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Introduction




The stationary electronic Schrodinger equation
(variational formulation)

Find antisymmetric wave function W € H' and eigenvalue E € R
such that

(0, HV) = E (&, W) forall & cH'.

Energy scales (1E, ~ 27,2114V Hartree)

Magnetic couplings Chemical bonds
I —
Intermolecular interactions Atomic cores
I ——
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The stationary electronic Schrodinger equation
(variational formulation)

Find antisymmetric wave function W € H' and eigenvalue E € R
such that

(0, HV) = E (&, W) forall & cH'.

> the wave function V¥ is antisymmetric (Pauli principle),

W((X1 R S1), ceey (X,', S,'), Cey (X/ Sj), ceey (XN, SN))
= —\U((X1 , 81), ceey (Xj, Sj), ceey (X,', S,'), Ceey (XN, SN)).

> N-fermion space:

N 1
Vel = N, LR x {£5})



The stationary electronic Schrodinger equation
(variational formulation)

Find antisymmetric wave function W € H' and eigenvalue E € R
such that

(®,HV) = E (o, W) forall & e H'.

AH: H'(RSN x {j:%}N) — H Y(R3N x {j:%}N)
is the weak Hamiltonian, defined via
R IO L AL I Zi
H = —QIZ:;A,- - 2§;M - Zzi\x,-—ﬂk\'
J#i
> H' = HY(R3N x {£3}IN) N L,



The stationary electronic Schrodinger equation
(variational formulation)

Find antisymmetric wave function W € H' and eigenvalue £ € R
such that

(0, HV) = E (o, V) forall ¢ cH'.

Fl: H1 (RSN % {:l:%}N) N H—1 (RSN % {:l:%}N)

is the weak Hamiltonian, defined via

> H' = HY(R3N x {£3}IN) N L,



The stationary electronic Schrodinger equation
(variational formulation), ground state problem

Find antisymmetric wave function W € H' and eigenvalue E* € R
such that

(®,HV) = E*(®, W) forall e H'.

and such that £ is the lowest eigenvalue of H.

Energy scales (1E, ~ 27,2114V Hartree)

Magnetic couplings Chemical bonds
I —
Intermolecular interactions Atomic cores
I

T T T T T >

0.001eV 001eV 0.1eV leV 10eV

CC MP2 DFT




The (projected)
Coupled Cluster method

Vy) = e'd|wy)



Projected CC = approximation to fixed Galerkin/’full CI” scheme

Starting point: One-particle (ortho-normal) basis

B:{w17"'7wd}’

~+ antisymmetric tensor basis (Slater determinants)
By = {V, = V[p1,...pn], 1<pi<pir1<d},

N
w[p1a--7pN] = /\I 177Z)p, det(wpl(xlasj)),‘7j:1-
CC is approximation of Galerkin (full Cl) solution W4, solving
<\Ul“ H\Ud> = E <\U“,\Ud> for all \U'u € By.

(an extremely high-dimensional problem, mostly unsolvable in
practice)



Ansatz space and reference determinant
Hartree-Fock (or DFT) calculation
gives
(a) a (quite good) rank-1 approximation of eigenfunction W,

N 1
Vo =V[1,...N]:= /\i:1’l/Ji(Xi7 Si) = Wdet(%,»(xja sj))Z':1



Ansatz space and reference determinant
Hartree-Fock (or DFT) calculation
gives
(a) a (quite good) rank-1 approximation of eigenfunction W,

N 1 N
\UO = \U[1/ ey N] = /\1'21’(/J,'(X,'7 S,') = Wdet(wpi()(j, sj))i,j:1
(b) one-particle basis B of L3(R3 x {£}}),
B: { 1/}17"'71/}N 7¢N+1>'--7d)d}

occupied orbitals  virtual orbitals

occ L virtin L2 and w.r.t. inner product F ~ H'
~~ tensor basis Bg= {V[p1. .., pn], 1<pi<piy1<d} of L



Ansatz space and reference determinant
Hartree-Fock (or DFT) calculation
gives
(a) a (quite good) rank-1 approximation of eigenfunction W,

N 1 N
WO = \U[1/ ey N] = /\1'21’(/J,'(X,'7 S,') = Wdet(wpi()(j, sj))i,j:1
(b) one-particle basis B of L2(R3 x {£}}),
B:{ 1/}17"'71/}N 7¢N+17'--7/¢d}

occupied orbitals  virtual orbitals

occ L virtin L2 and w.r.t. inner product F ~ H'
~~ tensor basis By= {V[p1., .., pn], 1<pi<piy1<d} of LZ
!

