QM/MM study on inhibitor of HIV-1 protease

Graduate School of Science, Kyoto University Masahiko Taguchi, Masahiko Kaneso, Shigehiko Hayashi

HIV

- Human Immunodeficiency Virus
- Origin of AIDS

HIV appearing from lymphocytes Ref: https://www.pref.hiroshima.lg.jp/soshiki/25/bu-biseibutu2-hivvirus.html

HIV replication in a cell Ref: http://colgateimmunology.blogspot.de/2013/12/a-new-mechanism-of-cell-death-by-hiv.html

HIV-1 protease

- One of protein in HIV virus
- Activated by cutting polyprotein (gag, pol) with hydrolysis

HIV-1 protease

Part of gene of HIV-1 protease

HIV-1 protease

- Homodimer consisted of 99 residues × 2
- Activation part: two Asp25
- Catalyzing hydrolysis of peptide bonds

Whiskers

water molecule near chemical reaction part is important!

Inhibitors of HIV-1 protease

- AIDS medicine
- Transition state(TS) analog molecule
- Serious drug-resistance(high mutation rate)

Stabilization of TS in enzyme

K_a of various host-guest complexes

TS analog inhibitor

Drug Resistance

Shock et al., J. Biol. Chem. 271, 31957 (1996)

Reaction rate of natural substrate molecule

Cleavage site	Peptide sequence	Wild-type	4X	M46I/L63P	V82T/I84V
		$M^{-I} s^{-I}$	$M^{-I} s^{-I}$	$M^{-I} s^{-I}$	$M^{-I}s^{-I}$
I. MA(p17)/CA(p24)	NQVSQNY*PIVQNI	17,980	940	65,100	830
H. CA/p2	GHKARVL*AEAMSQ	720	310 ~1	2 790	220
III. $p2/NC(p7)$	TNSATIM*MORGNF	27,970	3,440	76,300	1,770
IV. NC/p6	KGRPGNF*LQSRPE	370	140	490	43
V. p6*/PR	GTVSFNF*PQVTLW	113,400	6,810	221,400	3,760
VI. PR/RT	IGCTLN <u>F*PI</u> SPIE	8,930	430 ~1/	20 14,600	300
VII. RT (internal)	IVGAETF*YVDGAA	11,400	227	14,160	130
VIII. RT/IN	AGIRKVL*FLDGID	845	58	1,850	38

Dissociation constant of inhibitor molecule

Inhibitor	Wild-type	4X	M46I/L63P	V82T/I84V
	nM	nM	nM	nM
MK-639	0.40	→ 21.6 x 50	0.47	23.7
ABT-538	0.19	28.5	0.15	30.1
Ro 31-8959	0.33	11.9	0.37	13.3
VX-478	0.57	5.8	0.53	10.1

1. High activation part is largely effected by its mutation

- 2. Inhibitor is a mimic of high activation site (e.g. F * P)?
- 3. Low activation part (determines overall activation) is smally effected by its mutation (e.g. site II)

Purpose

- 1. Precise identification on transition state of natural substrate molecule
- 2. Clarifying drug binding affinity and molecular mechanism of enzymatic reactive activity for drug-resistant mutant
- 3. Design of drug molecule for controlling both drug binding affinity and reactivity of natural substrate

Correlation between chemical reaction part and surrounding protein environment is important

QM/MM RWFE method

Complete separation between

- QM/MM calculation of a chemical reaction and
- MD simulation for protein conformational sampling

QM/MM free energy (FE) geometry optimization

Geometry optimization of the QM molecule on a *free energy surface* defined with the MM conformational thermal distribution obtained by MD simulations

~ 1 μ second (> 1,000 times longer than direct QM/MM-MD)

QM/MM-FE Geometry Optimization

Nagaoka and co-workers

Free energy functional

$$F[\Psi] = -k_{B}T \ln \int \int d\mathbf{R} d\mathbf{X} \exp\left[-\beta E^{QM/MM}\left(\{\Psi(\mathbf{R}, \mathbf{X})\}, \mathbf{R}, \mathbf{X}\right)\right]$$

