u|wv〉} .
The linear operator A∗ onH, with domain D(A∗), defined by

∀v ∈ D(A∗), A∗v = wv,

(if wv exists, it is unique since D(A) is dense) is called the adjoint of A.
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(This definition agrees with the one on Slide 20 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain
is called self-adjoint if A∗ = A (that is if A symmetric and D(A∗) = D(A)).

Case of bounded operators:

symmetric⇔ self-adjoint.
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Definition (adjoint of a linear operator with dense domain). Let A be a
linear operator onH with dense domain D(A), and D(A∗) the vector space
defined as

D(A∗) = {v ∈ H | ∃wv ∈ H s.t. ∀u ∈ D(A), 〈Au|v〉 = 〈u|wv〉} .
The linear operator A∗ onH, with domain D(A∗), defined by

∀v ∈ D(A∗), A∗v = wv,

(if wv exists, it is unique since D(A) is dense) is called the adjoint of A.
(This definition agrees with the one on Slide 20 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain
is called self-adjoint if A∗ = A (that is if A symmetric and D(A∗) = D(A)).

Case of bounded operators:

symmetric⇔ self-adjoint.

Case of unbounded operators:

symmetric (easy to check) ;
⇐ self-adjoint (sometimes difficult to check)
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Some unbounded self-adjoint operators arising in quantum mechanics

• position operator along the j axis:
–H = L2(Rd,C),
– D(r̂j) =

{
u ∈ L2(Rd,C) | rju ∈ L2(Rd,C)

}
, (r̂jφ)(r) = rjφ(r);

•momentum operator along the j axis:
–H = L2(Rd,C),
– D(p̂j) =

{
u ∈ L2(Rd,C) | ∂rju ∈ L2(Rd,C)

}
, (p̂jφ)(r) = −i∂rjφ(r);

• kinetic energy operator:
–H = L2(Rd,C),

– D(T ) = H2(Rd,C) =
{
u ∈ L2(Rd,C) | ∆u ∈ L2(Rd,C)

}
, T = −1

2
∆;

• Schrödinger operators in 3D: let V ∈ L2
unif(R3,R) (V (r) = − Z

|r| OK)

–H = L2(R3,C),

– D(H) = H2(R3,C), H = −1

2
∆ + V .



3 - Spectra of self-adjoint operators

Notation: in this section,H denotes a separable complex Hilbert space, 〈·|·〉
its inner product, and ‖ · ‖ the associated norm.
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Definition-Theorem (spectrum of a linear operator). Let A be a closed1

linear operator onH.

• The open set ρ(A) = {z ∈ C | (z − A) : D(A)→ H invertible} is called
the resolvent set of A.

1 The operator A is called closed if its graph Γ(A) := {(u,Au), u ∈ D(A)} is a closed subspace ofH×H.
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• The open set ρ(A) = {z ∈ C | (z − A) : D(A)→ H invertible} is called
the resolvent set of A. The analytic function

ρ(A) 3 z 7→ Rz(A) := (z − A)−1 ∈ B(H)

is called the resolvent ofA. It holdsRz(A)−Rz′(A) = (z′−z)Rz(A)Rz′(A).

• The closed set σ(A) = C \ ρ(A) is called the spectrum of A.

• If A is self-adjoint, then σ(A) ⊂ R and it holds σ(A) = σp(A) ∪ σc(A),
where σp(A) and σc(A) are respectively the point spectrum and the con-
tinuous spectrum of A defined as

σp(A) = {z ∈ C | (z − A) : D(A)→ H non-injective} = {eigenvalues of A}

σc(A) = {z ∈ C | (z − A) : D(A)→ H injective but non surjective}.

1 The operator A is called closed if its graph Γ(A) := {(u,Au), u ∈ D(A)} is a closed subspace ofH×H.
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LetHp = Span {eigenvectors of H} andHc = H⊥p .
[Ex.: for the Hamiltonian of the hydrogen atom, dim(Hp) = dim(Hc) =∞.]

Let χBR be the characteristic function of the ball BR =
{
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.

Then
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle ’69, Amrein and Georgescu ’73, Enss ’78).