Post-Hartree-Fock calculation
v\

Cl (Galerkin) calculation Coupled Cluster calculation




Ansatz space and reference determinant
Hartree-Fock (or DFT) calculation
gives
(a) a (quite good) rank-1 approximation of eigenfunction W,

N 1 N
WO = \U[1/ ey N] = /\1'21’(/J,'(X,'7 S,') = Wdet(wpi()(j, sj))i,j:1
(b) one-particle basis B of L2(R3 x {£}}),
B:{ 1/}17"'71/}N 7¢N+17'--7/¢d}

occupied orbitals  virtual orbitals

occ L virtin L2 and w.r.t. inner product F ~ H'
~~ tensor basis By= {V[p1., .., pn], 1<pi<piy1<d} of LZ
!

Post-Hartree-Fock calculation

v\
—-GHGalerkin-caleulation Coupled Cluster calculation

Accuracy, size consistency,...




Reformulation of the Galerkin ansatz
> One-particle basis B = {1, ..., Un, UNs1,s -y Vg ),
occupied virtual

tensor basis By = {V[p1,..,pon], 1 < p1 < ... < pn < d}.

> Replacement of occupied by virtual orbitals in reference Wy,
WLy i NSO Wi Ay A

gives By = {Wo} U{V, | n eI}



Reformulation of the Galerkin ansatz
> One-particle basis B = {1, ..., Un, UNs1,s -y Vg ),
occupied virtual

tensor basis By = {V[p1,..,pon], 1 < p1 < ... < pn < d}.

> Replacement of occupied by virtual orbitals in reference Wy,
WL N RO i an, A,

gives By = {Wo} U{W,, | n €I}

> Reformulation: Excitation operator X% : 1.5 — 1.5

W[I‘A/7"‘/I;A?a17"7ak"7pi?"]
it ip,..i € ind(V)
XVl pnl = and a....ax ¢ ind(¥)

0 elsewise



Reformulation of the Galerkin ansatz
> One-particle basis B = {1, ..., Un, UNs1,s -y Vg ),
occupied virtual

tensor basis By = {V[p1,..,pon], 1 < p1 < ... < pn < d}.

> Replacement of occupied by virtual orbitals in reference Wy,
WL N RO i an, A,

gives By = {Wo} U{W,, | n €I}

> Reformulation: Excitation operator X% : 1.5 — 1.5

w[’}(?"‘/ %7317"7ak"7pl')"]
it .0 € ind(V)
XVl pnl = and a....ax ¢ ind(¥)
0 elsewise
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Reformulation of the Galerkin ansatz
> One-particle basis B = {1, ..., Un, UNs1,s -y Vg ),
occupied virtual

tensor basis By = {V[p1,..,pon], 1 < p1 < ... < pn < d}.

> Replacement of occupied by virtual orbitals in reference Wy,
WL N RO i an, A,

gives By = {Wo} U{V, | n eI}

> Reformulation: Excitation operator X% : 1.5 — 1.5

w[’}(?"‘/ %7317"7ak"7pi?"]
it .0k € ind(W)
X lpr, o] = and ai,..ay ¢ ind(V)
0 elsewise
With this, By = {\Uo}U{XMWO | e Zy}.



Cluster operator/Coupled-Cluster ansatz

Choosing Zy C Z:

> Galerkin solution W is expressed by excitations,

\Ud = \UO @]LQ,F \UZ} - \UO + Z S,uw}l/
HELy



Cluster operator/Coupled-Cluster ansatz

Choosing Zy C Z:

> Galerkin solution W is expressed by excitations,

Vg = VoBrepVly = Vot > 5,XVo
HELy



Cluster operator/Coupled-Cluster ansatz

Choosing Zy C Z:

> Galerkin solution W is expressed by excitations,

wd = Yy 69]LQ,F \UZ} = VYo + Z S;L)(/L\UO = (I+ S(Sd))wo
HELy



Cluster operator/Coupled-Cluster ansatz

Choosing Zy C Z:
> Galerkin solution W is expressed by excitations,

Vg = Woore p Vg = Vo + ) 5, X.W0 = (/+5(sq))Vo

~ Reformulated Galerkin ansat?*~*¢

Linear Parametrisation for Wy = Wo + W7
Find cluster operator S = S(sg) = > 7, S,X, such that
Vg = (14 S(sd)) Vo,

~

(®g, H(I + S(s4))V0) = E*(dq,(I+ S(s4))Vo) V &4 € By.




