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Overview

* Motivation
« Semidefinite programming
« Density matrix theory and semidefinite programming

« State-of-the-art solution methods in semidefinite
programming
 New approaches to solve large-scale systems
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Motivation

« Through Hartree Fock, DFT and so on,
an upper bound on the ground state
energy is provided

« Want to improve the credibility of
guantum chemical calculations

— Perform computations instead of
experiments

— Reduce risk of investment based on such
calculations to an acceptable level

Need to introduce a lower bound to estimate risk
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Semidefinite Programming (SDP)
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SDP Optimality Conditions (KKT)

KAZ’OX:bZ’, ViE{l,...,pm

p - Sufficient and necessary if the
S + Z y; A; = C, problem is convex and a Slater
i=1 condition holds
XeS =0, - Slater condition: there exists a
X =0, strictly feasible point

s=o Y
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SDP in Density Matrix Theory

* The problem of estimating the ground state energy can be written as an SDP
* Introducing reduced density matrices (RDM) gives a large-scale but practical problem

~

H - Hamiltonian
I’ - Density matrix
N - No. of electrons
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M. Fukuda, B. Braams, M. Nakata, M. Overton, J. Percus, M. Yamashita, and Z. Zhao, Mathematical Programming, vol. 109, pp. 553-580, 3 2007.



SDP in Density Matrix Theory
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SDP in Density Matrix Theory

« Known issues:

— Determine the N-representability conditions
* Only necessary conditions are known - relaxation

— Solving the problem: need a solver that can solve large-scale
problems to sufficient accuracy
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State-of-the-art SDP Solvers: Interior-Point Methods

« Primal-dual interior-point methods - procedure:

1. Generate an equation system from the optimality
conditions to determine a step direction

A, e (X+dX)=0b;, Viel{l,...,p}

p
S+dS+ ) (yi+dy)A; = C,
1=1

(X +dX)(S+dS) = ul

2. Compute step lengths such that X and S are still
positive semidefinite

3. Apply the step, and return to 1 if not optimal

P: minCeX i
Xpi1 = Xy + ade ~ 0, u Primal problem
Sit1 = Sk + aqdS = 0, st A;eX =0, Vie{l, ... ,p}
X = 0.
Yit+1 = Yk + aqdy. -
M. Yamashita, K. Fujisawa, and M. Kojima, Optimization Methods
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State-of-the-art SDP Solvers: Interior-Point Methods

+ Avoids singular points by following a feasible trajectory

+ Postitive semidefiniteness is maintained with a step length

= Acompletely dense matrix (Schur complement) must be generated
and factorized in each iteration

— More than 10k constraints = trouble

Ao (X+dX)=1b;, Vie{l,...,p}, i _
p

S+dS+ Y (v +dy)A; = C, = B-=

1=1 _bpl ce bpp_
(X + dX)(S +dS) = pl.

Completely dense
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Nonsmooth Analysis in SDP Solving

« An alternative method to provide the semidefiniteness property of the
variables

| X-0 | Axx)>0 | = | min{A(X)} >0 | Nonsmooth NL?

« Lexicographic derivatives

— Opens for automatic differentiation
— For PC1 functions, an element of the B- 30'8;
subdifferential is guaranteed s Ipf(0) = {~1,1}
— Nonsmooth equation solvers have shown to be 30.4: ’
efficient . of(0) =[-1,1]
aLf(X) af(X) 0+ —

X 4 0s ? o5 1
—— 0dpf(x)

Khan and Barton, Opt. Meth. & Soft. 30 (2015): 1185-1212, Khan and Barton, Journal Opt. Theory. Appl. 163 (2014): 355-386
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