 Ψ : electronic wf, R : QM coordinates, X : MM coordinates

Give up sampling of R

$$F[\Psi,\mathbf{R}] = -k_{B}T\ln\int d\mathbf{X}\exp\left[-\beta E^{QM/MM}\left(\{\Psi(\mathbf{R},\mathbf{X})\},\mathbf{R},\mathbf{X}\right)\right]$$

Free energy surface of QM coordinates

Gradient on FE surface: mean gradient

$$\frac{\partial F}{\partial R_i} = \left\langle \frac{\partial E^{QM/MM}}{\partial R_i} \right\rangle_{\mathbf{X}}$$

Problem: Electronic WF depends on X.

Its computational cost is not very different from a direct QM/MM-MD.

Mean Field (MF) QM/MM Method

$$F[\Psi,\mathbf{R}] = -k_{B}T\ln\int d\mathbf{X} \exp\left[-\beta E^{QM/MM}\left(\{\Psi(\mathbf{R},\mathbf{X})\},\mathbf{R},\mathbf{X}\right)\right]$$

 $\begin{array}{c} \mathsf{MF} \text{ approximation} \\ \Psi(\mathbf{R}, \mathbf{X}) \to \Psi_{MF}(\mathbf{R}) \end{array} \qquad \checkmark \qquad \mathsf{MF-QM/MM} \end{array}$

$$F[\Psi_{MF},\mathbf{R}] = -k_{B}T \ln \int d\mathbf{X} \exp \left[-\beta E^{QM/MM} \left(\{\Psi_{MF}(\mathbf{R})\},\mathbf{R},\mathbf{X}\right)\right]$$

Variational solution

$$f^{QM/MM}\left(\mathbf{d},\mathbf{R}\right) = f^{0}\left(\mathbf{d},\mathbf{R}\right) + \mathbf{\hat{q}}^{t}\left(\mathbf{R}\right)\mathbf{\bar{V}}^{C}\left(\mathbf{d},\mathbf{R}\right)$$

MF of MM region is computed by MD.

QM/MM RWFE-SCF Method

Problem of QM/MM-FE

Conventional

Frequent iteration of QM/MM opt. and MD sampling is necessary. Convergence problem! Kosugi and SH, JCTC (2012) Kosugi and SH, JACS (2012)

Present method

MM distribution is reweighted.

Much quicker convergence of MM thermal distribution

$$\rho_{MM}(\mathbf{d},\mathbf{R};\mathbf{X}) = \frac{\exp\left[-\beta\left\{E^{QM-MM}(\mathbf{d},\mathbf{R};\mathbf{X}) - E^{QM-MM}(\mathbf{d}_{0},\mathbf{R}_{0};\mathbf{X})\right\}\right]}{\left\langle\exp\left[-\beta\left\{E^{QM-MM}(\mathbf{d},\mathbf{R};\mathbf{X}) - E^{QM-MM}(\mathbf{d}_{0},\mathbf{R}_{0};\mathbf{X})\right\}\right]\right\rangle_{0}} \times \rho_{MM}(\mathbf{d}_{0},\mathbf{R}_{0};\mathbf{X})$$

Well-defined variational method

Procedure

Determination of protonated state We cannot determine protonated state by X-ray structural analysis! (classical MD)

non-protonated: 300 ns

mono-protonated(A): 700 ns

mono-protonated(B): 1000 ns

- non-protonated and mono-protonated
 (A): substrate dissociated
- mono-protonated(B): stable under 1µs MD and water molecules entered activation part

Intermediate state (QM/MM)

Not yet converged (~6 μ s)

Reactant

Intermediate

Water molecule attached a lone pair of amine

New mechanism for stabilization of intermediate state

Inhibitor molecule (Indinavir) binding state (QM/MM)

700 ns

Two types of protonated states(AH, BH)

- BH: water molecules entered between protease and inhibitor
- AH: more stable than BH

Summary

- Different protonated states caused different structural changes for both natural substrate and inhibitor cases
- \rightarrow Reasonable state is spontaneously determined
- We clarified new stabilization mechanism of intermediate state
- We will calculate mutation case of protease
 → Comparing it with wild type and try to make TS analog drug