Mathematical structure of quantum mechanics

Eric CANCES

Ecole des Ponts and INRIA, Paris, France

Heidelberg, Oct. 2-6, 2017

Notation

- $\mathbb{N} = \{0, 1, 2, \cdots\}$: set of non-negative integers
- \mathbb{R} : set of real numbers
- $\mathbb{C} {:} \text{ set of complex numbers}$

Notation

- $\mathbb{N} = \{0, 1, 2, \cdots\}$: set of non-negative integers
- $\mathbb{R} {:} \ set \ of \ real \ numbers$
- $\mathbb{C} {:} \text{ set of complex numbers}$

 $\overline{z} = x - iy$: conjugate of the complex number z = x + iy ($x, y \in \mathbb{R}, i^2 = -1$)

Notation

 $\mathbb{N} = \{0, 1, 2, \cdots\}$: set of non-negative integers

$\mathbb{R} {:} set of real numbers$

\mathbb{C} : set of complex numbers

 $\overline{z} = x - iy$: conjugate of the complex number z = x + iy ($x, y \in \mathbb{R}, i^2 = -1$)

$$\mathbb{C}^{N} = \left\{ \mathbf{z} = \begin{pmatrix} z_{1} \\ \cdot \\ \cdot \\ \cdot \\ z_{N} \end{pmatrix}, \ z_{n} \in \mathbb{C} \text{ for all } 1 \leq n \leq N \right\} \quad \text{(column vectors of size } N\text{)}$$

Notation

 $\mathbb{N} = \{0, 1, 2, \cdots\}$: set of non-negative integers

\mathbb{R} : set of real numbers

\mathbb{C} : set of complex numbers

 $\overline{z} = x - iy$: conjugate of the complex number z = x + iy ($x, y \in \mathbb{R}, i^2 = -1$)

$$\mathbb{C}^{N} = \left\{ \mathbf{z} = \begin{pmatrix} z_{1} \\ \cdot \\ \cdot \\ z_{N} \end{pmatrix}, \ z_{n} \in \mathbb{C} \text{ for all } 1 \leq n \leq N \right\} \quad \text{(column vectors of size } N\text{)}$$
$$\mathbb{C}^{M \times N} = \left\{ \mathbf{A} = \begin{pmatrix} z_{1,1} & \cdots & z_{1,N} \\ \cdot & \cdots & \cdot \\ \cdot & \cdots & \cdot \\ \cdot & \cdots & \cdot \\ z_{M,1} & \cdots & z_{M,N} \end{pmatrix}, \ z_{m,n} \in \mathbb{C} \text{ for all } 1 \leq m \leq M, \ 1 \leq n \leq N \right\}$$

(complex matrices with M rows and N columns)

 \mathbb{C}^N is endowed with a natural complex vector space structure:

ullet addition of two vectors of \mathbb{C}^N

$$\mathbf{z} = \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ \cdot \\ z_N \end{pmatrix}, \quad \mathbf{z}' = \begin{pmatrix} z'_1 \\ \cdot \\ \cdot \\ \cdot \\ z'_N \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{z} + \mathbf{z}' = \begin{pmatrix} z_1 + z'_1 \\ \cdot \\ \cdot \\ \cdot \\ z_N + z'_N \end{pmatrix}$$

 \bullet multiplication of a vector of \mathbb{C}^N by a scalar

$$\alpha \in \mathbb{C}, \quad \mathbf{z} = \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ \cdot \\ z_N \end{pmatrix} \qquad \Rightarrow \qquad \alpha \mathbf{z} = \begin{pmatrix} \alpha z_1 \\ \cdot \\ \cdot \\ \cdot \\ \alpha z_N \end{pmatrix}$$

 \mathbb{C}^N is endowed with a natural complex vector space structure:

• addition of two vectors of \mathbb{C}^N

$$\mathbf{z} = \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ \cdot \\ z_N \end{pmatrix}, \quad \mathbf{z}' = \begin{pmatrix} z'_1 \\ \cdot \\ \cdot \\ \cdot \\ z'_N \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{z} + \mathbf{z}' = \begin{pmatrix} z_1 + z'_1 \\ \cdot \\ \cdot \\ \cdot \\ z_N + z'_N \end{pmatrix}$$

 \bullet multiplication of a vector of \mathbb{C}^N by a scalar

$$\alpha \in \mathbb{C}, \quad \mathbf{z} = \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ \cdot \\ z_N \end{pmatrix} \qquad \Rightarrow \qquad \alpha \mathbf{z} = \begin{pmatrix} \alpha z_1 \\ \cdot \\ \cdot \\ \cdot \\ \alpha z_N \end{pmatrix}$$

Conjugate transpose of a column vector $\mathbf{z} \in \mathbb{C}^N$, a matrix $\mathbf{A} \in \mathbb{C}^{M \times N}$: $\mathbf{z}^* = (\overline{z_1}, \cdots, \overline{z_N})$ (line vector), $\mathbf{A}^* \in \mathbb{C}^{N \times M}$ s.t. $[A^*]_{ij} = \overline{A_{ji}}$.

\mathbb{C}^N is endowed with a natural inner product and associated norm

$$\mathbf{z} = \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ z_N \end{pmatrix}, \ \mathbf{z}' = \begin{pmatrix} z'_1 \\ \cdot \\ \cdot \\ \cdot \\ z'_N \end{pmatrix} \Rightarrow \langle \mathbf{z} | \mathbf{z}' \rangle = \mathbf{z}^* \mathbf{z}' = \sum_{n=1}^N \overline{z_n} z'_n, \quad \|\mathbf{z}\| = \langle \mathbf{z} | \mathbf{z} \rangle^{1/2} = \left(\sum_{n=1}^N |z_n|^2\right)^{1/2}$$

 \mathbb{C}^N is endowed with a natural inner product and associated norm

$$\mathbf{z} = \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ z_N \end{pmatrix}, \ \mathbf{z}' = \begin{pmatrix} z'_1 \\ \cdot \\ \cdot \\ z'_N \end{pmatrix} \Rightarrow \langle \mathbf{z} | \mathbf{z}' \rangle = \mathbf{z}^* \mathbf{z}' = \sum_{n=1}^N \overline{z_n} z'_n, \quad \|\mathbf{z}\| = \langle \mathbf{z} | \mathbf{z} \rangle^{1/2} = \left(\sum_{n=1}^N |z_n|^2\right)^{1/2}$$

$$The vectors \ \mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ 0 \end{pmatrix}, \ \cdots \mathbf{e}_N = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ 1 \end{pmatrix} \text{ form an orthonormal basis of } \mathbb{C}^N:$$

any vector $\mathbf{z} \in \mathbb{C}^N$ is a unique linear combination of $\mathbf{e}_1, \mathbf{e}_2, \cdots \mathbf{e}_N$ and

$$\langle \mathbf{e}_j | \mathbf{e}_k \rangle = \mathbf{e}_j^* \mathbf{e}_k = \delta_{j,k}.$$

Definition. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$.

• $\lambda \in \mathbb{C}$ is called an eigenvalue of A, and $\mathbf{z} \in \mathbb{C}^N$ an associated eigenvector if

$$\mathbf{z} \neq 0$$
 and $\mathbf{A}\mathbf{z} = \lambda \mathbf{z};$

• the spectrum of A is the set of complex numbers

 $\sigma(\mathbf{A}) = \{ \lambda \in \mathbb{C} \mid \lambda \mathbf{I}_N - \mathbf{A} \text{ non-invertible} \}.$

Definition. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$.

• $\lambda \in \mathbb{C}$ is called an eigenvalue of A, and $z \in \mathbb{C}^N$ an associated eigenvector if

$$\mathbf{z} \neq 0$$
 and $\mathbf{A}\mathbf{z} = \lambda \mathbf{z};$

• the spectrum of A is the set of complex numbers

 $\sigma(\mathbf{A}) = \{ \lambda \in \mathbb{C} \mid \lambda \mathbf{I}_N - \mathbf{A} \text{ non-invertible} \}.$

Theorem. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$.

 $\begin{aligned} \sigma(\mathbf{A}) &= \{ \text{eigenvalues of } \mathbf{A} \} \\ &= \{ \text{roots of the polynomial } p_{\mathbf{A}}(z) := \det(z\mathbf{I}_N - \mathbf{A}) \} \end{aligned}$

If λ is a root of multiplicity m of $p_A(z)$, then λ is called an eigenvalue of A with algebraic multiplicity m.

Definition. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$.

• $\lambda \in \mathbb{C}$ is called an eigenvalue of A, and $z \in \mathbb{C}^N$ an associated eigenvector if

$$\mathbf{z} \neq 0$$
 and $\mathbf{A}\mathbf{z} = \lambda \mathbf{z};$

• the spectrum of A is the set of complex numbers

 $\sigma(\mathbf{A}) = \{ \lambda \in \mathbb{C} \mid \lambda \mathbf{I}_N - \mathbf{A} \text{ non-invertible} \}.$

Theorem. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$.

 $\sigma(\mathbf{A}) = \{ \text{eigenvalues of } \mathbf{A} \} \\ = \{ \text{roots of the polynomial } p_{\mathbf{A}}(z) := \det(z\mathbf{I}_N - \mathbf{A}) \}$

If λ is a root of multiplicity m of $p_A(z)$, then λ is called an eigenvalue of A with algebraic multiplicity m.

