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1 - Mathematical derivation and properties of the HF model

Hartree-Fock

B Wavefunction methods { Single—reference methods: MPn, CI, CC, ...

N-body
electronic . . Thomas—Fermi (orbital free) : TF, TFW, ...
Schrodi —  Density functional theory

caro .lnger (DFT) Kohn-Sham : Hartree, X o, LDA, GGA, ...

equation
Variational MC

- Quantum Monte Carlo [

Diffusion MC

Here the functions of L?(R%), H'(R’), H*(R%) are supposed real-valued.
This is legitimate in the absence of external magnetic field or spin-orbit
coupling and significantly simplifies the formalism and the numerical methods.

Multi-reference methods: MCSCF, MRCC, ...
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Electronic problem for a given nuclear configuration {Rk}1§ <M

Ex: water molecule H,O
M=3 NZlO 2’1:8 ZQZl,Zng

Vne Z |r_Rk‘

(rla'“ ,I'N)ZE\IJ(I'L"' ,I'N)

SIS DL oy

— T
1<z<j<N L °7|

|W(ry, -+, ry)|* probability density of observing electron 1 at r;, electron 2 at ro, ...

N
VeHy=A\H, Hi= L2<R3 @)

Theorem (Kato ’°51). The operator Hy = —— Z Arﬁrz Vi r;)+ Z

— T
1<z<j<N L j|

with domain D(Hy) := Hy N H*(R?*Y,C) is self—adJ01nt on Hn.
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Theorem (spectrum of ).

1. HVZ theorem (Hunziger ’66, van Winten ’60, Zhislin ’60)
o.(Hy) = XN, +00) with Xy = mino(Hy_1) < 0and Xy < 0iff N > 2.

2. Bound states of neutral molecules and positive ions (Zhislin ’61)
M

IfN < 7 := Z 21, then Hy has an infinite number of bound states.
k=1

Ground state Excited states

| /N

| | | LH ””%
I I [ TTIHI
0

EN

XN Continuous spectrum

3. Bound states of negative ions (Yafaev ’72)
If N > 7 + 1, then Hy has at most a finite number of bound states.
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Variational expression of the ground state energy

N
Ey = inf { (Y| Hn[Y), b € Wy Wy = {w e AR’ n HIR™), [|¢],2 = 1} -
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Variational expression of the ground state energy

N
Ey = inf { (Y| Hn[Y), b € Wy Wy = {w e AR’ n HIR™), [|¢],2 = 1} -

The Hartree-Fock approximation is variational. It consists in minimizing
the exact energy functional (1)| Hy|v) on the subset of )V defined as

foe=unoenow, 0= (0nom € (@)Y, [ 00,=5,}

(Slater determinant)
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Molecular orbital formulation of the Hartree-Fock model

B < B =t {E(@), 0 = (61, o) € (R, [ 00 =5}
RS

N

B @) = 53 [ Vol + / oV

1 |2
/ / palr drdr ——/ Po(r, ) dr dr’
r3 JRr3 ‘I‘—I"| 2 Jrs Jrs v —1/|

7 G 7

Coulomb term exchal;gre term

Ve Z = Rk‘ () =Y o) e, palr) =D |ei(r)l
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Molecular orbital formulation of the Hartree-Fock model

B < B =t {E(@), 0 = (61, o) € (R, [ 00 =5}
RS

N

B @) = 53 [ Vol + / oV

1 |2
/ / palr drdr ——/ Po(r, ) dr dr’
r3 JRr3 ‘I‘—r’| 2 Jps Jgs |r—1|

7 G 7

Coulomb term exchal;gre term

Vi(r Z = Rk;\ Yo(r,r') = Zﬁbz‘(r) i(r'), pa(r) = Z |¢i<r)‘2'

Invariance property: if ® € (H'(R?))" satisfies the L?-orthonormality con-
straints, then so does U for all U € O(N) (i.e. U € RV*N, UTU = Iy), and

Vou = det(U)vs, vou = Yo, pov = po, E(QU)=E(D).
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Theorem. Assume that N < 7 = 224: , 2. (neutral or positively charged
molecular system). Then

1. the HF model has a ground state ®° = (¢!, - - - , ¢%) (Lieb & Simon *77);
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Theorem. Assume that N < 7 = 224: , 2. (neutral or positively charged
molecular system). Then

1. the HF model has a ground state ®° = (¢!, - - - , ¢%) (Lieb & Simon *77);