Cluster operator/Coupled-Cluster ansatz

Choosing Zy C Z:

> Galerkin solution W is expressed by excitations,

Vg = Woore p Vg = Vo + ) 5, X.W0 = (/+5(sq))Vo

> Coupled-Cluster-Ansatz: "™

Nonlinear Parametrisation for Wy = Wy + V7!

Find cluster operator T = T(ly) = >_ o7, 1, X, such that

(g, HeTwg) = E*(dg,e’@Wy) Vv &4 € By.




Cluster operator/Coupled-Cluster ansatz

Choosing Zy C Z:

> Galerkin solution W is expressed by excitations,

Vg = Woore p Vg = Vo + ) 5, X.W0 = (/+5(sq))Vo

> Coupled-Cluster-Ansatz: "™

Nonlinear Parametrisation for Wy = Wy + V7!

Find cluster operator T = T(ly) = >_ o7, 1, X, such that

(bg,e TWHe W) = E*(dy,We) =0 V dy € By\{Wo}.

E* = (Wg, e T He ()



Coupled Cluster - Exponential-ansatz - Full CC

Theorem (S. 06)

Let Wy be a reference Slater determinant, e.g. Vo = Ve and
V € Vg, V, satisfying

(W, Vo) =1 intermediate normalization .

Then there exists an excitation operator

(T1 - single-, T, - double- , ... excitation operators)
N
T=> Ti=> tX, suchthat
i=1 neg

V=elVy|=N,(/+tX,)V.

Key observations: for analytic functions :
N
f(T)=> aT"since [X,, X,]=0,XZ=0, T"=0.
k=0



CC Energy and Projected Coupled Cluster Method
Let W € Vg satisfying HV := HpV = EgV, then, due to the
Slater Condon rules and (W, W) = 1

1
E* = (Wo, HV) = (Wo, H(I + T+ Ta + 5 T7)Vo)




CC Energy and Projected Coupled Cluster Method
Let W € Vg satisfying HV := HpV = EgV, then, due to the
Slater Condon rules and (W, W) = 1

1
E* = (Wo, HV) = (Wo, H(I + T+ Ta + 5 T7)Vo)

Variants: (probably better but not computable)
» unitary CC:
v =ez(T-Ty, |

» variational CC
W = argmin{ (e o, HeT Wy)}

» general CC (Noijens conjecture)

J ot 5.4 P29 of AT
V= e(zi,/‘,p,q,r,s fa aj+ts arapaqas) vy .



Projected Coupled Cluster Method
Let T = ZL:1 Ty = Zuejh (. Xu, 0# pe Jp C J using
0= (Yo, (H — E)W) = (Wo, (H— E(tp)e” ")

The unlinked projected Coupled Cluster formulation

0= (V,,,(H— E(tn)e""™Wo) = gu(t) , t=(t)reg,, nv e

The linked projected Coupled Cluster formulation consists in
0=(V,, e THeTWo) = £,(t), t=(t)ves, , v € Th




Projected Coupled Cluster Method
Let T =" Tk =Y ez tuXu, 0 # pu € Jh C J using
0 = (Wo, (H — E)V) = (W, (H — E(ty)e’ ™)

The unlinked projected Coupled Cluster formulation

0= (V,,,(H— E(tn)e""™Wo) = gu(t) , t=(t)reg,, nv e

The linked projected Coupled Cluster formulation consists in
0=(V,, e THeTWo) = £,(t), t=(t)ves, , v € Th

These are L = 47, << N nonlinear equations for L unknown
excitation amplitudes t,.

Theorem

The CC Method is size consistent!:

Hag = Ha+ Hg = ESS = ESC + ESC .

e (T+78)(H, + Hp)eTs+ e = e~ TaH ™4 + e~ T8Hges



Single + double excitations
Discrete one-particle basis B = {1, ..., XNs XNt1y s XDi1 }-

Write (full Galerkin, “full CI”) solution V¢, as

Veer = (I+ Tnc)Vo
_ ay yray ai,az 31 ap
- WO—'_ZS X Vo + Z S’1’2 l1/2w
it ,ay it l2,a1,82
a1,.,aN yat,-,an
+..F Z S/'1,»--fN )(i17--:iN Vo.

i1 5eesin,81 5--,8N
Truncation according to excitation level, e.g.:
» CISD (single/double):

dcisp = (/+ Tsp)¥Wo
= (I+D_s'X"+ > sTEXTE),

1,k I1 12
it,a4 it,lp,a1,a2




Single + double excitations
Discrete one-particle basis B = {1, ..., XNs XNt1y s XDi1 }-

Write (full Galerkin, “full CI”) solution V¢, as

Veer = (I+ Tnc)Vo
. ai yai 81,82 ya1,82yy
- WO+ZS X Vo + Z s/1/2 it
i1,y It,lp,a1,a2
aN ai,.
ot Y s ANy,
I15-5IN,81 558N

