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1 - Mathematical derivation and properties of the HF model

Schrodinger

electronic 

 

 

Wavefunction methods 

Density functional theory

(DFT)

Thomas−Fermi (orbital free) : TF, TFW, ...

Kohn−Sham : Hartree, X   , LDA, GGA, ... α

Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 

equation 

Here the functions of L2(R3), H1(R3), H2(R3) are supposed real-valued.
This is legitimate in the absence of external magnetic field or spin-orbit
coupling and significantly simplifies the formalism and the numerical methods.
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Electronic problem for a given nuclear configuration {Rk}1≤k≤M

Ex: water molecule H2O
M = 3, N = 10, z1 = 8, z2 = 1, z3 = 1

V ne(r) = −
M∑
k=1

zk
|r−Rk|

−1

2

N∑
i=1

∆ri +

N∑
i=1

V ne(ri) +
∑

1≤i<j≤N

1

|ri − rj|

Ψ(r1, · · · , rN) = E Ψ(r1, · · · , rN)

|Ψ(r1, · · · , rN)|2 probability density of observing electron 1 at r1, electron 2 at r2, ...

Ψ ∈ HN =

N∧
H1, H1 = L2(R3,C)

Theorem (Kato ’51). The operatorHN := −1

2

N∑
i=1

∆ri+

N∑
i=1

V ne(ri)+
∑

1≤i<j≤N

1

|ri − rj|
with domain D(HN) := HN ∩H2(R3N ,C) is self-adjoint onHN .
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Theorem (spectrum of HN).

1. HVZ theorem (Hunziger ’66, van Winten ’60, Zhislin ’60)

σc(HN) = [ΣN ,+∞) with ΣN = minσ(HN−1) ≤ 0 and ΣN < 0 iff N ≥ 2.

2. Bound states of neutral molecules and positive ions (Zhislin ’61)

If N ≤ Z :=

M∑
k=1

zk, then HN has an infinite number of bound states.

Continuous spectrum
N

Ε
0

Excited states

N
Σ

Ground state

3. Bound states of negative ions (Yafaev ’72)
If N ≥ Z + 1, then HN has at most a finite number of bound states.



1 - Mathematical derivation and properties of the HF model 6
.

Variational expression of the ground state energy

E0 = inf {〈ψ|HN |ψ〉, ψ ∈ WN} WN =

{
ψ ∈

N∧
L2(R3) ∩H1(R3N), ‖ψ‖L2 = 1

}
.
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Variational expression of the ground state energy

E0 = inf {〈ψ|HN |ψ〉, ψ ∈ WN} WN =

{
ψ ∈

N∧
L2(R3) ∩H1(R3N), ‖ψ‖L2 = 1

}
.

The Hartree-Fock approximation is variational. It consists in minimizing
the exact energy functional 〈ψ|HN |ψ〉 on the subset ofWN defined as

{
ψΦ = φ1 ∧ · · · ∧ φN , Φ = (φ1, · · · , φN) ∈ (H1(R3))N ,

ˆ
R3
φiφj = δij

}

ψΦ(r1, · · · , rN)
def
=

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) · · · φ1(rN)
φ2(r1) φ2(r2) · · · φ2(rN)
· · ·
· · ·
· · ·

φN(r1) φN(r2) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(Slater determinant)
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Molecular orbital formulation of the Hartree-Fock model

E0 ≤ EHF
0 = inf

{
EHF(Φ), Φ = (φ1, · · · , φN) ∈ (H1(R3))N ,

ˆ
R3
φiφj = δij

}

EHF(Φ) =
1

2

N∑
i=1

ˆ
R3
|∇φi|2 +

ˆ
R3
ρΦV

ne

+
1

2

ˆ
R3

ˆ
R3

ρΦ(r) ρΦ(r′)

|r− r′|
dr dr′︸ ︷︷ ︸

Coulomb term

− 1

2

ˆ
R3

ˆ
R3

|γΦ(r, r′)|2

|r− r′|
dr dr′︸ ︷︷ ︸

exchange term

V ne(r) = −
M∑
k=1

zk
|r−Rk|

, γΦ(r, r′) =

N∑
i=1

φi(r)φi(r
′), ρΦ(r) =

N∑
i=1

|φi(r)|2.
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Molecular orbital formulation of the Hartree-Fock model

