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Overview

i) Coupled cluster struggles with strong correlated systems1

ii) Multi reference coupled cluster does not have a closed theory1

iii) Full-CI is a numerically expensive scheme2

iv) DMRG is an approximation to the FCI solution with a complexity
comparable to CCSDT2

Subsequently, we use the DMRG to approximate the FCI solution and
’tailor’ the single reference coupled-cluster method with this
approximation.3

1Lyakh, D. I., Musia l, M., Lotrich, V. F. and Bartlett, R. J. (2011). Multireference
nature of chemistry: The coupled-cluster view. Chemical reviews, 112(1), 182-243

2Szalay, S., Pfeffer, M., Murg, V., Barcza, G., Verstraete, F., Schneider, R., &
Legeza, Ö. (2015).Tensor product methods and entanglement optimization for ab initio
quantum chemistry. International Journal of Quantum Chemistry, 115(19), 1342-1391.

3Veis, L., Antalik, A., Brabec, J., Neese, F., Legeza, Ö., & Pittner, J. (2016).
Coupled cluster method with single and double excitations tailored by matrix product
state wave functions. The journal of physical chemistry letters, 7(20), 4072-4078.



Electronic Schrödinger Equation

Rayleigh-Ritz variational principle:

E0 = min
ψ 6= 0

ψ ∈ V

A(ψ,ψ)

〈ψ,ψ〉L2

and ψ0 = argmin
ψ 6= 0

ψ ∈ V

A(ψ,ψ)

〈ψ,ψ〉L2

, (1)

with

A(u, v) :=
1

2
〈∇u,∇v〉L2 + 〈V u, v〉L2

and

V := H1

((
R3 ×

{
±1

2

})N)
∩

N∧
i=1

L2

(
R3 ×

{
±1

2

})



Approximation of V

Spin orbitals: χi ∈ H1(R3 × {±1
2}), i ∈ {1, ...,K}

Slater determinants (SD):
φ[ν1, ..., νN ](x1, s1; ...;xN , sN ) = 1√

N !
det(χνi(xj , sj))

N
i,j=1

with ν1 ≤ ... ≤ νN
FCI space HK : liner hull of all possible SDs
Reference State: W.l.o.g. φ0 = φ[1, ..., N ]
Excitation operator: Xµ : HK → HK with µ =

(
A1,...,Ak
I1,...,Ik

)
, where

o(µ) = {I1, ..., Ik} ⊆ {1, ..., N} and v(µ) = {A1, ..., Ak} ⊆ {N + 1, ...,K}
holds. k is called excitation rank and J the set of all possible excitation
indices µ.
Wave characterization: Imposing 〈ψ, φ0〉L2 = 1

linear parametrization ψ = (I + S)φ0, with S =
∑

µ∈J cµXµ

exponential parametrization ψ = eTφ0, with T =
∑

µ∈J tµXµ



Externally Corrected Coupled Cluster

Appealing ansatz4:
We approximate the different correlations by different methods.

Choosing a small set of spin orbitals → static correlation

The rest of the spin orbital basis → dynamic correlation

4Kinoshita, T., Hino, O., and Bartlett, R. J. (2005). Coupled-cluster method tailored
by configuration interaction. The Journal of chemical physics, 123(7), 074106.



Splitting the Set of Spin Orbitals

Let {χ1, ..., χK} ⊆ H1(R3 × {±1
2}) be a set of L2(R3 × {±1

2})-
orthonormal spin orbitals with K > N and φ0 the considered reference
Slater determinant. We define

BCAS = {χ1, ..., χN︸ ︷︷ ︸
occupied

, χN+1, ..., χd︸ ︷︷ ︸
unoccupied

} ,

Bext = {χd+1, ..., χK︸ ︷︷ ︸
external

} ,
(2)

the basis sets of the complete active space part BCAS and of the external
space part Bext. Using BCAS we define HCAS .
Analogously, we split the set of excitation-indices J describing the set of
possible excitations. We define

JCAS := {µ ∈ J |Xµφ0 ∈ HCAS} (3)

and
Jext := {µ ∈ J |Xµφ0 /∈ HCAS} . (4)



TCC-Equations (Linked Formulation)

Given a DMRG solution φCAS = eT
CAS

φ0, the linked
DMRG-TCC-equations are:E

(TCC)
0 =

〈
φ0, e

−TCAS
e−T

ext
HeT

ext
eT

CAS
φ0

〉
0 =

〈
φµ, e

−TCAS
e−T

ext
HeT

ext
eT

CAS
φ0

〉
, µ ∈ Jext



TCC-Function

Let K, N ∈ N with K > N be fixed, B = {χ1, ..., χK} a set of
L2(R3 × {± 1

2})-orthonormal spin orbitals and φ0 a reference state for an
N -electron problem. Further, be BCAS and Bext a given partition of B and
φCAS the DMRG solution on HCAS . We define

f : R|Jext| → R|Jext|; t 7→ (fµ(t))µ∈Jext
, (5)

where

fµ(t) = 〈φµ, e−T
CAS

e−THeT eT
CAS

φ0〉L2 (6)

as the DMRG-TCC function. We call

Vext :=

{
t ∈ R|Jext| | 1 = 〈φ0, exp(

∑
ν∈Jext

tνXν)φCAS〉L2

}
(7)

the space of external cluster amplitudes. We further denote

Hext = {T φ0 | t ∈ Vext} the external space.