Truncation according to excitation level, e.g.:
» CCSD (single/double):

doosp = €70V
- expl+Zsa1Xa‘+ Z gt X&)y,

I1,l> Iy,
it ,ay it,lp,ay,82



Single + double excitations
Discrete one-particle basis B = {1, ..., XNs XNt1y s XDi1 }-

Write (full Galerkin, “full CI”) solution V¢, as

Veer = (I + Tue)Vo
. ai yai 81,82 ya1,82yy
- WO+ZS X Vo + Z s/1/2 it
i1,y It,lp,a1,a2
ai,.,an yai,..an
ot Y s ANy,
I15-5IN,81 558N
Truncation according to excitation level, e.g.:
» CCSD (single/double):
® = elsoy
ccsb = 0
= e ST S XY
it,a i1,l2,81,8p

Truncated CC is not equivalent to corresponding Cl truncation
(but superior due to favourable properties).



Single + double excitations
Discrete one-particle basis B = {1, ..., XNs XNt1y s XDi1 }-

Write (full Galerkin, “full CI”) solution V¢, as

Veci = (I+ Tuici)Vo
- Wo+Zsa1X"’“\U + Z s?/fz /?1/;2
i1,y It,lp,a1,a2
aN ai,.
ot Y s ANy,
I15-5IN,81 558N
Truncation according to excitation level, e.g.:
» CCSD (single/double):
dcosp = €'V,
S LR ML T
it,a i1,l2,81,8p

Evaluation of the CC function: BCH-formula, operator algebra,
Second quantization, Wick’s theorem, anti-commutation laws.




The (linked) CCSD equations

1 1
A AB A.B
E(t) = (Wo,HVo) + > futl + = > (WABM) + 2 S wnAByieg,
1A 1JAB 1JAB
.

A o] A K AC cD

() = fa+ > fact — D fatk + > _(KAIChHEG + > fctic’ + > S (KA|ICD) tg;
C K KC KC KCD

1 cA c C,A c,n
— — KL|Chtg — oot — KL||Chtgt; + KA||CD)tZt
> KELC< [ICh EKC kel t K%Q( IChtgt; KECD< ICD)t'

1 1
- S kticoygtPet + ST (kLo — 5 ST (KLCoytEP e — 5 ST (kLl|coytitP
KLCD KLCD KLCD KLCD

|
(O = (WIAB) + 3 (fecth® — fact’) — D (kuthd — fathc) + 5 D_(KLIM) b
C K KL
1 cp AC c K
+ 3 S (ABIICDy 37 + P()P(AB) > (KB C)tye + P(I) > _(AB||C)ty’ — P(AB) > (KBI|I)tn
CcD KC C K

1 c.o8 , 1 cpaB | 1 AC ,BD
+ EP(/J)P(AB) > <KL||CD)1‘,/,‘( t + n D (KLICDY 3" ter + 5P(AB) > (KLIICD) iyt
KLCD KLCD KLCD

1 1 1
— ZP() ST (KLICDY LGP + — P(AB) ST(KLIMRIE + —P(1) S (AB| CD)tF 1]
2 KLCD 2 KL 2 CcD
A.C A .BC C.,AB C.,AB
—  P(M)P(AB) Y (KBI|IC)ticty + P(AB) > fictictiy” + P(W) D fct the — P() D (KLIIChtkty
KC KC KC KLC
+  P(AB) S (KAICD)E D + P(1))P(AB) S (AK|IDC) PSS + P(I))P(AB) S (KLIlIC) P 5E
KCD KCD KLC

1 1 1
+ =P SO(KLICH e — ~P(AB) S (KBIICD)ttSP + — P()P(AB) S (KB||CD)tE tg 17
KLC 2 KCD 2 KLC



Baker-Campell-Hausdorff expansion

Solving f(t;) = 0 we recall the Baker-Campell-Hausdorff
formula

e TAeT = A+[AT]+ %[[A, T, T+ ;![[[A, LT, T +...=

1
A+ A Tl
k=1~



Baker-Campell-Hausdorff expansion

Solving f(t;) = 0 we recall the Baker-Campell-Hausdorff
formula

e TAeT = A+[AT]+ %[[A, T, T+ ;![[[A, LT, T +...=

=1
A+ A Tl
k=1
For W € V;, the above series terminates, exercise™”

e "He' = H+[H, T]+ [[H 7], T]+ [[[H T], 7], T]+

[H, Tla



Baker-Campell-Hausdorff expansion

Solving f(t;) = 0 we recall the Baker-Campell-Hausdorff
formula

e TAeT = A+[AT]+ %[[A, T, T+ ;![[[A, LT, T +...=

=1
A+ A Tl
k=1
For W € V;, the above series terminates, exercise™”
e "He' = H+[H, T]+ [[H 7], T]+ [[[H T], 7], T]+ [H Tla
e.g. for a single particle operator e.g. F there holds

e "Fel = F+[F, T|+|[F.T].T]



lteration method to solve CC amplitude equations
We decompose the (discretized) Hamiltonian