E0 ≤ EHF
0 = inf

{
EHF(Φ), Φ = (φ1, · · · , φN) ∈ (H1(R3))N ,

ˆ
R3
φiφj = δij

}

EHF(Φ) =
1

2

N∑
i=1

ˆ
R3
|∇φi|2 +

ˆ
R3
ρΦV

ne

+
1

2

ˆ
R3

ˆ
R3

ρΦ(r) ρΦ(r′)

|r− r′|
dr dr′︸ ︷︷ ︸

Coulomb term

− 1

2

ˆ
R3

ˆ
R3

|γΦ(r, r′)|2

|r− r′|
dr dr′︸ ︷︷ ︸

exchange term

V ne(r) = −
M∑
k=1

zk
|r−Rk|

, γΦ(r, r′) =

N∑
i=1

φi(r)φi(r
′), ρΦ(r) =

N∑
i=1

|φi(r)|2.

Invariance property: if Φ ∈ (H1(R3))N satisfies the L2-orthonormality con-
straints, then so does ΦU for all U ∈ O(N) (i.e. U ∈ RN×N , UTU = IN), and

ψΦU = det(U)ψΦ, γΦU = γΦ, ρΦU = ρΦ, E(ΦU) = E(Φ).
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Theorem. Assume that N ≤ Z :=
∑M

k=1 zk (neutral or positively charged
molecular system). Then

1. the HF model has a ground state Φ0 = (φ0
1, · · · , φ0

N) (Lieb & Simon ’77);



1 - Mathematical derivation and properties of the HF model 8
.

Theorem. Assume that N ≤ Z :=
∑M

k=1 zk (neutral or positively charged
molecular system). Then

1. the HF model has a ground state Φ0 = (φ0
1, · · · , φ0

N) (Lieb & Simon ’77);

2. Euler-Lagrange equations: there exists λ ∈ RN×N symmetric such that



Φ0 = (φ0
1, · · · , φ0

N) ∈ (H1(R3))N

−1

2
∆φ0

i + V neφ0
i +
(
ρΦ0 ? | · |−1

)
φ0
i −
ˆ
R3

γΦ0(·, r′)
| · −r′|

φ0
i (r
′) dr′ =

∑
j=1

λijφ
0
j

ˆ
R3
φ0
iφ

0
j = δij;
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Theorem. Assume that N ≤ Z :=
∑M

k=1 zk (neutral or positively charged
molecular system). Then

1. the HF model has a ground state Φ0 = (φ0
1, · · · , φ0

N) (Lieb & Simon ’77);

2. Euler-Lagrange equations: there exists λ ∈ RN×N symmetric such that



Φ0 = (φ0
1, · · · , φ0

N) ∈ (H1(R3))N

−1

2
∆φ0

i + V neφ0
i +
(
ρΦ0 ? | · |−1

)
φ0
i −
ˆ
R3

γΦ0(·, r′)
| · −r′|

φ0
i (r
′) dr′ =

∑
j=1

λijφ
0
j

ˆ
R3
φ0
iφ

0
j = δij;

3. Elliptic regularity: φ0
i ∈ H2(R3) ∩ C∞(R3 \ {Rk});
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Theorem (continued).

4. Fock operator:

FΦ0 := −1

2
∆+V ne+ρΦ0?|·|−1+KΦ0 where (KΦ0φ)(r) = −

ˆ
R3

γΦ0(r, r′)

|r− r′|
φ(r′) dr′

is a self-adjoint operator on L2(R3) with domain H2(R3). It is bounded
below and σess(H0) = [0,+∞);
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Theorem (continued).

4. Fock operator:

FΦ0 := −1

2
∆+V ne+ρΦ0?|·|−1+KΦ0 where (KΦ0φ)(r) = −

ˆ
R3

γΦ0(r, r′)

|r− r′|
φ(r′) dr′

is a self-adjoint operator on L2(R3) with domain H2(R3). It is bounded
below and σess(H0) = [0,+∞);

5. Hartree-Fock equations: up to replacing Φ0 by Φ0U for some U ∈ O(N),
it holds

FΦ0φ0
i = εiφ

0
i ,

ˆ
R3
φ0
iφ

0
j = δij, ε1 ≤ · · · ≤ εN < 0;
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Theorem (continued).

4. Fock operator:

FΦ0 := −1

2
∆+V ne+ρΦ0?|·|−1+KΦ0 where (KΦ0φ)(r) = −

ˆ
R3

γΦ0(r, r′)

|r− r′|
φ(r′) dr′

is a self-adjoint operator on L2(R3) with domain H2(R3). It is bounded
below and σess(H0) = [0,+∞);

5. Hartree-Fock equations: up to replacing Φ0 by Φ0U for some U ∈ O(N),
it holds

FΦ0φ0
i = εiφ

0
i ,

ˆ
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φ0
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0
j = δij, ε1 ≤ · · · ≤ εN < 0;

6. Aufbau principle: ε1≤ε2≤· · ·≤εN are the lowest N eigenvalues of FΦ0;
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Theorem (continued).