RNXN

2. Euler-Lagrange equations: there exists )\ € symmetric such that

(

V= (41, -+, o) € (HI(R?)Y

| =it e vl (7)ol - [ ST ol a =3 aeh

0 40 :
o5 ¢i¢j — 5ij>
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Theorem. Assume that N < 7 = 224: , 2. (neutral or positively charged
molecular system). Then

1. the HF model has a ground state ®° = (¢!, - - - , ¢%) (Lieb & Simon *77);

RNXN

2. Euler-Lagrange equations: there exists )\ € symmetric such that

(

V= (41, -+, o) € (HI(R?)Y

| =it e vl (7)ol - [ ST ol a =3 aeh

0 40 :
o5 ¢i¢j — 5ij>

3. Elliptic regularity: ¢! € H*(R3) N C®(R3\ {R;});
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Theorem (continued).

4. Fock operator:

7@0(1'71‘/) ¢<I‘l> dI'/

R3 |I' — I'/|

1
F@O = —§A+Vne+pq>0*|"_l+lcq)0 where <IC(I)O¢) (I') = —/

is a self-adjoint operator on L*(R?®) with domain H*(R?). It is bounded
below and o (Hy) = [0, +00);
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Theorem (continued).

4. Fock operator:

. 1 ne —1 — Ja0 (I', I‘/) ! !
Fop = =5 A+V"+pgoxl [ +Kg0 - where  (Kgog)(r) = — o(r') dr

R3 |I' — I'/|
is a self-adjoint operator on L*(R?®) with domain H*(R?). It is bounded
below and o (Hy) = [0, +00);

5. Hartree-Fock equations: up to replacing ®" by ®°U for some U € O(N),
it holds

Foody = €y, ; ¢?¢9 = 0ij, g1 < - <eny <0
R
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Theorem (continued).

4. Fock operator:

1 /
Fp0 1= —§A—|—Vne—i—,0q)o*|-‘_1—l—lc¢o where (Kg¢)(r) = —/ ’y|q;‘o(r,r1/'|) o(r") dr’
RS |T —

is a self-adjoint operator on L*(R?®) with domain H*(R?). It is bounded
below and o (Hy) = [0, +00);

5. Hartree-Fock equations: up to replacing ®" by ®°U for some U € O(N),
it holds

Foody = €y, ; ¢?¢9 = 0ij, g1 < - <eny <0
R

6. Aufbau principle: ¢, <ey <. - - <ey are the lowest /V eigenvalues of Fo;

7. No unfilled-shell property (Bach, Lieb, Loss, Solovej ’94): ¢y < eni1
where ¢, is the (V + 1) eigenvalue of ;o (counting multiplicities) if
Fgo has at least (N + 1) negative eigenvalues and 0 otherwise.
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Galerkin Approximation

X = Span(x1,- - , x,) subspace of H'(IR?) of finite dimension N,.
, .

Ny
b= (¢1,-,0n) € x" = i(r) :ZCMXM<I')
p=1
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Discretized formulation of the Hartree-Fock model

Eyy =inf {E(CCT), C e R™"Y, CTSC = Iy}

E(D) = Tl‘<hD)+%Tr<G(D)D>, G(D)]w = D [(u]KA) = (pAlKv)] Doy

Electronic integrals

e Overlap matrix: S, = / XuXv
R3

e Core Hamiltonian matrix: A, = / VX VXu— Z /R e Ri? dr

/ /
e Two-electron integrals: (uv|s)\) = / / EXAT X)) dr dr’
R3 JR3

v — 1|

Important property: for all D, D’ € Ry, Tr(G(D)D') = Tr(G(D')D).
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For simplicity, we assume from now on that the basis {y,}, <u<N, 18 Or-
thonormal. One can always get back to this case by the following changes
of variables:

C =S¢ D=CCT = s2ccTs' 2 = §12pgl/?
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For simplicity, we assume from now on that the basis {y,}, <u<N, 18 Or-
thonormal. One can always get back to this case by the following changes
of variables:

C =S¢ D=CCT = s2ccTs' 2 = §12pgl/?

