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Motivation

Bottlenecks for finite elements based on sparse-matrices:
I Memory-limited, especially for high order elements (Order 6

elements in 3D between 343 and 2197 elements per line).
I Low arithmetic intensity.

Goal: change algorithm towards higher

arithmetic intensity → better performance

Matrix-free alternative based on elementwise integration for finite
elements.
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Matrix-free algorithms for higher order elements

matrix-based: A = ∑
K∈{cells}

PT
K AK PK (assembly)

v = Au

matrix-free:

v = ∑
K∈{cells}

PT
K AK (PK u)

Matrix-vector product
Matrix-free algorithm:

I v = 0
I loop over cells

(i) Extract local vector
values on cell:
uK = PK u

(ii) Apply operation locally
on cell: vK = AK uK
(without forming AK )

(iii) Sum results from (ii)
into the global solution
vector: v = v + PT

K vK

Kronbichler, Kormann, A generic interface for parallel finite element operator
application. Comput. Fluids 63:135–147 (2012)
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Cell matrix-vector product: quadrature

Contribution of cell K to matrix-vector product for finite element Laplacian

(AK uK )j =
∫

K
∇xφj ·∇xuhdx≈∑

q
wq detJq ∇xφj ·∇xuh

∣∣∣
x=xq

= ∑
q

∇ξ φjJ−1
q (wq detJq)J−T

q ∑
i

∇ξ φiuK ,i

∣∣∣
ξ =ξ q

, j = 1, . . . ,cell dofs

(a) Compute unit cell gradients
∇ξ uh = ∑(∇ξ φi)uK ,i on all quadrature
points

(b) On each quadrature point, apply geometry
J−T

q , multiply by quadrature weight and
Jacobian determinant, apply geometry for
test function J−1

q

(c) Test by unit cell gradients of all basis
functions and sum over quadrature points

Matrix notation:

vK = AK uK

= STWSuK

with
Sqi = ∇ξ φi

∣∣
ξ q

Wqq = J−1
q (wq detJq)J−T

q
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Memory considerations

Idea
I Matrix-free implementation

reduces memory transfer
I Trade memory transfer for

computations→ faster?
I Naive implementation (standard

abstraction in FE libraries such
as deal.II, FEniCS, etc.): Dense
matrix for all basis functions,
n2

cell dofs operations

Memory per degree of freedom (≈
main memory transfer)
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I Bottlenecked by step (a) (unit cell gradients) and step (c) (testing
and summation of quadrature points)

I In 3D: 6 to 48 times as many operations as sparse matrix
I Computations might be cheap, but they are not for free!
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Fast evaluation of basis functions

I Tensor product form of basis functions:
φ(ξ ,η) = ϕ(ξ )ϕ(η)

I Evaluate shape values on quadrature points

∂uh

∂ξ
(ξq,ηq) = ∑

i∈cell dofs
u(i) ∂φi(ξq,ηq)

∂ξ

= ∑
iξ

∑
iη

u(iξ ,iη )
ϕiξ (yη )

ϕiξ (ξq)

∂ξ















φi







ϕiη

ϕiξ

Matrix notation:
Form of shape
matrix
S = Dξ ⊗Sη

∂

∂ξ
uh(xq,yq)

∣∣
q points = (Dξ ⊗Sη )uK

Implemented as dense matrix-matrix multiplication

SηUK DT
ξ
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Exploit tensor product structure (sum factorization)

Illustration on Q3 (Lagrange basis): successively apply 1D kernels

Vector values uK on nodes
∂uh

∂ξ
on quadrature points

interpolate to firstpoint
(42 operations)

Tensor-based evaluation reduces evaluation cost from 44 to 2×43

In general for degree k and dimension d : O((k +1)2d ) to O(d(k +1)d+1)
Example: d = 3, k = 5: 46,456 to 3888

Similarly for ∂

∂η

∂u(ξq,ηq)