4. Fock operator:

FΦ0 := −1

2
∆+V ne+ρΦ0?|·|−1+KΦ0 where (KΦ0φ)(r) = −

ˆ
R3

γΦ0(r, r′)

|r− r′|
φ(r′) dr′

is a self-adjoint operator on L2(R3) with domain H2(R3). It is bounded
below and σess(H0) = [0,+∞);

5. Hartree-Fock equations: up to replacing Φ0 by Φ0U for some U ∈ O(N),
it holds

FΦ0φ0
i = εiφ

0
i ,

ˆ
R3
φ0
iφ

0
j = δij, ε1 ≤ · · · ≤ εN < 0;

6. Aufbau principle: ε1≤ε2≤· · ·≤εN are the lowest N eigenvalues of FΦ0;

7. No unfilled-shell property (Bach, Lieb, Loss, Solovej ’94): εN < εN+1

where εN+1 is the (N + 1)st eigenvalue of FΦ0 (counting multiplicities) if
FΦ0 has at least (N + 1) negative eigenvalues and 0 otherwise.
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Galerkin Approximation

X = Span(χ1, · · · , χNb) subspace of H1(R3) of finite dimension Nb.

E0 ≤ EHF
0 ≤ EHF

0,X = inf

{
EHF(Φ),Φ = (φ1, · · · , φN) ∈ XN ,

ˆ
R3
φiφj = δij

}

Φ = (φ1, · · · , φN) ∈ XN ⇒ φi(r) =

Nb∑
µ=1

Cµiχµ(r)
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Discretized formulation of the Hartree-Fock model

EHF
0,X = inf

{
E(CCT ), C ∈ RNb×N , CTSC = IN

}
E(D) = Tr(hD)+

1

2
Tr(G(D)D), [G(D)]µν =

∑
κλ

[(µν|κλ)− (µλ|κν)] Dκλ

Electronic integrals

• Overlap matrix: Sµν =

ˆ
R3
χµχν

• Core Hamiltonian matrix: hµν =
1

2

ˆ
R3
∇χµ·∇χν−

M∑
k=1

zk

ˆ
R3

χµ(r)χν(r)

|r−Rk|
dr

• Two-electron integrals: (µν|κλ) =

ˆ
R3

ˆ
R3

χµ(r)χν(r)χκ(r
′)χλ(r

′)

|r− r′|
dr dr′

Important property: for all D,D′ ∈ RNb×Nb
sym , Tr(G(D)D′) = Tr(G(D′)D).
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For simplicity, we assume from now on that the basis {χµ}1≤µ≤Nb
is or-

thonormal. One can always get back to this case by the following changes
of variables:

C̃ = S1/2C, D̃ = C̃C̃T = S1/2CCTS1/2 = S1/2DS1/2.
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For simplicity, we assume from now on that the basis {χµ}1≤µ≤Nb
is or-

thonormal. One can always get back to this case by the following changes
of variables:

C̃ = S1/2C, D̃ = C̃C̃T = S1/2CCTS1/2 = S1/2DS1/2.

Molecular orbital formulation of the HF problem

EHF
0,X = inf

{
E(CCT ), C ∈ C

}

C =
{
C ∈ RNb×N , CT C = IN

}
(Stiefel manifold)

E(D) = Tr(hD) +
1

2
Tr(G(D)D)

↑ ↑
linear quadratic
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Density matrix formulation of the HF problem

When C varies in the set C =
{
C ∈ RNb×N , CT C = IN

}
, D = CCT spans

P =
{
D ∈ RNb×Nb, D = DT , Tr(D) = N, D2 = D

}
=
{

rank-N orthogonal projectors of RNb×Nb
}

(Grassmann manifold)



2 - Galerkin approximation of the HF model 14
.