Example: compute the eigenvalues (with their algebraic multiplicities) of

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad A = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3i \end{pmatrix}$$

Definition. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$. The matrix \mathbf{A} is called hermitian if $\mathbf{A} = \mathbf{A}^*$, i.e. if $\forall 1 \leq j, k \leq N, \quad A_{kj} = \overline{A_{jk}}.$

Definition. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$. The matrix \mathbf{A} is called hermitian if $\mathbf{A} = \mathbf{A}^*$, i.e. if $\forall 1 \leq j, k \leq N, \quad A_{kj} = \overline{A_{jk}}.$

Theorem. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be a hermitian matrix. Then 1. the spectrum of \mathbf{A} is real: $\sigma(\mathbf{A}) \subset \mathbb{R}$;

Definition. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$. The matrix \mathbf{A} is called hermitian if $\mathbf{A} = \mathbf{A}^*$, i.e. if $\forall 1 \leq j, k \leq N, \quad A_{kj} = \overline{A_{jk}}.$

Theorem. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be a hermitian matrix. Then

- **1.** the spectrum of A is real: $\sigma(\mathbf{A}) \subset \mathbb{R}$;
- **2.** A is diagonalizable in an orthonormal basis, i.e. there exist $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ in $\sigma(A)$ and an orthonormal basis $(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_N)$ of \mathbb{C}^N s.t.

$$\forall 1 \leq j, k \leq N, \quad \mathbf{A}\mathbf{z}_j = \lambda_j \mathbf{z}_j, \quad \langle \mathbf{z}_j | \mathbf{z}_k \rangle = \delta_{j,k}.$$

Each eigenvalues λ of A appears in the list $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ as many times as its algebraic multiplicity;

Definition. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$. The matrix \mathbf{A} is called hermitian if $\mathbf{A} = \mathbf{A}^*$, i.e. if $\forall 1 \leq j, k \leq N, \quad A_{kj} = \overline{A_{jk}}.$

Theorem. Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ be a hermitian matrix. Then

1. the spectrum of A is real: $\sigma(\mathbf{A}) \subset \mathbb{R}$;

2. A is diagonalizable in an orthonormal basis, i.e. there exist $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ in $\sigma(A)$ and an orthonormal basis $(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_N)$ of \mathbb{C}^N s.t.

$$\forall 1 \leq j, k \leq N, \quad \mathbf{A}\mathbf{z}_j = \lambda_j \mathbf{z}_j, \quad \langle \mathbf{z}_j | \mathbf{z}_k \rangle = \delta_{j,k}.$$

Each eigenvalues λ of A appears in the list $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ as many times as its algebraic multiplicity;

3. for each polynomial function $q(t) = \alpha_d t^d + \alpha_{d-1} t^{d-1} + \cdots + \alpha_1 t + \alpha_0$, we have

$$q(\mathbf{A}) := \alpha_d \mathbf{A}^d + \alpha_{d-1} \mathbf{A}^{d-1} + \dots + \alpha_1 \mathbf{A} + \alpha_0 \mathbf{I}_N = \sum_{j=1}^N q(\lambda_j) \mathbf{z}_j \mathbf{z}_j^*.$$

 \mathcal{M}

By extension, we can define the matrix f(A), for any function $f : \mathbb{R} \to \mathbb{C}$, as

$$f(A) = \sum_{j=1}^{N} f(\lambda_j) \mathbf{z}_j \mathbf{z}_j^*$$
 (functional calculus).

- 1. the pure states of a given quantum system are normalized vectors (or in fact rays) of some complex separable Hilbert space \mathcal{H} ;
- **2.** observables are self-adjoint operators on \mathcal{H} ;
- **3.** the result of the measurement of some scalar physical quantity *a* (e.g. the energy) is always a point of the spectrum of the associated observable *A*;
- 4. if the system is in the pure state $\Psi \in \mathcal{H}$ (with $\|\Psi\| = 1$) just before the measurement of a, the probability that the result lays in the range $[\alpha, \beta] \subset \mathbb{R}$ is $\|\mathbb{1}_{[\alpha,\beta]}(A)\Psi\|^2$, where the operator $\mathbb{1}_{[\alpha,\beta]}(A)$ is defined by functional calculus.

- 1. the pure states of a given quantum system are normalized vectors (or in fact rays) of some complex separable Hilbert space \mathcal{H} ;
- **2.** observables are self-adjoint operators on \mathcal{H} ;
- **3.** the result of the measurement of some scalar physical quantity *a* (e.g. the energy) is always a point of the spectrum of the associated observable *A*;
- 4. if the system is in the pure state $\Psi \in \mathcal{H}$ (with $\|\Psi\| = 1$) just before the measurement of a, the probability that the result lays in the range $[\alpha, \beta] \subset \mathbb{R}$ is $\|\mathbb{1}_{[\alpha,\beta]}(A)\Psi\|^2$, where the operator $\mathbb{1}_{[\alpha,\beta]}(A)$ is defined by functional calculus.

Good news: if \mathcal{H} is finite-dimensional,

- \mathcal{H} can be identified with \mathbb{C}^N by means of an orthonormal basis of \mathcal{H} ;
- \bullet using this identification, any self-adjoint operator A on ${\cal H}$ can be identified with a hermitian matrix A;
- the spectrum of the operator A coincides with the spectrum of the matrix A;
- $\mathbb{1}_{[\alpha,\beta]}(A)$ is identified with the hermitian matrix $\mathbb{1}_{[\alpha,\beta]}(A)$.

- 1. the pure states of a given quantum system are normalized vectors (or in fact rays) of some complex separable Hilbert space \mathcal{H} ;
- **2.** observables are self-adjoint operators on \mathcal{H} ;
- **3.** the result of the measurement of some scalar physical quantity *a* (e.g. the energy) is always a point of the spectrum of the associated observable *A*;
- 4. if the system is in the pure state $\Psi \in \mathcal{H}$ (with $\|\Psi\| = 1$) just before the measurement of a, the probability that the result lays in the range $[\alpha, \beta] \subset \mathbb{R}$ is $\|\mathbb{1}_{[\alpha,\beta]}(A)\Psi\|^2$, where the operator $\mathbb{1}_{[\alpha,\beta]}(A)$ is defined by functional calculus.

Bad news: most quantum systems encountered in physics and chemistry cannot be described by finite-dimensional Hilbert spaces.

- 1. the pure states of a given quantum system are normalized vectors (or in fact rays) of some complex separable Hilbert space \mathcal{H} ;
- **2.** observables are self-adjoint operators on \mathcal{H} ;
- **3.** the result of the measurement of some scalar physical quantity *a* (e.g. the energy) is always a point of the spectrum of the associated observable *A*;
- 4. if the system is in the pure state $\Psi \in \mathcal{H}$ (with $\|\Psi\| = 1$) just before the measurement of a, the probability that the result lays in the range $[\alpha, \beta] \subset \mathbb{R}$ is $\|\mathbb{1}_{[\alpha,\beta]}(A)\Psi\|^2$, where the operator $\mathbb{1}_{[\alpha,\beta]}(A)$ is defined by functional calculus.

Outline of the lecture

- **1. Hilbert spaces**
- 2. Self-adjoint operators
- 3. Spectra of self-adjoint operators
- 4. Functional calculus

Definition (complex Hilbert space). A complex Hilbert space is

• a complex vector space \mathcal{H} ,

i.e. a set \mathcal{H} , whose elements are sometimes denoted by "kets", endowed with addition and scalar multiplication laws s.t. $\forall \alpha, \beta \in \mathbb{C}, \ \forall |\phi\rangle, |\chi\rangle, |\psi\rangle \in \mathcal{H}$,

$$\begin{split} |\phi\rangle + (|\chi\rangle + |\psi\rangle) &= (|\phi\rangle + |\chi\rangle) + |\psi\rangle \quad \text{(associativity of the addition)} \\ |\phi\rangle + |\psi\rangle &= |\psi\rangle + |\phi\rangle \quad \text{(commutativity of the addition)} \\ |\psi\rangle + |0\rangle &= |\psi\rangle \quad \text{(existence of a neutral element for the addition)} \\ |\psi\rangle + |-\psi\rangle &= |0\rangle \quad \text{(existence of an inverse for the addition)} \\ \alpha(|\phi\rangle + |\psi\rangle) &= \alpha |\phi\rangle + \alpha |\psi\rangle, \quad (\alpha + \beta) |\psi\rangle = \alpha |\psi\rangle + \beta |\psi\rangle, \\ 0|\psi\rangle &= |0\rangle, \quad 1|\psi\rangle = |\psi\rangle, \quad \alpha(\beta |\psi\rangle) = (\alpha\beta) |\psi\rangle \end{split}$$

Definition (complex Hilbert space). A complex Hilbert space is

- a complex vector space \mathcal{H} ,
- \bullet endowed with an inner product denoted by $\langle \cdot | \cdot \rangle$,

i.e. a mapping $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ such that $\forall \alpha, \beta \in \mathbb{C}, \forall | \phi \rangle, |\chi \rangle, |\psi \rangle \in \mathcal{H},$ $\langle \phi | \alpha \chi + \beta \psi \rangle = \alpha \langle \phi | \chi \rangle + \beta \langle \phi | \psi \rangle$ (right-linearity) $\langle \alpha \chi + \beta \psi | \phi \rangle = \overline{\alpha} \langle \chi | \phi \rangle + \overline{\beta} \langle \psi | \phi \rangle$ (left-antilinearity) $\overline{\langle \phi | \psi \rangle} = \langle \psi | \phi \rangle$ (hermiticity) $\langle \psi | \psi \rangle \ge 0$ and $(\langle \psi | \psi \rangle = 0 \Leftrightarrow | \psi \rangle = | 0 \rangle)$ (positive-definiteness).

Cauchy-Schwarz inequality

 $\forall |\phi\rangle, |\psi\rangle \in \mathcal{H}, \quad |\langle\psi|\phi\rangle| \le ||\psi|| \, ||\phi||.$

Definition (complex Hilbert space). A complex Hilbert space is

- a complex vector space \mathcal{H} ,
- endowed with an inner product denoted by $\langle \cdot | \cdot \rangle$,
- \bullet complete for the norm $\|\cdot\|$ associated with this inner product.

$$\|\psi\| := \langle \psi |\psi \rangle^{1/2} \ge 0, \quad \|\alpha \psi\| = |\alpha| \|\psi\|, \quad \|\phi + \psi\| \le \|\phi\| + \|\chi\|, \quad (\|\psi\| = 0 \Leftrightarrow \psi = 0)$$

A sequence $(\psi_n)_{n\in\mathbb{N}}$ of elements of the normed vector space \mathcal{H} is called Cauchy if

 $\forall \varepsilon > 0, \quad \exists N \in \mathbb{N} \quad \text{s.t.} \quad \forall q \ge p \ge N, \quad \|\psi_p - \psi_q\|_V \le \varepsilon.$

 \mathcal{H} is called complete if any Cauchy sequence of elements of \mathcal{H} converges in \mathcal{H} , i.e. $\exists \psi \in \mathcal{H}$ s.t. $\|\psi_n - \psi\| \xrightarrow[n \to \infty]{} 0$.

