Approximation of Eigenvalue Problems II Solving the discrete eigenvalue problem

Guido Kanschat

IWR, Universität Heidelberg

IWR School 2017: Mathematical Methods in Quantum Mechanics

- Vector iterations
- Krylov space methods
- The Jacobi-Davidson Method

Literature: algebraic EVP

- Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, eds. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM. 2000
- Y. Saad. *Numerical Methods for Large Eigenvalue Problems*. SIAM. 2011

- Vector iterations
 - Single vector iterations
 - Simultaneous vector iterations
- 2 Krylov space methods
- The Jacobi-Davidson Method

The standard EVP

$$Au = \lambda u$$

- Eigenvalues: λ_k
- Eigenvectors: *u_k*
- Eigenspaces U_k

The generalized EVP

$$Au = \lambda Mu$$

- Generally, $A, M \in C^{n \times n}$
- Variational EVP always lead to the second form
 - M symmetric (Hermitian), positive definite
 - semi-definite possible

Properties of A

- Hermitian (symmetric)
 - $\mathbb{C}^n = \operatorname{span}(u_1, \ldots, u_n)$
 - $\bullet \ (u_i,u_i)=\delta_{ii}$
 - λ_k real
- normal
 - $\mathbb{C}^n = \operatorname{span}(u_1, \ldots, u_n)$
 - $\bullet \ (u_i,u_j)=\delta_{ij}$
 - λ_k complex
- diagonalizable
 - $\mathbb{C}^n = \operatorname{span}(u_1, \ldots, u_n)$
 - λ_k complex
- other
 - less than *n* eigenvectors
 - $\mathbb{C}^n \neq \operatorname{span}(u_1, \ldots, u_n)$

Restriction to real, symmetric matrices

- Real eigenvalues and eigenvectors
- Orthogonality: for any $\mathbf{k} \in \mathbb{R}^n$ holds Parseva C

$$v = \sum_{k=1}^{n} \alpha_k u_k, \qquad |V| = \sum_{k=1}^{n} \alpha_k^2$$

 Even if we do not know the eigenvectors in advance, knowing their existence helps

Power iteration (von Mises)

Initial vector v

for
$$i := 1, \dots$$
 do

$$v := Av$$

end for

$$\lambda := \frac{a(v,v)}{(v,v)}$$

Normalization

- Vectors may grow or shrink beyond numerical range
- Normalization in every step or every few steps

Power iteration (von Mises)

```
Initial vector v

for i := 1, ... do

v := Av

v /= ||v||

end for

\lambda := a(v, v)
```


Power iteration with stopping criterion

```
Initial vector v with \|v\|=1 repeat w:=Av \theta:=(w,v) r=w-\theta v v=\frac{1}{\|w\|}w until \|r\|\leq \varepsilon \lambda:=\theta u:=v
```


Convergence estimate

Use the fact that A is orthogonally diagonalizable

$$v = \sum_{k=1}^{n} \alpha_k u_k \qquad Av = \lambda_n \left(\alpha_n u_n + \sum_{k=1}^{n-1} \frac{\lambda_k}{\lambda_n} \alpha_k u_k \right)$$
The point of the poin

- Renormalize for simplicity $\alpha_n = 1$
- Result of step i

$$v^{(j)} = u_n + \mathcal{O}\left(\left(\frac{\lambda_{n-1}}{\lambda_n}\right)^j\right) \qquad \qquad \mathcal{O}_{k} \neq \mathcal{O}_{k-1}$$

$$\theta^{(j)} = \lambda_n \left(1 + \mathcal{O}\left(\left(\frac{\lambda_{n-1}}{\lambda_n}\right)^{2j+1}\right)\right)$$

Residual

$$\mathbf{w}^{(j)} - \theta^{(j)} \mathbf{v}^{(j)} = \lambda_n \mathcal{O}\left(\left(\frac{\lambda_{n-1}}{\lambda_n}\right)^{j+1}\right)$$

Spectral transformations

• Power iteration can only approximate the largest eigenvalue

Spectral transformations

- Power iteration can only approximate the largest eigenvalue
- Smallest eigenvalue: apply iteration to A⁻¹

Spectral transformations

- Power iteration can only approximate the largest eigenvalue
- Smallest eigenvalue: apply iteration to A^{-1}
- Convergence speed depends on ratio of the two largest eigenvalues
- Shift and invert: choose σ close to the desired eigenvalue λ_* and apply iteration to

$$(A - \sigma I)^{-1}$$
 $\mu_* = \frac{1}{\lambda_* - \sigma} \ll \frac{1}{\lambda_k - \sigma} = \mu_k$