Density matrix formulation of the HF problem

When C varies in the set C =
{
C ∈ RNb×N , CT C = IN

}
, D = CCT spans

P =
{
D ∈ RNb×Nb, D = DT , Tr(D) = N, D2 = D

}
=
{

rank-N orthogonal projectors of RNb×Nb
}

(Grassmann manifold)

Therefore,
EHF

0,X = inf {E(D), D ∈ P} ,

E(D) = Tr(hD) +
1

2
Tr(G(D)D)

↑ ↑
linear quadratic
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Discretized Hartree-Fock equations
D = CCT , F = h + G(D)

FΦi = εiΦi, ε1 ≤ · · · ≤ εN lowest N eigenvalues of F

C = (Φ1 · · ·ΦN) , ΦT
i Φj = δij

D ∈ RNb×Nb
sym , F ∈ RNb×Nb

sym , Φi ∈ RNb, C ∈ RNb×N



2 - Galerkin approximation of the HF model 15
.

Discretized Hartree-Fock equations
D = CCT , F = h + G(D)

FΦi = εiΦi, ε1 ≤ · · · ≤ εN lowest N eigenvalues of F

C = (Φ1 · · ·ΦN) , ΦT
i Φj = δij

D ∈ RNb×Nb
sym , F ∈ RNb×Nb

sym , Φi ∈ RNb, C ∈ RNb×N

Solutions to the discretized Hartree-Fock problem can be obtained
• either by solving a constrained optimization problem (on a Stiefel or a

Grassmann manifold);
• or by solving the above equations by means of a self-consistent field

(SCF) algorithm.

The design of more efficient methods, in particular for very large molecular
systems, is still an active field of research.
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Let us denote by F (D) = h + G(D) the Fock matrix, i.e. the gradient of

E(D) = Tr(hD) +
1

2
Tr(G(D)D),

when RNb×Nb
sym is endowed with the Frobenius inner product:

(D,D′)F = Tr(DTD′) = Tr(DD′) =

Nb∑
µν=1

DµνD
′
µν.
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Let us denote by F (D) = h + G(D) the Fock matrix, i.e. the gradient of

E(D) = Tr(hD) +
1

2
Tr(G(D)D),

when RNb×Nb
sym is endowed with the Frobenius inner product:

(D,D′)F = Tr(DTD′) = Tr(DD′) =

Nb∑
µν=1

DµνD
′
µν.

Necessary conditions for D being a minimizer of the HF energy

D =

N∑
i=1

ΦiΦ
T
i

F (D)Φi = εi Φi

ΦT
i Φj = δij

ε1 ≤ ε2 ≤ · · · ≤ εN are the lowest N eigenvalues of F (D)
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Lemma. Let H ∈ RNb×Nb
sym be a symmetric matrix such that εN < εN+1,

where εj is the jth eigenvalue of H counting multiplicities.
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Lemma. Let H ∈ RNb×Nb
sym be a symmetric matrix such that εN < εN+1,

where εj is the jth eigenvalue of H counting multiplicities.

Then, the solution D to the following problem

D =

N∑
i=1

ΦiΦ
T
i

HΦi = εi Φi

ΦT
i Φj = δij

ε1 ≤ ε2 ≤ · · · ≤ εN are the lowest N eigenvalues of H
is unique and it holds

D = 1(−∞,εF](H)

where εF is any number in the open interval (εN , εN+1).



3 - SCF algorithms 18
.

Lemma. Let H ∈ RNb×Nb
sym be a symmetric matrix such that εN < εN+1,

where εj is the jth eigenvalue of H counting multiplicities.

Then, the solution D to the following problem

D =

N∑
i=1

ΦiΦ
T
i

HΦi = εi Φi

ΦT
i Φj = δij

ε1 ≤ ε2 ≤ · · · ≤ εN are the lowest N eigenvalues of H
is unique and it holds

D = 1(−∞,εF](H)

where εF is any number in the open interval (εN , εN+1).

In addition,
D = argmin {Tr(HD′), D′ ∈ P}
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Roothaan algorithm

F (Dk)Φ
k+1
i = εk+1

i Φk+1
i

Φk+1 T
i Φk+1

j = δij

εk+1
1 ≤ εk+1

2 ≤ · · · ≤ εk+1
N are the lowest N eigenvalues of F (Dk)

Dk+1 =

N∑
i=1

Φk+1
i Φk+1 T

i
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Roothaan algorithm

F (Dk)Φ
k+1
i = εk+1

i Φk+1
i

Φk+1 T
i Φk+1

j = δij

εk+1
1 ≤ εk+1

2 ≤ · · · ≤ εk+1
N are the lowest N eigenvalues of F (Dk)

Dk+1 =

N∑
i=1

Φk+1
i Φk+1 T

i

Dk+1 ∈ argmin {Tr(F (Dk)D
′), D′ ∈ P}
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Roothaan algorithm

