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ﬂ Vector iterations
9 Krylov space methods

e The Jacobi-Davidson Method
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ﬂ Vector iterations
@ Single vector iterations

@ Simultaneous vector iterations
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The standard EVP

Au = \u

@ Eigenvalues: )\
@ Eigenvectors: uy
@ Eigenspaces Uy

The generalized EVP

Au = \Mu

@ Generally, A, M € C™"
@ Variational EVP always lead to the second form

@ M symmetric (Hermitian), positive definite
e semi-definite possible IR
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Properties of A

@ Hermitian (symmetric)

e C"=span(uy,...,Upn)

o (uu) =y

@ )\, real i
@ normal 5 @9

e C"=span(uy,...,uUp)

o (uiu) =
@ )\, complex

@ diagonalizable
e C"=span(u,...,uUp) é@é
@ )\, complex

@ other (
@ lessthann elgenvectors g %5 7
e C" £ span(uy,..
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Restriction to real, symmetric matrices

@ Real eigenvalues and eigenvectors
@ Orthogonality: for anyfv/e R" holds Pa reeval

n l/ n
2
v=> ok, ef?=> a2
k=1 k=1

@ Even if we do not know the eigenvectors in advance, knowing their
existence helps
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Power iteration (von Mises)

Initial vector v
fori:=1,...do
v = Av

end for
Py a(v,v)
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Normalization

@ Vectors may grow or shrink beyond numerical range
@ Normalization in every step or every few steps

Power iteration (von Mises)

Initial vector v
fori:=1,...do
v .= Av
v/=|v|

end for
A:=a(v,v)
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Power iteration with stopping criterion

Initial vector v with ||v| =1

repeat
w = Av
0 :=(w,v)
r=w-—_~6v
V= ﬁw
until [|r]| <e
A=10
u:=v
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Convergence estimate

@ Use the fact that A is orthogonally diagonalizable

n n—1
V= Zakuk Av = )\, (anun-l-Z%akUk)
k=1

k=1

@ Renormalize for simplicity ap = 1 o/, = O C/V@{ L

@ Result of step j ﬁ(aci{‘«p éﬁd” é
QviclacCcC

W) — u,,+0(( n)j) (2.0 F 12!
oU) = A, (1 +0 ((A§;1>2j+1>>

j+1
Ao ) ) ILR
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@ Residual

W) — gil) — 0 ((



Spectral transformations

@ Power iteration can only approximate the largest eigenvalue
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Spectral transformations

@ Power iteration can only approximate the largest eigenvalue
@ Smallest eigenvalue: apply iteration to A~
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Spectral transformations

@ Power iteration can only approximate the largest eigenvalue
@ Smallest eigenvalue: apply iteration to A~

@ Convergence speed depends on ratio of the two largest
eigenvalues
@ Shift and invert: choose o close to the desired eigenvalue )\, and
apply iteration to
1 1

A—ol)! .= =
( al) e )\*_U<<)\k_a Hk
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Inverse iteration (Wieland)

Initial vector v with ||v| =1

repeat
Solve: (A—ol)w:=v
0= (w,v)
r=w-—_6v
vi= ”17”w
until [|r| <e
=0+ %
u:=yv
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Adapt shift in every step

Rayleigh quotient iteration

Initial vector v with ||v| =1
Initial shift o
repeat
Solve: (A—ol)w:=v
if singular then stop

0= ||wl||
o+= %
vi=Iw
until 9 > ¢—1/2
Ai=o0
u:=v

Eigenvalues converge third order!
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How to compute the second eigenvalue?

G. Kanschat (IWR, Uni HD) Approximation of EVP IWR School 2017 15/46



How to compute the second eigenvalue?

@ lterate two vectors at a time: V = (vq, vp) € RM?

(//L:(Av,,, Av.,,)é ”Zhyz V=Av
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How to compute the second eigenvalue?