H=F+U,



lteration method to solve CC amplitude equations

We decompose the (discretized) Hamiltonian
H=F+U,

F - Fock operator, U - fluctuation. Let \; be the eigenvalues of
F potential.

Lemma
There holds for MOs ( discrete eigenfunctions of F)

k
[, X = [F X753 = O — M) X = €%,
j=1



lteration method to solve CC amplitude equations
We decompose the (discretized) Hamiltonian
H=F+U,

F - Fock operator, U - fluctuation. Let \; be the eigenvalues of
F potential.

Lemma
There holds for MOs ( discrete eigenfunctions of F)

K
7 X =7, Xha1 = (Z()‘aj — A Xy =€ Xy
j=1

and [[F, X,], X,,] = 0 together with
EHZ)\N+1 —)\N>0

(due to Bach-Lieb-Solojev)



lteration method to solve CC amplitude equations

The amplitude function t — f(t) = (7.(t)).ez, =0

fu(t) _ <\U/H e_THeT\IJ()} _ <wu’ e Zuejh Xy Hezyejh tuXu\U0> 0.



lteration method to solve CC amplitude equations

The amplitude function t — f(t) = (7.(t)).ez, =0
f,(t) = (W, 6" THeTWg) = (W, @ 2vedy WX HgXves, WXy gy — 0,
The nonlinear amplitude equation f(t) = 0 is solved by

Algorithm (quasi Newton-scheme)

1. Chooset9, e.g. t° = 0.

2. Compute
T =17 — ATTH(E"),

where A = diag (¢,)es > 0.



lteration method to solve CC amplitude equations

The amplitude function t — f(t) = (7.(t)).ez, =0
f,(t) = (W, 6" THeTWg) = (W, @ 2vedy WX HgXves, WXy gy — 0,
The nonlinear amplitude equation f(t) = 0 is solved by

Algorithm (quasi Newton-scheme)

1. Chooset9, e.g. t° = 0.

2. Compute
T =17 — ATTH(E"),

where A = diag (¢,)es > 0.



Numerical Examples — CCSD versus CISD
The relative difference in the correlation energy between Cl and
CC for several molecules in bonding configuration is plotted
over the total number of electrons N and the number of valence
electrons.
The lack of size consistency suggests a behavior v/N.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
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Adaptive Coupled Cluster scheme
Rohwedder & Flad §. 2010, implemented by T. Rohwedder - in collaboration with A.
Auer (CCSD-NWCHEM)
Since
0="fu(t) = (W, e THeTWg) = (W, [F, TIWo) + (W, e~ T Ue W)
suppose the normalization ||t|| ~ || TWg||y1:
ft)=Ft—o(t)=0
Augmented Newton type scheme

" =F Tot")

We need the procedures APPLY (u,n) ~ F~1d(u) up to accuracy n

| 2 t0:0
» Forn=0,1,...
s

» While |tk+1 — tk]| > 2o do th+1 := APPLY (t, 2 "¢o)
» t"1 .= COARSE(t*, a2 ")
Universal algorithm detects sparsity. Practically, too expensive, not a good idea. But
the Monte Carlo variant ( A. Alavi, Alavi & Thom) works extremely well.



Coupled Cluster...

....in practice:

> CC ansatzes introduced ~ 1960 (Coester, Kimmel)

> CC is nowadays standardly used in commercial quantum
chemistry codes

> CCSD(T): often yields chemical accuracy, (golden
standard in quantum chemistry, comparable to practical
experiments




Coupled Cluster...

....in practice:

>

>

CC ansatzes introduced ~ 1960 (Coester, Kimmel)

CC is nowadays standardly used in commercial quantum
chemistry codes

CCSD(T): often yields chemical accuracy, (golden
standard in quantum chemistry, comparable to practical
experiments

allow only a single reference determinant

not suitable for systems, where RHF (and MP2) do not
provide already good results Strong Correlation




Analysis of the
Coupled Cluster method

S: & Th. Rohwedder (Dissertation 2010)

w) = el



Globalization to continuous Coupled Cluster method

i.e analogeous reformulation of the continuous equation
HY = Ev

to continuous Coupled Cluster equation

W, e TRy = E (W, o) VYueM

for v = eT(Myy,.