F (Dk)Φ
k+1
i = εk+1

i Φk+1
i

Φk+1 T
i Φk+1

j = δij

εk+1
1 ≤ εk+1

2 ≤ · · · ≤ εk+1
N are the lowest N eigenvalues of F (Dk)

Dk+1 =

N∑
i=1

Φk+1
i Φk+1 T

i

Theorem (E.C. & Le Bris ’00, Levitt ’12). U.s.t.a., the sequence (Dk) gen-
erated by the Roothaan algorithm satisfies one of the following properties:

• either (Dk) converges towards an Aufbau solution to the HF equations;

• or (Dk) oscillates between two states, none of them being an Aufbau so-
lution to the HF equations.
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Idea of the proof. The sequence (Dk)k∈N generated by the Roothaan algo-
rithm coincides with the sequence (Drel

k )k∈N obtained by minimizing

E(D,D′) = Tr(hD) + Tr(hD′) + Tr(G(D)D′),

on P × P starting from Drel
0 = D0, using the relaxation algorithm
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Idea of the proof. The sequence (Dk)k∈N generated by the Roothaan algo-
rithm coincides with the sequence (Drel

k )k∈N obtained by minimizing

E(D,D′) = Tr(hD) + Tr(hD′) + Tr(G(D)D′),

on P × P starting from Drel
0 = D0, using the relaxation algorithm

Drel
1 = arg inf {E(D0, D), D ∈ P}

= arg inf {Tr(hD0) + Tr(hD) + Tr(G(D0)D), D ∈ P}
= arg inf {Tr(F (D0)D), D ∈ P}
= D1,

Drel
2 = arg inf {E(D,D1), D ∈ P}

= arg inf {E(D1, D), D ∈ P}
= arg inf {Tr(hD) + Tr(hD1) + Tr(G(D1)D), D ∈ P}
= arg inf {Tr(F (D1)D), D ∈ P}
= D2,



3 - SCF algorithms 20
.

Idea of the proof. The sequence (Dk)k∈N generated by the Roothaan algo-
rithm coincides with the sequence (Drel

k )k∈N obtained by minimizing

E(D,D′) = Tr(hD) + Tr(hD′) + Tr(G(D)D′),

on P × P starting from Drel
0 = D0, using the relaxation algorithm

Drel
1 = arg inf {E(D0, D), D ∈ P}

= arg inf {Tr(hD0) + Tr(hD) + Tr(G(D0)D), D ∈ P}
= arg inf {Tr(F (D0)D), D ∈ P}
= D1,

Drel
2 = arg inf {E(D,D1), D ∈ P}

= arg inf {E(D1, D), D ∈ P}
= arg inf {Tr(hD) + Tr(hD1) + Tr(G(D1)D), D ∈ P}
= arg inf {Tr(F (D1)D), D ∈ P}
= D2,

...
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It follows that the sequence (D2k, D2k+1)k∈N converges to a local minimizer
(Deven, Dodd) of E(D,D′) on P × P

Case Deven = Dodd Case Deven 6= Dodd

D

D′ D = D′

D
(D0, D1)

(D2, D1)

(D2, D3)

D′ D = D′

(D0, D1)
(D2, D1)

(D2, D3)

The Roothaan alg. converges The Roothaan alg. oscillates between
two states: charge sloshing phenomenon
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Ground state calculations of atoms with the Roothaan algorithm

H

Li  Be

He He

Mg

Ag  

H

Cr  Co  Ni  Ti  Sc  V  Fe  Cu  Zn    Ga  Ge  As Se Br  Mn  

NaMgNa P   S   Cl   Ar     Al  Si

K  Ca  Cr  Co  Ni  Ti  Sc  V  Fe  Cu  Zn    Ga  Ge  As Se Kr  Br  Mn  

Rb  Sr  Y  Zr  Nb  Tc  Ru  Rh  Pd  Cd  In  Sn  Sb  Te  Xe  I  Mo  

Li Be

Al  Si Cl   Ar     P  S   

B  C  N   O  F  Ne B  C  N   O  F Ne
Basis = 3−21G Basis = 6−311++G(3df,3pd) 

Oscillation

Convergence to the ground state

Not available

Convergence to another solution to the HF equations
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Calculations performed with the DIIS algorithm (Pulay 1982, default algo-
rithm in most quantum chemistry codes until 2000)

System Energy of D0 (Ha) Energy at convergence (Ha)