∂η

∣∣
q points = (Sξ ⊗Dη )uK ' DηUK ST

ξ

and integration routines
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Impact of sum factorization

I Very competitive for high orders
I Algorithms from spectral

elements (1980s)
I Optimizations possible for

special shape functions
(picture: Gauss–Lobatto case,
interpolation is identity
operation)

I Previously only used for high
orders k ≥ 5

I Combination with memory
transfer not considered

I Speedup for Q2 and Q3?
Trade memory transfer for
arithmetics

Operation count per degree of freedom
(arithmetics)
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Code example: Cell term for Laplacian

Evaluation of weak form
(∇v ,∇u)Ωh

void cell(MatrixFree<dim> &data,
Vector &dst,
const Vector &src,
const std::pair<unsigned int,unsigned int> &range)

{
FEEvaluation<dim,degree> phi (data);
for (unsigned int cell=range.first; cell<range.second; ++cell)

{
phi.reinit (cell); // set pointers to data
phi.read_dof_values(src); // read from source
phi.evaluate (/*values=*/ false, // sum factorization

/*gradients=*/ true);
for (unsigned int q=0; q<phi.n_q_points; ++q)
phi.submit_gradient (phi.get_gradient(q), q); // geometry

phi.integrate (/*values=*/ false, // sum factorization
/*gradients=*/ true);

phi.distribute_local_to_global (dst); // sum into destination
}

}
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Exitation by lasers
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Time-Dependent Schrödinger Equation

ih̄
∂

∂ t
ψ(r , t) = Ĥ(r ,∆r , t)ψ(r , t), ψ(r ,0) = ψ0(r).

Hamiltonian for three-state system: Ĥ =− 1
2m ∆ + V with

V =

 Vg(r) µ(r)V1(t) 0
µ(r)V1(t) Ve1(r) V2(r)

0 V2(r) Ve2(r)

 .
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Example program: Two coupled harmonic oscilla-
tors

Schrödinger equation:

ih̄∂t

(
ψa

ψb

)
=

(
−1

2 ∆ + 1
2‖x‖

2 e2(t−0.5)2
cos(t−0.5)

e2(t−0.5)2
cos(t−0.5) −1

2 ∆ + 1
2‖x‖

2 + 1

)(
ψa

ψb

)

Initial value: ψ0(x) = 1
πd/4 e−0.5‖x−x0‖2

2 .

Solution of the uncoupled harmonic oscillator:
ψ(x , t) = 1

πd/4 eiγt e−i sin(t)xT
0 (x−xt )e−

1
2 ‖x−x0‖2

2 with xt = x0 cos(t) and
γt =−dt−xT

0 xt .

Implementation of test case data: initial ho.h.
Main program: schrodinger ho.cc.
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Autocorrelation

Autocorrelation of pure harmonic oscillator example
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Postprocessing script to plot autocorrelation:
diagnostics/auto ho.py.
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Spatial discretization

Spatial discretization with finite elements:

M
d
dt

u = Su. (1)

Gauss–Lobatto finite elements:

I Nodal basis with nodes of Gauss–Lobatto quadrature points used
as basis centers.

I Approximative quadrature using the same Gauss–Lobatto
quadrature rule to compute integrals.

I Mass matrix becomes diagonal (mass lumping) which yields an
explicit system.
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Implementation of multi-state Hamiltonian

After applying the Laplacian to each state, the following code describes
the application of the multi-state Hamiltonian. The potential terms are
diagonal due to the lumping.

void operator() () const
{

const unsigned int size = dst(0).size();
for(unsigned int j=0;j<size;++j)

for(unsigned int k = 0;k<2*no_states;++k)
dst[k].local_element(j) = dst[k].local_element(j)

*hamiltonian_data.mass_factor*
hamiltonian_data.system_lmm_inv.local_element(j)+
src[k].local_element(j)*
hamiltonian_data.potential[k/2].local_element(j)
+src[(k+no_states)%(2*no_states)].local_element(j)*
hamiltonian_data.pulse;

}

Implementation of the matrix-free Hamiltonian: matrix free ho.h.
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Exponential Propagator

Evolution operator for time-independent Hamiltonian:

U(t0, tf ) = exp
(
− i

h̄
H(tf − t0)

)
Approximation for time-dependent case:

ψ(r , t + ∆t) = exp
(
− i

h̄
H∆t

)
ψ(t)

Two questions:
I How to choose H ?