Definition (complex Hilbert space). A complex Hilbert space is

- a complex vector space \mathcal{H} ,
- \bullet endowed with an inner product denoted by $\langle\cdot|\cdot\rangle$,
- \bullet complete for the norm $\|\cdot\|$ associated with this inner product.

Physical consequence of completeness: Dirac's bra-ket duality (Riesz representation theorem)

- for each $\psi \in \mathcal{H}, \mathcal{H} \ni \phi \mapsto \langle \psi | \phi \rangle \in \mathbb{C}$ is linear and continuous;
- conversely, any continuous linear map $\mathcal{H} \ni \phi \mapsto l(\phi) \in \mathbb{C}$ can be represented in a unique way by a "bra" $\langle \psi |$:

$$\exists ! \psi \in \mathcal{H} \text{ s.t. } \forall \phi \in \mathcal{H}, \ l(\phi) = \langle \psi | \phi \rangle.$$

Fundamental example 1: \mathbb{C}^N endowed with its canonical inner product

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_N \end{pmatrix} \in \mathbb{C}^N, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ \cdot \\ \cdot \\ \cdot \\ y_N \end{pmatrix} \in \mathbb{C}^N, \quad \langle \mathbf{x} | \mathbf{y} \rangle = \sum_{n=1}^N \overline{x_n} y_n, \quad \| \mathbf{x} \| = \left(\sum_{n=1}^N |x_n|^2 \right)^{1/2}$$

Fundamental example 1: \mathbb{C}^N endowed with its canonical inner product

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ x_N \end{pmatrix} \in \mathbb{C}^N, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ \cdot \\ \cdot \\ \cdot \\ y_N \end{pmatrix} \in \mathbb{C}^N, \quad \langle \mathbf{x} | \mathbf{y} \rangle = \sum_{n=1}^N \overline{x_n} y_n, \quad \| \mathbf{x} \| = \left(\sum_{n=1}^N |x_n|^2 \right)^{1/2}$$

Fundamental example 2: $l^2(\mathbb{N},\mathbb{C})$

$$l^{2}(\mathbb{N},\mathbb{C}) = \left\{ |\psi\rangle = (\psi_{n})_{n\in\mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \sum_{n=0}^{+\infty} |\psi_{n}|^{2} < \infty \right\}$$
$$\forall |\psi\rangle, |\phi\rangle \in l^{2}(\mathbb{N},\mathbb{C}), \quad \langle\psi|\phi\rangle = \sum_{n=0}^{+\infty} \overline{\psi_{n}}\phi_{n}, \quad \|\psi\| = \left(\sum_{n=0}^{+\infty} |\psi_{n}|^{2}\right)^{1/2}$$

Fundamental example 3: $L^2(\mathbb{R}^d, \mathbb{C})$.

Fundamental example 3: $L^2(\mathbb{R}^d, \mathbb{C})$.

• The mapping

$$(u,v)\mapsto (u,v)_{L^2} := \int_{\mathbb{R}^d} \overline{u}v := \int_{\mathbb{R}^d} \overline{u}(\mathbf{r}) v(\mathbf{r}) d\mathbf{r}$$

defines an inner product on the complex vector space

 $C^{\infty}_{\mathbf{c}}(\mathbb{R}^{d},\mathbb{C}) := \left\{ v \in C^{\infty}(\mathbb{R}^{d},\mathbb{C}) \mid v = 0 \text{ outside some bounded set} \right\},\$

but $C_{c}^{\infty}(\mathbb{R}^{d},\mathbb{C})$, endowed with the inner product $(\cdot,\cdot)_{L^{2}}$, is not a Hilbert space.

Fundamental example 3: $L^2(\mathbb{R}^d, \mathbb{C})$.

• The mapping

$$(u,v)\mapsto (u,v)_{L^2} := \int_{\mathbb{R}^d} \overline{u}v := \int_{\mathbb{R}^d} \overline{u}(\mathbf{r}) v(\mathbf{r}) d\mathbf{r}$$

defines an inner product on the complex vector space

 $C^{\infty}_{c}(\mathbb{R}^{d},\mathbb{C}) := \left\{ v \in C^{\infty}(\mathbb{R}^{d},\mathbb{C}) \mid v = 0 \text{ outside some bounded set} \right\},\$

but $C^{\infty}_{c}(\mathbb{R}^{d},\mathbb{C})$, endowed with the inner product $(\cdot,\cdot)_{L^{2}}$, is not a Hilbert space.

• To obtain a Hilbert space, we have to "complete" it with "all the limits of the Cauchy sequences of elements of $C_c^{\infty}(\mathbb{R}^d)$ ". We thus obtain the set

$$L^{2}(\mathbb{R}^{d},\mathbb{C}) := \left\{ u : \mathbb{R}^{d} \to \mathbb{C} \mid \int_{\mathbb{R}^{d}} |u|^{2} < \infty \right\},\$$

which, endowed with the inner product $(u, v)_{L^2}$, is a Hilbert space.

Fundamental example 3: $L^2(\mathbb{R}^d, \mathbb{C})$.

• The mapping

$$(u,v)\mapsto (u,v)_{L^2}:=\int_{\mathbb{R}^d}\overline{u}v:=\int_{\mathbb{R}^d}\overline{u(\mathbf{r})}\,v(\mathbf{r})\,d\mathbf{r}$$

defines an inner product on the complex vector space

 $C^{\infty}_{c}(\mathbb{R}^{d},\mathbb{C}) := \left\{ v \in C^{\infty}(\mathbb{R}^{d},\mathbb{C}) \mid v = 0 \text{ outside some bounded set} \right\},\$

but $C_{c}^{\infty}(\mathbb{R}^{d},\mathbb{C})$, endowed with the inner product $(\cdot,\cdot)_{L^{2}}$, is not a Hilbert space.

• To obtain a Hilbert space, we have to "complete" it with "all the limits of the Cauchy sequences of elements of $C_c^{\infty}(\mathbb{R}^d)$ ". We thus obtain the set

$$L^{2}(\mathbb{R}^{d},\mathbb{C}) := \left\{ u : \mathbb{R}^{d} \to \mathbb{C} \mid \int_{\mathbb{R}^{d}} |u|^{2} < \infty \right\},\$$

which, endowed with the inner product $(u, v)_{L^2}$, is a Hilbert space.

- Technical details:
 - one must use the Lebesgue integral (doesn't work with Riemann integral);
 - the elements of $L^2(\mathbb{R}^d, \mathbb{C})$ are in fact equivalence classes of measurable functions (for the Lebesgue measure) for the equivalence relation $u \sim v$ iff u = v everywhere except possibly on a set of Lebesgue measure equal to zero.

Fundamental example 4: the Sobolev spaces $H^1(\mathbb{R}^d, \mathbb{C})$ and $H^2(\mathbb{R}^d, \mathbb{C})$.

• The sets

$$\begin{split} H^1(\mathbb{R}^d,\mathbb{C}) &:= \left\{ u \in L^2(\mathbb{R}^d,\mathbb{C}) \mid \nabla u \in (L^2(\mathbb{R}^d,\mathbb{C}))^d \right\}, \\ H^2(\mathbb{R}^d,\mathbb{C}) &:= \left\{ u \in L^2(\mathbb{R}^d,\mathbb{C}) \mid \nabla u \in (L^2(\mathbb{R}^d,\mathbb{C}))^d \text{ and } D^2 u \in (L^2(\mathbb{R}^d,\mathbb{C}))^{d \times d} \right\} \end{split}$$

are complex vector spaces. Respectively endowed with the inner products

$$\begin{aligned} (u,v)_{H^1} &:= \int_{\mathbb{R}^d} \overline{u}v + \int_{\mathbb{R}^d} \overline{\nabla u} \cdot \nabla v, \\ (u,v)_{H^2} &:= \int_{\mathbb{R}^d} \overline{u}v + \int_{\mathbb{R}^d} \overline{\nabla u} \cdot \nabla v + \int_{\mathbb{R}^d} \overline{D^2 u} : D^2 v, \end{aligned}$$

they are Hilbert spaces.

• Technical detail: the gradient and the second derivatives are defined by means of distribution theory.

Fundamental example 4: the Sobolev spaces $H^1(\mathbb{R}^d, \mathbb{C})$ and $H^2(\mathbb{R}^d, \mathbb{C})$.

• The sets

$$\begin{split} H^1(\mathbb{R}^d,\mathbb{C}) &:= \left\{ u \in L^2(\mathbb{R}^d,\mathbb{C}) \mid \nabla u \in (L^2(\mathbb{R}^d,\mathbb{C}))^d \right\}, \\ H^2(\mathbb{R}^d,\mathbb{C}) &:= \left\{ u \in L^2(\mathbb{R}^d,\mathbb{C}) \mid \nabla u \in (L^2(\mathbb{R}^d,\mathbb{C}))^d \text{ and } D^2 u \in (L^2(\mathbb{R}^d,\mathbb{C}))^{d \times d} \right\} \end{split}$$

are complex vector spaces. Respectively endowed with the inner products

$$\begin{split} (u,v)_{H^1} &:= \int_{\mathbb{R}^d} \overline{u}v + \int_{\mathbb{R}^d} \overline{\nabla u} \cdot \nabla v, \\ (u,v)_{H^2} &:= \int_{\mathbb{R}^d} \overline{u}v + \int_{\mathbb{R}^d} \overline{\nabla u} \cdot \nabla v + \int_{\mathbb{R}^d} \overline{D^2 u} : D^2 v, \end{split}$$

they are Hilbert spaces.

• Technical detail: the gradient and the second derivatives are defined by means of distribution theory.

Remark. Let $u \in H^1(\mathbb{R}^d)$. A function $\widetilde{u} \in H^1(\mathbb{R}^d)$ can be a very accurate approximation of u in $L^2(\mathbb{R}^d)$ and a terrible approximation of u in $H^1(\mathbb{R}^d)$.