Globalization to continuous Coupled Cluster method
i.e analogeous reformulation of the continuous equation
HV = EV

to continuous Coupled Cluster equation

W, e TRy = E (W, o) VYueM

for v = eT(")y,.  Now formulated in continuous basis sets,
B = {{1,....,¥on}U{gl|a € virt}, B={V,|lueI}

occupied virtual

with analogous definition of cluster operator

T(t): L2 12 T(h=> t.X,
neLT

and suitable reference determinant
N
WO = \U[1 sy N] = /\i:1 1/),'(X,', S,').



Main problem, assumption on the basis
Main problem:

H'-continuity of cluster operator T and L2-adjoint Tt have to be
established!

(to make (V,,, e~ T(") HeT()w) well-defined)



Main problem, assumption on the basis
Main problem:

H'-continuity of cluster operator T and L2-adjoint Tt have to be
established!

(to make (V,,, e~ T(") HeT()w) well-defined)

Assumption:

There holds
(Fx1,xa) = {xi,xa) = 0 forall /< occ, Acvirt.
for a symmetric operator
FoHI(B x {25)) » H (B x {£,)),

spectrally equivalent to the H'(R3 x {£1})-norm.
(e.g. Fock operator, if HF ground state exists.)



Continuity of the cluster operator

Theorem (S., 2009; R., 2010)
ForanyV* =% v t.Vo € H', T=T(t)and T' its
L2-adjoint,

[Tt ~ 1V s [T g < W51

Sketch of proof:
> Reduction to L,-orthogonal basis set,
> projection on F;-orthonormal basis sets, F ~ H;.

> Estimation with ¢1 < ¢>-estimate (Schneider 2009).



The continuous Coupled Cluster equations

Theorems (S., 2009; R., 2010)
The eigenvalue equation
W, (H-E"W) =0, Vuel,

holds for ¥ = Wy + V* ¢ H', E* € R iff the Coupled Cluster
equations

W, e T ReT gy = 0, Vel
(Wo,e” T HeT Mgy = E*,

hold for W = e™wy,  T(t) =3 e i Xy, ||E5]lv < o



The continuous Coupled Cluster equations

Theorems (S., 2009; R., 2010)
The eigenvalue equation
(W, (A= E"W)

0, Vuel,

holds for ¥ = Wy + V* ¢ H', E* € R iff the Coupled Cluster
equations

W, e T ReT gy = 0, Vel
(Wo,e” T HeT Mgy = E*,

hold for W = e™wy,  T(t) =3 e i Xy, ||E5]lv < o

Coefficient vector t* € V is solution of CC root equation,

f(tY =0 e V'

for CC function
foV =V, Kt) = (Ve TOHeTOwg))



Local strong monotonicity of the CC function

Theorem (S., 2009; R., 2010)

If E* < 0ess(h) is simple and W, close enough to W, then f is
locally strongly monotone at the solution t*, i.e. there are
v,d > 0 such that

(f(s)—f(t),s—t) > ~-|s—t[§
holds for s, t € V with ||s — t*||v, ||t — t*||v < 6.

Sketch of proof:
» Local Lipschitz continuity from continuity of T

> (®,(H - E)®) > /][9] on {Wo}*
from Garding estimate for h, perturbation argument

» estimate remaining perturbations



Local strong monotonicity of the CC function

Theorem (S., 2009; R., 2010)

If E* < oess(h) is simple and W close enough to W, then f is
locally strongly monotone at the solution t*, i.e. there are
v,d > 0 such that

(f(s)—f(t),s—t) > ~-|s—t[§
holds for s, t € V with ||s — t*||v, ||t — t*||v < 6.

Sketch of proof:
» Local Lipschitz continuity from continuity of T

> (@, (H— E)®) > 7/||0]f on {Wo}*
from Garding estimate for h, perturbation argument

» estimate remaining perturbations



(Abstract) Galerkin Scheme

H - Hilbert space, V is a (reflexive) Banach space, V' its dual
VcHcV,

eg. H:i=1Lp, V=H"={u:|ul?, = (u,(I - A)u) < oo},
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(Abstract) Galerkin Scheme

H - Hilbert space, V is a (reflexive) Banach space, V' its dual
VcHcV,

eg. H:i=1Lp, V=H"={u:|ul?, = (u,(I - A)u) < oo},
{Vh Cc V: h <0} be a dense family of finite dimensional

subspaces. f: V — V' andu € V where f(u) =0 ¢ V’

Definition (Galerkin scheme)

An approximate solution uy, € V}, is obtained by the Galerkin
scheme solving

| (i, f(up)) = 0 W, € V,

i.e. the residual f(uy) L V}, is perpendicular to V.