Let H be a locally compact self-adjoint operator on L2(Rd).
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

LetHp = Span {eigenvectors of H} andHc = H⊥p .
[Ex.: for the Hamiltonian of the hydrogen atom, dim(Hp) = dim(Hc) =∞.]

Let χBR be the characteristic function of the ball BR =
{
r ∈ Rd | |r| < R

}
.

Then

(φ0 ∈ Hp) ⇔ ∀ε > 0, ∃R > 0, ∀t ≥ 0,
∥∥(1− χBR)e−itHφ0

∥∥2

L2 ≤ ε;

(φ0 ∈ Hc) ⇔ ∀R > 0, lim
T→+∞

1

T

∫ T

0

∥∥χBRe−itHφ0

∥∥2

L2 dt = 0.

Hp : set of bound states, Hc : set of scattering states
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Diagonalizable self-adjoint operators and Dirac’s bra-ket notation

LetA be a self-adjoint operator that can be diagonalized in an orthonormal
basis (en)n∈N (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: A =
∑
n∈N

λn|en〉〈en|, λn ∈ R, 〈em|en〉 = δmn.

Then,
• the operator A is bounded if and only if ‖A‖ = supn |λn| <∞;
•D(A) =

{
|u〉 =

∑
n∈N un|en〉 |

∑
n∈N(1 + |λn|2)|un|2 <∞〉

}
;

• σp(A) = {λn}n∈N and σc(A) =
{

accumulation points of {λn}n∈N
}
\σp(A);

• Hp = H andHc = {0} (no scattering states);
• functional calculus for diagonalizable self-adjoint operators: for all
f : R→ C, the operator f (A) defined by

D(f (A)) =

{
|u〉 =

∑
n∈N

un|en〉 |
∑
n∈N

(1 + |f (λn)|2)|un|2 <∞〉

}
, f (A) =

∑
n∈N

f (λn)|en〉〈en|

is independent of the choice of the spectral decomposition of A.
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Electronic problem for a given nuclear configuration {Rk}1≤k≤M

Ex: water molecule H2O
M = 3, N = 10, z1 = 8, z2 = 1, z3 = 1

vext(r) = −
M∑
k=1

zk
|r−Rk|

−1

2

N∑
i=1

∆ri +

N∑
i=1

vext(ri) +
∑

1≤i<j≤N

1

|ri − rj|

Ψ(r1, · · · , rN) = E Ψ(r1, · · · , rN)

|Ψ(r1, · · · , rN)|2 probability density of observing electron 1 at r1, electron 2 at r2, ...

∀p ∈ SN , Ψ(rp(1), · · · , rp(N)) = ε(p)Ψ(r1, · · · , rN), (Pauli principle)
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N∧
H1, H1 = L2(R3,C2) with spin
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Electronic problem for a given nuclear configuration {Rk}1≤k≤M

Ex: water molecule H2O
M = 3, N = 10, z1 = 8, z2 = 1, z3 = 1

vext(r) = −
M∑
k=1

zk
|r−Rk|

−1

2

N∑
i=1

∆ri +

N∑
i=1

vext(ri) +
∑

1≤i<j≤N

1

|ri − rj|

Ψ(r1, · · · , rN) = E Ψ(r1, · · · , rN)

|Ψ(r1, · · · , rN)|2 probability density of observing electron 1 at r1, electron 2 at r2, ...

Ψ ∈ HN =

N∧
H1, H1 = L2(R3,C)

Theorem (Kato ’51). The operatorHN := −1

2

N∑
i=1

∆ri+

N∑
i=1

vext(ri)+
∑

1≤i<j≤N

1

|ri − rj|
with domain D(HN) := HN ∩H2(R3N ,C) is self-adjoint onHN .
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Theorem (spectrum of HN).

1. HVZ theorem (Hunziger ’66, van Winten ’60, Zhislin ’60)

σc(HN) = [ΣN ,+∞) with ΣN = minσ(HN−1) ≤ 0 and ΣN < 0 iff N ≥ 2.
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σc(HN) = [ΣN ,+∞) with ΣN = minσ(HN−1) ≤ 0 and ΣN < 0 iff N ≥ 2.