Magnus expansion
I How to compute the matrix exponential efficiently?

Lanczos algorithm
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Lanczos algorithm

Let A ∈ Cn×n be hermitian and q ∈ Cn. The Lanczos algorithm
computes in m + 1 steps a orthonormal basis Qm of the Krylov subspace
span{q,Aq, . . . ,Amq} and a tridiagonal matrix

Am =


α0 β0 0 . . . 0
β0 α1 β1 0

0
. . . . . . . . . 0
0 βm−2 αm−1 βm−1

0 . . . 0 βm−1 αm


such that AQm = QmAm + hm+1,mqm+1eT

m.
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Matrix exponential with Lanczos

I Compute Krylov subspace induced by solution at previous time step:
q = u(tn−1).

I Use Krylov approximation of the matrix to compute matrix
exponential:

exp(∆tA)u(tn−1)≈ exp(∆tQmAmQH
m)u(tn−1) = Qm exp(∆tAm)e1.

I Solve eigenvalue problem for tridiagonal matrix to compute
exp(∆tAm).

I Error estimate: ∆tβm|exp(∆tAm)|m+1,1
1

Implementation: expo int.h.

1Hochbruck, Lubich, Selhofer: SIAM J. Sci.Comput. 19, 1998.
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Magnus expansion

U(tn+1, tn) = e∑
∞
k=1 Ak (tn+1,tn),

where

A1(tn+1, tn) = − i
h̄

∫ tn+1

tn
H(τ1)dτ1

A2(tn+1, tn) = −1
2

(
i
h̄

)2 ∫ tn+1

tn

∫
τ1

tn
[H(τ1),H(τ2)]dτ2dτ1

...

Truncate for numerical propagation since

Ak = O
(
(∆t)2k−1)
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Adaptive Magnus–Lanczos: Idea

I Choose step size according to error in the Magnus expansion
I Choose size of the Krylov space according to error in the Lanczos

algorithm1

I Use a posteriori estimate2 to connect local and global error
I Use special properties of the Schrödinger equation to avoid

solving the dual problem

References:
1 M. Hochbruck, C. Lubich, H. Selhofer, SIAM J. Sci. Compt. 19, 1552 (1999)
2 Y. Cao, L. Petzold, SIAM J. Sci. Compt. 26, 359 (2004)
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Mesh Refinement

A posteriori error estimate can also be derived for spatial adaptivity.
Example 1: Dynamical mesh.

Reference: Kormann, A time-space adaptive method for the Schrödinger
equation, Commun. Comput. Phys., 20:60–85, 2016.
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Mesh Refinement

A posteriori error estimate can also be derived for spatial adaptivity.
Example 2: OClO example: Error control for target state.

Reference: Kormann, A time-space adaptive method for the Schrödinger
equation, Commun. Comput. Phys., 20:60–85, 2016.
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Test code

I Test code for coupled harmonic oscillators in folder
schrodinger fem (can be downloaded from
https://gitlab.lrz.de/ne65nib/schrodinger fem).

I Build the code and run it with:
mpirun -n 1 ./schrodinger ho schrodinger ho.prm

I Use the python script auto ho.py to visualize the autocorrelation.
In the folder diagnostics type: python auto ho.py

I Modify the parameter file.
I Modify the coupling strength and check the effect on the peak of the

autocorrelation function.
I Modify the number of Gauss–Lobatto points and the grid refinement

and checkt the quality of the solution.
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