CH3-NH-CH=CH-NO2 -374.0038 -375.3869
6-31G -322.2373 Does not CV

Cr2 -2069.5400 -2085.5449
6-31G -2051.4339 -2085.4042

[Fe(H2O)6]2+ -1700.7596 -1717.8928
178 AO -1538.7283 -1717.7355
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Relaxed Constrained Algorithm (EC, Le Bris, 2000)

Replace the Hartree-Fock problem

inf {E(D), D ∈ P} (1)

P =
{
D ∈ RNb×Nb, DT = D, Tr(D) = N, D2 = D

}
by

inf
{
E(D), D ∈ P̃

}
(2)

P̃ =
{
D ∈ RNb×Nb, DT = D, Tr(D) = N, D2 ≤ D

}
Fundamental property : (1) and (2) have the same local minima
(discrete counterpart of Lieb’s variational principle, Lieb ’81).

What is gained : the set P̃ is convex
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Proof. Assume that D̃ is a minimizer of E on P̃ that does not verify the
constraint D̃2 = D̃.

The optimality conditions lead to

D̃ =
∑
εi<εF

ΦiΦ
T
i +

∑
εj=εF

njΦjΦ
T
j with 0 ≤ nj ≤ 1.

Let Φ and Φ′ two partially occupied orbitals (0 < n, n′ < 1).
By transfering 0 < δn� 1 electron from Φ to Φ′, one obtains

D̃′ = D̃ + δn
(

Φ′Φ
′T − ΦΦT

)
∈ P̃

and

∆E = E(D̃′)− E(D̃) = −δn
2

2

ˆ
R3

ˆ
R3

|φ(r)φ′(r′) − φ(r′)φ′(r)|2

|r− r′|
dr dr′ < 0,

where φ(r) =

Nb∑
µ=1

Φµχµ(r) and φ′(r) =

Nb∑
µ=1

Φ′µχµ(r).
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Optimal Damping Algorithm (ODA)

Dk+1

D̃k

D̃k+1

P̃

P

“Optimal step gradient” :
1. Calculation of a descent direction d = Dk+1 − D̃k where

Dk+1 = arginf
{
d

dλ
E
(
D̃k + t(D̃ − D̃k)

)∣∣∣
t=0

, D̃ ∈ P̃
}

;

2. Line search: set D̃k+1 = arginf
{
E(D̃), D̃ ∈ Seg[D̃k, Dk+1]

}
where

Seg[D̃k, Dk+1] =
{

(1− t)D̃k + λDk+1, t ∈ [0, 1]
}
.

Since E(D) is a second-degree polynomial in D, E((1− t)D̃k +λDk+1) is
a second-degree polynomial in t: the line search pb can be easily solved.
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ODA steepest descent calculation

Dk+1 = arginf
{
d

dλ
E
(
D̃k + λ(D̃ − D̃k)

)∣∣∣
λ=0

, D̃ ∈ P̃
}

= arginf
{

Tr(F (D̃k)D), D ∈ P
}



Dk+1 =

N∑
i=1

Φk+1
i Φk+1 T

i

F (D̃k)Φ
k+1
i = εk+1

i Φk+1
i

Φk+1 T
i Φk+1

j = δij

εk+1
1 ≤ εk+1

2 ≤ · · · ≤ εk+1
N are the lowest N eigenvalues of F (D̃k)
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Comparison between DIIS (defaut algorithm in Gaussian 98) and ODA.

System ERHF(D0) DIIS (Ha) ODA (Ha) ∆E (kcal/mol)

CH3-NH-CH=CH-NO2 -374.0038 -375.3869 -375.3869 0
6-31G -322.2373 Does not CV -375.3869 -

Cr2 -2069.5400 -2085.5449 -2085.8060 163.71
6-31G -2051.4339 -2085.4042 -2085.8060 251.93

[Fe(H2O)6]2+ -1700.7596 -1717.8928 -1718.0151 76.68
178 AO -1538.7283 -1717.7355 -1718.0151 175.31
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DIIS (Pulay, 1981) vs EDIIS (EC, Kudin, Scuseria, 2002)

• DIIS (Direct Inversion in the Iterative Space)


Dk+1 = arginf

{
Tr(F (D̃k)D), D ∈ P

}
D̃k+1 =

k+1∑
i=0

cDIIS
i Di, (cDIIS

i ) = argmin


∥∥∥∥∥
k+1∑
i=0

ci[F (Di), Di]

∥∥∥∥∥
2

,

k+1∑
i=0

ci = 1


• EDIIS (Energy DIIS)


Dk+1 = arginf

{
Tr(F (D̃k)D), D ∈ P

}
D̃k+1 = argmin

{
E(D̃), D̃ =

k+1∑
i=0

ciDi, 0 ≤ ci ≤ 1,

k+1∑
i=0

ci = 1

}

The default algorithm is Gaussian consists in first iterating with EDIIS,
and switching to DIIS when some convergence criterion is met.



