Density Matrix Renormalization Group Tailored Coupled

Cluster (DMRG-TCC)

Fabian M. Faulstich

October 5, 2017

UiO ¢ University of Oslo




Overview

i) Coupled cluster struggles with strong correlated systems®

)
)
i)
)

Multi reference coupled cluster does not have a closed theory!

iii) Full-Cl is a numerically expensive scheme?

iv) DMRG is an approximation to the FCl solution with a complexity

comparable to CCSDT?

Subsequently, we use the DMRG to approximate the FCI solution and
"tailor’ the single reference coupled-cluster method with this
approximation.3
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Electronic Schrodinger Equation

Rayleigh-Ritz variational principle:
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Approximation of V

Spin orbitals: y; € H'(R3 x {£3}), i€ {1,..., K}

Slater determinants (SD):

o1, ..., vn] (21, S15 -3 TN, SN) = ﬁdet(xw(xj,sj))ﬁ[j:l

with 11 < ... <vwy

FCI space Hg: liner hull of all possible SDs

Reference State: W.l.o.g. 99 = ¢][1,..., N]

Excitation operator: X, : Hx — Hx with u = (/}1::::’?)' where

o(p) ={I, ... Ix} C{1,...,N}and v(p) = {Ay1,.., Ag} C{N +1,... K}
holds. k is called excitation rank and 7 the set of all possible excitation
indices .

Wave characterization: Imposing (¢, ¢o)r2 = 1

linear parametrization ‘ Y =(I+S)po, with S =3 7cuXy
exponential parametrization ‘ W = el ¢g, with T = D e tuXp




Externally Corrected Coupled Cluster

Appealing ansatz*:
We approximate the different correlations by different methods.

@ Choosing a small set of spin orbitals — static correlation

@ The rest of the spin orbital basis — dynamic correlation

*Kinoshita, T., Hino, O., and Bartlett, R. J. (2005). Coupled-cluster method tailored
by configuration interaction. The Journal of chemical physics, 123(7), 074106.



Splitting the Set of Spin Orbitals

Let {x1,..., xx} € H'(R3 x {£1}) be a set of L*(R3 x {+1})-
orthonormal spin orbitals with K > N and ¢ the considered reference
Slater determinant. We define
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the basis sets of the complete active space part a5 and of the external
space part Peyzt. Using Boas we define Heag.

Analogously, we split the set of excitation-indices J describing the set of
possible excitations. We define

Joas = {p € T|Xupo € Hoast (3)

and
Tewr = {1 € T| X0 ¢ Hoas} - (4)



TCC-Equations (Linked Formulation)

Given a DMRG solution ¢cag = eTCAS%, the linked
DMRG-TCC-equations are:

TCC _mCAS _rpext ext CAS
E(() <¢, TEE2 =T T T ¢0>

_TCAS _Text Text TCAS
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TCC-Function

Let K, N € N with K > N be fixed, Z = {x1, ..., XK } a set of

L?(R3 x {£11})-orthonormal spin orbitals and ¢ a reference state for an
N-electron problem. Further, be Bcas and B+ a given partition of & and
¢cas the DMRG solution on Heag. We define

f . leeztl N R|-7€“|; t— (fp,(t)),MGJEzt ’ (5)

Where CAS CAS
e THe T ) 12 (6)

fu(t) = <¢u, €
as the DMRG-TCC function. We call

Vea:t = {t S leﬂtl | 1= <¢0,6£L'p( Z tuXu)¢CAS>L2} (7)
vETewt

the space of external cluster amplitudes. We further denote
Hewt ={T ¢0 | t € Vear} the external space.



TCC-Equations (Linked Formulation) with TCC-Function

Using the DMRG-TCC function we can express the linked
DMRG-TCC-equations as

<U7f(t)>2 =0 ,VvE&EVeu - (8)



Local Version of Zarantonello's theorem

Let f: X — X’ be a map between a Hilbert space (X, (-,-), || - ||) and its dual
X', and let . € B;s be a root, f(x.) =0, where Bs is an open ball of radius §
around ..