For instance, let $u(x) = \frac{1}{1+x^2}$ and $u_n(x) = \left(1 + \frac{\sin(n^2x^2)}{n}\right)u(x)$. The sequence $(u_n)_{n \in \mathbb{N}^*}$ converges to u in $L^2(\mathbb{R})$ and goes to infinity in $H^1(\mathbb{R})$.

Finite-dimensional complex Hilbert spaces

If there exists a finite family $(|\psi_1\rangle, \cdots, |\psi_N\rangle)$ of vectors of \mathcal{H} such that $\forall |\psi\rangle \in \mathcal{H}, \quad \exists ! (\alpha_1, \cdots, \alpha_N) \in \mathbb{C}^N$ such that $|\psi\rangle = \alpha_1 |\psi_1\rangle + \cdots + \alpha_N |\psi_N\rangle,$

then \mathcal{H} is called finite-dimensional and such a family is called a basis of \mathcal{H} .

Finite-dimensional complex Hilbert spaces

If there exists a finite family $(|\psi_1\rangle, \cdots, |\psi_N\rangle)$ of vectors of \mathcal{H} such that $\forall |\psi\rangle \in \mathcal{H}, \quad \exists ! (\alpha_1, \cdots, \alpha_N) \in \mathbb{C}^N$ such that $|\psi\rangle = \alpha_1 |\psi_1\rangle + \cdots + \alpha_N |\psi_N\rangle$, then \mathcal{H} is called finite-dimensional and such a family is called a basis of \mathcal{H} . Example: two bases of \mathbb{C}^3

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right) \quad \text{(canonical basis)}, \quad \mathcal{B}_2 = \left(\begin{pmatrix} 1/2\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\4\\1 \end{pmatrix} \right)$$

Finite-dimensional complex Hilbert spaces

If there exists a finite family $(|\psi_1\rangle, \cdots, |\psi_N\rangle)$ of vectors of \mathcal{H} such that $\forall |\psi\rangle \in \mathcal{H}, \quad \exists ! (\alpha_1, \cdots, \alpha_N) \in \mathbb{C}^N$ such that $|\psi\rangle = \alpha_1 |\psi_1\rangle + \cdots + \alpha_N |\psi_N\rangle$, then \mathcal{H} is called finite-dimensional and such a family is called a basis of \mathcal{H} . Example: two bases of \mathbb{C}^3

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right) \quad \text{(canonical basis)}, \quad \mathcal{B}_2 = \left(\begin{pmatrix} 1/2\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\4\\1 \end{pmatrix} \right)$$

If \mathcal{H} is finite-dimensional, then all the bases have the same number N of elements. This number is called the dimension of \mathcal{H} and is denoted by $\dim(\mathcal{H})$.

In particular, din

$$\dim(\mathbb{C}^N) = N$$
Finite-dimensional complex Hilbert spaces

If there exists a finite family $(|\psi_1\rangle, \cdots, |\psi_N\rangle)$ of vectors of \mathcal{H} such that $\forall |\psi\rangle \in \mathcal{H}, \quad \exists ! (\alpha_1, \cdots, \alpha_N) \in \mathbb{C}^N \text{ such that } |\psi\rangle = \alpha_1 |\psi_1\rangle + \cdots + \alpha_N |\psi_N\rangle,$ then \mathcal{H} is called finite-dimensional and such a family is called a basis of \mathcal{H} . **Example:** two bases of \mathbb{C}^3

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right) \quad \text{(canonical basis)}, \quad \mathcal{B}_2 = \left(\begin{pmatrix} 1/2\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\4\\1 \end{pmatrix} \right)$$

If \mathcal{H} is finite-dimensional, then all the bases have the same number N of elements. This number is called the dimension of $\mathcal H$ and is denoted by $\text{dim}(\mathcal H).$

In particular,

 $\dim(\mathbb{C}^N) = N$

The basis $(|\psi_1\rangle, \cdots, |\psi_N\rangle)$ is called orthonormal if $\forall 1 \leq m, n \leq N, \langle \psi_m | \psi_n \rangle = \delta_{m,n}$.

Finite-dimensional complex Hilbert spaces

If there exists a finite family $(|\psi_1\rangle, \cdots, |\psi_N\rangle)$ of vectors of \mathcal{H} such that $\forall |\psi\rangle \in \mathcal{H}, \quad \exists ! (\alpha_1, \cdots, \alpha_N) \in \mathbb{C}^N$ such that $|\psi\rangle = \alpha_1 |\psi_1\rangle + \cdots + \alpha_N |\psi_N\rangle$, then \mathcal{H} is called finite-dimensional and such a family is called a basis of \mathcal{H} . **Example:** two bases of \mathbb{C}^3

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right) \quad \text{(canonical basis)}, \quad \mathcal{B}_2 = \left(\begin{pmatrix} 1/2\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\4\\1 \end{pmatrix} \right)$$

If \mathcal{H} is finite-dimensional, then all the bases have the same number N of elements. This number is called the dimension of \mathcal{H} and is denoted by $\dim(\mathcal{H})$.

In particular, $\operatorname{dim}(\mathbb{C}^N) = N$

The basis $(|\psi_1\rangle, \cdots, |\psi_N\rangle)$ is called orthonormal if $\forall 1 \leq m, n \leq N, \langle \psi_m | \psi_n \rangle = \delta_{m,n}$.

Any non-orthonormal basis can be transformed into an orthonormal basis by the Gram-Schmidt orthonormalization process.

Infinite-dimensional complex Hilbert spaces

If \mathcal{H} is not finite-dimensional, it is called infinite-dimensional.

Example: $l^2(\mathbb{N}, \mathbb{C})$ is an infinite-dimensional Hilbert space.

Infinite-dimensional complex Hilbert spaces

If \mathcal{H} is not finite-dimensional, it is called infinite-dimensional. Example: $l^2(\mathbb{N}, \mathbb{C})$ is an infinite-dimensional Hilbert space.

Nevertheless, $l^2(\mathbb{N}, \mathbb{C})$ possesses orthonormal bases in the following sense:

- let $|0\rangle = (1, 0, 0, 0, 0, \cdots), |1\rangle = (0, 1, 0, 0, 0, \cdots), |2\rangle = (0, 0, 1, 0, 0, \cdots), \dots$
- the family $(|n\rangle)_{n\in\mathbb{N}}$ of elements of $l^2(\mathbb{N},\mathbb{C})$ satisfies

$$\begin{split} \langle m|n\rangle &= \delta_{m,n} \qquad \text{(orthonormality)}\\ \forall |\psi\rangle \in l^2(\mathbb{N},\mathbb{C}), \qquad \|\psi\|^2 &= \sum_{n\in\mathbb{N}} |\langle n|\psi\rangle|^2 \qquad \text{(Parseval relation)}\\ |\psi\rangle &= \sum_{n\in\mathbb{N}} \langle n|\psi\rangle \,|n\rangle \qquad \text{(completeness)} \end{split}$$

Separable Hilbert spaces

A Hilbert space \mathcal{H} is called separable if it has a countable dense subset, that is if there exists a countable family $(\chi_n)_{n\in\mathbb{N}}$ of elements of \mathcal{H} such that

 $\forall \psi \in \mathcal{H}, \quad \forall \varepsilon > 0, \quad \exists n \in \mathbb{N} \text{ s.t. } \| \psi - \chi_n \| \leq \varepsilon.$

Separable Hilbert spaces

A Hilbert space \mathcal{H} is called separable if it has a countable dense subset, that is if there exists a countable family $(\chi_n)_{n \in \mathbb{N}}$ of elements of \mathcal{H} such that

$$\forall \psi \in \mathcal{H}, \quad \forall \varepsilon > 0, \quad \exists n \in \mathbb{N} \text{ s.t. } \| \psi - \chi_n \| \leq \varepsilon.$$

Examples of separable Hilbert spaces:

- all finite-dimensional Hilbert spaces are separable;
- $l^2(\mathbb{N}, \mathbb{C})$ is an infinite-dimensional separable Hilbert space;
- all the Hilbert spaces arising in QM (e.g. $L^2(\mathbb{R}^d, \mathbb{C})$, $H^1(\mathbb{R}^d, \mathbb{C})$) are separable.

Separable Hilbert spaces

A Hilbert space \mathcal{H} is called separable if it has a countable dense subset, that is if there exists a countable family $(\chi_n)_{n \in \mathbb{N}}$ of elements of \mathcal{H} such that

$$\forall \psi \in \mathcal{H}, \quad \forall \varepsilon > 0, \quad \exists n \in \mathbb{N} \text{ s.t. } \| \psi - \chi_n \| \le \varepsilon.$$

Examples of separable Hilbert spaces:

- all finite-dimensional Hilbert spaces are separable;
- $l^2(\mathbb{N}, \mathbb{C})$ is an infinite-dimensional separable Hilbert space;
- all the Hilbert spaces arising in QM (e.g. $L^2(\mathbb{R}^d, \mathbb{C})$, $H^1(\mathbb{R}^d, \mathbb{C})$) are separable.

Any infinite-dimensional separable Hilbert space \mathcal{H} possesses orthonormal bases: there exists a countable family $(|e_n\rangle)_{n\in\mathbb{N}}$ of elements of \mathcal{H} such that

$$\langle e_m | e_n \rangle = \delta_{m,n} \qquad \text{(orthonormality)} \\ \forall |\psi\rangle \in \mathcal{H}, \qquad \|\psi\|^2 = \sum_{n \in \mathbb{N}} |\langle e_n |\psi\rangle|^2 \qquad \text{(Parseval relation)} \\ |\psi\rangle = \sum_{n \in \mathbb{N}} \langle e_n |\psi\rangle |e_n\rangle \qquad \text{(completeness)}$$

Unitary transforms

Let \mathcal{H} and \mathcal{K} be two Hilbert spaces. A mapping $U: \mathcal{H} \to \mathcal{K}$ is called a unitary operator if

- \bullet U is a linear operator;
- U is invertible;
- $\bullet~U$ is an isometry.