TCC-Equations (Linked Formulation) with TCC-Function

Using the DMRG-TCC function we can express the linked
DMRG-TCC-equations as

〈v, f(t)〉2 = 0 ,∀ v ∈ Vext . (8)



Local Version of Zarantonello’s theorem

Let f : X → X ′ be a map between a Hilbert space (X, 〈·, ·〉, ‖ · ‖) and its dual
X ′, and let x∗ ∈ Bδ be a root, f(x∗) = 0, where Bδ is an open ball of radius δ
around x∗.
Assume that f is Lipschitz continuous in Bδ, i.e., for all x1, x2 ∈ Bδ holds

‖f(x1)− f(x2)‖X′ ≤ L‖x1 − x2‖ (9)

for a constant L ≥ 0. Be further f locally strongly monotone in Bδ, i.e., for all
x1, x2 ∈ Bδ holds

〈f(x1)− f(x2), x1 − x2〉 ≥ γ‖x1 − x2‖2 (10)

for some constant γ > 0. Then holds

i) The root x∗ is unique in Bδ.

ii) Moreover, let Xd ⊂ X be a closed subspace such that x∗ can be
approximated sufficiently well, i.e. the distance d(x∗, Xd) is small. Then,
the projected problem fd(xd) = 0 has a unique solution xd ∈ Xd ∩Bδ, and

‖x∗ − xd‖ ≤
L

γ
d(x∗, Xd) . (11)



Problematic

Note: In the regime of DMRG-TCC we have almost degenerate
Eigenstates!

The assumption of a HOMO-LUMO gap, i.e., ε0 = λN+1 − λN > 0 is no
longer justified.

However, as we use a basis splitting ansatz the assumption of a CAS-ext
gap, i.e., ε0 = λd+1 − λN > 0 is reasonable.



Norm Estimates

Theorem

For t ∈ Vext there holds:‖t‖Vext ∼ ‖T extφCAS‖H1

Theorem

For t ∈ Vext there holds: ‖Tψ‖H1 ≤ C‖t‖Vext‖ψ‖H1 , ∀ψ ∈ HK .
Moreover: ‖T‖B(H1) ∼ ‖t‖Vext



Lipschitz Continuity

Theorem

The DMRG-TCC function is differentiable. Furthermore, the Fréchet
derivative is Lipschitz continuous as well as all higher derivatives. In
particular, for any neighborhood UR(0) ⊆ Vext with f : UR(0)→ Vext
there exists a Lipschitz constant L(R) such that

‖f(t)− f(t′)‖Vext ≤ L(R)‖t1 − t2‖Vext (12)

for ‖t1‖Vext , ‖t2‖Vext ≤ R.



Lipschitz Continuity (Proof)

The DMRG-TCC function’s derivative is

(f ′(t))µ,ν = 〈φµ, e−T [e−TCASHeTCAS , Xν ]eTφ0〉L2 .

For given s, u ∈ Vext

|〈f ′(t)s, u〉2| = |〈Uφ0, e−T [e−TCASHeTCAS , S]eTφ0〉L2 | ≤ C‖s‖Vext‖u‖Vext .

This shows the boundedness of f ′(t) : Vext → Vext. Hence, f is
differentiable for all t ∈ Vext. Using the mean value theorem we obtain

‖f(t2)− f(t1)‖Vext ≤ ‖f ′(ct1 + (1− c)t2)‖B(Vext)‖t1 − t2‖Vext ,

where t1, t2 ∈ Vext with ‖t1‖Vext , ‖t2‖Vext ≤ R for some R > 0 and
c ∈ (0, 1). Hence, it follows the Lipschitz continuity of f .



Local Strong Monotonicity

We impose:
i)

〈Tφ0, (F − Λ0)Tφ0〉L2 ≥ η‖Tφ0‖2H1(Gårding estimate)

ii) The operator

O : Vext → H1

(
(R3 × {±1

2
})N

)
; t 7→ e−T e−T

CAS
WeT

CAS
eTφ0 ,

where the fluctuation potential W , i.e., W = H − F , is Lipschitz
continuous with a constant fulfilling

L <
η

C‖eTCAS‖2B(H1)
‖e−TCAS‖B(H1)

C is the constant s.t. ‖t‖Vext ≤ C‖TφCAS‖H1 .



Local Strong Monotonicity (Proof)

We find

〈f(t1)− f(t2), t1 − t2〉2 = 〈(T1 − T2)φ0, e
−TCAS(Ht1 −Ht2)eTCASφ0〉L2

= 〈(T1 − T2)φ0, e
−TCAS [F, T1 − T2]eTCASφ0〉L2

+ 〈(T1 − T2)φ0, O(t1)−O(t2)〉L2 ,

(13)

where Hti = exp(−Ti)H exp(Ti). We define [F, eTCAS ] = S. As an excitation
operator, S commutes with e±TCAS and ∆T = T1 − T2. Therefore,

e−TCAS [F,∆T ]eTCAS = F∆T −∆TF . (14)

This yields

〈f(t1)− f(t2), t1 − t2〉2 ≥ η‖∆Tφ0‖2H1 − CL‖∆Tφ0‖H1‖∆TφCAS‖H1

≥ γ‖t1 − t2‖2Vext
,

(15)

with γ > 0.



DMRG-TCCSD

Theorem

Let T ext1 = 0. Then linked and unlinked DMRG-TCC equations are
equivalent.

Theorem

The solution of DMRG-TCCSD does not depend on TCASk for k > 3.



Outlook

i) Explicit calculations for the involved constants

ii) Error estimate containing the DMRG error

iii) Error estimates for truncated DMRG-TCC
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