Molecular orbital formulation of the HF problem

Ey'y =inf {E(CC"), C €C}

C={CeRWY C'"C=1Iy}  (Stiefel manifold)

E(D)=Tr(hD) + %Tr(G(D)D)
T T

linear quadratic
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Density matrix formulation of the HF problem

When C varies in the set C = {C € RN T C = Iy}, D = CC” spans
P = {DeR"W™ D=D" Tr(D)= N, D*= D}

= { rank-N orthogonal projectors of R"»*" } (Grassmann manifold)
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Density matrix formulation of the HF problem
When C varies in the set C = {C € RN T C = Iy}, D = CC” spans
P = {DeR"W™ D=D" Tr(D)= N, D*= D}

= { rank-N orthogonal projectors of R"»*" } (Grassmann manifold)

Therefore,
Ey'y =inf{E(D), D € P},

E(D)=Tr(hD)+ %Tr(G(D)D)
T T

linear quadratic



2 - Galerkin approximation of the HF model

15

Discretized Hartree-Fock equations

(D=CC!', F=h+G(D)

{ FP, =¢,0;, 1 <--- < enlowest N eigenvalues of F

C=(d---Dy), OTD; =6,

\

D e Ryi™,  F e RN

sym sym

o, e RM, (O e RMWN
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Discretized Hartree-Fock equations

(D=CCT, F=h+G(D)

. FO,=¢;9;,, €1 <--- <eylowest N eigenvalues of [

C=(d---Dy), OTD; =6,

D e RN e RMXN

sym sym

b, e RM, C e RN

Solutions to the discretized Hartree-Fock problem can be obtained

e either by solving a constrained optimization problem (on a Stiefel or a
Grassmann manifold);

e or by solving the above equations by means of a self-consistent field
(SCF) algorithm.

The design of more efficient methods, in particular for very large molecular
systems, is still an active field of research.
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17

Let us denote by /(D) = h + G(D) the Fock matrix, i.e. the gradient of

Npx N,
when Ry,

E(D)=Tr(hD)+ %Tr(G(D)D),

is endowed with the Frobenius inner product'

(D, D)y = Te(D'D') = Tr(DD') = Z D,,D,
pr=1
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Let us denote by /(D) = h + G(D) the Fock matrix, i.e. the gradient of
1
E(D)=Tr(hD)+ §Tr(G(D)D),

when R.. " is endowed with the Frobenius inner product:

(D, D)y = Te(D'D') = Tr(DD') = Z D,,D,
pr=1

Necessary conditions for D being a minimizer of the HF energy

( N
D=>Y o]
1=1
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Lemma. Let H € Rg%( Y pe a symmetric matrix such that ¢y < ey,

where ¢; is the j th ejigenvalue of  counting multiplicities.
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Lemma. Let H € Rg’}ﬁf Y pe a symmetric matrix such that ¢y < ey,
where ¢; is the j th ejigenvalue of  counting multiplicities.

Then, the solution D to the following problem
( N
D=> o]
i=1

H(I)Z :52'(1)2'

N\

TP, = 6,

L €1 < &g < --- < ey are the lowest |V eigenvalues of /1

is unique and it holds

D — ]l(—m,gF](H)

where ¢ is any number in the open interval (¢, cxn.1).
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Lemma. Let H € Rg’}ﬁf Y pe a symmetric matrix such that ¢y < ey,
where ¢; is the j th ejigenvalue of  counting multiplicities.

Then, the solution D to the following problem
( N
D=> o]
i=1

H(I)Z :52'(1)2'

N\

TP, = 6,

L €1 < &g < --- < ey are the lowest |V eigenvalues of /1

is unique and it holds

D — ]l(—m,gF](H)

where ¢ is any number in the open interval (¢, cxn.1).

In addition,

D = argmin {Tr(HD"), D' € P}
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19

Roothaan algorithm

/

k1 ,
F(Dk>q)2 +1 _ 8£§+1 CI)Zk+1

k1 Tkt _
{ it <ebtl <... < it are the lowest N eigenvalues of F(D")

N
E k+1xk+17T

1=1

\
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19

Roothaan algorithm

/

\

41 k41 k41
F(Dk>q)z' =g @
1l Taktl _ s
P CIDj = 0i;

el < eyt < ... < e are the lowest N eigenvalues of F'(D")

N
§ k+1xk+17T

1=1

D;..; € argmin {Tr(F(D,)D"), D' € P}
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Roothaan algorithm

p

\

1 _ k] gkt
F(Dp)®; " =g ;"

E+1T Fgk+1 _
el < eyt < ... < e are the lowest N eigenvalues of F'(D")