Unitary transforms

Let $\mathcal H$ and $\mathcal K$ be two Hilbert spaces. A mapping $U:\mathcal H\to \mathcal K$ is called a unitary operator if

- \bullet U is a linear operator;
- U is invertible;
- $\bullet~U$ is an isometry.
- If a quantum system described by
 - the Hilbert space \mathcal{H} ;
 - observables A_1 , A_2 , ... (self-adjoint operators on \mathcal{H}),

and if $U : \mathcal{H} \to \mathcal{K}$ is a unitary operator, then the physics of the system can be reformulated in a totally equivalent way using

- the Hilbert space \mathcal{K} (the ket $|\psi\rangle \in \mathcal{H}$ is transformed into $|\phi\rangle = U|\psi\rangle \in \mathcal{K}$);
- observables $B_1 = UA_1U^{-1}$, $B_2 = UA_2U^{-1}$, ... (self-adjoint operators on \mathcal{K}).

Unitary transforms

Let $\mathcal H$ and $\mathcal K$ be two Hilbert spaces. A mapping $U:\mathcal H\to \mathcal K$ is called a unitary operator if

- \bullet U is a linear operator;
- U is invertible;
- $\bullet~U$ is an isometry.
- If a quantum system described by
 - the Hilbert space \mathcal{H} ;
 - observables A_1 , A_2 , ... (self-adjoint operators on \mathcal{H}),

and if $U : \mathcal{H} \to \mathcal{K}$ is a unitary operator, then the physics of the system can be reformulated in a totally equivalent way using

- the Hilbert space \mathcal{K} (the ket $|\psi\rangle \in \mathcal{H}$ is transformed into $|\phi\rangle = U|\psi\rangle \in \mathcal{K}$);
- observables $B_1 = UA_1U^{-1}$, $B_2 = UA_2U^{-1}$, ... (self-adjoint operators on \mathcal{K}).

These two formulations correspond to two different representations of the same physical quantum system.

	Position rep.	Momentum rep.	Energy rep.
Hilbert space	$\mathcal{H}_{\mathrm{pos}} = L^2(\mathbb{R}, \mathbb{C})$		
Pure state	$\psi_{ m pos}(x)$		
Position op.	$x_{\rm pos} = x$		
Momentum op.	$p_{\rm pos} = -i\hbar \frac{d}{dx}$		
Kinetic energy op.	$T_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$		
Potential energy op.	$V_{\rm pos} = \frac{1}{2}\kappa x^2$		
Total energy op.	$H_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}\kappa x^2$		

	Position rep.	Momentum rep.	Energy rep.	
Hilbert space	$\mathcal{H}_{\mathrm{pos}} = L^2(\mathbb{R}, \mathbb{C})$	$\mathcal{H}_{\mathrm{mom}} = L^2(\mathbb{R},\mathbb{C})$		
Pure state	$\psi_{ m pos}(x)$	$\psi_{ m mom}(p)$		
Position op.	$x_{\rm pos} = x$	$x_{\rm mom} = i\hbar \frac{d}{dp}$		
Momentum op.	$p_{\rm pos} = -i\hbar \frac{d}{dx}$	$p_{\rm mom} = p$		
Kinetic energy op.	$T_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$	$T_{\rm mom} = \frac{p^2}{2m}$		
Potential energy op.	$V_{\rm pos} = \frac{1}{2}\kappa x^2$	$V_{\rm mom} = -\frac{\hbar^2}{2} \kappa \frac{d^2}{dp^2}$		
Total energy op.	$H_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}\kappa x^2$	$H_{\rm mom} = \frac{p^2}{2m} - \frac{\hbar^2}{2} \kappa \frac{d^2}{dp^2}$		

$$\psi_{\text{mom}}(p) = (U_{\text{pos}\to\text{mom}}\psi_{\text{pos}})(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{\mathbb{R}} \psi_{\text{pos}}(x) e^{-ipx/\hbar} dx$$
 (Fourier transform)

	Position rep.	Momentum rep.	Energy rep.
Hilbert space	$\mathcal{H}_{\mathrm{pos}} = L^2(\mathbb{R}, \mathbb{C})$	$\mathcal{H}_{\mathrm{mom}} = L^2(\mathbb{R}, \mathbb{C})$	$\mathcal{H}_{\mathrm{e}} = l^2(\mathbb{N},\mathbb{C})$
Pure state	$\psi_{ m pos}(x)$	$\psi_{ m mom}(p)$	$ \psi_{\mathrm{e}} angle = \sum_{n\in\mathbb{N}}\psi_{\mathrm{e},n} n angle$
Position op.	$x_{\rm pos} = x$	$x_{\rm mom} = i\hbar \frac{d}{dp}$	$x_{\rm e} = \left(\frac{\hbar}{2}\frac{1}{m\omega}\right)^{1/2} \left(a^{\dagger} + a\right)$
Momentum op.	$p_{\rm pos} = -i\hbar \frac{d}{dx}$	$p_{\rm mom} = p$	$p_{\rm e} = i \left(\frac{\hbar}{2} m \omega\right)^{1/2} \left(a^{\dagger} - a\right)$
Kinetic energy op.	$T_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$	$T_{\rm mom} = \frac{p^2}{2m}$	$T_{\rm e} = -\frac{\hbar\omega}{4}(a^{\dagger} - a)^2$
Potential energy op.	$V_{\rm pos} = \frac{1}{2}\kappa x^2$	$V_{ m mom} = -rac{\hbar^2}{2}\kappa rac{d^2}{dp^2}$	$V_{\rm e} = \frac{\hbar\omega}{4} (a^{\dagger} + a)^2$
Total energy op.	$H_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}\kappa x^2$	$H_{\rm mom} = \frac{p^2}{2m} - \frac{\hbar^2}{2} \kappa \frac{d^2}{dp^2}$	$H_{\rm e} = \overline{\sum (n + \frac{1}{2}) \hbar \omega n\rangle \langle n }$

 $|0\rangle = (1, 0, 0, 0, \cdots), \quad |1\rangle = (0, 1, 0, 0, \cdots), \quad |2\rangle = (0, 0, 1, 0, \cdots), \cdots, \quad \omega = \sqrt{\frac{k}{m}}, \quad a^{\dagger}|n\rangle = \sqrt{n+1} \mid n+1\rangle, \quad a|n\rangle = \sqrt{n} \mid n-1\rangle$

	Position rep.	Momentum rep.	Energy rep.
Hilbert space	$\mathcal{H}_{\mathrm{pos}} = L^2(\mathbb{R}, \mathbb{C})$	$\mathcal{H}_{\mathrm{mom}} = L^2(\mathbb{R}, \mathbb{C})$	$\mathcal{H}_{ ext{e}} = l^2(\mathbb{N},\mathbb{C})$
Pure state	$\psi_{ m pos}(x)$	$\psi_{ m mom}(p)$	$ \psi_{\mathrm{e}} angle = \sum_{n\in\mathbb{N}}\psi_{\mathrm{e},n} n angle$
Position op.	$x_{\rm pos} = x$	$x_{\rm mom} = i\hbar \frac{d}{dp}$	$x_{\rm e} = \left(\frac{\hbar}{2}\frac{1}{m\omega}\right)^{1/2} \left(a^{\dagger} + a\right)$
Momentum op.	$p_{\rm pos} = -i\hbar \frac{d}{dx}$	$p_{\rm mom} = p$	$p_{\rm e} = i \left(\frac{\hbar}{2} m \omega\right)^{1/2} \left(a^{\dagger} - a\right)$
Kinetic energy op.	$T_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$	$T_{\rm mom} = \frac{p^2}{2m}$	$T_{\rm e} = -\frac{\hbar\omega}{4}(a^{\dagger} - a)^2$
Potential energy op.	$V_{\rm pos} = \frac{1}{2}\kappa x^2$	$V_{\rm mom} = -\frac{\hbar^2}{2}\kappa \frac{d^2}{dp^2}$	$V_{\rm e} = \frac{\hbar\omega}{4} (a^{\dagger} + a)^2$
Total energy op.	$H_{\rm pos} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}\kappa x^2$	$H_{\rm mom} = \frac{p^2}{2m} - \frac{\hbar^2}{2} \kappa \frac{d^2}{dp^2}$	$H_{\rm e} = \sum (n + \frac{1}{2}) \hbar \omega n\rangle \langle n $
	·		

$$U_{\text{pos}\to\text{e}} = \sum_{n\in\mathbb{N}} |n\rangle\langle\phi_{\text{pos},n}|, \qquad \phi_{\text{pos},n}(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega x^2}{2\hbar}}, \qquad H_n(z) = (-1)^n e^{z^2} \frac{d^n}{dz^n} \left(e^{-z^2}\right).$$

Notation: in this section, \mathcal{H} denotes a separable complex Hilbert space, $\langle \cdot | \cdot \rangle$ its inner product, and $\| \cdot \|$ the associated norm.

Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A : \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A : \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A : \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u, v) \mapsto \langle u | Av \rangle \in \mathbb{C}.$

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A : \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u, v) \mapsto \langle u | Av \rangle \in \mathbb{C}.$

Definition-Theorem (adjoint of a bounded linear operator). Let $A \in \mathcal{B}(\mathcal{H})$. The operator $A^* \in \mathcal{B}(\mathcal{H})$ defined by

$$\forall (u,v) \in \mathcal{H} \times \mathcal{H}, \quad \langle u | A^* v \rangle = \langle A u | v \rangle,$$

is called the adjoint of A.

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A : \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u, v) \mapsto \langle u | Av \rangle \in \mathbb{C}.$

Definition-Theorem (adjoint of a bounded linear operator). Let $A \in \mathcal{B}(\mathcal{H})$. The operator $A^* \in \mathcal{B}(\mathcal{H})$ defined by

$$\forall (u,v) \in \mathcal{H} \times \mathcal{H}, \quad \langle u | A^* v \rangle = \langle A u | v \rangle,$$

is called the adjoint of A. The operator A is called self-adjoint if $A^* = A$.

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A : \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u, v) \mapsto \langle u | Av \rangle \in \mathbb{C}.$

Definition-Theorem (adjoint of a bounded linear operator). Let $A \in \mathcal{B}(\mathcal{H})$. The operator $A^* \in \mathcal{B}(\mathcal{H})$ defined by

$$\forall (u,v) \in \mathcal{H} \times \mathcal{H}, \quad \langle u | A^* v \rangle = \langle A u | v \rangle,$$

is called the adjoint of A. The operator A is called self-adjoint if $A^* = A$.