@ lterate two vectors at a time: V = (vq, vp) € RM?
V =AV

@ Orthogonalize and normalize (Gram-Schmidt)

=
I

_| 1 I Wi Wy = V1

N

Vo

Iz ||W wo = o — (o, vy) v4
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Gram-Schmidt revisited

@ Simultaneous iteration of k vectors

7MW

Yo Vo + P21 V4

YkVk + Bkavi + -+ Bk ok—1Vk—1

@ Matrix form
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Simultaneous vector iteration (truncated QR method)

Initial matrix V e R™*k with orthogonal columns
while true do
W .= AV
H:=VTw
if |W — VH|| < ¢ then stop
QR-factorize: VR =W
end while
Ai = hi
u; = V. ; or QR-factorize VR = W

@ Can be applied with shift and invert
@ Orthogonalization can be done every m steps
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Polynomial acceleration

@ Assumption: Some eigenvalues are less important

@ Replace the product A"V by the polynomial pp,(A)
@ Choose pp, such that it is

e small where eigenvalues are not important
e large where they are important

@ Example: Chebyshev polynomials to suppress eigenvalues in

[0—,0,0—1-,0]1
T (A—O’/)
p
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@ In each step, QR-factorize A — o/
@ If ¢ = A, then

RQ =
0 -~ 0 A

@ The eigenvector gets reproduced exactly
@ Find shifts close to )\t to accelerate convergence
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Remarks on the generalized EVP

Au = \Mu

@ Apply the vector iterations to

cC=MT1A

o Not symmetric
@ Cholesky decomposition M = LLT if M is s.p.d.
- T
coraT ot
@ Symmetric
e Stability if M is ill-conditioned? ILR
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Inverse iterations can be rewritten by changing inner product

Example: Inverse iteration for generalized EVP

Initial vector v with ||v|,, = 1
repeat

Solve: (A— c@/v :=@

0= (W, V)i

r=w-—_~06v

V= mw A
until ||r|| <&
A =0+ i M7 (Z
u:=v
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Why are we solving generalized EVP?
o W istinguish between the eigenvalues of the operator
H— H*

a(u,v) =X(u,v)

and the matrix A which is generated by applying the bilinear form
to the basis functions

AXx = \x

@ The second depend on the basis, the first do not
@ The first make sense in H, the second only discretely
@ The Ritz isomorphism is missing in the second EVP
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Matrix structures (FEM)

@ Basis typically large, n ~ 10’
@ Applying matrix is cheap Op, = n < n?

Optimal complexity

A single step of an iterative method is of optimal complexity, if its
operation count is of the same order as Op,.

@ Power iteration is of optimal complexity

@ Inverse iteration is of optimal complexity if the linear solver is
@ The truncated QR method is of optimal complexity

@ The full QR method is not
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© Krylov space methods
@ Basic idea
@ The Lanczos method

%

@ Implicitly restarted Lanczos
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@ Krylov space methods are projection methods
e Approximate large EVP by exact solution to small EVP
@ Approximation space growing in each step
o Ritz-Galerkin method

Krylov space

Km(A, v) = span (v, Av,... A" v)

@ Krylov spaces are generated by subsequent powers of A
@ The vectors A'v become more and more parallel as j increases
@ Methods must maintain an orthogonal basis for stability
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@ V), is orthonormal basis of K,(A, v)
@ The projected matrix

Tm = VIAV,

@ (6, sk) eigenpairs of T,
@ Ritz vectors

ul™ = V] sy
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The Lanczos method

Initial vector r
forj=1,2,... do
Bi—1 = Irlly
Vi=g5"
r = Av; or solve (A — oM)r = v;

r—= fj-1Vj-1
aj = (Lj,r)lM } chm_- gc,(mfré v
==y
Optional reorthogonalization
Compute T; and diagonalize T; = SO0 ST
if converged then stop
end for

@ Variant with shift and invert
@ Variant for generalized EVP
e ris M-orthogonal to V; IR
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The projected system

a1 By
T, — |5 o2
’ ﬁm—1

6m71‘ am

@ Tridiagonal, symmetric
@ QR factorization particularly simple
@ Recursive construction

AV, = ViTi+nef, V=0
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Stopping criterion

@ Approximation of Ritz pair (6, v,ﬁm) = VinSk)
n" =A™ = 0™ = (AVi — Vi T)S = Vimy1 BmSmik
@ Estimate

|57 = 18msmad
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Reorthogonalization

@ Not necessary for conjugate gradient method
@ Only last approximation counts

@ Recursive orthogonality suffers as soon as an eigenvalue is well
approximated

@ roundoff errors dominate

@ Reorthogonalization of the whole basis V,, necessary
T

Z
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Multiple eigenvalues

@ The Lanczos method works with multiple eigenvalues
@ Only one eigenvector in the eigenspace
e Depending on initial vector

@ Locking of eigenvectors

e Flag eigenpairs as converged if residual is small
e Do not iterate those anymore

e Keep vectors in orthogonalization

e Roundoff errors force additional eigenvectors
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Restarting