N
E k+1xk+17T

1=1

Theorem (E.C. & Le Bris ’00, Levitt *12). U.s.t.a., the sequence (D) gen-
erated by the Roothaan algorithm satisfies one of the following properties:

e either (D) converges towards an Aufbau solution to the HF equations;

e or (D) oscillates between two states, none of them being an Aufbau so-
lution to the HF equations.
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Idea of the proof. The sequence (D;).cn generated by the Roothaan algo-
rithm coincides with the sequence (D}),cy obtained by minimizing

E(D,D") =Tr(hD) + Tr(hD') + Tr(G(D)D'),

on P x P starting from D:®! = D, using the relaxation algorithm
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Idea of the proof. The sequence (D;).cn generated by the Roothaan algo-
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— Dla
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It follows that the sequence (Do, Doy 11)ren converges to a local minimizer
(Devens Doaa) of £E(D, D"y on P x P

Case Deven — Dodd Case Deven # Dodd
D,l\ D=1D D/“ D =D
(Do, D1) |
(D2, D1)
(D2, Ds)
| S — ; D
(D2, Ds)
The Roothaan alg. converges The Roothaan alg. oscillates between

two states: charge sloshing phenomenon
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Ground state calculations of atoms with the Roothaan algorithm

Basis = 3-21G Basis = 6-311++G(3df,3pd)

e
. Convergence to the ground state g Convergence to another solution to the HF equations

. Oscillation D Not available
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Calculations performed with the DIIS algorithm (Pulay 1982, default algo-
rithm in most quantum chemistry codes until 2000)

System

Energy of D' (Ha)

Energy at convergence (Ha)

CH;-NH-CH=CH-NO, -374.0038 -375.3869
6-31G -322.2373 Does not CV
Cr, -2069.5400 -2085.5449
6-31G -2051.4339 -2085.4042
[Fe(H,0)5)*" -1700.7596 -1717.8928
178 AO -1538.7283 -1717.7355
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Relaxed Constrained Algorithm (EC, Le Bris, 2000)

Replace the Hartree-Fock problem
inf{E(D), D € P} (1)

P ={DeR"™ D'"=D, Tr(D)= N, D*= D}

ut {E(D), D e P} @
P={DeR¥N DI =D T(D)=N, D*< D}

Fundamental property : (1) and (2) have the same local minima
(discrete counterpart of Lieb’s variational principle, Lieb ’81).

What is gained : the set P is convex
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Proof. Assume that D is a minimizer of £ on P that does not verify the
constraint D? = D.

The optimality conditions lead to
D=> &0+ ) njo;0f  with0<n; <1.
Ei<EfR Ej=EF

Let ® and ¢’ two partially occupied orbitals (0 < n,n’ < 1).
By transfering 0 < én < 1 electron from ¢ to ¢’, one obtains

~

E%:E+ﬁn(@dT—®@ﬂ c P
and

NE = B(B) - B(B) = / () 9) — o S
R3 JR3

v — 1|

where ¢(r) Z ;. x,u(r) and ¢'(r) Z (DMXM
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Optimal Damping Algorithm (ODA)

Di 1

“Optimal step gradient” :

1. Calculation of a descent direction d = D"t — D* where

d ~ -~ ~
Dy = arginf {ﬁE (Dk +t(D — Dk))

,ﬁeﬁ};

t=0
2. Line search: set 5k+1 = arginf{E(ﬁ), Dc Seg[ﬁk, Dk+1]} where
Seg[ﬁk, Dk—|—1] —= {(1 — t)ﬁk + >‘Dk—|—17 t € [O, 1]} .

Since E(D) is a second-degree polynomial in D, E((1 — t)Dj, + ADj. ) is
a second-degree polynomial in ¢: the line search pb can be easily solved.
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ODA steepest descent calculation

d ~ o~ -
Dj,1 = arginf { —F (Dk + A(D — Dk)ﬂ , DeP
d A=0

= arginf{Tr(F(ﬁk)D), D e 77}

i

N
_ k+1 xk+17T
Dyy =3 0k 1)
=l
k+1 _ _k+1 xk+1

k1 Tak+1 _ 5
PEFLTPhHL = 5,

\ eitl <ebtl < ... < 4t are the lowest IV eigenvalues of F(Ek)
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Comparison between DIIS (defaut algorithm in Gaussian 98) and ODA.