Endowed with its norm $\|\cdot\|$ and the * operation, $\mathcal{B}(\mathcal{H})$ is a C*-algebra.

(Non necessarily bounded) linear operators on Hilbert spaces

(Non necessarily bounded) linear operators on Hilbert spaces

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A : D(A) \to \mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A.

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A : D(A) \to \mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A : D(A) \to \mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A : D(A) \to \mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (unbounded linear operator). An operator A on \mathcal{H} which does not possess a bounded extension is called an unbounded operator on \mathcal{H} .

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A : D(A) \to \mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (unbounded linear operator). An operator A on \mathcal{H} which does not possess a bounded extension is called an unbounded operator on \mathcal{H} .

Definition (symmetric operator). A linear operator A on \mathcal{H} with dense domain D(A) is called symmetric if

 $\forall (u,v) \in D(A) \times D(A), \quad \langle Au | v \rangle = \langle u | Av \rangle.$

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A : D(A) \to \mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (unbounded linear operator). An operator A on \mathcal{H} which does not possess a bounded extension is called an unbounded operator on \mathcal{H} .

Definition (symmetric operator). A linear operator A on \mathcal{H} with dense domain D(A) is called symmetric if

$$\forall (u, v) \in D(A) \times D(A), \quad \langle Au | v \rangle = \langle u | Av \rangle.$$

Symmetric operators are not very interesting. Only self-adjoint operators represent physical observables and have nice mathematical properties:

- real spectrum;
- spectral decomposition and functional calculus.

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

 $\forall v \in D(A^*), \quad A^*v = w_v,$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A.

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on $\mathcal{H},$ with domain $D(A^*),$ defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 20 for bounded operators.)

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 20 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain is called self-adjoint if $A^* = A$ (that is if A symmetric <u>and</u> $D(A^*) = D(A)$).

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 20 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain is called self-adjoint if $A^* = A$ (that is if A symmetric <u>and</u> $D(A^*) = D(A)$).

Case of bounded operators:

symmetric \Leftrightarrow self-adjoint.

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on $\mathcal{H},$ with domain $D(A^*),$ defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 20 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain is called self-adjoint if $A^* = A$ (that is if A symmetric <u>and</u> $D(A^*) = D(A)$).

Case of bounded operators:

symmetric ⇔ self-adjoint.

Case of unbounded operators:

symmetric (easy to check)

self-adjoint (sometimes difficult to check)

Some unbounded self-adjoint operators arising in quantum mechanics

• position operator along the *j* axis:

$$- \mathcal{H} = L^2(\mathbb{R}^d, \mathbb{C}), - D(\widehat{r}_j) = \left\{ u \in L^2(\mathbb{R}^d, \mathbb{C}) \mid r_j u \in L^2(\mathbb{R}^d, \mathbb{C}) \right\}, (\widehat{r}_j \phi)(\mathbf{r}) = r_j \phi(\mathbf{r});$$

• momentum operator along the *j* axis:

$$\begin{split} &-\mathcal{H} = L^2(\mathbb{R}^d, \mathbb{C}), \\ &-D(\widehat{p}_j) = \left\{ u \in L^2(\mathbb{R}^d, \mathbb{C}) \mid \partial_{r_j} u \in L^2(\mathbb{R}^d, \mathbb{C}) \right\}, (\widehat{p}_j \phi)(\mathbf{r}) = -i\partial_{r_j} \phi(\mathbf{r}); \end{split}$$

• kinetic energy operator:

$$-\mathcal{H} = L^2(\mathbb{R}^d, \mathbb{C}),$$

$$-D(T) = H^2(\mathbb{R}^d, \mathbb{C}) = \left\{ u \in L^2(\mathbb{R}^d, \mathbb{C}) \mid \Delta u \in L^2(\mathbb{R}^d, \mathbb{C}) \right\}, T = -\frac{1}{2}\Delta;$$

• Schrödinger operators in 3D: let $V \in L^2_{\text{unif}}(\mathbb{R}^3, \mathbb{R})$ ($V(\mathbf{r}) = -\frac{Z}{|\mathbf{r}|}$ OK)

$$-\mathcal{H} = L^2(\mathbb{R}^3, \mathbb{C}),$$

$$-D(H) = H^2(\mathbb{R}^3, \mathbb{C}), H = -\frac{1}{2}\Delta + V.$$

3 - Spectra of self-adjoint operators

Notation: in this section, \mathcal{H} denotes a separable complex Hilbert space, $\langle \cdot | \cdot \rangle$ its inner product, and $\| \cdot \|$ the associated norm.

Definition-Theorem (spectrum of a linear operator). Let A be a closed¹ linear operator on \mathcal{H} .

• The open set $\rho(A) = \{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ invertible} \}$ is called the resolvent set of A.

¹ The operator A is called closed if its graph $\Gamma(A) := \{(u, Au), u \in D(A)\}$ is a closed subspace of $\mathcal{H} \times \mathcal{H}$.
• The open set $\rho(A) = \{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ invertible} \}$ is called the resolvent set of A. The analytic function

 $\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$

is called the resolvent of A. It holds $R_z(A) - R_{z'}(A) = (z'-z)R_z(A)R_{z'}(A)$.

• The open set $\rho(A) = \{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ invertible} \}$ is called the resolvent set of A. The analytic function

$$\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$$

is called the resolvent of A. It holds $R_z(A) - R_{z'}(A) = (z'-z)R_z(A)R_{z'}(A)$.

 \bullet The closed set $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called the spectrum of A.

¹ The operator A is called closed if its graph $\Gamma(A) := \{(u, Au), u \in D(A)\}$ is a closed subspace of $\mathcal{H} \times \mathcal{H}$.

• The open set $\rho(A) = \{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ invertible} \}$ is called the resolvent set of A. The analytic function

$$\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$$

is called the resolvent of A. It holds $R_z(A) - R_{z'}(A) = (z'-z)R_z(A)R_{z'}(A)$.

- \bullet The closed set $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called the spectrum of A.
- \bullet If A is self-adjoint, then $\sigma(A) \subset \mathbb{R}$

¹ The operator A is called closed if its graph $\Gamma(A) := \{(u, Au), u \in D(A)\}$ is a closed subspace of $\mathcal{H} \times \mathcal{H}$.

• The open set $\rho(A) = \{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ invertible} \}$ is called the resolvent set of A. The analytic function

 $\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$

is called the resolvent of A. It holds $R_z(A) - R_{z'}(A) = (z'-z)R_z(A)R_{z'}(A)$.

- The closed set $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called the spectrum of A.
- If A is self-adjoint, then $\sigma(A) \subset \mathbb{R}$ and it holds $\sigma(A) = \sigma_p(A) \cup \sigma_c(A)$, where $\sigma_p(A)$ and $\sigma_c(A)$ are respectively the point spectrum and the continuous spectrum of A defined as

 $\sigma_{\mathbf{p}}(A) \ = \ \{ z \in \mathbb{C} \ | \ (z - A) \ : \ D(A) \to \mathcal{H} \text{ non-injective} \} = \{ \text{eigenvalues of } A \}$

 $\sigma_{\mathbf{c}}(A) = \overline{\{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ injective but non surjective}\}}.$

¹ The operator A is called closed if its graph $\Gamma(A) := \{(u, Au), u \in D(A)\}$ is a closed subspace of $\mathcal{H} \times \mathcal{H}$.

On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let *H* be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$. [Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let *H* be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$. [Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\text{Span} \{\text{eigenvectors of } H\}}$ and $\mathcal{H}_c = \mathcal{H}_p^{\perp}$. [Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty$.]

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let *H* be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$. [Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\text{Span} \{\text{eigenvectors of } H\}} \text{ and } \mathcal{H}_c = \mathcal{H}_p^{\perp}.$ [Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty.$] Let χ_{B_R} be the characteristic function of the ball $B_R = \{\mathbf{r} \in \mathbb{R}^d \mid |\mathbf{r}| < R\}.$

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let *H* be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$. [Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\text{Span} \{\text{eigenvectors of } H\}} \text{ and } \mathcal{H}_c = \mathcal{H}_p^{\perp}.$ [Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty.$] Let χ_{B_R} be the characteristic function of the ball $B_R = \{\mathbf{r} \in \mathbb{R}^d \mid |\mathbf{r}| < R\}.$ Then

$$(\phi_0 \in \mathcal{H}_p) \Leftrightarrow \forall \varepsilon > 0, \ \exists R > 0, \ \forall t \ge 0, \ \left\| (1 - \chi_{B_R}) e^{-itH} \phi_0 \right\|_{L^2}^2 \le \varepsilon;$$
$$(\phi_0 \in \mathcal{H}_c) \Leftrightarrow \forall R > 0, \ \lim_{T \to +\infty} \frac{1}{T} \int_0^T \left\| \chi_{B_R} e^{-itH} \phi_0 \right\|_{L^2}^2 \ dt = 0.$$

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let *H* be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$. [Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\text{Span} \{\text{eigenvectors of } H\}} \text{ and } \mathcal{H}_c = \mathcal{H}_p^{\perp}.$ [Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty.$] Let χ_{B_R} be the characteristic function of the ball $B_R = \{\mathbf{r} \in \mathbb{R}^d \mid |\mathbf{r}| < R\}.$ Then

$$(\phi_0 \in \mathcal{H}_p) \Leftrightarrow \forall \varepsilon > 0, \ \exists R > 0, \ \forall t \ge 0, \ \left\| (1 - \chi_{B_R}) e^{-itH} \phi_0 \right\|_{L^2}^2 \le \varepsilon;$$
$$(\phi_0 \in \mathcal{H}_c) \Leftrightarrow \forall R > 0, \ \lim_{T \to +\infty} \frac{1}{T} \int_0^T \left\| \chi_{B_R} e^{-itH} \phi_0 \right\|_{L^2}^2 \ dt = 0.$$

 $\mathcal{H}_p: \mbox{ set of bound states, } \mathcal{H}_c: \mbox{ set of scattering states }$