Inverse iteration (Wieland)

Initial vector v with ||v|| = 1 repeat

Solve: $(A - \sigma I)w := v$ $\theta := (w, v)$ $r = w - \theta v$ $v := \frac{1}{||w||}w$ until $||r|| \le \varepsilon$

 $\lambda := \sigma + \frac{1}{\theta}$ u := V

Adapt shift in every step

Rayleigh quotient iteration

```
Initial vector v with ||v|| = 1
Initial shift \sigma
repeat
     Solve: (A - \sigma I)w := v
     if singular then stop
     \theta := \|\mathbf{w}\|
     \sigma += \frac{(w,v)}{\theta^2}
     V := \frac{1}{\rho}W
until \theta > \varepsilon^{-1/2}
\lambda := \sigma
u := v
```

Eigenvalues converge third order!

How to compute the second eigenvalue?

How to compute the second eigenvalue?

• Iterate two vectors at a time: $V = (v_1, v_2) \in \mathbb{R}^{n \times 2}$

$$\tilde{V} = (A_{v_n}, A_{v_n}) \in \mathbb{R}^{n \times 2}$$
 $\tilde{V} = AV$

How to compute the second eigenvalue?

• Iterate two vectors at a time: $V = (v_1, v_2) \in \mathbb{R}^{n \times 2}$

$$\tilde{V} = AV$$

Orthogonalize and normalize (Gram-Schmidt)

$$egin{aligned} v_1 &= rac{1}{\|w_1\|} w_1 & w_1 &= ilde{v}_1 \ v_2 &= rac{1}{\|w_2\|} w_2 & w_2 &= ilde{v}_2 - (ilde{v}_2, v_1) \, v_1 \end{aligned}$$

Gram-Schmidt revisited

Simultaneous iteration of k vectors

$$\gamma_{1} V_{1} = \tilde{V}_{1}
\gamma_{2} V_{2} + \beta_{21} V_{1} = \tilde{V}_{2}
\vdots \vdots \vdots \vdots
\gamma_{k} V_{k} + \beta_{k1} V_{1} + \dots + \beta_{k,k-1} V_{k-1} = \tilde{V}_{k}$$

Matrix form

$$VR = \tilde{V}, \qquad R = \begin{pmatrix} \gamma_1 & \beta_{21} & \dots & \beta_{k1} \\ & \gamma_2 & \dots & \beta_{k2} \\ & & \ddots & \\ & & & \gamma_k \end{pmatrix}$$

Simultaneous vector iteration (truncated QR method)

Initial matrix $V \in \mathbb{R}^{n \times k}$ with orthogonal columns while true do

```
W := AV

H := V^T W

if ||W - VH|| \le \varepsilon then stop

QR-factorize: VR = W
```

end while

$$\lambda_i = h_{ii}$$

 $u_i = V_{..i}$ or QR-factorize $VR = W$

- Can be applied with shift and invert
- Orthogonalization can be done every m steps

Polynomial acceleration

- Assumption: Some eigenvalues are less important
- Replace the product $A^m V$ by the polynomial $p_m(A)$
- Choose p_m such that it is
 - small where eigenvalues are not important
 - large where they are important
- Example: Chebyshev polynomials to suppress eigenvalues in $[\sigma-\rho,\sigma+\rho]$:

$$T_m\left(\frac{A-\sigma I}{\rho}\right)$$

Implicit shift

- In each step, QR-factorize $A \sigma I$
- If $\sigma = \lambda$, then

- The eigenvector gets reproduced exactly
- Find shifts close to λ_k to accelerate convergence

Remarks on the generalized EVP

$$Au = \lambda Mu$$

Apply the vector iterations to

$$C = M^{-1}A$$

- Not symmetric
- Cholesky decomposition $M = LL^T$ if M is s.p.d.

$$C = L^{-1}AL^{-T} \qquad M^{-1} = L^{-T}L^{-1}$$

- Symmetric
- Stability if M is ill-conditioned?

Inverse iterations can be rewritten by changing inner product

Example: Inverse iteration for generalized EVP

Initial vector
$$v$$
 with $||v||_M = 1$
repeat

Solve: $(A - \sqrt{M})v := \sqrt{M}v$
 $\theta := (w, v)$
 $r = w - \theta v$
 $v := \frac{1}{||w||}w$
until $||r|| \le \varepsilon$
 $\lambda := \sigma + \frac{1}{\theta}$
 $u := v$

Why are we solving generalized EVP?