Appendix: Constrained optimization and Lagrange multipliers

For brevity, we will limit ourselves to the setting of real Hilbert spaces.

All the results presented here can be extended to complex Hilbert spaces.



Appendix: Constrained optimization and Lagrange multipliers 31
.

Definition (derivative of a function at a point). Let V , W be Hilbert spaces,
F : V → W , and v ∈ V . The function F is called differentiable at v, if there
exists a continuous linear map dvF : V → W such that in the vicinity of v,

F (v + h) = F (v) + dvF (h) + o(h),

which means

∀ε > 0, ∃η > 0 s.t. ∀h ∈ V s.t. ‖h‖V ≤ η, ‖F (v+h)−F (v)−dvF (h)‖W ≤ ε‖h‖V .
If such a linear map dvF exists, it is unique. It is called the derivative of F at v.

Definition (differentiable and C1 functions). F is called differentiable if F
is differentiable at each point of V . In this case, the mapping

dF : V −→ B(V ;W )

v 7→ dvF

is called the derivative of F . F is called of class C1 on V if dF is continuous.

Remark. One can similarly define the derivative of a function F : U → W ,
where U is an open subset of V (that is U = V \ F , where F is a closed
subset of V ).
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Theorem (Riesz). Let V be a Hilbert space and l : V → R a continuous
linear map. Then there exists a unique vector w ∈ V such that

∀v ∈ V, l(v) = (w, v)V .

Definition (gradient). Let V be a Hilbert space endowed with the inner
product (·, ·)V , U an open subset of V and E : U → R a function differen-
tiable at v ∈ U .

The unique vector of V denoted by∇E(v) and defined by

∀h ∈ V, dvE(h) = (∇E(v), h)V (by means of Riesz theorem)

is called the gradient of E at v.
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Gradient of a function E : Rd → R

The above abstract definition of the gradient agrees with the usual one
when V = Rd endowed with the Euclidean inner product:

∀h ∈ Rd, E(x+h) = E(x)+

d∑
i=1

∂E

∂xi
(x)hi+o(h) = E(x)+∇E(x)·h+o(h)

with ∇E(x) =



∂E

∂x1
(x)

·
·
·

∂E

∂xd
(x)


.

If Rd is endowed with the inner product (x,y)S := xTSy, where S ∈ Rd×d

is a positive definite symmetric matrix, then the gradient of E, which we
will denote by∇SE(x), is related to the Euclidean gradient∇E(x) by

∇SE(x) = S−1∇E(x).
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Geometric interpretation of the gradient

Let E : V → R of class C1, v ∈ V and α = E(v). If ∇E(v) 6= 0, then
• in the vicinity of v, the level set

Cα := {w ∈ V | E(w) = α}
is a C1 hypersurface (a codimension 1 C1 manifold);
• the vector∇E(v) is orthogonal to the affine hyperplane tangent to Cα at
v and points toward the steepest ascent direction.
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Equality constrained optimization. Let V and W be Hilbert spaces s.t.
dim(W ) <∞,E : V → R, g : V → W . Consider the optimization problem

inf
v∈K

E(v) where K = {v ∈ V | g(v) = 0} .

Definition (qualification of the constraints). The equality constraints g = 0
are called qualified at u ∈ K if dug : V → W is surjective (i.e. Ran(dug) = W ).

Theorem (Euler-Lagrange theorem). Let u ∈ K be a local minimum of E on

K = {v ∈ V | g(v) = 0} .
Assume that
1. E is differentiable at u and g is C1 in the vicinity of u;
2. the equality constraint g(v) = 0 is qualified at u.

Then, there exists a unique λ ∈ W such that

∀h ∈ V, duE(h) = (λ, dug(h))W or equivalently ∇E(u) = dug
∗(λ),

where dug∗ is the adjoint of dug. λ is called the Lagrange multiplier of the
constraint g = 0.
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Euler-Lagrange equations

Assume that the constraints are qualified at any point of K. Then solving seek (u, λ) ∈ V ×W such that
∇E(u)− dug∗(λ) = 0
g(u) = 0

(3)

allows one to find all the critical points (among which the local minimizers
and the local maximizers) of E on K.

The solutions of the Euler-Lagrange equations (3) are called the critical
points of E on K.