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation: $A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m |e_n\rangle = \delta_{mn}.$

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m |e_n\rangle = \delta_{mn}.$$

Then,

• the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m |e_n\rangle = \delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \left\{ |u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty \right\};$

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m |e_n\rangle = \delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \{ |u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty \};$
- $\sigma_{\mathbf{p}}(A) = \{\lambda_n\}_{n \in \mathbb{N}} \text{ and } \sigma_{\mathbf{c}}(A) = \{ \text{accumulation points of } \{\lambda_n\}_{n \in \mathbb{N}} \} \setminus \sigma_{\mathbf{p}}(A);$

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m |e_n\rangle = \delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \left\{ |u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty \right\};$
- $\sigma_{\mathbf{p}}(A) = \{\lambda_n\}_{n \in \mathbb{N}} \text{ and } \sigma_{\mathbf{c}}(A) = \{ \text{accumulation points of } \{\lambda_n\}_{n \in \mathbb{N}} \} \setminus \sigma_{\mathbf{p}}(A);$
- $\mathcal{H}_{p} = \mathcal{H}$ and $\mathcal{H}_{c} = \{0\}$ (no scattering states);

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m |e_n\rangle = \delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \left\{ |u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty \right\};$
- $\sigma_{\mathbf{p}}(A) = \{\lambda_n\}_{n \in \mathbb{N}} \text{ and } \sigma_{\mathbf{c}}(A) = \{ \text{accumulation points of } \{\lambda_n\}_{n \in \mathbb{N}} \} \setminus \sigma_{\mathbf{p}}(A);$
- $\mathcal{H}_{p} = \mathcal{H}$ and $\mathcal{H}_{c} = \{0\}$ (no scattering states);
- functional calculus for diagonalizable self-adjoint operators: for all $f : \mathbb{R} \to \mathbb{C}$, the operator f(A) defined by

$$D(f(A)) = \left\{ |u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |f(\lambda_n)|^2) |u_n|^2 < \infty \right\}, \quad f(A) = \sum_{n \in \mathbb{N}} f(\lambda_n) |e_n\rangle \langle e_n |u_n|^2 < \infty \rangle$$

is independent of the choice of the spectral decomposition of A.

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \le k \le M}$

 $|\Psi(\mathbf{r}_1, \cdots, \mathbf{r}_N)|^2$ probability density of observing electron 1 at \mathbf{r}_1 , electron 2 at \mathbf{r}_2 , ...

$$\forall p \in \mathfrak{S}_N, \quad \Psi(\mathbf{r}_{p(1)}, \cdots, \mathbf{r}_{p(N)}) = \varepsilon(p)\Psi(\mathbf{r}_1, \cdots, \mathbf{r}_N), \qquad$$
(Pauli principle)

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \le k \le M}$

$$\left(-\frac{1}{2}\sum_{i=1}^{N}\Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N}v_{\text{ext}}(\mathbf{r}_{i})+\sum_{1\leq i< j\leq N}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}\right)\Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{N})=E\ \Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{N})$$

 $|\Psi(\mathbf{r}_1, \cdots, \mathbf{r}_N)|^2$ probability density of observing electron 1 at \mathbf{r}_1 , electron 2 at \mathbf{r}_2 , ...

$$\Psi \in \mathcal{H}_N = \bigwedge^N \mathcal{H}_1, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C})$$

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \le k \le M}$

$$\left(-\frac{1}{2}\sum_{i=1}^{N}\Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N}v_{\text{ext}}(\mathbf{r}_{i})+\sum_{1\leq i< j\leq N}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}\right)\Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{N})=E\ \Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{N})$$

 $|\Psi(\mathbf{r}_1, \cdots, \mathbf{r}_N)|^2$ probability density of observing electron 1 at \mathbf{r}_1 , electron 2 at \mathbf{r}_2 , ...

$$\Psi\in\mathcal{H}_N=igwedge \mathcal{H}_1,\qquad \mathcal{H}_1=L^2(\mathbb{R}^3,\mathbb{C}^2)$$
 with spin

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \le k \le M}$

Ex: water molecule
$$\mathbf{H}_2\mathbf{O}$$

 $M = 3, N = 10, z_1 = 8, z_2 = 1, z_3 = 1$
 $v_{\text{ext}}(\mathbf{r}) = -\sum_{k=1}^{M} \frac{z_k}{|\mathbf{r} - \mathbf{R}_k|}$

$$\left(-\frac{1}{2}\sum_{i=1}^{N}\Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N}v_{\text{ext}}(\mathbf{r}_{i})+\sum_{1\leq i< j\leq N}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}\right)\Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{N})=E\ \Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{N})$$

 $|\Psi(\mathbf{r}_1, \cdots, \mathbf{r}_N)|^2$ probability density of observing electron 1 at \mathbf{r}_1 , electron 2 at \mathbf{r}_2 , ...

$$\Psi \in \mathcal{H}_N = \bigwedge^N \mathcal{H}_1, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C})$$

Theorem (Kato '51). The operator $H_N := -\frac{1}{2} \sum_{i=1}^N \Delta_{\mathbf{r}_i} + \sum_{i=1}^N v_{\text{ext}}(\mathbf{r}_i) + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$ with domain $D(H_N) := \mathcal{H}_N \cap H^2(\mathbb{R}^{3N}, \mathbb{C})$ is self-adjoint on \mathcal{H}_N .

Theorem (spectrum of H_N).

1. HVZ theorem (Hunziger '66, van Winten '60, Zhislin '60)

 $\sigma_{\rm c}(H_N) = [\Sigma_N, +\infty)$ with $\Sigma_N = \min \sigma(H_{N-1}) \le 0$ and $\Sigma_N < 0$ iff $N \ge 2$.

Theorem (spectrum of H_N).

1. HVZ theorem (Hunziger '66, van Winten '60, Zhislin '60)

 $\sigma_{\rm c}(H_N) = [\Sigma_N, +\infty)$ with $\Sigma_N = \min \sigma(H_{N-1}) \le 0$ and $\Sigma_N < 0$ iff $N \ge 2$.

2. Bound states of neutral molecules and positive ions (Zhislin '61) If $N \le Z := \sum_{k=1}^{M} z_k$, then H_N has an infinite number of bound states.

Theorem (spectrum of H_N).

1. HVZ theorem (Hunziger '66, van Winten '60, Zhislin '60)

 $\sigma_{\rm c}(H_N) = [\Sigma_N, +\infty)$ with $\Sigma_N = \min \sigma(H_{N-1}) \le 0$ and $\Sigma_N < 0$ iff $N \ge 2$.

2. Bound states of neutral molecules and positive ions (Zhislin '61)

If $N \leq Z := \sum_{k=1}^{M} z_k$, then H_N has an infinite number of bound states.

3. Bound states of negative ions (Yafaev '72)

If $N \ge Z + 1$, then H_N has at most a finite number of bound states.

Spectra of Schrödinger operators with confining potentials

$$\mathcal{H} = L^2(\mathbb{R}^d), \qquad V \in C^0(\mathbb{R}^d, \mathbb{R}), \qquad \lim_{|\mathbf{r}| \to +\infty} V(\mathbf{r}) = +\infty \text{ (confining potential)}$$
$$D(H) = \left\{ u \in L^2(\mathbb{R}^d) \mid -\frac{1}{2}\Delta u + Vu \in L^2(\mathbb{R}^d) \right\}, \quad \forall u \in D(H), \ Hu = -\frac{1}{2}\Delta u + Vu.$$

H is bounded below and its spectrum is purely discrete ($\sigma_d(H) = \sigma(H)$, $\sigma_c(H) = \emptyset$).

As a consequence, *H* is diagonalizable in a orthonormal basis: there exist

- a non-decreasing sequence $(E_n)_{n \in \mathbb{N}}$ of real numbers going to $+\infty$;
- an orthonormal basis $(\psi_n)_{n\in\mathbb{N}}$ of \mathcal{H} composed of vectors of D(H), such that

$$\forall n \in \mathbb{N}, \quad H\psi_n = E_n \psi_n.$$

In addition, the ground state eigenvalue E_0 is non-degenerate and the corresponding eigenvector can be chosen positive on \mathbb{R}^d .

Spectra of 3D Schrödinger operators with potentials decaying at infinity

 $V \text{ such that } \forall \varepsilon > 0, \ \exists (V_2, V_\infty) \in L^2(\mathbb{R}^3, \mathbb{R}) \times L^\infty(\mathbb{R}^3, \mathbb{R}) \text{ s.t. } V = V_2 + V_\infty \text{ and } \|V_\infty\|_{L^\infty} \le \varepsilon,$ $\mathcal{H} = L^2(\mathbb{R}^3), \qquad D(H) = H^2(\mathbb{R}^3), \qquad \forall u \in D(H), \ Hu = -\frac{1}{2}\Delta u + Vu.$

The operator H is self-adjoint, bounded below, and $\sigma_{c}(H) = [0, +\infty)$.

Depending on V, the discrete spectrum of H may be

- the empty set;
- a finite number of negative eigenvalues;
- a countable infinite number of negative eigenvalues accumulating at 0 (ex: Ridberg states).

If *H* has a ground state, then its energy is a non-degenerate eigenvalue and the corresponding eigenvector can be chosen positive on \mathbb{R}^d .

The special case of Kohn-Sham LDA Hamiltonians

$$H_{\rho} = -\frac{1}{2}\Delta + V_{\rho}^{\mathrm{KS}} \quad \text{with} \quad V_{\rho}^{\mathrm{KS}}(\mathbf{r}) = -\sum_{k=1}^{M} \frac{z_{k}}{|\mathbf{r} - \mathbf{R}_{k}|} + \int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}' + \frac{de_{\mathrm{xc}}^{\mathrm{LDA}}}{d\rho}(\rho(\mathbf{r}))$$

For any $\rho \in L^1(\mathbb{R}^3, \mathbb{R}) \cap L^3(\mathbb{R}^3, \mathbb{R})$, the KS potential V_{ρ}^{KS} satisfies the assumptions in the previous slide. In particular H_{ρ} is bounded below and $\sigma_{\text{c}}(H_{\rho}) = [0, +\infty)$.