Abstract Convergence Analysis

Definition
A function f is called (locally) strongly monotone at u if
(f(u) — f(u'), (u —u) > yu -’

for some v > 0 and all ||u’ — u|ly < 6.



Abstract Convergence Analysis

Definition
A function f is called (locally) strongly monotone at u if
(f(u) — f(u'), (u —u) > yu -’

forsome v > 0and all |u’ —ul|y < é.

Example
Let A:=f'(u): V — V' (linear) with

(v, Au) < Lljuflv[lv]lv and

u,Au) > ~|[u||? i.e. ReA >0,
v

then f is Lipschitz continuous and strongly monoton.



Quasi-Optimal Convergence

Theorem (standard result)

Let f be Lipschitz continuous and strongly monotone, the
Galerkin scheme admits a (unique) solutionu, € Vy,, C > 0
satisfying Vh < hgy the estimates

L
Ju—uplly < ;IIf(Uh)Ilv' > unlly < Cllully
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Theorem (standard result)

Let f be Lipschitz continuous and strongly monotone, the
Galerkin scheme admits a (unique) solutionu, € Vy,, C > 0
satisfying Vh < hgy the estimates

L
Ju—uplly < ;IIf(Uh)Ilv' > unlly < Cllully

together with the quasi-optimal error estimate

L .
u—uplly < = inf [jupy —vplly
Y VhEVh




Quasi-Optimal Convergence

Theorem (standard result)

Let f be Lipschitz continuous and strongly monotone, the
Galerkin scheme admits a (unique) solutionu, € Vy,, C > 0
satisfying Vh < hgy the estimates

L
Ju—uplly < ;IIf(Uh)Ilv' > unlly < Cllully

together with the quasi-optimal error estimate

L .
lu—uplly <= inf |jup—vp|lv
Y VhEVh

Example (Cl-method)

If W — Wy ||, < & sufficiently small and Eq = (Wo, HVp), then
(t) — h(t) :== (V,, (H — Eo)(/-+T(t))Wo) is strongly monotone.



Local existence and quasi-optimal convergence

Let T(t) := >, tu X,
we consider g : V — V, g(t), := (W, (H — E(t)e’®)wy) .
Theorem (S. 2008)
Let E be a simple EV. If ||V — Wy ||y, < § sufficiently small, and
Jhn excitation complete, then
1. for E = E(ty) := (Wo, HeT( W), there holds
g(ty),v) =0, WeV, < (fty),v)=0,VVWweV,

2. g is strongly monontone att V||t|| < ¢’
3. there ex. ty € V, with (g(th),v) = (f(tp),v) =0, Vv € V),
[t=1tnlly < inf [[t— vy
veVv,



Existence and uniqueness; quasi-optimality

Theorem (S., 2009; R., 2010)

(i) Under assumptions as above, the solution t* is unique in
the neighbourhood B;(t*).

(ii)y For closed subspaces V4 for which
d(t*,Vq) := minyey, ||t* — v|v is sufficiently small,

<f(td), Vd> = 0 forall vyeVy
admits a solution ty in Bs 4 := Vg4 N Bs(t*) which is unique
on B; 4 and fulfils the quasi-optimality estimate
* L *
[ta — t|lv < N a(t*, Vy).

Sketch of proof:
» Uniqueness from strong monotonicity

» Ex. of discrete solutions uses lemma based on Browder’s fixed
point theorem



Error estimators (following Rannacher et al.)

Lagrangian approach:

Minimize CC energy
E(t) = (Wo, e TOHeTOwy),
under side condition f(t) = 0:
L(t,z) = E(t)+ (f(t), 2)
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Lagrangian approach:

Minimize CC energy
E(t) = (Wg, e "W HeTDyy),
under side condition f(t) = 0:
L(t, z) = E(t)+ (f(t),2)

Lemma (S., 2009; R., 2010)
Monotonicity = First order condition
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has unique dual solution (Lagrangian multiplier) z* € V.



Error estimators (following Rannacher et al.)

Lagrangian approach:

Minimize CC energy
E(t) = (Wo, e TOHeTOwy),
under side condition f(t) = 0:
L(t,z) = E(t)+ (f(t), 2)

Lemma (S., 2009; R., 2010)
Monotonicity = Discrete first order condition

L (ty, z4) = { <El(td)’S?;(;)<7DSZ(>td)sd’zd> } =0 forall sy€Vy

has unique dual solution (Lagrangian multiplier) zy € V, and

lzg — Z%|lv < max{d(Vg,t), d(Vg4,2")}.