2. Bound states of neutral molecules and positive ions (Zhislin ’61)

If N ≤ Z :=
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3. Bound states of negative ions (Yafaev ’72)
If N ≥ Z + 1, then HN has at most a finite number of bound states.
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Spectra of Schrödinger operators with confining potentials

H = L2(Rd), V ∈ C0(Rd,R), lim
|r|→+∞

V (r) = +∞ (confining potential)

D(H) =

{
u ∈ L2(Rd) | − 1

2
∆u + V u ∈ L2(Rd)

}
, ∀u ∈ D(H), Hu = −1

2
∆u+V u.

H is bounded below and its spectrum is purely discrete (σd(H) = σ(H), σc(H) = ∅).

As a consequence, H is diagonalizable in a orthonormal basis: there exist
• a non-decreasing sequence (En)n∈N of real numbers going to +∞;
• an orthonormal basis (ψn)n∈N ofH composed of vectors of D(H),

such that
∀n ∈ N, Hψn = Enψn.

In addition, the ground state eigenvalue E0 is non-degenerate and the cor-
responding eigenvector can be chosen positive on Rd.
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Spectra of 3D Schrödinger operators with potentials decaying at infinity

V such that ∀ε > 0, ∃(V2, V∞) ∈ L2(R3,R)×L∞(R3,R) s.t. V = V2+V∞ and ‖V∞‖L∞ ≤ ε,

H = L2(R3), D(H) = H2(R3), ∀u ∈ D(H), Hu = −1

2
∆u + V u.

The operator H is self-adjoint, bounded below, and σc(H) = [0,+∞).

Depending on V , the discrete spectrum of H may be
• the empty set;
• a finite number of negative eigenvalues;
• a countable infinite number of negative eigenvalues accumulating at 0

(ex: Ridberg states).

If H has a ground state, then its energy is a non-degenerate eigenvalue and
the corresponding eigenvector can be chosen positive on Rd.
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The special case of Kohn-Sham LDA Hamiltonians

Hρ = −1

2
∆+V KS

ρ with V KS
ρ (r) = −

M∑
k=1

zk
|r−Rk|

+

∫
R3

ρ(r′)

|r− r′|
dr′+

deLDA
xc

dρ
(ρ(r))

For any ρ ∈ L1(R3,R) ∩ L3(R3,R), the KS potential V KS
ρ satisfies the assumptions

in the previous slide. In particular Hρ is bounded below and σc(Hρ) = [0,+∞).

Let Z =

M∑
k=1

zk be the total nuclear charge of the molecular system and N =

∫
R3
ρ.

• If N < Z (positive ion), Hρ has a countable infinite number of negative
eigenvalues accumulating at 0.
• If N = Z (neutral molecular system) and if ρ is a ground state density

of the system, then Hρ has at least N non-positive eigenvalues.
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Spectra of Hartree-Fock Hamiltonians

Let Φ = (φ1, · · · , φN) ∈ (H1(R3))N be such that
∫
R3
φ∗iφj = δij,

γ(r, r′) =

N∑
i=1

φi(r)φi(r
′)∗, ργ(r) = γ(r, r) =

N∑
i=1

|φi(r)|2.

H = L2(R3), D(H) = H2(R3),

(Hφ)(r) = −1

2
∆φ(r)−

M∑
k=1

zk
|r−Rk|

φ(r)+

(∫
R3

ργ(r
′)

|r− r′|
dr′
)
φ(r)−

∫
R3

γ(r, r′)

|r− r′|
φ(r′) dr′

LetZ :=
∑M

k=1 zk. The operator H is self-adjoint, bounded below, and we have:
• σess = [0,+∞);
• if N < Z (positive ion), H has a countable infinite number of negative

eigenvalues accumulating at 0;
• if N = Z (neutral molecular system) and if Φ is a HF minimizer of the

system, thenH has at leastN negative eigenvalues (counting multiplicities).
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Spectra of Dirac Hamiltonians

H = L2(R3;C4), D(D0) = H1(R3;C4), D0 = c~p · ~α + mc2β

pj = −i~∂j, αj =

(
0 σk
σk 0

)
∈ C4×4, β =

(
I2 0
0 −I2

)
∈ C4×4

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(Pauli matrices)

The free Dirac operator D0 is self-adjoint and

σ(D0) = σac(D0) = (−∞,−mc2] ∪ [mc2,+∞).
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Theorem. Let α := e2

4πε0~c
' 1/137.036 be the fine structure constant. Let

DZ = D0 −
Z

|r|
, Z ∈ R (physical cases: Z = 1, 2, 3, · · · ).