• We have to distinguish between the eigenvalues of the operator $A: H \to H^*$

$$a(u,v)=\lambda\left(u,v\right)$$

and the matrix *A* which is generated by applying the bilinear form to the basis functions

$$Ax = \lambda x$$

- The second depend on the basis, the first do not
- The first make sense in H, the second only discretely
- The Ritz isomorphism is missing in the second EVP

Matrix structures (FEM)

- Basis typically large, $n \approx 10^7$
- Applying matrix is cheap $O_m = n \ll n^2$

Optimal complexity

A single step of an iterative method is of optimal complexity, if its operation count is of the same order as O_m .

- Power iteration is of optimal complexity
- Inverse iteration is of optimal complexity if the linear solver is
- The truncated QR method is of optimal complexity
- The full QR method is not

- Vector iterations
- 2 Krylov space methods
 - Basic idea
 - The Lanczos method
 - Implicitly restarted Lanczos
- The Jacobi-Davidson Method

- Krylov space methods are projection methods
 - Approximate large EVP by exact solution to small EVP
 - Approximation space growing in each step
 - Ritz-Galerkin method

Krylov space

$$\mathcal{K}_m(A, v) = \operatorname{span}\left(v, Av, \dots, A^{m-1}v\right)$$

- Krylov spaces are generated by subsequent powers of A
- The vectors $A^{j}v$ become more and more parallel as j increases
- Methods must maintain an orthogonal basis for stability

Notation

- V_m is orthonormal basis of $\mathcal{K}_m(A, v)$
- The projected matrix

$$T_m = V_m^T A V_m$$

- (θ_k, s_k) eigenpairs of T_m
- Ritz vectors

$$u_k^{(m)} = V_m^T s_k$$

The Lanczos method

- Variant with shift and invert
- Variant for generalized EVP
 - r is M-orthogonal to V_i

The projected system

$$T_{m} = \begin{pmatrix} \alpha_{1} & \beta_{1} & & & \\ \beta_{1} & \alpha_{2} & \ddots & & \\ & \ddots & \ddots & \\ & & \beta_{m-1} & \alpha_{m} \end{pmatrix}$$

- Tridiagonal, symmetric
- QR factorization particularly simple
- Recursive construction

$$AV_j = V_j T_j + r_j e_j^T, \qquad V_j^T r_j = 0$$

Stopping criterion

• Approximation of Ritz pair $(\theta_k, v_k^{(m)} = V_m s_k)$

$$r_k^{(m)} = A v_k^{(m)} - \theta_k v_k^{(m)} = (A V_m - V_m T_m) s_k = v_{m+1} \beta_m s_{m,k}$$

Estimate

$$\left\|r_k^{(m)}\right\| = \left|\beta_m s_{m,k}\right|$$

Reorthogonalization

- Not necessary for conjugate gradient method
 - Only last approximation counts
- Recursive orthogonality suffers as soon as an eigenvalue is well approximated
 - roundoff errors dominate
- Reorthogonalization of the whole basis V_m necessary

Multiple eigenvalues

- The Lanczos method works with multiple eigenvalues
 - Only one eigenvector in the eigenspace
 - Depending on initial vector
- Locking of eigenvectors
 - Flag eigenpairs as converged if residual is small
 - Do not iterate those anymore
 - Keep vectors in orthogonalization
 - Roundoff errors force additional eigenvectors

Restarting

- The Lanczos basis may become very large before convergence
 - Reorthogonalization costly
- Solution: cutting off the basis (restart)
- Explicit restart
 - Delete basis after *m* steps
 - Begin with last iterate
- Implicit restart
 - Keep part of the basis and fill up again

Implicit restart

- Split Krylov space of size m = k + p into
 - k desired Ritz vectors
 - p undesired Ritz vectors
- Selection criterion by selecting from $\theta_1, \ldots, \theta_m$
 - the largest Ritz values
 - other choices