Dual weighted residual approach

Theorem (Becker/Rannacher, 2001)

Let (1, z*) € V2 and (ty, z4) € V be the solutions of the

Lagrange equations for a thrice differentiable functional L, and
denote

p(ty) = (f(ta),)v  p*(t4, Za)

Then there holds

(E'(ta), -)v — (DFf(tq)-, Za)v-

1 *k 1 >k *
E(t) - E(t) = zo(ta)(Z" ~va) + 50" (to.2a)(t" — Wa) + R
for all vq, wy in V4, where

Ry = O(max{[|t* — tgll. | 2" — za}°).



Error estimators for the CC equation

Theorem (S., 2009; R., 2010)

(i) Formax{d(Vg,t*), d(Vg4,z*)} sufficiently good, under the
above assumptions, there holds

E(t) ~ E(t)l < lta—tllv (e g —llv + 2 12— 2"l1v).
E(t)—E(ty)l S (d(Va.t") + d(Va,2%))°

for the solutions (t*, z*), (4, z4) of the continuous/discrete
Coupled Cluster equations and corr. dual solutions.



Error estimators for the CC equation

Theorem (S., 2009; R., 2010)

(i) Formax{d(Vg,t*), d(Vg4,z*)} sufficiently good, under the
above assumptions, there holds

E(t) ~ E(t)l < lta—tllv (e g —llv + 2 12— 2"l1v).
E(t)—E(ty)l S (d(Va.t") + d(Va,2%))°

for the solutions (t*, z*), (4, z4) of the continuous/discrete
Coupled Cluster equations and corr. dual solutions.

(i) For¥ =W+ W* = ey, W7 .= Wy 4+ W2 = el (@),
there holds

|E(t") — E(ty)] < ( inf [ — W5 + inf & — W || )2.
deH) | deH) |

Extended: bi-variational appr. of Aroonen by S. Kvaal (2013)



Comparison with Jastrow factor ansatz

Example (— Quantum Monte Carlo Methods)
Let us consider the Jastrow factor ansatz:

[W(x) ~ F(x)Wo(x)|

Wy (x) - reference (determinant), F - multiplication operator
1. Linear ansatz:
Fx) =1 F106) + S0 (X X)) + ..
2. exponential ansatz : ( Krotzschek, ... )
F(x) = el 100+ ZE eiX)+5-]  ANOVA approx. is size
cons. only for the exponential ansatz 2)
3. In Coupled Cluster and Perturbation Theory

(W(x) = FUp(x)|, CC: F=e"

is an operator. (In principle this is an exact ansatz - no
fixed node error.)



Quantum Monte Carlo Methods (QMC)

W(X) ~ F(X)D(X) = F(x)Wo(x)e? i %l

> O(x) = Wo(x)ez 2o XXX reference, Wo = Wg[1, ..., N]

> frp = ez 2r; x| (e-e cusp) (fy /2 - €.9. Kiopper in CC)
» [ - unknown Jastrow factor ( Ceperly, Umrigar, ...)
Schrédinger eqn. = EVP for F = Fokker Planck egn. t — oo

%F: %(AF+V|OQ|¢|2-VF) — (% - Vcore—i-EO)F_)O'

Dirichlet boundary conditions F|sq = 0, 92 := {x : Wp(x) = 0}.

(Ito Calculus) Stochastic differential equation (SDE) = MC

(Small) systematic error: fixed node approximation (Cances &
Jourdan & Lelievre) - but accuracy comparable with CCSD!



Notes

Projected CC is a compromise making the exponential
ansatz computable

it is more a perturbational approach for improving a
reference solution Wy.

Analysis lays base for goal-oriented error estimators for
CC, for example in combination with extrapolation schemes

Analysis is only local, but it shows

» importance of quality of reference determinant Wq
» importance of gap infa(h)\{E*} — E*

These do not only enter in convergence estimates for
algorithms (and reflect in practical experience), but also
enter in quasi-optimality estimates.




Summary

» Schrédinger equation = high dimensional eigenvalue
problem with additional antisymmetry constraint

» Reformulation of linear Galerkin ansatz by nonlinear
(projected) Coupled Cluster ansatz gives practical method

» Formulation in infinite dimensional spaces gives
continuous CC ansatz, equivalent to electronic
Schrédinger equation

» Local existence/uniqueness statements for CC ansatz

» Error estimators for energy




Thank you
for your attention.
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