Program IWR School "Mathematical Methods for Quantum Chemistry"

time	So 1^{st} Oct	Mo 2^{nd} Oct	Tu $3^{\rm rd}$ Oct	We 4^{th} Oct	Th 5^{th} Oct	$Fr 6^{th} Oct$
8:00						
		Registration				
9:00		Opening Andreas Dreuw	Eric Cancès	Andreas Dreuw The Electron Cor-	Reinhold Schneider	Guido Kanschat Iterative eigen-
10:00		Introduction to quan- tum chemistry	An in-depth look at self- consistent field methods	The Electron Cor- relation Problem	Properties of coupled- cluster methods	solver algorithms
11:00		Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
12:00		Eric Cancès Mathematical structure	Contributed talks	Reinhold Schneider Mathematical structure	Contributed talks	Contributed talks
		of quantum mechanics	Lunch Bräustadel	of Post-HF methods		Closing
13:00		Lunch Bräustadel		Lunch Bräustadel	Lunch Bräustadel	
14:00		Guido Kanschat		Contributed talks	Contributed talks	
15:00		operator eigenproblems		Coffee break	Coffee break	
16:00		Coffee break	Excursion to Frankfurt guided city tour and afterwards conference dinner	Denis Davydov Katharina Kormann Modelling simple quantum- mechanical systems	Denis Davydov Katharina Kormann Time-dependent problems	
17:00		Contributed talks				
18:00	Registration					
19:00						Lectures
	Welcome reception					Practical sessions
evening	and get-together		Get-together		Contributed talks Food, coffee, social	

Monday 2nd October

Introduction to quantum chemistry (Dreuw)

- Basic physical principles and equations of quantum mechanics
- Born-Oppenheimer Approximation and the electronic Schrödinger Equation
- Introduction to Hartree-Fock
- Gaussian basis sets
- Koopmans' theorem
- Brillouin's theorem

Mathematical structure of quantum mechanics (Cancès)

- Hilbert spaces: Definition and properties
- Linear operators: Properties and examples in quantum mechanics
- Classification of spectra of self-adjoint operators and the physical interpretation
- Physical interpretation of the domain of an observable
- Structure of the spectra of typical Hamiltonians used in quantum-mechanical modelling

Numerical solution of operator eigenproblems (Kanschat)

- Min-max theorem for compact, self-adjoint eigenvalue problems in Hilbert spaces
- Galerkin approximation: Definition and concept
- Galerkin approximation for eigenvalue problems
- Error estimates for discretised eigenvalue problems

Contributed talks

- Simon Etter: Locality in Quantum Mechanics
- Nguyen Ngoc Doanh: Developing a framework for operation optimization of irrigation systems

Tuesday 3rd October

An in-depth look at self-consistent field methods (Cancès)

- Mathematical derivation of the Hartree-Fock model
- Mathematical structure of the various formulations of Hartree-Fock
- Examples and properties of common self-consistent field algorithms for Hartree-Fock

Contributed talks

- Yuki Yamamoto: Molecular dynamics simulation and theoretical analysis of liquid pyrenes
- Marlene Lund: Large-Scale Semidefinite Programming in Computation of Many-Body Electronic Structures

Wednesday 4th October

The Electron Correlation Problem (Dreuw)

- Issues with Hartree-Fock
- Electronic correlation
- Introduction to density-functional theory

Mathematical structure of Post-HF methods (Schneider)

- Slater determinants and Full CI
- Excitation and creation operators
- Second quantization
- Exponential ansatz and single reference coupled cluster

Contributed talks

- Benjamin Kutschan: Geometry of tensor decompositions
- *Prakash Lamichhae:* Dye Sensitized Solar Cell Using Fe/Co doped ZnO thin film and Organic Dye from Nactynthes Arbrotristics
- Michael F. Herbst: Employing lazy matrices for a flexible quantum-chemical simulation package

Practical session (Davydov, Kormann)

- Introduction to deal.ii
- Solving standard generalised hermitian eigenvalue problems with deal.ii

Thursday 5th October

Properties of coupled-cluster methods (Schneider)

- Projected coupled cluster equations (CC)
- Coupled cluster energy
- Convergence theory for CC
- Coupled Cluster Lagrangian and bivariational formulation

Contributed talks

- Fabian Faulstich: Mathematical Analysis of DMRG-TCC
- Masahiko Taguchi: QM/MM study on inhibitor of HIV-1 protease
- Aynura Jafarova: Qubit transfer with high fidelity in 1D fermion spin chains with nearest-neighbour interaction based on new recurrence relations for Racah polynomials
- Ojo Gbenga: Approximate solution of Eckhaus Equation Using Elzaki Decomposition Method
- Aleena Alex: Molecular Dynamic Studies of mineral water interfaces
- Sabina Sadigova: Frames, applications and abstract examples in Hardy classes

Practical session (Davydov, Kormann)

- Solving standard generalised hermitian eigenvalue problems with deal.ii (continued)
- Solving the Time-dependent Schrödinger equation

Friday 6th October

Iterative eigensolver algorithms (Kanschat)

- Power method and inverse power method with shift
- QR method as simultaneous power method
- Arnoldi and Krylov-subspace based methods

Contributed talks

- Jan-Erik Oest: n-dimensional Wave Packet Dynamics and Comparison with Approximate Methods
- Tulika Gupta: Analyzing reaction mechanism for selective CO₂ to HCHO conversion