Remark : if dim(V ) = d < ∞ and dim(W ) = m < ∞, then the above
problem consists of (d+m) scalar equations with (d+m) scalar unknowns.

Remark. Equations (3) are equivalent to seeking (u, λ) ∈ V ×W such that
∂L

∂v
(u, λ) = 0,

∂L

∂µ
(u, λ) = 0, where L(v, µ) := E(v)−(µ, g(v))W (Lagrangian).



Appendix: Constrained optimization and Lagrange multipliers 37
.

Very important take-home messages

A mathematical theorem consists of
• a list of assumptions;
• one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!
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Very important take-home messages

A mathematical theorem consists of
• a list of assumptions;
• one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!

Example: d = 1, m = 1, E(x) = x, g(x) = x2. Then

K = {x ∈ R | g(x) = 0} = {0} and g′(0) = 0.

The constraint g = 0 is therefore not qualified, and this is the reason why
the Lagragian method fails!
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Very important take-home messages

A mathematical theorem consists of
• a list of assumptions;
• one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!

Example: d = 1, m = 1, E(x) = x, g(x) = x2. Then

K = {x ∈ R | g(x) = 0} = {0} and g′(0) = 0.

The constraint g = 0 is therefore not qualified, and this is the reason why
the Lagragian method fails!

Be all the more careful that
not every "reasonable" mathematical statement is true!

Example: let H be a Hilbert space. A continuous function E : H → R
going to +∞ at infinity does not necessarily have a minimizer.
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A simple 2D example (V = R2, W = R)

g(u)

K

u

E(u)

On K = g−1(0) = {v ∈ V | g(v) = 0}, the function E possesses
• two local minimizers, all global
• two local maximizers, among which the global maximizer
• one critical point which is neither a local minimizer not a local maxi-

mizer.
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Sketch of the proof

• Let u be a local minimizer of E on K = g−1(0) = {v ∈ V | g(v) = 0} and
α = E(u).

• If the constraint g = 0 is qualified at u (i.e. if dug : H → K is surjective),
then, in the vicinity of u, K is a C1 manifold with tangent space

TuK = {h ∈ H | dug(h) = 0} = Ker(dug).

• Since u is a minimizer of E on K, the vector∇E(u) must be orthogonal
to TuK. Indeed, for any h ∈ TuK, there exists a C1 curve φ : [−1, 1]→ V
drawn on K such that φ(0) = u et φ′(0) = h, and we have

0 ≤ E(φ(t))− E(u) = E(u + th + o(t))− E(u) = t∇E(u) · h + o(t).

•We have

∇E(u) ∈ (TuK)⊥ = (Ker(dug))⊥ = Ran(dug∗) = Ran(dug
∗) since dim(W ) <∞.

• Therefore, there exists λ ∈ W such that∇E(u) = dug
∗(λ).
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Remark: a Lagrange multiplier often has a "physical" interpretation

• statistical mechanics, the equilibrium state of a chemical system inter-
acting with its environment is obtained by maximizing the entropy un-
der the constraints that the energy, the volume and the concentration of
chemical species are given on average:

→ the Lagrange multipliers are respectively 1/T , P/T and µi/T
(T : temperature, P : pressure, µi chemical potential of species i)

• fluid mechanics, the admissible dynamics of an incompressible fluid are
the critical points of the action under the constraint that the density of
the fluid remains constant (div (u) = 0)

→ the Lagrange multiplier of the incompressibility constraint is the
pressure field.
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Analytical derivatives

∀x ∈ Rd, W (x) = inf {E(x, v), v ∈ V, g(x, v) = 0} (4)

with E : R× V → R, g : R× V → W , V , W Hilbert spaces, dim(W ) <∞.

Assume (4) has a unique minimizer v(x) and x 7→ v(x) is regular. Then,

W (x) = E(x, v(x)) ⇒ ∂W

∂xi
(x) =

∂E

∂xi
(x, v(x)) +

∂E

∂v
(x, v(x))

(
∂v

∂xi
(x)

)
,

g(x, v(x)) = 0 ⇒ ∂g

∂xi
(x, v(x)) +

∂g

∂v
(x, v(x))

(
∂v

∂xi
(x)

)
= 0.

Euler-Lagrange equation: ∀h ∈ V, ∂E

∂v
(x, v(x)) (h) =

(
∂g

∂v
(x, v(x))(h), λ(x)

)
W

.

Therefore
∂W

∂xi
(x) =

∂E

∂xi
(x, v(x))−

(
∂g

∂xi
(x, v(x)), λ(x)

)
W

.