System E™MY(Dy) | DIIS (Ha) | ODA (Ha) | AE (kcal/mol)
CH;-NH-CH=CH-NO, | -374.0038 -375.3869 -375.3869 0
6-31G -322.2373 | Does not CV | -375.3869 -
Cr, -2069.5400 | -2085.5449 | -2085.8060 163.71
6-31G -2051.4339 | -2085.4042 | -2085.8060 251.93
[Fe(HzO)G]QJr -1700.7596 | -1717.8928 | -1718.0151 76.68
178 AO -1538.7283 | -1717.7355 | -1718.0151 175.31
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DIIS (Pulay, 1981) vs EDIIS (EC, Kudin, Scuseria, 2002)

e DIIS (Direct Inversion in the Iterative Space)

( Dy = arginf{Tr(F(ﬁk)D), D e 77}
! k+1 k+1 2 g+
Diy=Y ™D;, (") =argmin < |> ¢[F(D),D]|| ., ) a=1
i=0 i=0 i=0
\
e EDIIS (Energy DIIS)

( Dy = arginf{Tr(F(lA)/k)D)7 D e 73}

k41 k+1
Dk—l—l argmin{E(D), D:ZCiDi7 OSCZ < 1, ZCZ': 1}
1=0 i=0

\

The default algorithm is Gaussian consists in first iterating with EDIIS,
and switching to DIIS when some convergence criterion is met.



Appendix: Constrained optimization and Lagrange multipliers

For brevity, we will limit ourselves to the setting of real Hilbert spaces.

All the results presented here can be extended to complex Hilbert spaces.
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Definition (derivative of a function at a point). Let V', I/ be Hilbert spaces,
F .V —W,and v € V. The function F'is called differentiable at v, if there
exists a continuous linear map d,F' : V' — W such that in the vicinity of v,

F(v+h)=F(v)+d,F(h)+o(h),
which means
Ve >0, In>0st. Vh € Vsit. ||blly <n, ||Fv+h)—F(v)—d,F(h)|w < el|h|v.

If such a linear map d, [’ exists, it is unique. It is called the derivative of F' at v.

Definition (differentiable and C' functions). F is called differentiable if F
is differentiable at each point of /. In this case, the mapping
di -V — B(V; W)
v — d,F

is called the derivative of F'. F'is called of class C'' on V if dF is continuous.
Remark. One can similarly define the derivative of a function F' : U — W,

where U is an open subset of V' (that is U = V' \ F, where F' is a closed
subset of V).
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Theorem (Riesz). Let IV be a Hilbert space and [ : V' — R a continuous
linear map. Then there exists a unique vector w € V' such that

YoeV, lv)=(w,v)y.

Definition (gradient). Let VV be a Hilbert space endowed with the inner
product (-, )y, U an open subset of VV and £ : U — R a function differen-
tiable at v € U.

The unique vector of 1 denoted by V E/(v) and defined by
Vh eV, d,E(h) = (VE(),h)y (by means of Riesz theorem)
is called the gradient of £ at v.
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Gradient of a function £ : RY — R

The above abstract definition of the gradient agrees with the usual one
when VV = R? endowed with the Euclidean inner product:

vh € R, FE(x+h)= E(X)-l—z 8E(X) hi+o(h) = E(x)+VE(x)-h+o(h)

ox;
(60

with VE(x) =
9
\ 5, /

If R? is endowed with the inner product (x,y)s := x! Sy, where S ¢ R4
is a positive definite symmetric matrix, then the gradient of £/, which we
will denote by V¢ F/(x), is related to the Euclidean gradient V £ (x) by

VsE(x) = ST'VE(x).
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Geometric interpretation of the gradient

Let E:V — Rofclass C',v € Vand a = E(v). If VE(v) # 0, then

e in the vicinity of v, the level set
Co ={weV| Fw)=a}
is a C'! hypersurface (a codimension 1 C'! manifold);

e the vector V E/(v) is orthogonal to the affine hyperplane tangent to C,, at
v and points toward the steepest ascent direction.
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Equality constrained optimization. Let VV and 1V be Hilbert spaces s.t.
dim(W) < oo, E : V —R,g : V — W. Consider the optimization problem

in}f{ E(v) where K={veV|gv) =0}.
ve

Definition (qualification of the constraints). The equality constraints g = 0
are called qualified at v € K if d,g : V — W is surjective (i.e. Ran(d,g) = W).

Theorem (Euler-Lagrange theorem). Let © € K be a local minimum of £ on
K={veV]|g) =0}.

Assume that

1. E is differentiable at v and ¢ is C' in the vicinity of u;

2. the equality constraint g(v) = 0 is qualified at w.