Assume that f is Lipschitz continuous in By, i.e., for all z1,z5 € Bs holds

1f(z1) = f(2)lx < Llfwy — a2 (9)

for a constant L > 0. Be further f locally strongly monotone in By, i.e., for all
1,22 € B;s holds

(f(x1) = f(m2), 21 — 22) > 7|21 — 22| (10)
for some constant v > 0. Then holds
i) The root x, is unique in Bs.

ii) Moreover, let X; C X be a closed subspace such that z, can be
approximated sufficiently well, i.e. the distance d(z., X4) is small. Then,
the projected problem f;(x4) = 0 has a unique solution x4 € X4 N Bs, and

L
. =l < Zd(e., Xa) (11)



Problematic

Note: In the regime of DMRG-TCC we have almost degenerate
Eigenstates!

The assumption of a HOMO-LUMO gap, i.e., €g = Ay+1 — Ay > 0 is no
longer justified.

However, as we use a basis splitting ansatz the assumption of a CAS-ext
gap, i.e., €9 = Ag+1 — Ay > 0 is reasonable.



Norm Estimates

Fort € Vey there holds:||t||y.,, ~ [|T***dcasl| m \

For t € Vey there holds: ||TY| g1 < Cllt||lv.., |¥] g1, VY € Hi.
Moreover: ||T|(s1) ~ ||t ves




Lipschitz Continuity

Theorem

The DMRG-TCC function is differentiable. Furthermore, the Fréchet
derivative is Lipschitz continuous as well as all higher derivatives. In
particular, for any neighborhood Ur(0) C Veyr with f: Ur(0) — Vet
there exists a Lipschitz constant L(R) such that

1£@) = FENVear < LR It1 — t2lv.. (12)

for ||t1||vezt’ ||t2||vezt S R




Lipschitz Continuity (Proof)

The DMRG-TCC function's derivative is

(f' () = (Puse” e TA He s X, Je" o) 2
For given s,u € Vext
[(f(8)s, ua] = [(Upo, ™" [e™Tr He e, Sle” po) 2] < Cllsllvese[[ull e -

This shows the boundedness of f/(t) : Vext — Vext- Hence, f is
differentiable for all ¢ € V.. Using the mean value theorem we obtain

1£(t2) = f(E) v < 1/ (ctr + A = ) Bvee 11 = t2llvese

¢ € (0,1). Hence, it follows the Lipschitz continuity of f.

where t1, to € Vegr with ||t1|lv...s [[t2]lv.., < R for some R > 0 and



Local Strong Monotonicity

We impose:
)
(T¢o, (F — Ao)To) 2 > 1l|Tdo|| 71 (Garding estimate)

ii) The operator
1
O Veg — H' ((Rg X {iz})N) it e*Te*TCASWeTCASeT% ,

where the fluctuation potential W, i.e., W = H — F, is Lipschitz
continuous with a constant fulfilling

Ui
L <
Ol 2, e

_TCAS ||B(H1)

C' is the constant s.t. [[t||y.,, < C||[Técas| -



Local Strong Monotonicity (Proof)

We find

(f(t1) — fta),ts — t2)a = (T — To) o, e TS (Hy, — Hy, )eS ) 12
= ((Ty — Ta) o, e TM[F, Ty — Tole™ o) 12 (13)
+ ((T1 = T2)¢0, O(t1) — O(t2)) L2 ,

where H;, = exp(—T;)H exp(T;). We define [F, eTtss] = S. As an excitation
operator, S commutes with eETers and AT =Ty — Ty. Therefore,

e~ Teas[F, AT)eTers = FAT — ATF . (14)
This yields

(f(t1) = f(t2),t1 — ta)2 > n|| AT dol|3;r — CL|| AT ol 1 || AT G as ||

(15)
>ty = tal3

ext

with v > 0.



DMRG-TCCSD

Let T¢*" = 0. Then linked and unlinked DMRG-TCC equations are
equivalent.

The solution of DMRG-TCCSD does not depend on TS for k > 3. \




i) Explicit calculations for the involved constants
ii) Error estimate containing the DMRG error

iii) Error estimates for truncated DMRG-TCC
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