@ The Lanczos basis may become very large before convergence
e Reorthogonalization costly

@ Solution: cutting off the basis (restart)

@ Explicit restdrt
o Delete basis after m steps
e Beégin with last iterate

@ Implicit restart
o Keep part of the basis and fill up again

Vf\ K K *2{{/((—(—/ - (?{
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Implicit restart

@ Split Krylov space of size m = k + p into
@ k desired Ritz vectors
@ p undesired Ritz vectors

@ Selection criterion by selecting from 64, ...,0n

e the largest Ritz values
e other choices
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Implementation of implicit restart

@ Compute until Krylov space has dimension m =k + p
© Apply implicitly shifted QR with the p undesired Ritz values

e Eigenvalues of T,, with these eigenvalues will be in the end
@ First k vectors will be more desirable Ritz vectors

T, = <AQ/:E> — ((\\(:QK
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Implicitly restarted Lanczos method

Initial vector ry
repeat
Compute Lanczos basis V; and projection Ty,
Compute spectrum of Tp,
Choose shifts 0;,,...,0;,
Q=

for/_1 ﬁ{—\p

QR- factorlze. QR; = Tn—0;l

Tm = QI-T TmQ/
Q = QQ;
end for

Ik = ti1 kVkt1 + Qmkrm
Truncate T, — Tx € Rf¥*Kand Q — Q € R™*k
Vi = Vi Q

until T, almost diagonal
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Locking and implicit restart

@ Begin locking Ritz values # whenever the residual is small

© After k values have been locked and a new one converges
@ If is more desirable than one of the previous
@ lock it and
@ release the least desirable locked one
@ If it is not more desirable than any, replace v, 1 by a random initial
é vector and start from there —_—
© End if the random restart failed twice

—_—

raa c/owu"}(’_i §(/D 2
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Implicitly restarted Arnoldi method

The same method for non-Hermitian EVP, yielding a projected matrix
not in tridiagonal, but in Hessenberg form.
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e The Jacobi-Davidson Method
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Jacobi-Davidson for a single eigenvalue

Initial vector w

_ 1
Vo = MW
form:=1,... do
- 1

Vm = Tw ¥

T=VIAV,
= Compute largest eigenpair (0, s) of T
S u=Vps
§ r=Au-—06u
B if ||r|| < ¢ then stop

——Solve approximately P; (A — 0)Piw = —r
9 Orthogonalize w with respect to Vp,
end for
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The projected system

@ The Galerkin projection of A can be built recursively adding one
row and column

Toot | VI AV }
_ T m—1 m m—1

m—1

@ Since the vectors v; are not obtained by short recursion, the
matrix is full

@ Full QR method needed
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The new search direction

@ Search orthogonal to the current Ritz vector u:
P =(-uu')

@ Solves the problem (C-uaT) (A-ﬁz} (r- w) oz -
(A-0hw=—r

on the subspace orthogonal to u.
@ ||lu|| = 1 and the eigenvector has length one
e Search tangential to the unit sphere
@ Exact solution not necessary, since projected matrix is computed
explicitly
@ Can be replaced by any other operator
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Another view to the Davidson method

@ The shift  for inversion is adapted in each step
e Projection version of the Rayleigh quotient iteration
@ The matrix A— 0/ becomes more and more singular as ¢ improves

e Condition number grows
e The projection improves the condition number
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Jacobi-Davidson for several eigenvalues

Initial vector w

1
VOZMW
form:=1,... do

— 1

Vm = Tun W
T:V,EAVm

ug=Vmpsk, k=1,...¢
re=Aux —0ux, k=1,....¢ 7}
if |A|| < € then stop
Solve approximately P (A — VPiw = —r
Orthogonalize w with respect to V,

end for )

{Compute largest eigenpairs (6, sx) of T

Lk e

G. Kanschat (IWR, Uni HD) Approximation of EVP IWR School 2017 43/ 46



Search direction

@ The Ritz vectors form an orthogonal matrix
U= (uy,...,u) e R™*
@ The new orthogonal projection is
P = (1-UUT)

@ ¢ is still chosen as the largest Ritz value
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Further improvements

@ Locking of converged eigenvalues
@ Implicit restart
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@ Vector iterations
o Amplify desired eigenvectors by applying matrix powers
@ Projection methods

Accelerate by solving projected problems exactly
e Projected problems are of dimension greater one
e Lanczos accelerating power and inverse iteration
e Davidson accelerating Rayleigh quotient iteration
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