Then, there exists a unique \ € I such that
Vh eV, d,E(h) = (\,dyg(h))w orequivalently VE(u)=d,g"(\),

where d,g" is the adjoint of d,g. A is called the Lagrange multiplier of the
constraint g = (.
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Euler-Lagrange equations

Assume that the constraints are qualified at any point of /A. Then solving

seek (u, \) € V x W such that
VE(u) = dug*(A) =0 (3)
g(u) =0

allows one to find all the critical points (among which the local minimizers
and the local maximizers) of £ on X.

The solutions of the Euler-Lagrange equations (3) are called the critical
points of £/ on K.

Remark : if dim(V) = d < oo and dim(W) = m < oo, then the above
problem consists of (d +m) scalar equations with (d + m) scalar unknowns.

Remark. Equations (3) are equivalent to seeking (u, \) € VV x W such that

L L
g—v(u’ A) =0, g—u(u, A) =0, where L(v,u):=FEw)—(u gw))w (Lagrangian).
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Very important take-home messages

A mathematical theorem consists of
e a list of assumptions;

¢ one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!
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Example: d = 1, m = 1, E(z) = z, g(z) = z°. Then
K={xeR|g(x)=0}={0} and q'(0) =0.

The constraint ¢ = 0 is therefore not qualified, and this is the reason why
the Lagragian method fails!
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Very important take-home messages

A mathematical theorem consists of
e a list of assumptions;

¢ one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!

Example: d = 1, m = 1, E(z) = z, g(z) = z°. Then
K={xeR|g(x)=0}={0} and q'(0) =0.

The constraint ¢ = 0 is therefore not qualified, and this is the reason why
the Lagragian method fails!

Be all the more careful that
not every ''reasonable'' mathematical statement is true!

Example: let 7/ be a Hilbert space. A continuous function £ : H — R
going to +oo at infinity does not necessarily have a minimizer.
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A simple 2D example (V' = R?, W = R)

On K = g 1(0) = {v € V| g(v) = 0}, the function £ possesses
¢ two local minimizers, all global
e two local maximizers, among which the global maximizer

e one critical point which is neither a local minimizer not a local maxi-
mizer.
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Sketch of the proof

e Let u be a local minimizer of £ on K = g }(0) = {v € V| g(v) = 0} and
a= E(u).

o If the constraint ¢ = 0 is qualified at u (i.e. if d,g : H — I is surjective),
then, in the vicinity of u, K is a C' manifold with tangent space

T.K ={h e H|d,g(h) =0} =Ker(d,g).

e Since « is a minimizer of £ on K, the vector V F/(u) must be orthogonal
to 7, K. Indeed, for any 1 € T, K, there existsa C'' curve ¢ : [—1,1] — V
drawn on K such that ¢(0) = u et ¢'(0) = h, and we have

0 < E(6(t) — E(u) = E(u+th+o(t)) — E(u) = tVE(u) - h+ oft).

e We have
VE(u) € (T,K)" = (Ker(d,g))" = Ran(d,g*) = Ran(d,g") since dim(WW) < oo.

e Therefore, there exists A € W such that VE(u) = d,g*(\).
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Remark: a Lagrange multiplier often has a "'physical’’ interpretation

o statistical mechanics, the equilibrium state of a chemical system inter-
acting with its environment is obtained by maximizing the entropy un-
der the constraints that the energy, the volume and the concentration of
chemical species are given on average:

— the Lagrange multipliers are respectively 1/7', P/T and p;/T
(1': temperature, P: pressure, ., chemical potential of species 7)

e fluid mechanics, the admissible dynamics of an incompressible fluid are
the critical points of the action under the constraint that the density of
the fluid remains constant (div (u) = 0)

— the Lagrange multiplier of the incompressibility constraint is the
pressure field.
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Analytical derivatives

vx € R, W(x)=inf{E(x,v), v €V, g(x,v) =0} 4)
with F:RxV =R, g:RxV =W, V, W Hilbert spaces, dim(1/) < oc.

Assume (4) has a unique minimizer v(x) and x — v(x) is regular. Then,

oW ok ok Ov
W) = Bxo0) = 500 = Sk, 060) + o v) (5o09)

ox,v() =0 = 2 x) + 2 v (oo ) =

Euler-Lagrange equation: Vh €V, %—S(X,v(x)) (h) = (gg (x,v(x))(h), )\(x))

.
Therefore %Z(@ - gi (x, v(x)) — (gi (X,v<x>>,x<x>)

44