Implementation of implicit restart

- **①** Compute until Krylov space has dimension m = k + p
- 2 Apply implicitly shifted QR with the p undesired Ritz values
 - Eigenvalues of T_m with these eigenvalues will be in the end
 - First k vectors will be more desirable Ritz vectors

$$T_{m} = \left(\frac{Q_{k} \times X}{X}\right) \rightarrow T_{k} = Q_{k}$$

Implicitly restarted Lanczos method

```
Initial vector r_0
repeat
    Compute Lanczos basis V_m and projection T_m
    Compute spectrum of T_m
    Choose shifts \theta_{i_1}, \ldots, \theta_{i_n}
    Q = I_m
    for i:=1,\ldots, do
         QR-factorize: Q_i R_i = T_m - \theta_{ii} I
         T_m := Q_i^T T_m Q_i
         Q := QQ_i
    end for
    r_k = t_{k+1,k} v_{k+1} + q_{mk} r_m
    Truncate T_m \longrightarrow T_k \in \mathbb{R}^{k \times k} and Q \longrightarrow Q \in \mathbb{R}^{m \times k}
    V_k = V_m Q
```

1217

until T_k almost diagonal

Locking and implicit restart

- **1** Begin locking Ritz values θ whenever the residual is small
- After k values have been locked and a new one converges
 - 1 If is more desirable than one of the previous
 - lock it and
 - release the least desirable locked one
- If it is not more desirable than any, replace v_{k+1} by a random initial vector and start from there
- End if the random restart failed twice

Implicitly restarted Arnoldi method

The same method for non-Hermitian EVP, yielding a projected matrix not in tridiagonal, but in Hessenberg form.

- Vector iterations
- 2 Krylov space methods
- The Jacobi-Davidson Method

Jacobi-Davidson for a single eigenvalue

```
Initial vector w
v_0 = \frac{1}{\|\mathbf{w}\|} \mathbf{w}
for m := 1, ... do
    V_m = \frac{1}{\|\mathbf{w}\|} \mathbf{w}
    T = V_m^T A V_m
  Compute largest eigenpair (\theta, s) of T
   u = V_m s
   r = Au - \theta u
    if ||r|| < \varepsilon then stop
Solve approximately P_{II}^{\perp}(A-\theta I)P_{II}^{\perp}w=-r
 \S Orthogonalize w with respect to V_m
end for
```


The projected system

 The Galerkin projection of A can be built recursively adding one row and column

$$T_m = V_m^T A V_m \begin{pmatrix} T_{m-1} & v_m^T A V_{m-1} \\ V_{m-1}^T A V_m & v_m^T A V_m \end{pmatrix}$$

- Since the vectors v_j are not obtained by short recursion, the matrix is full
- Full QR method needed

The new search direction

Search orthogonal to the current Ritz vector u:

$$P_{u}^{\perp} = (I - uu^{T})$$

$$(\Gamma - uu^{T}) (A - \vartheta I) (\Gamma - uu^{T}) = -\Gamma$$

Solves the problem

$$(A - \theta I)w = -r$$

on the subspace orthogonal to u.

- ||u|| = 1 and the eigenvector has length one
 - Search tangential to the unit sphere
- Exact solution not necessary, since projected matrix is computed explicitly
 - Can be replaced by any other operator

Another view to the Davidson method

- ullet The shift heta for inversion is adapted in each step
 - Projection version of the Rayleigh quotient iteration
- The matrix $A \theta I$ becomes more and more singular as θ improves
 - Condition number grows
 - The projection improves the condition number

Jacobi-Davidson for several eigenvalues

```
Initial vector w
v_0 = \frac{1}{\|\mathbf{w}\|} \mathbf{w}
for m := 1, \ldots do
     v_m = \frac{1}{\|\mathbf{w}\|} \mathbf{w}
     T = V_m^T A V_m
   \bigvee Compute largest eigenpairs (\theta_k, s_k) of T
   u_k = V_m s_k, \quad k = 1, \ldots, \ell
   r_k = Au_k - \theta u_k, \quad k = 1, \dots, \ell
    if ||R|| < \varepsilon then stop
Solve approximately P_U^{\perp}(A - \theta)P_U^{\perp}w = -r
     Orthogonalize w with respect to V_m
end for
```


Search direction

• The Ritz vectors form an orthogonal matrix

$$U = (u_1, \ldots, u_\ell) \in \mathbb{R}^{n \times \ell}$$

• The new orthogonal projection is

$$P_U^{\perp} = (I - UU^T)$$

ullet θ is still chosen as the largest Ritz value

Further improvements

- Locking of converged eigenvalues
- Implicit restart

Summary

- Vector iterations
 - Amplify desired eigenvectors by applying matrix powers
- Projection methods
 - Accelerate by solving projected problems exactly
 - Projected problems are of dimension greater one
 - Lanczos accelerating power and inverse iteration
 - Davidson accelerating Rayleigh quotient iteration