Let $Z = \sum_{k=1}^{M} z_k$ be the total nuclear charge of the molecular system and $N = \int_{\mathbb{R}^3} \rho$.

- If N < Z (positive ion), H_{ρ} has a countable infinite number of negative eigenvalues accumulating at 0.
- If N = Z (neutral molecular system) and if ρ is a ground state density of the system, then H_{ρ} has at least N non-positive eigenvalues.

Spectra of Hartree-Fock Hamiltonians

Let
$$\Phi = (\phi_1, \cdots, \phi_N) \in (H^1(\mathbb{R}^3))^N$$
 be such that $\int_{\mathbb{R}^3} \phi_i^* \phi_j = \delta_{ij}$,
 $\gamma(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^N \phi_i(\mathbf{r}) \phi_i(\mathbf{r}')^*$, $\rho_\gamma(\mathbf{r}) = \gamma(\mathbf{r}, \mathbf{r}) = \sum_{i=1}^N |\phi_i(\mathbf{r})|^2$.
 $\mathcal{H} = L^2(\mathbb{R}^3)$, $D(H) = H^2(\mathbb{R}^3)$,
 $(H\phi)(\mathbf{r}) = -\frac{1}{2}\Delta\phi(\mathbf{r}) - \sum_{k=1}^M \frac{z_k}{|\mathbf{r} - \mathbf{R}_k|} \phi(\mathbf{r}) + \left(\int_{\mathbb{R}^3} \frac{\rho_\gamma(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'\right) \phi(\mathbf{r}) - \int_{\mathbb{R}^3} \frac{\gamma(\mathbf{r}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \phi(\mathbf{r}') d\mathbf{r}'$

Let $Z := \sum_{k=1}^{M} z_k$. The operator H is self-adjoint, bounded below, and we have: • $\sigma_{ess} = [0, +\infty)$;

- if N < Z (positive ion), H has a countable infinite number of negative eigenvalues accumulating at 0;
- if N = Z (neutral molecular system) and if Φ is a HF minimizer of the system, then H has at least N negative eigenvalues (counting multiplicities).

Spectra of Dirac Hamiltonians

$$\mathcal{H} = L^{2}(\mathbb{R}^{3}; \mathbb{C}^{4}), \qquad D(D_{0}) = H^{1}(\mathbb{R}^{3}; \mathbb{C}^{4}), \qquad D_{0} = c\vec{p} \cdot \vec{\alpha} + mc^{2}\beta$$
$$p_{j} = -i\hbar\partial_{j}, \qquad \alpha_{j} = \begin{pmatrix} 0 & \sigma_{k} \\ \sigma_{k} & 0 \end{pmatrix} \in \mathbb{C}^{4 \times 4}, \qquad \beta = \begin{pmatrix} I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix} \in \mathbb{C}^{4 \times 4}$$
$$\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \text{(Pauli matrices)}$$

The free Dirac operator D_0 is self-adjoint and

$$\sigma(D_0) = \sigma_{\rm ac}(D_0) = (-\infty, -mc^2] \cup [mc^2, +\infty).$$

Theorem. Let $\alpha := \frac{e^2}{4\pi\varepsilon_0\hbar c} \simeq 1/137.036$ be the fine structure constant. Let $D_Z = D_0 - \frac{Z}{|\mathbf{r}|}, \qquad Z \in \mathbb{R}$ (physical cases: $Z = 1, 2, 3, \cdots$).

- if $|Z| < \frac{\sqrt{3}}{2\alpha} \simeq 118.677$, the Dirac operator D_Z is essentially self-adjoint (meaning that there exists a unique domain $D(D_Z)$ containing $C_c^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$ for which D_Z is self-adjoint);
- if $|Z| > \frac{\sqrt{3}}{2\alpha} \simeq 118.677$, D_Z has many self-adjoint extensions;
- if $|Z| < \frac{1}{\alpha} \simeq 137.036$, D_Z has a special self-adjoint extension, considered as the physical one. The essential spectrum of this self-adjoint extension is $(-\infty, -mc^2] \cup [mc^2, +\infty)$ and its discrete spectrum consist of the eigenvalues

$$E_{nj} = mc^2 \left[1 + \left(\frac{Z\alpha}{n - j - \frac{1}{2} + \sqrt{(j + \frac{1}{2})^2 - Z^2 \alpha^2}} \right)^2 \right], \quad n \in \mathbb{N}^*, \ j = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots \le n - \frac{1}{2}$$

Many-body Dirac-Coulomb Hamiltonian are not understood mathematically.

4 - Functional calculus

Notation: in this section, \mathcal{H} denotes a separable complex Hilbert space, $\langle \cdot | \cdot \rangle$ its inner product, and $\| \cdot \|$ the associated norm.

Theorem (functional calculus for bounded functions). Let $\mathfrak{B}(\mathbb{R}, \mathbb{C})$ be the *-algebra of bounded \mathbb{C} -valued Borel functions on \mathbb{R} and let A be a self-adjoint operator on \mathcal{H} . Then there exists a unique map

$$\Phi_A : \mathfrak{B}(\mathbb{R}, \mathbb{C}) \ni f \mapsto f(A) \in \mathcal{B}(\mathcal{H})$$

satisfies the following properties:

1. Φ_A is a homomorphism of *-algebras:

 $(\alpha f + \beta g)(A) = \alpha f(A) + \beta g(A), \quad (fg)(A) = f(A)g(A), \quad \overline{f}(A) = f(A)^*;$

- **2.** $||f(A)|| \le \sup_{x \in \mathbb{R}} |f(x)|;$
- **3.** if $f_n(x) \to x$ pointwise and $|f_n(x)| \le |x|$ for all n and all $x \in \mathbb{R}$, then $\forall u \in D(A), \quad f_n(A)u \to Au \text{ in } \mathcal{H};$

4. if $f_n(x) \to f(x)$ pointwise and $\sup_n \sup_{x \in \mathbb{R}} |f_n(x)| < \infty$, then $\forall u \in \mathcal{H}, \quad f_n(A)u \to f(A)u$ in \mathcal{H} ;

In addition, if $u \in \mathcal{H}$ is such that $Au = \lambda u$, then $f(A)u = f(\lambda)u$.

Theorem (spectral projections and functional calculus - general case -). Let A be a self-adjoint operator on \mathcal{H} .

• For all $\lambda \in \mathbb{R}$, the bounded operator $P_{\lambda}^A := \mathbb{1}_{]-\infty,\lambda]}(A)$, where $\mathbb{1}_{]-\infty,\lambda]}(\cdot)$ is the characteristic function of $]-\infty,\lambda]$, is an orthogonal projection.

Theorem (spectral projections and functional calculus - general case -). Let A be a self-adjoint operator on \mathcal{H} .

- For all $\lambda \in \mathbb{R}$, the bounded operator $P_{\lambda}^A := \mathbb{1}_{]-\infty,\lambda]}(A)$, where $\mathbb{1}_{]-\infty,\lambda]}(\cdot)$ is the characteristic function of $]-\infty,\lambda]$, is an orthogonal projection.
- Spectral decomposition of A: for all $u \in D(A)$ and $v \in \mathcal{H}$, it holds

$$\langle v|Au\rangle = \int_{\mathbb{R}} \lambda \, \underline{d\langle v|P_{\lambda}^{A}u\rangle}, \quad \text{which we denote by} \quad A = \int_{\mathbb{R}} \lambda \, dP_{\lambda}^{A}.$$

Bounded complex measure on \mathbb{R}

Theorem (spectral projections and functional calculus - general case -). Let A be a self-adjoint operator on \mathcal{H} .

- For all $\lambda \in \mathbb{R}$, the bounded operator $P_{\lambda}^A := \mathbb{1}_{]-\infty,\lambda]}(A)$, where $\mathbb{1}_{]-\infty,\lambda]}(\cdot)$ is the characteristic function of $]-\infty,\lambda]$, is an orthogonal projection.
- Spectral decomposition of A: for all $u \in D(A)$ and $v \in \mathcal{H}$, it holds

$$\langle v|Au\rangle = \int_{\mathbb{R}} \lambda \, \underline{d\langle v|P_{\lambda}^{A}u\rangle}, \quad \text{which we denote by} \quad A = \int_{\mathbb{R}} \lambda \, dP_{\lambda}^{A}.$$

Bounded complex measure on \mathbb{R}

• Functional calculus: let f be a (not necessarily bounded) \mathbb{C} -valued Borel function on \mathbb{R} . The operator f(A) can be defined by

$$D(f(A)) := \left\{ u \in \mathcal{H} \mid \int_{\mathbb{R}} |f(\lambda)|^2 \underbrace{d\langle u | P_{\lambda}^A u \rangle}_{\text{Bounded positive measure on } \mathbb{R}} \right\}$$

and

$$\forall (u,v) \in D(f(A)) \times \mathcal{H}, \ \langle v | f(A) u \rangle := \int_{\mathbb{R}} f(\lambda) \, d \langle v | P_{\lambda}^{A} u \rangle.$$

4 - Functional calculus

Theorem (form domain and quadratic form).

Let A be a self-adjoint operator on \mathcal{H} .

• The set

$$Q(A)) := \left\{ \psi \in \mathcal{H} \mid \int_{\mathbb{R}} |\lambda| \underbrace{d\langle \psi | P_{\lambda}^{A} \psi \rangle}_{\mathcal{R}} < \infty \right\}$$

Bounded positive measure on ${\mathbb R}$

is a vector space, called the form domain of A, and we have

 $D(A) \hookrightarrow Q(A) \hookrightarrow \mathcal{H}$

with dense embeddings.

• The mapping defined by

$$\forall \psi \in Q(A), \quad \langle \psi | A | \psi \rangle = \int_{\mathbb{R}} \lambda \underbrace{d \langle \psi | P_{\lambda}^{A} \psi \rangle}_{\mathcal{A}}$$

is called the quadratic form associated with A.

References

- E.B. Davies, *Linear operators and their spectra*, Cambridge University Press 2007.
- B. Helffer, Spectral theory and its applications, Cambridge University Press 2013.
- M. Reed and B. Simon, *Modern methods in mathematical physics*, in 4 volumes, 2nd edition, Academic Press 1972-1980.