• if |Z| <
√

3
2α ' 118.677, the Dirac operator DZ is essentially self-adjoint

(meaning that there exists a unique domainD(DZ) containingC∞c (R3;C4)
for which DZ is self-adjoint);

• if |Z| >
√

3
2α ' 118.677, DZ has many self-adjoint extensions;

• if |Z| < 1
α ' 137.036, DZ has a special self-adjoint extension, considered

as the physical one. The essential spectrum of this self-adjoint exten-
sion is (−∞,−mc2] ∪ [mc2,+∞) and its discrete spectrum consist of the
eigenvalues

Enj = mc2

1 +

 Zα

n− j − 1
2 +
√

(j + 1
2)2 − Z2α2


2

−1/2

, n ∈ N∗, j =
1

2
,
3

2
,
5

2
, · · · ≤ n−1

2
.

Many-body Dirac-Coulomb Hamiltonian are not understood mathematically.



4 - Functional calculus

Notation: in this section,H denotes a separable complex Hilbert space, 〈·|·〉
its inner product, and ‖ · ‖ the associated norm.
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Theorem (functional calculus for bounded functions). Let B(R,C) be the
∗-algebra of bounded C-valued Borel functions on R and let A be a self-
adjoint operator onH. Then there exists a unique map

ΦA : B(R,C) 3 f 7→ f (A) ∈ B(H)

satisfies the following properties:

1. ΦA is a homomorphism of ∗-algebras:

(αf +βg)(A) = αf (A) +βg(A), (fg)(A) = f (A)g(A), f (A) = f (A)∗;

2. ‖f (A)‖ ≤ sup
x∈R
|f (x)|;

3. if fn(x)→ x pointwise and |fn(x)| ≤ |x| for all n and all x ∈ R, then

∀u ∈ D(A), fn(A)u→ Au inH;

4. if fn(x)→ f (x) pointwise and supn supx∈R |fn(x)| <∞, then

∀u ∈ H, fn(A)u→ f (A)u inH;

In addition, if u ∈ H is such that Au = λu, then f (A)u = f (λ)u.



4 - Functional calculus 37
.

Theorem (spectral projections and functional calculus - general case -).

Let A be a self-adjoint operator onH.

• For all λ ∈ R, the bounded operator PA
λ := 1]−∞,λ](A), where 1]−∞,λ](·)

is the characteristic function of ]−∞, λ], is an orthogonal projection.
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Let A be a self-adjoint operator onH.

• For all λ ∈ R, the bounded operator PA
λ := 1]−∞,λ](A), where 1]−∞,λ](·)

is the characteristic function of ]−∞, λ], is an orthogonal projection.

• Spectral decomposition of A: for all u ∈ D(A) and v ∈ H, it holds

〈v|Au〉 =

∫
R
λ d〈v|PA

λ u〉︸ ︷︷ ︸, which we denote by A =

∫
R
λ dPA

λ .

Bounded complex measure on R

• Functional calculus: let f be a (not necessarily bounded) C-valued Borel
function on R. The operator f (A) can be defined by

D(f (A)) :=

{
u ∈ H |

∫
R
|f (λ)|2 d〈u|PA

λ u〉︸ ︷︷ ︸ <∞
}

Bounded positive measure on R
and

∀(u, v) ∈ D(f (A))×H, 〈v|f (A)u〉 :=

∫
R
f (λ) d〈v|PA

λ u〉.
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Theorem (form domain and quadratic form).

Let A be a self-adjoint operator onH.

• The set
Q(A)) :=

{
ψ ∈ H |

∫
R
|λ| d〈ψ|PA

λ ψ〉︸ ︷︷ ︸ <∞
}

Bounded positive measure on R

is a vector space, called the form domain of A, and we have

D(A) ↪→ Q(A) ↪→ H
with dense embeddings.
• The mapping defined by

∀ψ ∈ Q(A), 〈ψ|A|ψ〉 =

∫
R
λ d〈ψ|PA

λ ψ〉︸ ︷︷ ︸
is called the quadratic form associated with A.
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